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Abstract: We study the convex hulls of random walks establishing both law of large

numbers and weak convergence statements for the perimeter length, diameter and

shape of the hull. It should come as no surprise that the case where the random walk

has drift, and the zero-drift case behave differently. We make use of several different

methods to gain a better insight into each case.

Classical results such as Cauchy’s surface area formula, the law of large numbers and

the central limit theorem give some preliminary law of large number results.

Considering the convergence of the random walk and then using the continuous map-

ping theorem leads to intuitive results in the case with drift where, under the appro-

priate scaling, non-zero, deterministic limits exist. In the zero-drift case the random

limiting process, Brownian motion, provides insight into the behaviour of such a walk.

We add to the literature in this area by establishing tighter bounds on the expected

diameter of planar Brownian motion. The Brownian motion process is also useful for

proving that the convex hull of the zero-drift random walk has no limiting shape.

In the case with drift, a martingale difference method was used by Wade and Xu to

prove a central limit theorem for the perimeter length. We use this framework to

establish similar results for the diameter of the convex hull. Time-space processes give

degenerate results here, so we use some geometric properties to further what is known

about the variance of the functionals in this case and to prove a weak convergence

statement for the diameter. During the study of the geometrical properties, we show

that, only finitely often is there a single face in the convex minorant (or concave

majorant) of such a walk.
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Chapter 1

Introduction

In a world where financial output requires justification, it seems appropriate to open

by justifying why we should study convex hulls of random walks – or limit theorems

for convex hulls of random walks which could be a more specific title for this thesis.

There is no denying the relevance of random walks. Whether you are studying the

stock market, disease spreading, election campaign policy or animal movements, you

could consider the change in price, infection rate, popularity or location as a random

incremental change and so, by studying an associated random walk, you could estimate

many quantities of interest.

What about convex hulls though? We discuss specific applications below, but we can

also consider Occam’s razor which is the notion that the simpler solution can often

be more correct, or at least that it is often better to appeal to the simplest solution.

With respect to random walks, more often than not, this theory is applied – how many

times is the exact distribution of the nth step of a random walk described? Instead we

simplify our question to something more tractable such as recurrence or transience, or

a simpler probability bound. Convex hulls are nothing more than another extension of

this simplification. If one knows about the shape and size of a convex hull, upper and

lower bounds on the shape, size and position of the walk can be found.

Finally, but similarly, why consider limit theorems? Again, this gives a simpler frame-

work in which to work, but that is not all. In fact, after a little thought,1 it is entirely

1In this case, after discussing a similar question with Nick Bingham, to whom I am grateful for his
comments and suggestions.

1



1.1. Historical context and applications 2

natural to ask about limits to infinity, after all, the natural numbers are an infinite set

themselves. Any process which recurs every hour, minute or second can be associated

with this infinite set, and more often than not, if a limit exists, we will see this limiting

behaviour if we watch the process for long enough. Just ask your favourite casino’s

owner if they agree!

In this rest of this chapter we will discuss some of the existing work specific to random

walks, convex hulls, and the crossover of these two topics. The first of these topics is

a vast area of research in itself and one which we cannot cover in its entirety. Thus

we must choose to focus on a subset of the topic, here presenting results concerning

fluctuation theory which we feel leads quite naturally into the study of convex hulls.

After this historical overview, we describe some specific applications of convex hulls

and convex hulls of random walks across the natural sciences. We then provide a brief

outline of the remainder of the thesis and introduce some specific random walks which

will be used to demonstrate our results in action.

Finally, we end this chapter by going on a quick tour of some relevant mathematical

concepts that are used in the material of this thesis. This section will be particu-

larly useful for readers unfamiliar with the topics covered, but for the more advanced

reader, this section can be used simply for reference. The reason for the length of this

introduction is two-fold. Firstly to be comprehensive, but also because our results are

built on these foundations many which are generic or technical results in random walk

theory that would hinder the flow of the main body of work. We also use this section

as a reference guide for any notation specific to this thesis.

1.1 Historical context and applications

This section is separated into four parts. We begin with introductions to random walk

theory, and problems concerning convex shapes and convex hulls of random points.

These two subsections are deliberately conversational to give a flavour of the context

in which the more specific topic of convex hulls of random walks sits. This is the third

subsection, which we discuss in more depth with results explicitly stated with as much

of the current literature discussed as possible. We finish with a brief discussion of areas
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of science where convex hulls are and could in the future be applied.

1.1.1 Random walk theory

The term random walk was first coined by Karl Pearson in 1905 when he wrote a letter

to Nature asking for help from the readership [Pea05a]. His posed problem was that of

a man walking a distance of l yards from his starting position, then changing direction

(or not) randomly, before walking a further l yards, until he had made n movements.

In particular, Pearson wondered what the probability is of the man being in an annulus

a given distance from his starting position after carrying out this procedure.

The response came from Lord Rayleigh [Ray05], informing Pearson that he had already

studied the problem several decades earlier in a different context. His focus was con-

cerning sound wave vibrations of a fixed pitch (magnitude) but varying phase (angle)

[Ray80]. Both a summary of Rayleigh’s result and one further key contribution to the

field, namely the analogy of a drunken man, came in the next edition of Nature where

Pearson wrote [Pea05b]:

The lesson of Lord Rayleigh’s solution is that in open country the most

probable place to find a drunken man who is at all capable of keeping on

his feet is somewhere near his starting point!

Further to Pearson’s and Rayleigh’s work, notable mentions should go to Louis Bache-

lier, who was the first to link the topic of mathematical finance to these probabilistic

processes in his doctoral thesis of 1900 [Bac00], and the little known scientist Albert

Einstein, who provided a theory to Robert Brown’s observations on the movement of

particles suspended in a liquid, which he termed Brownian motion [Ein05; Bro28]. We

will not discuss any applications to finance, but Brownian motion certainly features

heavily throughout the work.

With the theory now known in the scientific community, there were many directions of

study which were pursued across the globe. One such example is the dichotomy between

recurrence and transience (the notions of returning to any given state eventually against

visiting states only finitely many times) which for a particularly simple random walk

led Shizuo Kakutani to follow in Pearson’s footsteps with his jest [Dur10, p.191]:
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A drunk man will eventually find his way home, but a drunk bird may get

lost forever.

That is, in two dimensions the process is recurrent but in three dimensions it becomes

transient and thus might never return home.

In this work, we consider results on the convex hull of random walks. There are plenty

of previous works on this specific topic, but even before the term convex hull entered

this area of study, there were many works on the extreme values, and in particular

maxima, of random walks. Through Cauchy’s surface area formula for convex shapes,

see e.g. [Gru07, p.106], which gives an expression for the surface area as the integral

of projected lengths over all angles, we see that these results are closely related, even

if the original authors were not necessarily aware of this fact.

The study of extreme values of random walks became known as fluctuation theory.

The early results were largely related to the proportion of time that a one dimensional

walk is on the positive side of the origin. We will denote the positions of the walk at

time n as Sn and use Tn to denote the proportion of time on the positive side up to

time n. One early paper which sparked an abundance of work, was Lévy’s paper ‘Sur

certains processus stochastiques homogènes’ [Lév40b]. Here, Lévy proved an arcsine

law for Tn where the underlying walk was the simple symmetric random walk, that is

P(Sn+1−Sn = 1) = P(Sn+1−Sn = −1) = 1/2 and the (Sn+1 − Sn)n≥1 are independent

with S0 = 0, which stated

lim
n→∞

P(Tn < x) = 2
π

arcsin
√
x, for x ∈ (0, 1).

Intuitively, this result says that over a long period the the walk is more likely to spend

the majority of time on one side or another, and in fact, the least likely outcome is to

spend around half the time on each side of the origin.

From 1947 to 1952 this result was generalised again and again, first to walks where

the increments had mean 0 and variance 1 by Erdős and Kac [EK47], then Sparre

Andersen twice published the result depending on some conditions of symmetry which

allowed the necessity for the increments to be independent of one another to be relaxed

[SA49; SA50], and then Maruyama and Udagawa separately relaxed the conditions
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for these latest results, only requiring a central limit theorem to hold for the walks

[Mar51; Uda52]. These results continue to be of interest to the present day. Sparre

Andersen’s results on symmetric increments have been generalised in the last few years

by Kabluchko, Vysotsky and Zaporozhets [KVZ16] to allow for higher dimensions,

which of course requires generalisation of what is meant by ‘the positive side’; in their

work they consider absorption of the origin in the convex hull, particularly appropriate

for our current context. This generalisation can be compared to the choice of Bingham

and Doney [BD88], who, in 1988 presented results on arcsine laws for Brownian motion

in higher dimensions, where they considered ‘the positive side’ to be taken as having

all components positive.

Many of the earlier arcsine law results were established using combinatorial arguments,

but at the same time, Chung and Feller [CF49] applied the powerful tool of generating

functions to confirm Erdős and Kac’s result in the case of the simple symmetric random

walk and also to determine a nice result which contrasted with those found by Lévy. In

particular, if N2n is the number of steps of a 2n step walk where the position directly

before the step is taken or the position directly after the step is taken (or indeed both

of these positions) is positive, then for any r ∈ {0, . . . , n}

P(N2n = 2r | S2n = 0) = 1
n+ 1 .

This appears in contrast to the arcsine law, because it states that a walk returning to

the origin at a given time has an equal probability of having spent any viable proportion

of time on either side of the origin up until its moment of return. Specifically, the walk

is just as likely to have half its steps on the positive side as it is to have spent all or

no time on the positive side of the origin.

As Erdős and Kac generalised Lévy’s results, this theorem was generalised by Lipschutz,

in [Lip52], to walks with mean 0 and variance 1 on the condition they had a finite 4th

moment. A few years later, Baxter presented a paper on ‘Wiener process distributions

of the “arcsine law” type’, which apart from citing Erdős and Kac’s paper, required

only one cited result, Chung and Feller’s uniform distribution result. After this, there

was a period where Chung and Feller’s paper, although the results were well-known,

did not attract much attention, however this is possibly due to Feller’s seminal book,
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first appearing in 1950, which contained a chapter on the fluctuations of coin tossing,

including this theorem [Fel68, pp.67–97]. Despite this, since the millennium there

has been a renewed interest in Chung and Feller’s paper itself, with over 20 references,

including one particular paper which used combinatorial methods in the style of Sparre

Andersen to investigate a topic of interest to us - maxima of random walks [HW16].

This point in time, the early 50’s, was the beginning of these functionals being consid-

ered together. Feller’s book was published, Chung and Erdős had described a gener-

alisation of the Borel-Cantelli lemma which they applied to the number of zeros and

number of positive terms of the simple symmetric random walk [CE52], and Lipschutz

developed this paper further to a whole class of “number of” events [Lip53]. Similarly,

Darling [Dar51] considered random walks with symmetric increments, establishing a

theorem on the ordering of the random walk points. In turn, this was shown to give

a distribution for the position of the maximum and a distribution for the number of

walk points which are positive.

One further paper which considered the first time a walk attains its maximum, last

time it attains its minimum, and the number of positive walk points, was the first of

two papers titled ‘On the fluctuations of sums of random variables’ by Sparre Andersen

[SA53]. The second such paper [SA54], published the very next year, is, to the author’s

knowledge, the first serious consideration of the convex hull, or at least the convex

minorant, of a random walk and was the product of this ongoing study of functionals,

or fluctuations of random walks.

The study of random walks has of course continued beyond the specific topic of their

convex hulls. One recent, particularly active researcher with over 200 papers, of which

many relate to random walks, some specifically to convex hulls of random walks is

Satya Majumdar. Some papers are natural extensions of the results in the 1950’s, with

several of his works with co-authors Mounaix and Schehr considering not just the first

maximum but the first two maxima of random walks [MMS13; MMS14; MSM16], and

also his paper, this time only with Schehr, using similar order statistic ideas as Darling

did in his work 60 years previously [SM12]. We leave further study of random walks,

not with a convex hulls focus, to the interested reader and could suggest a whole host

of books on the subject but suffice by suggesting the following [Rév13; Fel68; Fel71;

Dur10; Gut05; Kal02; LL10; Spi76; MPW17].
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1.1.2 Convex hulls

Completely separated from the study of random walks, the study of convex shapes and

convex hulls has been a source of persistent interest going as far back as the works

of Archimedes in the 3rd century BC, see e.g. ‘The Works of Archimedes’ by Heath

[Hea97] or the nice commentary by the late Stephen Hawking in his book ‘God Created

the Integers’ [Haw06, pp. 119–239]. Indeed, it is suggested by Gruber [Gru07, p.41]

that Archimedes was the first to explicitly define convexity with the axioms in his work

‘On the Sphere and the Cylinder’.

Convex sets themselves appear in many branches of applied science including other

areas of mathematics. Of course, convex analysis and optimization relies heavily on

convex sets and convex functions, see e.g. [Roc70], and can be applied to many useful

problems such as the solution space in the simplex method of operations research, see

e.g. [FP93; Sai95]. Other natural sciences also make use of convex sets, including the

idea of balance in consumption in economics [NS08, p. 94] and in ecological studies of

species competition [ML64].

In terms of convex hulls of random points in mathematics, there has been considerable

work throughout the last century, with many simple-to-state puzzles probably being

the foundation of the work. Such problems include the combinatorial problem posed

in a paper by Erdős and Szekeres [ES35] which asks how many points you need in the

plane, with no 3 lying on a straight line, such that you can be certain of finding a subset

of n points such that the resulting n-gon is convex. Both the proof for the original

case concerning quadrilaterals, and the more general question regarding n points are

attributed to Esther Klein, who went on to marry Szekeres giving the problem its

nickname of the ‘happy ending problem’. A similar problem is Sylvester’s four point

problem, unsurprisingly posed by Sylvester in the Educational Times in 1864 [Syl64]

and nicely discussed by Pfiefer in his paper of 1989 [Pfi89]. The problem is to show that

the probability of 4 points taken ‘at random in an infinite plane’ of forming a non-convex

polygon is 1/4. The problem is ill posed with differing solutions attained depending

on the interpretation of the random selection method. However, this problem posed as

randomly selecting points from a certain finite convex plane (e.g. a circle or a specified

polygon) where the randomness is considered as uniformly chosen points in the given
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plane (i.e. a point has a probability of falling in a given subset equal to the proportion

of the area of the set covered by the subset), has been solved [Wat65; Woo67]. As has

the generalisation of considering a choice of n+2 points in the n-dimensional unit ball,

and asking whether their convex hull contains n + 1 points [Kin69; Gro73]. For nice

discussion of such results see e.g. [KM63; Pey97].

These problems were then reconsidered in the 1960’s from a different perspective;

instead of how many vertices to form a convex n-gon or the probability of a single

point being inside the convex hull, what is the expected number of vertices in the

hull? Or what is the expected perimeter length and area of the hull of these n random

points? This was what Rényi and Sulanke [RS63; RS64], Efron [Efr65], and more

recently Massé [Mas99; Mas00] and Reitzner [Rei03] considered in their papers.

One extension to these questions was considered by Rogers [Rog78]: whether two sets

of points in the plane have disjoint convex hulls. Jewell and Romano then showed that

this problem, in a simple form, was equivalent to considering the probability that a

given number of arcs of fixed length, when randomly placed on the circle, would form

a cover of the circumference [JR82]. Problems of this type have continued to be solved

in recent years. Reitzner considered the same problem as Rogers but where the sets of

points were restricted to lying in a convex body themselves [Rei00], and Groeneboom

considered a similar problem to Rényi and Sulanke of the number of vertices in the

convex hull of n points, but now restricted to lying in a convex polygon [Gro12].

A further set of interesting results related to convex shapes are the Bárány-Vershik-

Sinai results on the limit shapes of convex polygons. So-called because each of the

three authors independently proved similar results in 1994 − 95, see [Bár95; Ver94;

Sin94]. As Bogachev and Zarbaliev state in their paper generalizing the theorems, see

[BZ11], the results concern the limit shape of a typical convex curve from some set of

convex curves. For example, Bárány’s first theorem considers the typical shape of a

convex polygons in the square [−1, 1]2 with vertices on the lattice n−1Z2 as n → ∞.

If we consider a point x ∈ [−1, 1]2, and at each step n, calculate the proportion of the

convex polygons for which the point is in the interior, call this ρn(x), then there exists

a limiting shape L for which ρn(x)→ 1 if x ∈ intL, the interior of L and ρn(x)→ 0 if

x /∈ L. The shape L is the convex set L =
{

(x, y) ∈ R2 :
√

1− |x|+
√

1− |y| ≥ 1
}
.
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This is just a flavour of some of results that have been studied on the convex hulls

of random points, a topic which continues to be studied right up to the present day,

e.g. [KRR18]. However, the focus of this work is more specifically on convex hulls of

random walks, so for further detailed discussion of hulls of random points, the survey

by Majumdar is recommended [MCRF10]. This survey also covers random walks but

we aim to give more extensive and up to date coverage of this area of study in what

follows.

1.1.3 Convex hulls of random walks

We begin our discussion of convex hulls of random walks with Sparre Andersen’s re-

sults from [SA54]. As Majumdar et al. mention in their survey [MCRF10], Lévy had

commented, somewhat heuristically, on the shape of the curve of Brownian motion

[Lév48], which is in effect the convex hull, but Sparre Andersen seems to be the first

to provide some rigorous results relating to such concepts. After the majority of the

paper where Sparre Andersen considered random variables such as the first time to

attain the maximum value, as was discussed above, he presented results on the number

Hn of values i = 1, . . . , n−1 such that Si coincides with the largest convex minorant of

the sequence S0, . . . , Sn. Here, the increments of the walk are denoted Zi := Si−Si−1,

and these increments are one-dimensional. Thus Sparre Andersen defines the convex

minorant in terms of sequences of numbers: a sequence b0, . . . , bn is called convex if

the sequence b1 − b0, b2 − b1, . . . , bn − bn−1 are non-decreasing, and then a sequence

a0, . . . , an has a unique, largest, convex minorant sequence b0, . . . , bn. This sequence

always has b0 = a0 and bn = an, and then either bi = ai for i = 1, . . . , n − 1 or

bi = (k − j)−1 ((k − i)aj + (i− j)ak) where k is the smallest index larger than i such

that bk = ak and j is the largest index smaller than i such that bj = aj. For the random

walk, we construct the convex minorant from the sequence ai = Si, i = 0, . . . , n.

Graphically, the walk and convex minorant can be represented by plotting the time-

space diagram of the random walk, and drawing the shortest path from S0 to Sn which,

at any give time, always has a spatial value less than or equal to the spatial value of

the random walk at the same time value. For example, in Figure 1.1 we have the time-

space diagram of a random walk, in black, with n = 10 and its convex minorant, in
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green. The point at (4,−3) represents S4 which is one of the walk points where bi = Si

because the walk and convex minorant intersect. The point at (8,−1) is b8 which is

an interpolation of b7 = S7 and b9 = S9. For this walk, Hn = 4 because the walk and

convex minorant intersect at 4 indices, not including the points at 0 or n = 10.

Figure 1.1: Convex Minorant (green) of a random walk (black)

In the paper, Sparre Andersen describes the distribution of Hn on the condition that

the increments Zi are independent and drawn from continuous distributions. He does

this by establishing the generating function as

Hn(t) :=
n−1∑
m=0

P(Hn = m)tm = n−1
n−1∏
m=1

(1 +m−1t),

which coincides with the generating function for a sum of n − 1 Bernoulli random

variables Y1, . . . , Yn−1, which take the value 1 with probability (i + 1)−1 and 0 with

probability i(i+ 1)−1. This enables us to establish the properties

E(Hn) =
n−1∑
i=1

(i+ 1)−1, Var(Hn) =
n−1∑
i=1

i(i+ 1)−2,

which tells us that we should expect approximately log n random walk points to lie on

the convex minorant. Of course, this result also says that we would expect approxi-

mately log n points to lie on the concave majorant, by symmetry, and so the convex
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hull which is just the convex minorant concatenated to the concave majorant is also

expected to have approximately 2 log n vertices, and thus this many faces.

Convex minorants have applications themselves in isotonic estimation in statistics -

the estimation of functions which are known to be non-decreasing in some way. An

example of such a study is the paper by Leurgans from 1982 [Leu82].

Further study of convex minorants in the period immediately after Sparre Andersen’s

work was largely from a combinatorial perspective. Spitzer [Spi56] used cyclic per-

mutations to relate the characteristic function of max(S0, . . . , Sn) to the sum of the

characteristic functions of max(0, Si) for i = 1, . . . , n, a result which Brunk generalized

[Bru64]. This, along with further results on cyclic permutations by Stam [Sta83], were

used by Goldie in 1989 [Gol89] to analyse the convex minorant of a one dimensional

random walk, with the conditions Sparre Andersen had described. Let an increment

Zi ‘belong to the jth side of the greatest convex minorant’ if exactly j of the random

walk points from S0, . . . , Si−1 have the property Sk = bk for k = 0, ..., i − 1. Then,

considering the increments and the sides to which they belong, Goldie established that

the event, Ai, that the ith smallest increment belongs to a new side, i.e. one which none

of the i− 1 smaller increments belong to, has P (Ai) = 1/i with all the Ai, i = 1, . . . , n

independent.

Interestingly however, Qiao and Steele proved in 2002 that the concave majorant of

a random walk consists of a single line infinitely often [QS05]. This contrasts to the

results of Goldie and Sparre Andersen which both suggest that we would expect there

to be order log n faces when considering a fixed length of the walk. We pick up this

theme in Chapter 6.

Another combinatorial paper which came after Sparre Andersen and Spitzer’s combi-

natorial lemma was that of Baxter on ‘A combinatorial lemma for complex numbers’

[Bax61]. In terms of random walks, Baxter was considering a two dimensional walk

where for any two vectors, each created by adding together a non-empty subset of

consecutive increments, must not be parallel, which is satisfied with probability 1 if

the increments are drawn from a continuous distribution. Then he noted that there is

only one cyclic permutation of the increments Z1, . . . , Zn such that the random walk

stays positive throughout. Further to this, any edge of the convex hull is made up of a



1.1. Historical context and applications 12

sum of some subset, A, of the increments. If we say |A| = m, then the edge created by

adding this specific subset appears in exactly 2(m−1)!(n−m)! of the possible permuta-

tions (not restricting to cyclic permutations). Using only these two properties, Baxter

established that we expect exactly 2 of the increments Z1, . . . , Zn to be edges of the

hull. He also verified the result of Sparre Andersen that we would expect 2 log n faces

in the hull. Finally, he verified the Spitzer-Widom formula on the expected perimeter

length of the convex hull, which we will discuss below. Two years later, in work with

Barndorff-Nielsen, Baxter generalized his results to higher dimensions [BNB63].

At the same time as these results, Spitzer, in collaboration with Widom [SW61], con-

sidered the expected perimeter length of the convex hull of a planar random walk. This

question has been conveyed by another analogy involving our drunken friend, this time

as a gardener, in [WX15a]:

On each of n unsteady steps, a drunken gardener drops a seed. Once the

flowers have bloomed, what is the minimum length of fencing required to

enclose the garden?

Spitzer and Widom approached this question with the usual combinatorial mindset,

but this time in conjunction with Cauchy’s surface area formula for convex shapes, see

e.g. [Gru07, p.106]. The formula states that the perimeter length, L, of a convex shape

can be determined as

L =
∫ π

0
D(θ)dθ, (1.1.1)

where D(θ) is the length of the projection of the shape onto a line with direction θ.

In random walk terms, the convex shape is the convex hull, and thus to calculate the

perimeter length we consider

D(θ) = max
0≤i≤n

Si · eθ − min
0≤i≤n

Si · eθ,

where eθ is the unit vector in direction θ. The combinatorial identity used alongside

Cauchy’s formula was a lemma of Kac [Kac54], but he attributes the concise proof of

the lemma to Dyson. This lemma requires us to consider all the permutations of the

n increments, so let π : 1, . . . , n 7→ π1, . . . , πn be such a permutation. Then the result
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states ∑
π

(
max
0≤i≤n

Sπi − min
0≤i≤n

Sπi

)
=
∑
π

n∑
i=1

1
i
‖Sπi‖,

where the Sπi must be real numbers and the notation used for the first sum on both

sides means over all possible permutations. Of course having all Sπi real is not what

was promised, this was Spitzer and Widom’s contribution, to combine the two results

so that Kac’s lemma became

∑
π

Lπn = 2
∑
π

n∑
i=1

1
i
‖Sπi‖,

where Lπn is the perimeter length of the convex hull of the random walk under the

permutation π. The remarkable theorem that follows is the equation that arises when

we take expectations,

ELn = 2
n∑
i=1

1
i
E ‖Si‖. (1.1.2)

Despite the elegance of this result, there was very little in the years that followed other

than the papers by Baxter mentioned above. It wasn’t until 1993 that Snyder and

Steele [SS93] further studied the distribution of Ln and established an upper bound on

its variance. Specifically, letting µ := EZ,

Var(Ln) ≤ π2n

2
(
E(‖Z‖2)− ‖µ‖2

)
,

if the increments of the random walk Z1, . . . , Zn are all independent and distributed

like Z. Then, if E ‖Z‖2 <∞, this is sufficient to show that

n−1Ln
a.s.−→ 2‖µ‖ as n→∞. (1.1.3)

See also Theorem 2.1.1 and Theorem 3.3.11 below. They also established bounds on the

tail probabilities of Ln −ELn but only in the case where the increments are bounded.

Further, they also used Baxter’s combinatorial lemma to reaffirm several known results

in different ways to the previous expositions, however they also showed it was possible

to establish further results such as the expected sum of squares of the face lengths of

the convex hull, L(2)
n for which they established,

EL(2)
n = 2n

(
E(‖Z‖2)− ‖µ‖2

)
.
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Steele then continued to consider combinatorial results which could help in the study

of such functionals of convex hulls and in 2002 presented his paper on the Bohnenblust-

Spitzer algorithm [Ste02]. The application of the combinatorial formulae established

by the algorithm gives further results on the distribution of functionals such as the

number of faces (of the time-space diagram of a one dimensional walk), but not on the

variance of the perimeter length. However, after establishing the expected length of

the concave majorant was approximately n
√

1 + µ2 for large n, Steele makes a passing

comment that has particular relevance to our later work where we prove his intuition to

not only be correct for the one dimensional time-space diagram but for two dimensional

walks as well [Ste02, p241],

This interesting geometric formula tells us that the expected length of the

concave majorant grows exactly like the length of the line from (0, 0) to the

point (n,E(Sn)) = (n, nµ).

The question of improving the upper bound on the variance of Ln to at least an

asymptotic result was answered by Wade and Xu in two papers in 2015 [WX15a;

WX15b]. In the first, they considered the case where ‖µ‖ > 0, the case with drift. In

this work, they showed (Theorem 1.3 of [WX15a]) that if E(‖Z‖2) < ∞ and µ 6= 0,

then, as n→∞,

n−1/2|Ln − ELn − 2(Sn − ESn) · µ̂| → 0, in L2. (1.1.4)

This result was enough to establish the asymptotic expression for the variance,

lim
n→∞

n−1 VarLn = 4E
(
((Z − µ) · µ̂)2

)
(1.1.5)

where we have used µ̂ to mean the unit vector in the direction of µ. In turn, this was

enough to describe a central limit theorem for Ln in the case where the right hand

side of (1.1.5) was non-zero. The exceptional case refers to the walks where there is no

variance in the direction of the mean and so include the time-space diagrams of one

dimensional walks. This is the topic of Chapter 6.

In the second of the two papers [WX15b], the authors considered the convergence of

the convex hull of the random walk to that of Brownian motion by using a continuous
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mapping argument and Donsker’s theorem. In particular, they showed that, for walks

with µ = 0, as n→∞,

n−1/2Ln
d−→ L(Σ1/2h1), and n−1An

d−→ A(Σ1/2h1) = a1
√

det Σ,

where we have used the notation L and A to mean the perimeter length and area of a

set, respectively, Σ := E[(Z − µ)(Z − µ)>], the covariance matrix for the increments,

and h1 and a1 to be the hull of Brownian motion run for unit time and the area of

said hull, respectively. From this distribution result, they established convergence of

the mean of Ln in the zero drift case as

lim
n→∞

n−1/2 ELn = 4E ‖Y ‖,

if Y ∼ N (0,Σ) is a Normal random variable. Likewise, they found

lim
n→∞

n−1 EAn = π

2
√

det Σ.

For the case where there is drift, ‖µ‖ > 0, the hull does not converge to that of two

dimensional Brownian motion, but it does to the convex hull of the space-time diagram

of one-dimensional Brownian motion, h̃1. This led to the result: if E ‖Z‖p < ∞ for

some p > 2, and σ2
µ⊥
> 0 where σ2

µ⊥
is the variance in the direction perpendicular to

the mean, formally defined at (1.3.5) below, then

lim
n→∞

n−3/2 EAn = 1
3‖µ‖

√
2πσ2

µ⊥
. (1.1.6)

The variance of these two functionals was also studied with the following convergence

to the variance of the respective quantity in terms of Brownian motion as follows:

• Suppose µ = 0 and E ‖Z‖p <∞ for p > 2, then

lim
n→∞

n−1 VarLn = Var(L(Σ1/2h1)).

• Suppose µ = 0 and E ‖Z‖p <∞ for p > 4, then

lim
n→∞

n−2 VarAn = Var(a1) det Σ.
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• Suppose ‖µ‖ > 0 and E ‖Z‖p <∞ for p > 4, then

lim
n→∞

n−3 VarAn = Var(A(h̃1))‖µ‖2σ2
µ⊥
.

It is no mistake or oversight that these results do not include an equivalent result for Ln
in the case ‖µ‖ > 0 which would of course agree with the first of the two papers. The

fact that the limiting object in this case is the space-time diagram of one dimensional

Brownian motion, means that the scaling in the time direction is n and in the space

direction is n1/2 which explains the n−3/2 in (1.1.6). Unfortunately, under this different

scaling knowing only the length of an edge of the hull is not enough to know how it

scales, the angle of the edge is also required to determine the scaled length. Thus,

knowing the perimeter length without more details on the angles of the edges of the

hull is also not enough.

One result that has been attained for the perimeter length is a large deviation result.

Akopyan and Vysotsky [AV16] have shown P(Ln ≥ 2cn) for c > ‖µ‖ decays exponen-

tially, and likewise for deviations on the lower side.

Finally on the perimeter length and area, there are also some results when some central

symmetry is assumed with continuous increments. Grebenkov, Lanoiselée and Majum-

dar [GLM17] found expansions of ELn in this case, showing that, when we have finite

variance, the second term of the expansion, after the n1/2 term, is in fact constant. If

we do not have finite variance, then the order of the terms in the expansion depends

on which is the largest moment that is in fact finite in the density function of the

increments. The authors also established similar results for the expansion of EAn but

this was only for the case of Gaussian increments.

There are other functionals of the convex hulls of random walks which have also been

studied. In [KVZ17b], Kabluchko, Vysotsky and Zaporozhets determined the expected

number of faces of the convex hull. Vysotsky and Zaporozhets had previously stud-

ied the probability that a multidimensional walk with centrally symmetric increments

absorbs the origin into its hull in [VZ18], but their distribution-free results only were

proven in two dimensions, however in a later work, also with Kabluchko, they were

able to complete the proof using a different methodology [KVZ17a]. The method of

Vysotsky and Zaporozhets did have the advantage of proving a multi-dimensional gen-

eralisation of the Spitzer-Widom formula.
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Some earlier studies had also considered other functionals. In fact, they considered

any functional, Ψ, of the convex hull that is monotone with respect to the convex

hull set, and satisfied an affine scaling property. The first of these papers was by

Khoshnevisan [Kho92a], in which he proved a law of the iterated logarithm result: let

Hn be the convex hull at time n, then for some α > 0 which is determined by the affine

scaling property,

lim sup
n→∞

Ψ(Hn)
(2n log log n)α/2 = cΨ a.s.

where cΨ is a deterministic constant depending on the choice of functional. Also in

this paper, Khoshnevisan proved the related lower bound,

lim inf
n→∞

(
log log n

n

)α/2
Ψ(Hn) = c′Ψ a.s.

where α and Ψ are as before, but c′Ψ is a different deterministic constant. Both this

paper, and the second paper by Kuelbs and Ledoux [KL98], were actually focused on

convex hulls of Brownian motion which we are about to discuss below. The contribution

with respect to random walks of the Kuelbs and Ledoux paper was to clear up some

edge cases which required some careful consideration beyond Khoshnevisan’s proofs.

Prior to the contents of this thesis, this is the extent of what was known about the

convex hulls of random walks. However, there has been considerable study of the

convex hulls of Brownian motion, which the results above indicate is a closely related

topic.

Important and relevant works in this area are the Ph.D. thesis of El Bachir [EB83] which

expected area, the useful paper of Eldan [Eld14] which established explicit formulae for

the volumes of n dimensional Brownian motion, and the note by Takács [Tak80] answer-

ing a question by Letac [Let78] on the expected perimeter length of standard Brownian

motion. Some slight variants on the theme of convex hulls of Brownian motion have

been studied by Majumdar and a host of co-authors; in [RFMC09] the convex hull of

multiple Brownian motion paths is studied, and in the two papers [CBM15a; CBM15b]

a single Brownian motion but with a restriction on the plane to have a reflecting wall

is considered. Majumdar has also been involved with a numerous papers which use a

numerical approach to estimate the distributions of the volume and surface area of the

convex hull of Brownian motion in higher dimensions [SHM17], a single walk in two
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dimensions that is not necessarily Brownian [CHM15], multiple random walks in two

dimensions that are not necessarily Brownian [DCHM16], and of self avoiding random

walks [SHM18]. This is not an exhaustive list of results on convex hulls of Brownian

motion, so for further results in the area see [Kho92b; KZ16; RF13] and the references

therein.

A slightly broader view is taken when studying the convex hulls of Lévy processes, a

class which includes Brownian motion. Until recent years very little work had been

done in this area but now there are a few references [KLM12; MW16; RFW17; RF14].

Some results on the convex minorant of Lévy processes can also be found in [PUB12]

and this work, along with some similar results for Brownian motion and other processes

is summarised in the survey paper [APRUB11].

This is not all the processes that have been studied either. In [RMR11] Cauchy’s

formula is used to study the expected perimeter length and the expected area for a

random acceleration process in two dimensions which is not even Markovian.

Most of the random walk results depend on some combinatorial identities and possibly

use Cauchy’s formula too. However, this approach that Wade and Xu used in their

paper on the zero drift case [WX15b], of considering the limit to Brownian motion

and then studying that process is a strategy that, unbeknownst to Wade and Xu, was

also used in the non-zero drift case in the book by Whitt [Whi02] to study random

walks without considering the convex hull. This strategy is also one which we employ

in Chapter 3.

1.1.4 Applications

As far as applications of convex hulls of random walks are concerned, the most cited is

the application to ecology and the home range of animals, see [Wor95; Wor87]. This

idea was pursued by Luković, Geisel and Eule [LGE13], who studied the convex hulls

of some continuous random walks which they compared to the search strategies of

Mediterranean seabirds and animals ambushing their prey. This has further relevance

to bridges, random walks where the end point is fixed to be back at the origin, and

to multiple walks, which can be used to model the foraging pattern of an animal or
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pack of animals, that return to a fixed location to sleep each night, as described in e.g.

[GLM17].

Convex hulls themselves have many applications to more specific situations than the

convex set appearances mentioned earlier. In statisical analysis, convex hull peeling,

sometimes referred to as the onion layer problem, is a method used to determine an

ordering of central tendency of points in a data set. By creating the convex hull of

the data, removing the points in the hull boundary and calling these the least central

points, then repeating, we can establish a grouping of the data. Knowing about the

characteristics of the convex hull is particularly important in order to establish the

efficiency of this procedure. Some works on this topic are by Eddy [Edd82] and Brozius

[Bro89].

Another application which specifically uses the convex hulls is in pattern recognition

within images where algorithms to find a convex hull are often reported on in the hope

to speed up computer programs. Many references exist in this area including [AT78;

MT85; Hus88; Ye95].

In biology and medicine, convex hulls are also used to both approximate the surface of a

protein, which is particularly useful in helping to identify the situations in which a given

protein could be useful [MAHPS95]. Similarly, convex hull classification algorithms are

used to identify proteins [YMBH15], or even predict psychosis onset [Bed+15].

This is only a selection of the uses of convex hulls to demonstrate the possibility that

convex hulls of random walks could find further uses in the future beyond the study of

the home range of animals.

1.2 Thesis outline

First, as mentioned above, we give a detailed introduction to the theory required,

starting with basic probability theory and building to some specific results relating to

random walks. Then, we will describe the examples which will be used in simulations

throughout the thesis and briefly mention some comments on how we carried out the

simulations.
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In Chapter 2 we present some law of large numbers results related to the perimeter

length of the convex hull, diameter and ratio of the two functionals. Then we establish

the first few terms of the expansion of the expectation of the perimeter length and the

diameter. We also demonstrate these results through simulations, including plots of

the walks we will be using for our examples.

We then move to functional limit theorems. In this, the longest chapter of the thesis,

we present the key results, namely the functional law of large numbers and functional

central limit theorem which, with the continuous mapping theorem, allow us to de-

termine the convergence of the convex hull and related functionals. Basic examples

include the maximum functional and a generalisation of the arc-sine law, but we also

establish further convergence results for our two main functionals, the perimeter length

of the convex hull and the diameter of the hull. Brownian motion is the limiting object

in some of the results, so this chapter also includes a discussion of the diameter of

planar Brownian motion, in particular improving what is known about the expectation

of this diameter.

In Chapter 4 we look further into the shape of the convex hull, using the notion of

the zero drift walk converging to Brownian motion that was discussed in Chapter 3.

We establish a zero-one law, and then find that the ratio of the perimeter length and

diameter does not converge in the zero drift case.

Then, in Chapter 5, we turn to a different method, using martingale differences, in

order to prove the central limit theorem for the diameter in the case with non-zero

drift. As with the similar result for the perimeter length of the convex hull which was

established in [WX15a], these results do not hold for a certain class of walks, the time-

space processes. Thus, in Chapter 6, we fill in the gap for the diameter, establishing the

limiting distribution for the diameter in this case. For the perimeter length, we do not

get the limiting distribution, but show the variance grows slower than any polynomial

in n, the number of steps. The heuristic and motivation behind the proofs in this case

leads to some further results regarding the faces of the time-space processes which are

also presented in Chapter 6.
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1.3 Mathematical prerequisites

Some of the key mathematical themes that we will need to cover before embarking

on our original work include measures, metrics and convexity. We also include some

standard probability theory for ease of reference. For a comprehensive introduction to

metric spaces see [Bar95], a nice text on convexity is [Gru07] and for a more detailed

exposition of the probability theory see [Gut05].

We begin with the definition of convexity. If we are considering a set A ⊆ Rd then we

say A is convex if for all x, y ∈ A, x+ λ(y − x) ∈ A for all λ ∈ [0, 1].

A key definition for us will be the convex hull of a set, intuitively, this is the set of all

points that are between points in the set. More formally hullA is the smallest convex

set containing A. Note this definition means the convex hull of a convex set is the set

itself.

Two final pieces of notation for specific sets that we will use are Sd−1 := {x ∈ Rd :

‖x‖ = 1} for the unit sphere in Rd and for the unit ball in Rd we write Bd := {x ∈

Rd : ‖x‖ ≤ 1}.

As well as notation of sets, we will require the concept of algebras and σ-algebras, for

definitions see for example [Bar95, § 9, § 13]. A natural link between the sets and

σ-algebras is the notion of generating a σ-algebra from a set of subsets, E , which we

denote σ(E). The generated σ-algebra is the smallest σ-algebra which contains all the

subsets in E . Note also that an algebra itself is a set (of subsets) so we can generate a

σ-algebra from an algebra. If an algebra and σ-algebra are both generated by the same

finite set, then it is clear they will in fact be the same, but if two sets are not exactly

the same, can we numerate how different it is in a coherent way? For this, we will of

course use measures, again see [Bar95, § 9] for a definition. A couple of examples of

measures we mention here for notational purposes are:

Lebesgue measure: For intervals in R, such as the open interval (x, y) with x, y ∈ R

or the closed interval [x, y], the Lebesgue measure is µ(x, y) = µ[x, y] = y − x.

Probability measure: If a measure is a probability measure, then it must satisfy

the additional condition µ(Ω) = 1 where Ω is the sample space. We use the standard

notation of replacing the µ in this case with P.
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In particular, we call the triple (Ω,F ,P) a probability triple where Ω is the sample

space and F is a σ-algebra of subsets of Ω.

For this next technical result, we will require one explicit piece of set notation. For sets

A and B we denote the symmetric difference as A4B which is defined as the elements

that are in one and only one of the sets A and B.

Lemma 1.3.1. Let A be an algebra and σ(A) the generated σ-algebra. Then for any

set A ∈ σ(A) and ε > 0, there exists a set A′ ∈ A such that P(A4A′) < ε.

We also need some notation for metric spaces, for some elementary definitions see for

example [Rud76, p. 30]. We will use d to denote a metric and call the pair (S, d) a

metric space where S is the underlying set.

A set E in the metric space (S, d) is called open if, for any x1 ∈ E, we can find some

ε > 0, such that d(x1, x2) < ε implies x2 ∈ E. Recall, the complement of a set is

denoted Ec := S \ E and we call E closed if Ec is open. We denote the closure of E

by clE, and define the boundary of E by ∂E := clE ∩ clEc. The interior of E ⊆ Rd

is intE := E \ ∂E. We also use the notation Eε to represent the set of points at a

distance of at most ε from E, so Eε := {x ∈ S : d(x,E) ≤ ε}. Often, we will use this

notation without explicitly declaring that we will take the metric d to be the Euclidean

metric on Rd, defined below.

With the definition of open sets above, we can define a compact set as one for which

any open cover, that is a cover formed from a collection of open subsets, has a finite

subcover. Specifically, if E1, E2, . . . are open sets such that S ⊆ ∪∞i=1Ei then there

exists some finite subset {Ei1 , Ei2 , . . . , Ein} ⊂ {E1, E2, . . .} such that S ⊆ ∪nk=1Eik .

If a generating set of a σ-algebra is all of the open sets in R, then we call the generated

σ-algebra the Borel σ-algebra, denoted B and members of B are called Borel sets. We

write Bd for the Borel σ-algebra on Rd.

Particular examples of metric spaces that we will use are now described and we intro-

duce some specific notation to represent each metric.

Euclidean metric on R: The absolute value of the difference between two numbers.

For x, y ∈ R we denote this d(x, y) = ρ(x, y) := |x− y|, with |x| denoting the absolute

value of a number.
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Euclidean metric on Rn: For the higher dimensional space we use vector distance.

For x = (x1, x2, . . . , xd)> ∈ Rd we denote the Euclidean norm as ‖x‖ :=
√
x2

1 + . . .+ x2
d.

Then for x,y ∈ Rd we define the Euclidean distance by d(x,y) = ρE(x,y) := ‖x−y‖.

Euclidean distance between a point and a set, or two sets: this is the minimum

distance between a point, x, and the boundary of a set, A, defined as d(x,A) =

ρE(x,A) := infy∈A d(x, y). Note that this is not a metric in itself because we do not

have a definition for the distance between any two elements of the space if the space

contains sets and points, because our definition does not admit taking two sets. We

could take the Euclidean distance between two sets; for two sets A and B we set

ρE(A,B) := infx∈A infy∈B ρ(x, y) = infx∈A ρE(x,B) = infy∈B ρE(y, A). However, this

is not a metric either because the distance is 0 if the sets have a common element,

but having a common element does not mean A = B. Nevertheless, these Euclidean

distances are useful to have defined. For a metric for such a space, we will use the

Hausdorff metric, see [Gru07, p. 84] for further details.

Hausdorff metric on Sd
0: we use the notation Sd

0 to denote the set of bounded

subsets of Rd containing 0. For A,B ∈ Sd
0 we define the Hausdorff metric by either of

the following equivalent definitions

d(A,B) = ρH(A,B) := max
{

sup
x∈A

ρE(x,B), sup
y∈B

ρE(y, A)
}
, (1.3.1)

d(A,B) = ρH(A,B) := inf{ε ≥ 0 : A ⊆ Bε and B ⊆ Aε}. (1.3.2)

We note here that when discussing vectors in Rd we will assume all vectors are column

vectors. Also, it will often be convenient to normalise a vector in Rd \ {0} so that it

has unit length. For this we write x̂ := x/‖x‖. We then use the convention 0̂ = 0.

Some further metric spaces we wish to consider concern spaces of functions. In partic-

ular, we will restrict ourselves to measurable functions. For measurable spaces (S,F)

and (S ′,F ′), a function, f : S 7→ S ′ is measurable if, for any B ∈ F ′, f−1(B) ∈ F . We

note that this definition does not in fact require a measure to be defined.

However, we will be using some specific metric spaces so we will use this definition

to describe our sets. First, call the set of bounded, measurable2 f : [0, 1] 7→ Rd the

2where the σ-algebras are taken to be the Borel ones
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set of trajectories and denote them Md := Md[0, 1] where here and throughout we

use the notation f [0, t] to denote the interval image for t ∈ [0, 1], formally f [0, t] :=

{f(x) : x ∈ [0, t]}. Then for f ∈ Md we write Df ⊂ [0, 1] for the set of discontinuities

of f , that is Df := {c ∈ [0, 1] : limx→c 6= f(c)}. Then, we call the set of continuous

functions Cd := Cd[0, 1] defined as Cd := {f ∈ Md : Df = ∅}. Finally, we denote the

set of right-continuous functions with left hand limits (often called cádlág functions)

as Dd := Dd[0, 1]. These are the functions f ∈Md such that

1. For 0 ≤ t < 1, f(t+) = lims↓t f(s) exists and f(t+) = f(t).

2. For 0 < t ≤ 1, f(t−) = lims↑t f(s) exists.

Note that functions in Dd are bounded, and have (at most) countably many discon-

tinuities of the first type (jump discontinuities): see [Bil99, pp. 121–122]. For any

of these sets, we often add the restriction f(0) = 0, and call the induced subsets

Md
0 := {f ∈Md : f(0) = 0}, Cd0 := {f ∈ Cd : f(0) = 0} or Dd0 := {f ∈ Dd : f(0) = 0}.

For ease of notation, we will also useM, C and D when consideringM1, C1 and D1.

Possible metric spaces to consider are the following.

Supremum metric on Md, Cd or Dd: For f ∈ Md define the supremum norm

of f as ‖f‖∞ := sup0≤t≤1 ‖f(t)‖. Then the supremum metric between two functions

f, g ∈Md is defined as

ρ∞(f, g) := ‖f − g‖∞ = sup
0≤t≤1

‖f(t)− g(t)‖. (1.3.3)

Since Cd and Dd are subsets of Md, this definition extends naturally to the spaces

(Cd, ρ∞) and (Dd, ρ∞).

Skorokhod metric onMd, Cd and Dd: Let Λ denote the class of strictly increasing,

continuous mappings of [0, 1] onto itself. Note, if λ ∈ Λ, then λ(0) = 0, λ(1) = 1 and

λ−1 ∈ Λ. Then for functions f, g ∈Md, define the Skorokhod metric as

ρS(f, g) := inf
λ∈Λ
{‖λ− I‖∞ ∨ ‖f − g ◦ λ‖∞} (1.3.4)

where I is the identity map on [0, 1]. Again, this extends naturally to (Cd, ρS) and

(Dd, ρS). See [Pol84, p. 123] for further details.
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Kolmogorov-Billingsley metric on Md, Cd and Dd: For λ ∈ Λ, as described

above, let

‖λ‖◦ := sup
s<t

∣∣∣∣∣log λ(t)− λ(s)
t− s

∣∣∣∣∣ .
Then for f, g ∈ Md, we define the Kolmogorov-Billingsley metric, see [Bil99; Kol56],

as ρ◦S(f, g) := infλ∈Λ{‖λ‖◦ ∨ ‖f − g ◦ λ‖∞}.

The latter two metrics can be considered as accounting for small perturbations in time

as well as space when considering distance between functions. For further discussion

and a motivating example, see Section A.1.1.

Note the following simple fact which we will use later.

Lemma 1.3.2. For any f, g ∈Md we have ρS(f, g) ≤ ρ∞(f, g).

Proof. The infimum in (1.3.4) is bounded above by the value at λ = I.

Of course, we won’t just be considering deterministic functions. We will consider ran-

dom variables, measurable functions from the probability triple (Ω,F ,P) to a measur-

able space (S,S) (sometimes also a metric space), where we use the standard notation

that for A ⊆ S, P(Z ∈ A) := P{ω ∈ Ω : Z(ω) ∈ A}. We also use the standard notation

E(Z) to represent the expectation of the real-valued random variable Z, but will omit

the brackets if no ambiguity ensues. If Z ∈ Rd, the expectation will be taken to be

component-wise. Also, we refer to the property that, for two random variables Z1 and

Z2 in Rd, we have E[Z1 + Z2] = EZ1 + EZ2, as the linearity of expectation. Further

related theory can be found at, for example, [Dur10, §1].

Using this definition, on R we specify the case where g(Z) = (Z−EZ)2 as the variance,

that is Var[Z] := E[(Z − EZ)2]. When Z is a random variable in Rd we denote the

covariance matrix of Z by Σ which is defined as Σ := (Z − EZ)(Z − EZ)> where

z> is used to denote the transpose of the vector z. Thus, Σ is a d by d covariance

matrix, which we will say is positive definite if all of its eigenvalues are positive -

heuristically a positive definite covariance matrix implies that the walk does not live

on lower dimensional subspace of the whole space. Being positive definite is good,

because then Σ has a unique nonnegative-definite symmetric square-root Σ1/2 satisfying

(Σ1/2)2 = Σ.
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On the other hand, we use lower case σ2 to represent E(‖Z−EZ‖2) which in fact gives

σ2 = tr Σ. We often use the notation µ := EZ and when ‖µ‖ > 0, we denote µ̂ :=

EZ · ‖EZ‖−1, the unit vector in the direction of the expectation. Using this notation

we split the variance into the direction of the mean and the direction perpendicular to

the mean. Thus, denote

σ2
µ := E[((Z − µ) · µ̂)2], and σ2

µ⊥
:= σ2 − σ2

µ. (1.3.5)

An important example of a random variable is the Normal distribution both in one

dimension and multiple dimensions.

Normal random variable: We write Z ∼ N (µ, σ2) with µ ∈ R and σ2 > 0, if Z is a

random variable on R with probability density function f(x) = (2πσ2)−1/2e−(x−µ)2/2σ2 .

Here EZ = µ and VarZ = σ2. We use ζ to denote the standard Normal, where µ = 0

and σ2 = 1.

Multivariate Normal random variable: The multivariate normal distribution

in d dimensions is written Z ∼ Nd(µ,Σ), where Σ is the covariance matrix and µ

the expectation, now a d-dimensional vector. When the determinant of the covari-

ance matrix det(Σ) > 0, we define the Normal distribution by the density function

f(x) = (2π)−d/2 det(Σ)−1/2e−(x−µ)>Σ−1(x−µ)/2, where x is also a d-dimensional vector.

The standard d-dimensional Normal random variable has covariance matrix Id, the

d-dimensional identity matrix, and mean vector 0. In the degenerate case where Σ is

a d × d square matrix of zeros, we define the multivariate Normal distribution by the

point mass at µ, that is P(Z = µ) = 1.

Establishing the expectation and variance from the distribution function is standard,

but we are able to use such quantities to obtain information about the tails of the

distribution through the rightly celebrated Markov and Chebyshev inequalities, see

[Gut05, p.120,p.121].

Theorem 1.3.3. Let r > 0 and take a > 0, then P(|Z| > a) ≤ E[|Z|r]/ar.

Theorem 1.3.4. Let a > 0, then P(|Z − EZ| > a) ≤ Var[Z]/a2.

One other celebrated inequality which will be particularly useful when trying to get

a handle on the expectation of the product of two random variables is the Cauchy-

Schwarz inequality [Gut05, p.130].
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Theorem 1.3.5. If E |Z1|2 < ∞ and E |Z2|2 < ∞, then |EZ1Z2| ≤ E |Z1Z2| ≤√
EZ2

1 EZ2
2 .

In order to study convex hulls we will need to consider not only statistics of a single

random variable Z but a sequence of random variables Z1, Z2, . . .. If considering the

long term behaviour of such a sequence, we will also need a notion of limits and then

a way to compare a random sequence in the limit. Let

lim sup
n→∞

xn := lim
n→∞

sup
m≥n

xm,

which exists in (−∞,∞] by monotonicity. Note that, if lim supn→∞ xn = c then for

any ε > 0, xn < c+ ε all but finitely often and xn > c− ε infinitely often so this is the

smallest upper bound for the sequence. Likewise,

lim inf
n→∞

xn := lim
n→∞

inf
m≥n

xm.

Similarly, if lim infn→∞ xn = c then for any ε > 0, xn > c− ε all but finitely often and

xn < c + ε infinitely often so this is the largest lower bound for the sequence. Then

the limit is simply defined as

lim
n→∞

xn =


c if lim infn→∞ xn = lim supn→∞ xn = c;

does not exist if lim infn→∞ xn 6= lim supn→∞ xn.

Of course, this is a convenient definition specific to sequences of real numbers where

the lim sup considers an upper bound, and lim inf a lower bound, and both of these

are functions that will be useful in themselves. If we wish to consider a sequence of

numbers in say R2 then we cannot simply consider two bounds, so we do not define

lim sup and lim inf in this case and define the limit as limn→∞ xn = x with x ∈ R2, if

for any ε > 0 there exists N such that ‖xn − x‖ < ε for all n ≥ N .

Hence, we can now describe several well known types of convergence for random vari-

ables.

Convergence almost surely: The sequence Z1, Z2, . . . converges almost surely to

Z, write Zn a.s.−→ Z if P{ω : limn→∞ Zn(ω) = Z(ω)} = 1.

Remark 1.3.6. Sometimes we will write limn→∞ Zn = Z a.s. to represent almost sure
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convergence. Likewise, statements such as lim supn→∞ Zn = Z a.s. mean P(lim supn→∞ Zn =

Z) = 1.

Convergence in probability: The sequence Z1, Z2, . . . converges in probability to

Z, write Zn P−→ Z if for any ε > 0, limn→∞ P(|Zn − Z| > ε) = 0.

Convergence in Lr: The sequence Z1, Z2, . . . converges in Lr to Z, write Zn → Z in

Lr, if limn→∞ E[|Zn − Z|r] = 0.

Convergence in distribution: The sequence Z1, Z2, . . . converges in distribution to

Z, write Zn d−→ Z if limn→∞ P(Zn ≤ c) = P(Z ≤ c), for all c at which P(Z ≤ c) is

continuous.

Of course, this definition requires the random variables to have the domain R for the

less-than operator to make sense. One generalisation of convergence in distribution is

weak convergence which we start by defining for probability measures.

Weak Convergence: The probability measures P1, P2, . . . defined on a metric measure

space (S,S, ρ) converge weakly to P , that is, Pn ⇒ P , if
∫
S
fdPn →

∫
S
fdP

for all bounded, continuous f : S → R.

As with the other types of convergence, it is often more convenient to speak of weak

convergence of random variables. Consider a random element X on (Ω,F ,P), taking

values in a metric measure space (S,S, ρ). Consider also a sequence of random variables

Xn, defined on possibly different probability spaces (Ωn,Fn,Pn), but all taking values

in the same metric measure space (S,S, ρ). We associate withX,X1, X2, . . . probability

measures P, P1, P2, . . . on (S,S, ρ) in the natural way: for any B ∈ S,

P (B) = P(X ∈ B), and Pn(B) = Pn(Xn ∈ B). (1.3.6)

Definition 1.3.7. In this context, we say that Xn ⇒ X if Pn ⇒ P .

In other words, Xn ⇒ X if limn→∞ En f(Xn) = E f(X) for all bounded, uniformly

continuous f : S → R, where E and En are expectations under P and Pn, respectively.
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Remark 1.3.8. In the case where (S,S, ρ) is (Rd,Bd, ρE), where Bd is the Borel σ-

algebra of Rd, weak convergence reduces to convergence in distribution: see [Kal02,

p. 42].

It is well-known that these convergences are linked in the sense that almost sure con-

vergence implies convergence in probability which in turn implies convergence in dis-

tribution. Further, convergence in Lr also implies convergence in probability. Hence,

we, where appropriate, will state results as convergence almost surely and in Lr, with

the other convergence results implicit.

However, there are further conditions upon which further implications of convergence

can be satisfied. One such is Lebesgue’s dominated convergence theorem, see [Gut05,

p.57], which allows us to pass from almost sure convergence to convergence in L1.

Theorem 1.3.9. Suppose that |Zn| < Y for all n, for some Y with E |Y | < ∞. If

Zn
a.s.−→ Z as n→∞, then Zn → Z in L1 as n→∞.

This statement can be generalised slightly, so that we dominate the Zn by a sequence

of random variables, not just one fixed Y . This is Pratt’s lemma [Gut05, p.221].

Theorem 1.3.10. Suppose that |Zn| < Yn for all n, for some Yn such that Yn a.s.−→ Y

as n→∞ with limn→∞ EYn = EY as n→∞ where EY ∈ (−∞,∞). If Zn a.s.−→ Z as

n→∞, then Zn → Z in L1 as n→∞.

Another link can be created by assuming uniform integrability of the sequence of ran-

dom variables. A sequence Z1, Z2, . . . of random variables is uniformly integrable if,

for any ε > 0, there exists Cε ∈ [0,∞) such that E[Zn1{|Zn| > Cε}] < ε for all n,

where here and elsewhere we use 1{A} to be the indicator function of the event A.

The uniformity is in the sense that Cε can be chosen independent of n. The following

can be found at [Gut05, p.224].

Theorem 1.3.11. Suppose that Zn d−→ Z as n→∞ and for some r > 0, {Zr
1 , Z

r
2 , . . .}

are uniformly integrable, then

E |Zn|r → E |Z|r as n→∞.
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A final convergence result that we will make use of is Slutsky’s theorem, see [Gut05,

p.249]. This does not connect different types of convergence but, the part of the

theorem we state and use, allows us to consider sums of two random variables and

carry the sum across the limit as follows.

Theorem 1.3.12. Let Z1, Z2, . . . and Y1, Y2, . . . be sequences of random variables such

that Zn d−→ Z as n → ∞ and Yn
P−→ c as n → ∞ for some constant c. Then

Zn + Yn
d−→ Z + c as n→∞.

Here we also note Slutsky’s result (see e.g. [Bil99, Theorem 3.1]) stated in the context

of weak convergence.

Theorem 1.3.13. Let Z,Z1, Z2, . . . and Y1, Y2, . . . be sequences of random variables on

a probability space (Ω,F ,P) taking values in metric measure space (S,S, ρ). If Xn ⇒ X

and ρ(Xn, Yn) P−→ 0, then Yn ⇒ X.

Now we have defined the convex hull, and looked at sequences of random variables,

but we are yet to discuss the random walks that are key to the study. A random walk

is simply the set of partial sums of a sequence of random variables, Z1, Z2, . . ., often

assumed to be independent and identically distributed, which in this context are called

increments. We give the following formal, labelled definitions which we will refer to

throughout.

(Wµ) Let d ∈ N, and suppose that Z,Z1, Z2, . . . are i.i.d. random vectors in Rd with

E ‖Z‖ < ∞ and EZ = µ. The random walk (Sn, n ∈ Z+) is the sequence of

partial sums Sn := ∑n
i=1 Zi with S0 := 0.

For large parts of this work, our results concern the case when d = 2. Here, we will use

the more compact notation (W2
µ) instead of explicitly stating d = 2 at each occurrence.

Independence itself could warrant a whole chapter of discussion, see [Dur10, ch.2].

However, we simply state the condition for identically distributed Zi such that Z :

Ω 7→ Rd as

P(Z1 ∈ E1, Z2 ∈ E2, . . . , Zn ∈ En) = P(Z1 ∈ E1)P(Z2 ∈ E2) · · ·P(Zn ∈ En),
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for any E1, . . . , En Borel subsets of Rd.

There are several classical results of random walks which we use throughout. First the

strong law of large numbers due to Kolmogorov [Kol30] which states the average step

of the walk converges almost surely to the expected increment.

Theorem 1.3.14. Consider the random walk as defined at (Wµ), then n−1Sn
a.s.−→ µ.

In order to establish many more interesting results, we often require further conditions

such as finite variance. We will often impose this or stronger restrictions through use

of one of the following two conditions:

(V) Suppose that E[‖Z‖2] < ∞ and write Σ := E[(Z − µ)(Z − µ)>]. Here Σ is a

nonnegative-definite, symmetric d by dmatrix; we write σ2 := tr Σ = E[‖Z−µ‖2],

(Mp) Suppose that E[‖Z‖p] <∞.

With the condition (V), the central limit theorem gives an expression of the size of the

error as the average step converges.

Theorem 1.3.15. Consider the random walk as defined at (Wµ) with (V), then

n−1/2(Sn−nµ) d−→ ζ, where ζ ∼ N (0,Σ) is a d-dimensional Normal random variable.

This gives us an idea of how the errors are distributed, but sometimes we may care

about particularly large/small events away from the mean. In 1-dimension we have

the Hartman-Wintner law of the iterated logarithm [HW41] which gives us the order

of the lim sup.

Theorem 1.3.16. Consider the random walk as defined at (Wµ) with d = 1, and with

(V). Then

lim sup
n→∞

Sn − nµ√
2σ2 log log n

= 1 a.s.

Considering the walk with increments −Z of course shows that the result where the

lim sup and 1 are replaced by lim inf and −1 respectively also holds.

It is not always enough to know information about the limit of a random walk, often we

require knowledge about the process up to some fixed time n. To this end there are three
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relevant inequalities we will use, all defined under the assumption that Z,Z1, Z2, . . . ∈

R. The Azuma-Hoeffding inequality [Gut05, p.120] on tail probabilities of Sn, the

Marcinkiewicz-Zygmund inequality [Gut05, p.150] on the expectation of a power of Sn,

and Etemadi’s inequality [Gut05, p.144] on the maximum of the walk up to time n.

Theorem 1.3.17. Let c1, c2, . . . be finite positive constants. If EZi = 0 and |Zi| < ci

for all for i = 1, 2, . . ., and S0 = 0. Then for any a > 0 and n ≥ 1,

P(Sn ≥ a) ≤ exp
(
−a2

2∑n
i=1 c

2
i

)
.

Theorem 1.3.18. If EZ = 0, and E |Z|p <∞ for some p ≥ 1, then

C1 E
(

(
n∑
i=1
|Zi|2)p/2

)
≤ E(|Sn|p) ≤ C2 E

(
(
n∑
i=1
|Zi|2)p/2

)
,

for two constants C1 and C2 which only depend on p.

Theorem 1.3.19. Let a > 0, then P(max1≤k≤n |Sk| > 3a) ≤ 3 max1≤k≤n P(|Sk| > a).

We will require some further notation regarding random walks, some of which has

already been described in the introduction.

For the convex hull of an n-step random walk we use Hn := hull(S0, S1, . . . , Sn). Write

Ln for the perimeter length of Hn, and let

Dn := diam{S0, S1, . . . , Sn} = max
0≤i,j≤n

‖Si − Sj‖ = diamHn. (1.3.7)

On occasion it will be useful to use L(E) or D(E) as the respective functionals for the

perimeter and diameter of the set E when E is not the random walk.

Before moving on from our prerequisites we must mention one specific process re-

lated to random walks, Brownian motion. This is not defined in the same way as the

previously discussed random walks which were sums of random variables, however is

defined by three properties, see [Dur10, ch.8]. We call bd = (bd(t), t ∈ R+), a standard

d-dimensional Brownian motion process if:

i. bd(0) = 0;

ii. for t0 < t1 < . . . < tn, bd(t0), bd(t1)− bd(t0), . . . , bd(tn)− bd(tn−1) are independent;
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iii. the jump bd(s)−bd(t), with s > t is a random variable distributed as a multivariate

Normal, Nd(0, (s− t)Id) where Id is the d-dimensional identity matrix.

To generalise this process, we say Σ1/2bd is correlated Brownian motion with covariance

matrix Σ. In the case d = 1 we write simply b for b1.

The particular relevance of this result to random walk theory comes from a theorem of

Donsker (see e.g. [Dur10, p.386] for the d = 1 case), which states that the path which

connects the points of a random walk by straight lines, where EZ = 0, behaves like

Brownian motion when rescaled by n−1/2. We only state this loosely here, with the

rigorous formulation saved for Theorem 3.1.5.

Finally, we note a couple of extra bits of notation. We use 1A(x) to denote the indicator

function of a set, that is

1A(x) =


1 if x ∈ A;

0 otherwise.

Then, for x ∈ R we set x+ := max{x, 0}, x− := max{−x, 0}, so that x = x+ − x− and

sgn(x) =



1 if x > 0;

0 if x = 0;

−1 if x < 0.

For x, y ∈ R we write x ∧ y := min{x, y} and x ∨ y := max{x, y}. Given functions f

and g, the function f ◦ g is defined by (f ◦ g)(x) = f(g(x)). The projection of A ⊆ Rd

on to the space perpendicular to u ∈ Sd−1 will be denoted by A|u⊥. For d = 2, we use

the notation eθ = (cos θ, sin θ) for the unit vector in direction θ.

1.4 Examples and simulation comments

Throughout, we will demonstrate our results by considering some examples of random

walks and running various simulations. We will use the notation described above at

(Wµ) and describe our choices of Z here. The first walk we will consider is the simple

symmetric random walk in d-dimensions. For this walk, we have

Z ∈ {±e1,±e2, . . . ,±ed},
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each with probability (2d)−1, where the ei are the standard basis vectors of Rd.

The second walk, we will call the d-dimensional standard Normal random walk. This

walk lives in Rd, and simply takes Z ∼ Nd(0, Id), the standard d-dimensional Normal

random variable, also formally described above. In both of these first two cases µ = 0.

We will also consider some walks with drift. All of our examples set the first coordinate,

which will be the horizontal axis in plots, as the direction of the drift. We note that a

simple transformation of the coordinate space could map these walks to a whole class

of walks with drift in any direction and it is only our affinity to doing things from

left-to-right that motivates this choice. The first walk in this case will be the random

walk with drift and all coordinates Normally distributed, for which we will consider

increments as

Z = (ζµ̃,σ̃, ζ1, . . . , ζd−1),

where ζµ̃,σ̃ ∼ N (µ̃, σ̃2) for constants µ̃ and σ̃, and ζi ∼ N (0, 1) are independent Normal

random variables. In our demonstrations, we will use a combination of different choices

of µ̃ and σ̃ where it is necessary to show how these parameters impact on the walk and

its respective limit theorems. In this case µ = (µ̃, 0, . . . , 0).

Finally we consider a random walk where there is drift, but no randomness in the di-

rection of the drift. The random walk with drift and no variance in the first coordinate,

will take

Z = (µ̃, ζ1, . . . , ζd−1),

where, as before, ζi are independent standard Normal random variables, and we will

consider various values of µ̃. Note, that this walk coincides with the random walk with

Normal drift and standard (d−1) dimensional Normal deviations where we take σ̃ = 0,

if we use the defined distribution, where ζi = µ a.s., for the degenerate case N (µ, 0).

1.4.1 Simulation comments

Writing a simulation of a random walk is a fairly trivial task if you have any pro-

gramming experience, but writing a program which can simulate millions of steps with

thousands of repetitions whilst not making use of a supercomputer becomes far from

trivial, especially if you need to calculate the convex hull of these long walks. Whilst
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many of the plots in this thesis are only short simulations (for presentational purposes),

the more demanding programs required some tricks to make the simulations feasible.

Firstly, we aimed to use a cluster of computer cores to run parts of the code in parallel.

By splitting the code up in this way we reduce the time to simulate all the steps but

‘gluing together’ thousands of partial walks is not feasible because the memory required

to store all of the individual steps is too great for a normal computer to process, never

mind calculating the convex hull of such a walk. However, we can use what we know

about convex hulls and convexity to help us.

If we calculate the convex hull of each individual subsection of the walk, and remember

the start and endpoints of the walk, we only need to store the vertices of the walk and

these two points. In the convex hull of an n step walk there are around log n vertices

(more on this later), so the memory required is much more manageable. Moreover, after

gluing together all the convex hulls of the subsections, we can calculate the convex hulls

of all the vertices which produces the convex hull of the whole walk. All that remains

is to balance out the length of the subsections with the number of subsections, in turn

balancing out the time increased by calculating each subsection’s convex hull and the

time it takes to combine all the individual parts afterwards, with the memory cost of

making each individual subsection too long.

As a final comment, we note that we also calculate the diameter by calculating the

maximum distance between any two of the vertices in the convex hull. By convexity

this will find the two points of the underlying walk which attain the diameter. Of

course finding the maximum distance between any two points from a set of size log n

is much faster than between points from a set of size n.



Chapter 2

Laws of large numbers and

extensions using classical results

Our first exploration of the convex hull starts by considering the laws of large numbers

for the perimeter length and diameter functionals in dimension 2. As discussed in the

introduction, there are several results already in the literature, in particular relating to

the perimeter length. Most of the results in this section can be heuristically justified

by the idea that the walk with drift converges to a line segment under the law of large

numbers scaling, and the walk without drift degenerates to a point under the same

scaling. For now, we mention this only to explain the intuition behind the results, but

this idea is more formally explored in Chapter 3.

The Spitzer and Widom formula (1.1.2) was used by Snyder and Steele to establish

the law of large numbers for the perimeter length as described at (1.1.3). Their result

requires the condition E(‖Z‖2) <∞ and was stated for the case µ 6= 0, but their proof

works equally well when µ = 0. Our first contribution in this section is to provide

a different proof for this result which removes the need for the second moment to be

finite. With a few basic observations and an application of Pratt’s lemma, we can

extend this to a law of large numbers for the diameter. Despite this extension being

relatively simple, and could have been established from Snyder and Steele’s law of

large numbers for the perimeter length, albeit with stronger assumptions, it does not

seem to have appeared explicitly in the literature. These two laws actually give some

justification to our heuristic about the shape of the convex hull by considering the ratio

36
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of the two quantities.

In the case of drift we present some further results. First, we establish the second order

term of the asymptotic expansion of ELn, and then use this result to recast one of the

second order results of Wade and Xu [WX15a] in a stronger form. The expansion

of ELn can be compared with the expansions found by Grebenkov, Lanoiselée and

Majumdar [GLM17], see Section 1.1.3 for details.

Finally, we provide an inequality for the same expansion for the diameter. The exact

asymptotic result does not follow from the methods we employ here, and remains, as

far as we know, an open problem. The second order results are known, in fact we

prove them in Chapter 5; we dedicate a chapter to these results because they require

a lengthier proof along the lines of the method Wade and Xu used to establish the

perimeter length results.

In this section, we do not use any specific methods to obtain the results, we just make

use of some classical probability theory, Cauchy’s formula and some other geometrical

facts1.

2.1 Laws of large numbers

Throughout this chapter, we consider the walk with the notation as described at (W2
µ).

Then our first result is the following law of large numbers for Ln.

Theorem 2.1.1. Suppose that E ‖Z‖ <∞. Then

lim
n→∞

n−1Ln = 2‖µ‖, a.s. and in L1.

On the other hand, if E ‖Z‖ =∞ then lim supn→∞ n−1Ln =∞, a.s.

Remark 2.1.2. It is a natural question to ask whether, when E ‖Z‖ = ∞, does it in

fact hold that limn→∞ n
−1Ln = ∞? We note that the proof employed here does not

directly answer this question, and yet neither have we found a counter example to this

statement, so it remains an open problem.

1Based on work published in [MW18], the whole paper was joint work between the authors.
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Similarly, we have a law of large numbers for Dn.

Theorem 2.1.3. Suppose that E ‖Z‖ <∞. Then

lim
n→∞

n−1Dn = ‖µ‖, a.s. and in L1.

On the other hand, if E ‖Z‖ =∞ then lim supn→∞ n−1Dn =∞, a.s.

In the case µ 6= 0, Theorems 2.1.1 and 2.1.3 have the following immediate consequence.

Corollary 2.1.4. Suppose that E ‖Z‖ <∞ and that µ 6= 0. Then

lim
n→∞

Ln/Dn = 2, a.s.

Before we start on the proofs, we recall that Cauchy’s formula, equation (1.1.1), can

be stated in the following form (see e.g. equation (2.1) of [SS93]), for a finite point set

{x0,x1, . . . ,xn} ⊂ R2, the perimeter length of hull{x0,x1, . . . ,xn} is given by
∫ 2π

0
max

0≤k≤n
(xk · eθ)dθ.

Proof of Theorem 2.1.1. Cauchy’s formula applied to our random walk implies that

Ln =
∫ 2π

0
max

0≤k≤n
(Sk · eθ)dθ. (2.1.1)

First suppose that E ‖Z‖ < ∞. Then the strong law of large numbers says that for

any ε > 0 there exists Nε with P(Nε <∞) = 1 for which

‖Sn − nµ‖ < nε, for all n ≥ Nε. (2.1.2)

Since S0 = 0, taking k = 0 and k = n in (2.1.1) and writing x+ := x1{x > 0}, we have

Ln ≥
∫ 2π

0
(Sn · eθ)+dθ = 2‖Sn‖, (2.1.3)

by Cauchy’s formula for hull{0, Sn}. For n ≥ Nε we have from (2.1.2) that

‖Sn‖ ≥ ‖nµ‖ − ‖Sn − nµ‖ ≥ n‖µ‖ − nε.

Since ε > 0 was arbitrary, it follows that lim infn→∞ n−1Ln ≥ 2‖µ‖, a.s.
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On the other hand, for any ε > 0, we have from (2.1.2) that

max
0≤k≤n

(Sk · eθ) ≤ max
0≤k≤Nε

(Sk · eθ) + max
Nε≤k≤n

(Sk · eθ)

≤ max
0≤k≤Nε

‖Sk‖+ max
0≤k≤n

(k(µ · eθ + ε))

= max
0≤k≤Nε

‖Sk‖+ n(µ · eθ + ε)+.

Let Aε := {θ ∈ [0, 2π] : µ · eθ > −ε}. Then∫ 2π

0
(µ · eθ + ε)+dθ =

∫
Aε

(µ · eθ + ε)dθ ≤
∫
Aε
µ · eθdθ + 2πε.

But
∫
Aε
µ · eθdθ =

∫
A0
µ · eθdθ +

∫
Aε\A0

µ · eθdθ

≤
∫ 2π

0
(µ · eθ)+dθ + ‖µ‖|Aε \ A0|.

Hence, from (2.1.1) we obtain

Ln ≤ 2π max
0≤k≤Nε

‖Sk‖+ n
∫ 2π

0
(µ · eθ)+dθ + 2πnε+ n‖µ‖|Aε \ A0|.

Since P(Nε <∞) = 1, it follows from Cauchy’s formula for hull{0, µ} that, a.s.,

lim sup
n→∞

n−1Ln ≤ 2‖µ‖+ 2πε+ ‖µ‖|Aε \ A0|.

Since ε > 0 was arbitrary, and |Aε\A0| → 0 as ε→ 0, we get lim supn→∞ n−1Ln ≤ 2‖µ‖,

a.s. Thus the almost sure convergence statement is established.

Moreover, from (2.1.1),

Ln ≤
∫ 2π

0
max

0≤k≤n
‖Sk‖dθ

≤ 2π max
0≤k≤n

k∑
j=1
‖Zj‖

≤ 2π
n∑
j=1
‖Zj‖.

The strong law shows that, n−1∑n
j=1 ‖Zj‖

a.s.−→ E ‖Z‖ <∞, while E(n−1∑n
j=1 ‖Zj‖) =

E ‖Z‖; hence Pratt’s lemma, Theorem 1.3.10, implies that n−1Ln → 2‖µ‖ in L1.
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Finally, suppose that E ‖Z‖ =∞. From (2.1.3), it suffices to show that

lim sup
n→∞

n−1‖Sn‖ =∞, a.s.

To this end we follow [Gut05, p. 297]. First (see e.g. [Gut05, p. 75]) E ‖Z‖ =∞ implies

that for any c > 0, we have ∑∞n=1 P(‖Zn‖ ≥ cn) = ∞, which, by the Borel–Cantelli

lemma, implies that P(‖Zn‖ ≥ cn i.o.) = 1. But ‖Zn‖ ≤ ‖Sn‖ + ‖Sn−1‖, so it follows

that P(‖Sn‖ ≥ cn/2 i.o.) = 1. In other words, lim supn→∞ n−1‖Sn‖ ≥ c/2, a.s., and,

since c > 0 was arbitrary, we get the result.

We now can use Theorem 2.1.1 to establish the law of large numbers for the diameter.

In order to do so, we need the following observation about the relationship between Ln
and Dn. Provided that P(Z = 0) < 1, convexity implies that a.s., for all but finitely

many n,

2 ≤ Ln/Dn ≤ π. (2.1.4)

This result will appear at several times throughout this thesis, because the ratio itself

gives some rough information about the shape of Hn. In particular, the extrema in the

inequality relate to certain shapes, specifically the line segment and shapes of constant

width (such as the disc) respectively.

Proof of Theorem 2.1.3. From the definition ofDn and equation (2.1.4), we have ‖Sn‖ ≤

Dn ≤ Ln/2. Then we can apply the strong law for Sn, which implies that n−1‖Sn‖ →

‖µ‖, and Theorem 2.1.1, to deduce that n−1Dn → ‖µ‖, a.s. Since n−1Dn ≤ n−1Ln/2

we may again apply Pratt’s lemma, see Theorem 1.3.10, to deduce the L1 conver-

gence. Finally, if E ‖Z‖ =∞ we use the bound Dn ≥ Ln/π from (2.1.4) and the final

statement in Theorem 2.1.1 to deduce that lim supn→∞ n−1Dn =∞, a.s.

2.2 Case with drift extensions

Now we turn to the individual asymptotics for Ln and Dn in the case with non-zero

drift. Recall that the behaviour of Ln was studied in [WX15a], where it was shown

that if E(‖Z‖2) <∞ and µ 6= 0, then, as n→∞,

n−1/2|Ln − ELn − 2(Sn − ESn) · µ̂| → 0, in L2. (2.2.1)
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We show that (2.2.1) may be recast in the following stronger form.

Theorem 2.2.1. Suppose that E(‖Z‖2) <∞ and µ 6= 0. Then, as n→∞,

n−1/2|Ln − 2Sn · µ̂| → 0, in L2.

The following asymptotic expansion of ELn is the key additional component in the

proof of Theorem 2.2.1, and is of interest in its own right; its proof again uses the

Spitzer–Widom formula (1.1.2).

Theorem 2.2.2. Suppose that E(‖Z‖2) <∞ and µ 6= 0. Then, as n→∞,

ELn = 2‖µ‖n+
(
σ2
µ⊥

‖µ‖
+ o(1)

)
log n.

Again, we can use this result, and one lemma that we describe below, to obtain an in-

equality for the equivalent expansion for EDn. We do not have a method for improving

this result to be an asymptotic equality.

Lemma 2.2.3. Suppose that E(‖Z‖2) <∞ and µ 6= 0. There exists C <∞ such that

0 ≤ EDn − ‖µ‖n ≤ C(1 + log n), for all n ≥ 1.

We work towards a proof of Theorem 2.2.2.

We recall some notation and introduce some additional notation for these proofs. Write

Xn := Sn · µ̂ and Yn := Sn · µ̂⊥, where µ̂⊥ is any fixed unit vector orthogonal to µ. Then

Xn and Yn are one-dimensional random walks with increment distributions Z · µ̂ and

Z · µ̂⊥ respectively; note that E(Z · µ̂) = ‖µ‖, E(Z · µ̂⊥) = 0, Var(Z · µ̂) = σ2
µ, and

Var(Z · µ̂⊥) = E[((Z − µ) · µ̂⊥)2] = E[‖Z − µ‖2]− E[((Z − µ) · µ̂)2]

= σ2 − σ2
µ = σ2

µ⊥
.

Also recall, for x ∈ R set x+ := x1{x > 0}, and also set x− = −x1{x < 0}.

Lemma 2.2.4. Suppose that E(‖Z‖2) < ∞ and µ 6= 0. Then ‖Sn‖ − |Sn · µ̂| is

uniformly integrable.

Proof. The central limit theorem shows that n−1Y 2
n

d−→ σ2
µ⊥
ζ2 where ζ ∼ N (0, 1).

Also, since E[Y 2
n ] = nσ2

µ⊥
, n−1 E(Y 2

n )→ σ2
µ⊥

= E(σ2
µ⊥
ζ2). It is a fact that if θ, θ1, θ2, . . .
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are R+-valued random variables with θn d−→ θ, then E θn → E θ <∞ if and only if θn
is uniformly integrable: see [Kal02, Lemma 4.11]. Hence we conclude that

n−1Y 2
n is uniformly integrable. (2.2.2)

Fix ε > 0. Let δ ∈ (0, ‖µ‖) to be chosen later. For ease of notation, write Tn =

‖Sn‖ − |Xn|. Then since Tn ≤ ‖Sn‖ and |Xn| ≤ ‖Sn‖, we have

E [Tn1{Tn > M}1{‖Sn‖ ≤ δn}] ≤ δnP(‖Sn‖ ≤ δn)

≤ δnP(|Xn| ≤ δn)

≤ δnP(|Xn − ‖µ‖n| > (‖µ‖ − δ)n).

Since EXn = n‖µ‖ and VarXn = nσ2
µ, Chebyshev’s inequality then yields

E [Tn1{Tn > M}1{‖Sn‖ ≤ δn}] ≤ δn
nσ2

µ

(‖µ‖ − δ)2n2 .

It follows that, for suitable choice of δ (not depending on M) and any M ∈ (0,∞),

sup
n

E [Tn1{Tn > M}1{‖Sn‖ ≤ δn}] ≤ ε.

On the other hand, we use the fact that

0 ≤ ‖Sn‖ − |Xn| = Tn = ‖Sn‖
2 −X2

n

‖Sn‖+ |Xn|
= Y 2

n

‖Sn‖+ |Xn|
. (2.2.3)

Hence

E [Tn1{Tn > M}1{‖Sn‖ > δn}] = E
[

Y 2
n

‖Sn‖+|Xn|1
{

Y 2
n

‖Sn‖+|Xn| > M
}

1{‖Sn‖ > δn}
]

≤ 1
δn

E
[
Y 2
n 1{Y 2

n > Mδn}
]
.

It follows that

sup
n

E [Tn1{Tn > M}1{‖Sn‖ > δn}] ≤ 1
δ

sup
n

E
[
n−1Y 2

n 1{n−1Y 2
n > Mδ}

]
,

which, for fixed δ, tends to 0 as M →∞ by (2.2.2).

Thus for any ε > 0 we have that supn E [Tn1{Tn > M}] ≤ ε, for all M sufficiently

large, which completes the proof.

Lemma 2.2.5. Let ξ, ξ1, ξ2, . . . be i.i.d. random variables with E(ξ2) <∞ and E ξ > 0.
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Let Xn = ∑n
k=1 ξk. Then limn→∞ EX−n = 0.

Proof. Let E ξ = m > 0 and Var ξ = s2 <∞. Fix ε > 0. Note that

EX−n =
∫ ∞

0
P(X−n > r)dr =

∫ εn

0
P(X−n > r)dr +

∫ ∞
εn

P(X−n > r)dr.

Here we have that, by Chebyshev’s inequality,

P(X−n > r) ≤ P(|Xn −mn| > mn+ r) ≤ VarXn

(mn+ r)2 = s2n

(mn+ r)2 .

It follows that ∫ εn

0
P(X−n > r)dr ≤ s2n

∫ εn

0

dr
(mn+ r)2 ≤

s2ε

m2 . (2.2.4)

For B ∈ (0,∞) let ξ′k := ξk1{|ξk| ≤ B} and ξ′′k := ξk1{|ξk| > B}. Set X ′n := ∑n
k=1 ξ

′
k

and X ′′n := ∑n
k=1 ξ

′′
k . By dominated convergence, we have that as B → ∞, E ξ′1 → m,

Var ξ′1 → s2, E |ξ′′1 | → 0, and Var ξ′′1 → 0, so in particular we may (and do) choose B

large enough so that E ξ′1 > m/2, E |ξ′′1 | < ε/4, and Var ξ′′1 < ε2.

Since Xn = X ′n +X ′′n, for any r > 0 we have

P(Xn < −r) ≤ P(X ′n < −r/2) + P(X ′′n < −r/2). (2.2.5)

Here, since E((ξ′k)4) ≤ B4 < ∞, it follows from Markov’s inequality and the

Marcinkiewicz–Zygmund inequality, Theorem 1.3.18, that for some constant C < ∞

(depending on B),

P(X ′n < −r) ≤ P(|X ′n − EX ′n|4 > (EX ′n + r)4) ≤ Cn2

((m/2)n+ r)4 .

So ∫ ∞
εn

P(X ′n < −r/2)dr ≤ 16Cn2
∫ ∞

0

dr
(mn+ r)4 = O(1/n). (2.2.6)

On the other hand, by Chebyshev’s inequality, for r > (ε/4)n,

P(X ′′n < −r) ≤ P(|X ′′n − EX ′′n| > EX ′′n + r) ≤ VarX ′′n
(r − (ε/4)n)2 ≤

ε2n

(r − (ε/4)n)2 .

Hence ∫ ∞
εn

P(X ′′n < −r/2) ≤ 4ε2n
∫ ∞
εn

dr
(r − (ε/2)n)2 = 8ε. (2.2.7)
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So from (2.2.5) with (2.2.6) and (2.2.7), we have

lim sup
n→∞

∫ ∞
εn

P(Xn < −r)dr ≤ 8ε,

which combined with (2.2.4) implies that

lim sup
n→∞

EX−n ≤
s2ε

m2 + 8ε.

Since ε > 0 was arbitrary, the result follows.

Using these two lemmas, we can establish the following result which is of some inde-

pendent interest, and may be known, although we could find no reference.

Lemma 2.2.6. Suppose that E(‖Z‖2) <∞ and µ 6= 0. Then

0 ≤ ‖Sn‖ − Sn · µ̂→
σ2
µ⊥
ζ2

2‖µ‖ , in L1, as n→∞,

for ζ ∼ N (0, 1). In particular,

0 ≤ E ‖Sn‖ − ‖µ‖n =
σ2
µ⊥

2‖µ‖ + o(1), as n→∞.

Proof. As above, for x ∈ R set x+ := x1{x > 0}, and also set x− = −x1{x < 0}. Then

x = x+ − x− and |x| = x+ + x−, so x = |x| − 2x−; thus |Xn| − 2X−n = Xn ≤ |Xn|, and

0 ≤ ‖Sn‖ − |Xn| ≤ ‖Sn‖ −Xn = ‖Sn‖ − |Xn|+ 2X−n ; (2.2.8)

in particular E ‖Sn‖ ≥ EXn = ‖µ‖n. Now, we have from (2.2.3) that

‖Sn‖ − |Xn| =
Y 2
n

‖Sn‖+ |Xn|
= n−1Y 2

n

n−1‖Sn‖+ n−1|Xn|
,

where n−1Y 2
n

d−→ σ2
µ⊥
ζ2 for ζ ∼ N (0, 1), and, by the strong law of large numbers,

both n−1‖Sn‖ and n−1|Xn| tend to ‖µ‖ a.s. Hence 0 ≤ ‖Sn‖ − |Xn|
d−→ σ2

µ⊥
ζ2

2‖µ‖ , and

by Lemma 2.2.4 we conclude that ‖Sn‖ − |Xn| →
σ2
µ⊥
ζ2

2‖µ‖ in L1. Moreover, Lemma 2.2.5

shows that X−n → 0 in L1. Thus the result follows from (2.2.8).

We are now, finally in a position to complete the proof of the recasting of Wade and

Xu’s result, Theorem 2.2.2, and then the proof of the asymptotic expansion of ELn,

Theorem 2.2.1.
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Proof of Theorem 2.2.2. From the Spitzer–Widom formula (1.1.2) and Lemma 2.2.6,

we have

ELn = 2
n∑
k=1

1
k

(
‖µ‖k +

σ2
µ⊥

2‖µ‖ + o(1)
)

= 2‖µ‖n+
σ2
µ⊥

‖µ‖
log n+ o(log n),

as claimed.

Proof of Theorem 2.2.1. Theorem 2.2.2 shows that

n−1/2|ELn − 2ESn · µ̂| → 0. (2.2.9)

Then by the triangle inequality

n−1/2|Ln − 2Sn · µ̂| ≤ n−1/2|Ln − ELn − 2(Sn − ESn) · µ̂|+ n−1/2|ELn − 2ESn · µ̂|,

which tends to 0 in L2 by (2.2.1) and (2.2.9).

It is now a simple exercise to obtain the proof of the inequality for EDn.

Proof of Lemma 2.2.3. The lower bound follows from Lemma 2.2.6 and the fact that

Dn ≥ ‖Sn‖. The upper bound follows from the fact that Dn ≤ Ln/2 and the fact that,

by Theorem 2.2.2, ELn ≤ 2‖µ‖n+ C(1 + log n).

2.3 Application of results to our examples

Since this is the first time we see some simulations of our examples, we will start by

showing the pictures of the random walks, their convex hulls, and the diameter as a

line. The seed for each example is different but fixed throughout the thesis so that

we are seeing the picture of the same walk which produces the ensuing simulations

demonstrating the laws of large numbers. Here, all of the walks are 2-dimensional both

for presentational purposes and because we have so far restricted ourselves to walks

following the structure of (W2
µ). In each case, we have taken n = 105 which is sufficient

to get an idea of the shape of the walk and see the results described in this chapter.
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2.3.1 Random walk pictures

The first random walk is the simple symmetric random walk. Upon close inspection,

the lattice structure can be seen to be exhibited by the horizontal or vertical lines of the

walk’s steps. The size and shape of the walk itself will be studied further in the next

chapter, but one inference from the results above which is backed up by this picture

is that the walk certainly does not seem to cover an area of the same scaling as n; in

fact, it is totally contained in a 400× 400 box despite having 105 steps.
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Figure 2.1: A simulation of the simple symmetric random walk with its convex hull
and diameter highlighted.

Our second picture, is of the standard Normal random walk. The only significant

difference from the first picture, that can be seen here is that this walk is supported

on R2 not just Z2.

Then we have our first walk with drift, the random walk with drift and all coordinates

Normally distributed, unit mean to the right. Clearly, we have a very different picture

here. Note, the different scale on the horizontal axis and how there is much more of an
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Figure 2.2: A simulation of the standard Normal random walk with its convex hull and
diameter highlighted.
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elongate shape than the first two pictures, but that the vertical axis is a similar scale

to the zero drift walks.
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Figure 2.3: A simulation of the random walk with drift and all coordinates Normally
distributed, unit mean, with its convex hull and diameter highlighted.

For the walk with Normal increments but ‖µ‖ = 5, the picture is not too different.

As seems natural, the horizontal axis goes up to 5× 105 compared to 105 from before.

Finally, we have the walk with fixed drift. This walk also seems to be similar to the

previous two with drift.

One might be tempted to mention the differing angles of the hulls, but the scale on

the vertical axis must be considered when doing this. In reality, the differing angles

are only natural variances in the walks, and we include a seemingly non-sensical plot

of the walk where we have the vertical axis on the same scale as the horizontal one.

Here, we see how the angle is only a feature due to the more detailed axis, and that

the other two plots would look the same on this macroscopic scale. This also reinforces

the idea that the convex hulls of the walks with drift really behave like a straight line

in terms of their perimeter lengths and diameters.



2.3. Application of results to our examples 49

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

−
40

0
−

20
0

0
20

0
40

0

Figure 2.4: A simulation of the random walk with drift and all coordinates Normally
distributed, mean of length 5, with its convex hull and diameter highlighted.
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Figure 2.5: A simulation of the random walk with drift and no variance in the first
coordinate, unit mean, with its convex hull and diameter highlighted.
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Figure 2.6: A simulation of the random walk with drift and no variance in the first
coordinate, unit mean, with its convex hull and diameter highlighted, with both axes
on the same scale.
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2.3.2 Law of large numbers pictures

The first two of these pictures really tell the same story. The scaled perimeter lengths,

in blue, and the scaled diameters, in green, converge to 0 as n tends to infinity. It is not

surprising the perimeter length is larger than the diameter, as noted above Ln ≥ 2Dn.
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Figure 2.7: A demonstration of the law of large numbers applied to the simple sym-
metric random walk. The scaled perimeter length, in blue, and scaled diameter, in
green, are plotted for the first 105 steps.

Then we see the theorem in action for the walks with drift. The perimeter length

converging to 2‖µ‖ and the diameter to ‖µ‖. The convergence is so quick that the

right hand side of both plots looks like two straight lines in all three cases.
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Figure 2.8: A demonstration of the law of large numbers applied to the standard
Normal random walk. The scaled perimeter length, in blue, and scaled diameter, in
green, are plotted for the first 105 steps.
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Figure 2.9: A demonstration of the law of large numbers applied to the random walk
with Normal drift, unit mean. The scaled perimeter length, in blue, and scaled diam-
eter, in green, are plotted for the first 105 steps.
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Figure 2.10: A demonstration of the law of large numbers applied to the random walk
with Normal drift, mean of length 5. The scaled perimeter length, in blue, and scaled
diameter, in green, are plotted for the first 105 steps.
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Figure 2.11: A demonstration of the law of large numbers applied to the random walk
with fixed drift, unit mean. The scaled perimeter length, in blue, and scaled diameter,
in green, are plotted for the first 105 steps.
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2.3.3 Case with drift ratio simulation

We only show the results for the walks with drift here. The equivalent result for the

zero drift case is the subject of Chapter 4.

First, we have the Normal unit drift, for which we show the result with the vertical

axis scaled to see the whole range of possible values the ratio can take.
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Figure 2.12: A demonstration of the law of large numbers for the ratio of the perimeter
length and diameter applied to the random walk with drift and all coordinates Normally
distributed, unit mean. The ratio is plotted for the first 105 steps.

Clearly, this scaling, although informative in some sense, is too zoomed out to see

anything interesting, so we provide the same plot with the vertical axis only showing

values near to 2.

Even on this scaling, the convergence seems to be fairly fast. We provide similarly

scaled (but note, not exactly) plots for the other two walks with drift.

In all of the pictures, the convergence of Ln/Dn to 2 is supported by the plot.
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Figure 2.13: A demonstration of the law of large numbers for the ratio of the perimeter
length and diameter applied to the random walk with drift and all coordinates Normally
distributed, unit mean. The ratio is plotted for the first 105 steps, with the vertical
axis showing values near to 2.
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Figure 2.14: A demonstration of the law of large numbers for the ratio of the perimeter
length and diameter applied to the random walk with drift and all coordinates Normally
distributed, mean of length 5. The ratio is plotted for the first 105 steps, with the
vertical axis showing values near to 2.
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Figure 2.15: A demonstration of the law of large numbers for the ratio of the perimeter
length and diameter applied to the random walk with drift and no variance in the first
coordinate, mean of length 5. The ratio is plotted for the first 105 steps, with the
vertical axis showing values near to 2.



Chapter 3

Functional limit approach

The results on the perimeter length and diameter in Chapter 2 can be interpreted as

an indication that the convex hull exhibits particular shapes after the random walk

takes a large number of steps. In this chapter, we consider this question of the shape

of the random walk and in turn the convex hull, and how this can be extended to be

informative about functionals of the convex hull, not least, returning to the perimeter

length and diameter1. Here we do not restrict ourselves to 2 dimensions as before, so

our functionals become more general too.

The heuristic idea underlying the functional limit theorems starts with the story of law

of large numbers and central limit theorem, see Theorem 1.3.14 and Theorem 1.3.15.

These early results refer to the sums of random variables, or the endpoint of our random

walks, which were the first real quantities of interest in this area due to their application

in the contexts of long run profit in gambling games and errors when sampling large

amounts of data. The functional limit theorem extension of these results, presented

in Billingsley [Bil99], considers the paths of the random walks not just the endpoints

confirming the intuitive idea that the path moves linearly towards its endpoint, at least

on the law of large numbers scaling.

As the pictures of our examples in Section 2.3 suggest, the case with drift and the zero

drift case will, unsurprisingly, be seen to behave differently. Under the law of large

1All sections in this chapter except Section 3.4 are based on work published in [LMW18]. The
theory and the maximum functional example were joint work with the other authors, but the arc-sine
law and the convex hull material was written independently.

61
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numbers scaling, the walk with drift converges to the unit vector in the direction of

the mean whilst the zero-drift case is degenerate converging to the point at the origin

(which itself could be considered as the degenerate unit vector in the direction of the

origin). The zero-drift case attains a non-trivial limiting distribution under the central

limit theorem scaling, for which it converges to Brownian motion in the sense of weak

convergence of functions, to be formally defined later. Our contribution to the theory

for the random walks is to show that these results extend to higher dimensions in the

natural way.

In order to see the theory in action, we present the example of the maximum functional

which also serves to demonstrate how the continuous mapping theorem can be used to

determine information about functionals of the random walk. We then give another

example, this time an original generalisation of the arcsine law to higher dimensions

which states that the walk’s direction has no limiting direction or subset of directions.

This example is nicely coherent with our shape result in Chapter 4 which, loosely

speaking, says that the random walk with zero-drift approximates any shape with unit

diameter infinitely often, after appropriate scaling. If the random walk’s direction

had a limiting subset of the sphere as our arc-sine law rules out, then it would not

be surprising if some shapes could not be well-approximated infinitely often because

this would require increasingly large, and unlikely, jumps. Conversely, if the walk had

a limiting shape, it would not be surprising to find that the walk’s directions had a

limiting set, or at least could not infinitely often spend almost every time point in

a subset which would contradict the directions of points in the limiting shape. So

although the arc-sine law relates to the walk and not the convex hull, they should not

be seen as isolated results.

With the strategy understood and preliminary examples presented, we consider the

point set of the random walk. Without even taking the convex hull of these points,

we will already be in a position to study the diameter of the convex hull, because this

coincides with the diameter of the point set. Next, using either this convergence of

sets, or the trajectory convergence, we will extend the results to the convergence of the

convex hulls and consider the convergence of the mean width, volume and surface area,

all defined later on. Again, the results are quite different in the case with drift, which
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will see deterministic or trivial limits based on the convergence to the line segment in

the direction of the mean, whilst the zero-drift case will see convergence to the random

limits related to Brownian motion. It is also possible to see a non-trivial scaling of the

case with drift to a Brownian limit, but this requires differential scaling of the walk

with the direction of the mean scaled by n−1 and all orthogonal directions scaled by

n−1/2. Further details can be found in, and directly proceeding, Lemma 3.3.6.

Finally, motivated by the convergence to Brownian motion, we make some comments

about known results relating to certain functionals of Brownian motion so that we can

get a better intuition of what our zero drift results actually tell us. This will include a

new result on the expected diameter of Brownian motion in 2 dimensions2.

We conclude the chapter by showing some of the results in action through our simulated

examples and discussing open problems in this area.

It is to be noted that the extension to higher dimensions of the results regarding the

random walk theory are non-trivial, but the methods follow closely that of Billingsley,

and so we only state the results in the main text without their proofs which are lengthy.

We do this so that we can keep the focus and flow of the results related to convex

hulls, however, for reference and completeness, the proofs and some of the surrounding

discussion are attached in the appendix.

3.1 Random walk convergence

First, in order to answer the question of progress towards the endpoint, nµ, it is

necessary to define the trajectory of the walk. First, consider the discrete jump process

of the partial sums with each time step rescaled by 1/n, so the partial sums are indexed

by times in the the interval [0, 1], in fact they are at the times k
n
with k = 0, 1, . . . , n.

However, we wish to consider a continuous-time trajectory, so we have two choices on

how to fill in the gaps. Either we can say the walk moves linearly from each partial

sum to the next, in which case the trajectory is

Xn(t) := n−1
(
Sbntc + (nt− bntc)Zbntc+1

)
, (3.1.1)

2Based on work published in [MX17] which was the product of joint work between the authors.
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Figure 3.1: An example of a possible one-dimensional random walk plotted with time
on the horizontal axis, with the two continuous-time trajectories we can create from it;
the continuous interpolating Xn(t) in red and the piecewise constant process X ′n(t) in
black.

or we can consider the trajectory where the walk ‘stays still’ and makes small jumps

when it reaches the next time indexing a new partial sum, in which case we have

X ′n(t) := 1
n
Sbntc. (3.1.2)

In order to study convergence of these trajectories, we need to specify the metric spaces

in which they live. Conveniently, we have defined three such spaces in Section 1.3, the

continuous trajectories endowed with the supremum norm (Cd, ρ∞) and the Skrorokhod

metric or Kolmogorov-Billingsley metric on Dd, (Dd, ρS) or (Dd, ρ◦S). The first space

will be used to show the convergence of Xn(t) which is itself a continuous function,

and the latter two will be used when discussing X ′n(t). It would not be unreasonable

to question why we have two metrics for X ′n(t), but the following result should make

this a bit clearer.

Proposition 3.1.1 ([Kol56, Theorem 7]). The metrics ρ◦S and ρS are equivalent. That

is, for a sequence of functions f, f1, f2, . . . on Dd, ρS(fn, f)→ 0 as n→∞ if and only

if ρ◦S(fn, f)→ 0 as n→∞.
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The fact that the metrics are equivalent means we can use either one to prove continuity

of a functional on Dd and the result will hold for the other; we will use the metric which

is simplest for each application. Likewise, almost-sure statements using one metric

carry over to the other. Note also that as equivalent metrics, ρS and ρ◦S generate

the same topology (open sets) on Dd, and hence also the same Borel sets. Further

motivation behind ρ◦S in particular is that, under this metric, Dd is both separable and

complete, which is useful for the proofs of Donsker’s theorem below. Further details

on this subject are left to the appendix.

We now can state the important results regarding the almost sure convergence of our

trajectories.

Theorem 3.1.2 (Functional law of large numbers [Whi02, p. 26]). Consider the ran-

dom walk trajectories as defined at (3.1.1) and (3.1.2). Let Iµ ∈ Cd be the function

defined by Iµ(t) := µt for t ∈ [0, 1].

(a) We have Xn
a.s.−→ Iµ on (Cd0 , ρ∞).

(b) We have X ′n
a.s.−→ Iµ on (Dd0, ρ∞).

Remark 3.1.3. By Lemma 1.3.2, part (b) also shows that X ′n
a.s.−→ Iµ on (Dd0, ρS) and

Proposition 3.1.1 in turn shows that X ′n
a.s.−→ Iµ on (Dd0, ρ◦S).

Alongside the convergence of the trajectories, we will need the following mapping the-

orem in order to extend the results to further functionals of the trajectories including

our convex hull properties. First, note that, given two metric measure spaces (S,S, ρ)

and (S ′,S ′, ρ′) and a measurable function h : S → S ′, the set Dh of discontinuities of

h satisfies Dh ∈ S: see [Bil99, p. 243], and hence P(X ∈ Dh) is well defined.

Theorem 3.1.4 (Continuous mapping theorem for almost-sure convergence [Gut05,

p. 244]). Let X,X1, X2, . . . be random variables on the probability space (Ω,F ,P) taking

values in the metric measure space (S,S, ρ). Let (S ′,S ′, ρ′) be another metric measure

space, and let h : (S,S, ρ)→ (S ′,S ′, ρ′) be measurable. If Xn
a.s.−→ X and P(X ∈ Dh) =

0, then h(Xn) a.s.−→ h(X).



3.1. Random walk convergence 66

In the zero drift case, we need a new scaling, but still maintain the two different

trajectories. Precisely, for n ∈ N and t ∈ [0, 1] we define

Yn(t) := 1√
n

(
Sbntc + (nt− bntc)ξbntc+1

)
; (3.1.3)

Y ′n(t) := 1√
n
Sbntc.

Here Yn ∈ Cd0 and Y ′n ∈ Dd0. Then, recalling bd is a standard d-dimensional Brownian

motion, we can now state the weak convergence result for our zero-drift trajectories.

The one-dimensional case was first proven in [Don51], and further discussion can be

found in, for example, [Bil99; Kal02]. We also point the reader to [EK09, §5] for a

comprehensive discussion of both d-dimensional Brownian motion and the steps leading

to this result.

Theorem 3.1.5 (Donsker’s theorem). Suppose that we have a random walk as defined

at (Wµ) with µ = 0 and satisfying (V).

(a) We have Yn ⇒ Σ1/2bd in the sense of weak convergence on (Cd0 , ρ∞).

(b) We have Y ′n ⇒ Σ1/2bd in the sense of weak convergence on (Dd0, ρS).

As with the almost-sure convergence result, we will need a mapping theorem in order

to extend our results to functionals of the random walk.

Theorem 3.1.6 (Continuous mapping theorem for weak convergence [Bil99, p. 20]).

Let P, P1, P2, . . . be a sequence of probability measures on a metric measure space

(S,S, ρ). Let (S ′,S ′, ρ′) be another metric measure space, and let h : (S,S, ρ) →

(S ′,S ′, ρ′) be measurable. For each n, we define Pnh
−1, a probability measure on

(S ′,S ′, ρ′) by Pnh
−1(A) = Pn(h−1(A)) for A ∈ S ′. If Pn ⇒ P and P (Dh) = 0,

then Pnh−1 ⇒ Ph−1.

Corollary 3.1.7. If Xn ⇒ X and P(X ∈ Dh) = 0, then h(Xn)⇒ h(X).

Remark 3.1.8. Part (b) of Theorem 3.1.5 is stated for the space (Dd0, ρS), but weak

convergence on (Dd0, ρS) is equivalent to weak convergence on (Dd0, ρ◦S). To see this,

recall the definition of weak convergence from Definition 1.3.7 with the probability
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measure discussion above there, and note Proposition 3.1.1 which tells us that a con-

tinuous function f under one metric is continuous under the other. Thus, the set of

bounded continuous functions is the same in both metric spaces and so weak conver-

gence must be equivalent.

3.1.1 The maximum functional

As a first example of the theory developed above, we consider a d-dimensional version

of the maximum functional M :Md → R defined by M(f) := sup0≤t≤1 ‖f(t)‖, where

we recallMd is the set of trajectories, see Section 1.3. Note that |M(f)| ≤ ‖f‖∞. The

next result shows that M is a continuous map from (Md, ρ∞) to (R, ρE) and also a

continuous map from (Md, ρS) to (R, ρE).

Theorem 3.1.9. For any f, g ∈Md we have |M(f)−M(g)| ≤ ρS(f, g) ≤ ρ∞(f, g).

Proof. Take f, g ∈Md, and suppose without loss of generality that sups∈[0,1] ‖f(s)‖ ≥

supt∈[0,1] ‖g(t)‖. Recall Λ is the set of λ : [0, 1]→ [0, 1] that are strictly increasing and

surjective. For any λ ∈ Λ′,

|M(f)−M(g)| = sup
s∈[0,1]

‖f(s)‖ − sup
t∈[0,1]

‖g(t)‖

= sup
s∈[0,1]

‖f(s)‖ − sup
t∈[0,1]

‖g ◦ λ(t)‖,

since λ[0, 1] = [0, 1]. Hence

|M(f)−M(g)| = sup
s∈[0,1]

(
‖f(s)‖ − sup

t∈[0,1]
‖g ◦ λ(t)‖

)

≤ sup
s∈[0,1]

(‖f(s)‖ − ‖g ◦ λ(s)‖)

≤ sup
s∈[0,1]

‖f(s)− g ◦ λ(s)‖

= ‖f − g ◦ λ‖∞

≤ ‖λ− I‖∞ ∨ ‖f − g ◦ λ‖∞.

We therefore have that

|M(f)−M(g)| ≤ inf
λ∈Λ
{‖λ− I‖∞ ∨ ‖f − g ◦ λ‖∞} ≤ ρS(f, g).
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Lemma 1.3.2 completes the proof.

Since we have shown the maximum functional is continuous, we can also apply the

mapping theorem to the functional law of large numbers, to obtain the following result.

Theorem 3.1.10. Consider the random walk defined at (Wµ). Then, as n→∞,

1
n

max
0≤k≤n

‖Sk‖
a.s.−→ ‖µ‖.

Proof. Let X ′n(t) be as defined at (3.1.2). The functional strong law of large numbers,

Theorem 3.1.2, says that X ′n
a.s.−→ Iµ on (Dd, ρ∞), while Theorem 3.1.9 says that M

is continuous. Thus the mapping theorem, Theorem 3.1.4, implies that M(X ′n) a.s.−→

M(Iµ) on (R, ρE). But M(X ′n) = n−1 max0≤k≤n ‖Sk‖ and M(Iµ) = ‖µ‖, giving the

result.

Further to the law of large numbers scaling result, we can apply the mapping theorem

to the functional central limit theorem to establish the following result in the case of

zero drift.

Theorem 3.1.11. Suppose that we have a random walk as defined at (Wµ) with µ = 0,

and satisfying (V). Then as n→∞,

1√
n

max
0≤k≤n

‖Sk‖
d−→ sup

t∈[0,1]
‖Σ1/2bd(t)‖.

Proof. Donsker’s theorem, Theorem 3.1.5, together with the mapping theorem, Corol-

lary 3.1.7, and continuity of the function M : (Dd, ρS) → (R+, ρE), Theorem 3.1.9,

shows that

M(Y ′n) = sup
t∈[0,1]

‖Y ′n(t)‖ d−→M(Σ1/2bd) = sup
t∈[0,1]

‖Σ1/2bd(t)‖.

But we have that supt∈[0,1] ‖Y ′n(t)‖ = n−1/2 max{‖S0‖, ‖S1‖, . . . , ‖Sn‖}, completing the

proof.

Remark 3.1.12. In the case Σ = Id, the d-dimensional identity matrix, the right

hand side of Theorem 3.1.11 is concerned with the maximum of a d-dimensional Bessel

process. In the case d = 1, the maximum functional would more naturally be M(f) :=

sup0≤t≤1 f(t), which would give different results. This functional was presented in
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[LMW18]. In this case, the distribution of supt∈[0,1] b(t) can be determined by the

reflection principle for Brownian motion, and so Theorem 3.1.11 would give us the

limiting distribution for max1≤k≤n Sk/
√
n: see [Bil99, pp. 91–93].

3.1.2 Generalisation of the arcsine law

We now turn to our second example. The classical arcsine law states the following

[Fel68, p. 82], first established for the simple symmetric random walk.

Theorem 3.1.13. If 0 < γ < 1, the probability that an n-step simple symmetric

random walk spends less than γn time on the positive side tends to 2π−1 arcsin√γ as

n→∞.

Discussion of this result and its connection to other functionals in the one-dimensional

case can be found at [Bil99, pp. 97–101]. We wish to extend the result to higher dimen-

sions, which requires a generalisation of the functional itself. In [BD88] the functional

which generalises ‘time on the positive side’ to ‘time in the positive quadrant’ is consid-

ered and shown not to follow an arc-sine distribution by comparison of moments. The

generalisation that we will consider is πn(A), defined to be the proportion of time the

normalised walk spends in a given subset of the sphere. Formally, recall x̂ := x/‖x‖

for x 6= 0 and 0̂ := 0, then, for a measurable set A ⊆ Sd−1,

πn(A) := 1
n

n∑
i=1

1{Ŝi ∈ A}.

Theorem 3.1.14. Suppose that we have a random walk as defined at (Wµ) with µ = 0,

and satisfying (V). Let b̂Σ
d (t) := Σ1/2bd(t)/‖Σ1/2bd(t)‖, the d-dimensional Brownian

motion projected onto the sphere and A ⊆ Sd−1 with µd−1(∂A) = 0, where µd−1 here

denotes Haar measure on Sd−1. Then as n→∞,

πn(A) d−→
∫ 1

0
1{b̂Σ

d (t) ∈ A}dt.

For further details on Haar measures, see [Hal50, §58]. As with all our examples, we

must prove the continuity of the functional in order to complete the proof. First, for
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measurable A ⊆ Sd−1 and f ∈ Dd, define

$A(f) :=
∫ 1

0
1
{
f̂(t) ∈ A

}
dt.

Note that πn(A) = $A(Y ′n).

Lemma 3.1.15. Fix a measurable A ⊆ Sd−1. Then, as a function from (Dd, ρS) to

([0, 1], ρE), f 7→ $A(f) is continuous on the set

FA :=
{
f ∈ Dd :

∫ 1

0
1
{
f̂(t) ∈ {0} ∪ ∂A

}
dt = 0

}
.

Proof. Since ρS and ρ◦S are equivalent (see Proposition 3.1.1), it suffices to work with

the latter. For f ∈ Dd define for all measurable B ⊆ Rd,

νf (B) :=
∫ 1

0
1{f(t) ∈ B}dt.

Note that νf is a finite measure on Rd. Now let Ã = {rx : x ∈ A, r > 0}, then $A(f) =

νf (Ã). Take f, g ∈ Dd and suppose, without loss of generality, that νf (Ã) ≥ νg(Ã),

let Ãε = {x ∈ Rd : ρE(x, Ã) ≤ ε} and let Ãε = {x ∈ Rd : ρE(x,Rd \ Ã) ≥ ε}, then

Ãε ⊆ Ã ⊆ Ãε and

|$A(f)−$A(g)| = νf (Ã)− νg(Ã) = νf (Ãε)− νg(Ãε) + νf (Ã \ Ãε) + νg(Ãε \ Ã).

If f, g ∈ FA then since x ∈ ∂Ã implies x̂ ∈ {0} ∪ ∂A, we have that as ε → 0,

by continuity of measures along monotone limits, νf (Ã \ Ãε) → νf (∂Ã) = 0, and

νg(Ãε \ Ã) → νg(∂Ã) = 0. Moreover, we can use the change of variable t = λ(s) in

the νg-integral, where λ ∈ Λ, in order to appeal to Lemma A.1.3. As in that lemma,

we note that, by Lebesgue’s theorem on the differentiability of monotone functions,

see [KF12, p. 321], λ′(t) exists almost everywhere on t ∈ (0, 1), and so for any δ > 0

νf (Ãε)− νg(Ãε) =
∫ 1

0
1{f(t) ∈ Ãε}dt−

∫ 1

0
1{g(t) ∈ Ãε}dt

≤
∫ 1

0
1{f(t) ∈ Ãε}dt−

∫ 1

0
1{g(t) ∈ Ãε, λ′(t) exists}dt

=
∫ 1

0
1{f(t) ∈ Ãε}dt−

∫ 1

0
λ′(s)1{g(λ(s)) ∈ Ãε, λ′(s) exists}ds,

≤ γ +
∫ 1

0
1{f(t) ∈ Ãε, g(λ(t)) /∈ Ãε, λ′(t) exists}dt

−
∫ 1

0
1{f(t) /∈ Ãε, g(λ(t)) ∈ Ãε, λ′(t) exists}dt
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−
∫ 1

0
(λ′(s)− 1)1{g(λ(s)) ∈ Ãε, λ′(s) exists}ds,

≤ γ +
∫ 1

0
1{f(t) ∈ Ãε, g(λ(t)) /∈ Ãε}dt

+
∫ 1

0
‖λ′(s)− 1‖1{λ′(s) exists}ds.

Here we have that
∫ 1

0
1
{
f(t) ∈ Ãε, g(λ(t)) /∈ Ãε

}
dt ≤ 1 {‖f − g ◦ λ‖ ≥ 2ε} .

In particular, given f ∈ FA and ε > 0, we can choose δ sufficiently small so that any g

with ρ◦S(f, g) < δ has a λ for which, by Lemma A.1.3,
∫ 1

0 ‖λ′(s)−1‖1{λ′(s) exists}ds ≤

c(λ) < ε and ‖f − g ◦ λ‖ < ε. Hence, since γ > 0 and ε > 0 were arbitrary, |$A(f)−

$A(g)| → 0 as ρ◦S(f, g)→ 0.

Proof of Theorem 3.1.14. Fix A ⊆ Sd−1 with µd−1(∂A) = 0. Then we need to show

that FA has measure 1 under the law of Σ1/2bd.

First, note that µd−1(∂A) = 0 implies µd−1({0} ∪ ∂A) = 0 and µd({0} ∪ ∂Ã) = 0.

Then an application of Fubini’s theorem [Dur10, p. 37] and using the fact that the

expectation of an indicator function is a probability, we get,

E
∫ 1

0
1{b̂Σ

d (t) ∈ ({0} ∪ ∂A)}dt =
∫ 1

0
P(Σ1/2bd(t) ∈ ({0} ∪ ∂Ã))dt = 0,

where the last equality follows from the fact that P(Σ1/2bd(t) ∈ ({0} ∪ ∂Ã)) = P(X ∈

({0} ∪ ∂Ã)) where X ∼ N (0,Σt), the d-dimensional Normal distribution.

Now, since
∫ 1

0 1{b̂Σ
d (t) ∈ ({0} ∪ ∂A)}dt ≥ 0, it follows (see [Wil91, p. 51]) that

∫ 1

0
1{b̂Σ

d (t) ∈ ({0} ∪ ∂A)}dt = 0 a.s.

which gives that FA has measure 1 under the law of Σ1/2bd. Therefore, using Donsker’s

theorem, Theorem 4.9(b), which states Y ′n ⇒ Σ1/2bd, the continuous mapping theorem,

Theorem 4.5, and Lemma 3.1.15, we have πn(A) = $A(Y ′n) d−→ $A(Σ1/2bd).

In particular, we can use this result to determine that there is no almost sure limit for

the proportion of time spent in any non-trivial set.
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Corollary 3.1.16. For any set A ⊆ Sd−1 with 0 < µd−1(A) < µd−1(Sd−1) and

µd−1(∂A) = 0,

lim inf
n→∞

πn(A) = 0 a.s. and lim sup
n→∞

πn(A) = 1 a.s.

Proof. We will use the Hewitt-Savage zero-one law [Dur10, p. 180]. In order to do

so, we need to show that lim supn→∞ πn(A) and lim infn→∞ πn(A) are exchangeable

random variables. For this, note

lim sup
n→∞

πn(A) = lim sup
n→∞

 1
n

k∑
i=1

1{Ŝi ∈ A}+ 1
n

n∑
i=k+1

1{Ŝi ∈ A}


= lim sup

n→∞

1
n

n∑
i=k+1

1{Ŝi ∈ A} a.s.

which clearly does not depend on the order of the first k increments, and since k was

arbitrary, it is clearly exchangeable. The exact same argument is true for the lim inf

as well.

Thus, it will be sufficient to show that P(lim supn→∞ πn(A) ≥ 1− ε) > 0 for any ε > 0,

and P(lim infn→∞ πn(A) ≤ ε) > 0 for any ε > 0. For the former, note

P(lim sup
n→∞

πn(A) ≥ 1− ε) ≥ P(πn(A) > 1− ε i.o.)

≥ P(∩∞n=1 ∪m≥n {πm(A) > 1− ε})

= lim
n→∞

P(∪m≥n{πm(A) > 1− ε})

≥ lim
n→∞

P(πn(A) > 1− ε). (3.1.4)

Then Theorem 3.1.14 states that πn(A) d−→
∫ 1

0 1{b̂Σ
d (t) ∈ A}dt so for all but countably

many ε > 0,

lim
n→∞

P(πn(A) > 1− ε) = P
(∫ 1

0
1{b̂Σ

d (t) ∈ A}dt > 1− ε
)
.

Now, recall intA := A \ ∂A is the interior of A, which is an open set, see for example

[Kel75, pp. 44–46]. By the assumptions µd−1(A) > 0 and µd−1(∂A) = 0 it follows

that µd−1(intA) > 0 and so the interior is non-empty. Since the interior is an open,

non-empty subset of A, it follows that there exists at least one ball, call it Aε, with

radius ε > 0 such that Aε ⊆ A.
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Then it is easy to see that there is positive probability that b̂Σ
d (t) stays in Aε for all

t ∈ [ε, 1] for any ε > 0 (allowing the path to move away from 0). Thus, combining this

with (3.1.4), we have

P
(

lim sup
n→∞

πn(A) ≥ 1− ε
)
≥ lim

n→∞
P(πn(A) ≥ 1− ε)

= P
(∫ 1

0
1{b̂Σ

d (t) ∈ A}dt > 1− ε
)
> 0

for any ε > 0, and the Hewitt-Savage zero-one law gives us lim supn→∞ πn(A) = 1 a.s.

as required.

Finally, note that πn(Ac) ≤ 1 − πn(A) (the inequality is due to possible visits to 0)

and since µd−1(A) + µd−1(Ac) = µd−1(Sd−1), we get 0 < µd−1(Ac) < µd−1(Sd−1). Also,

∂A = ∂Ac, see for example [Kel75, p. 46], so µd−1(∂Ac) = µd−1(∂A) = 0. Thus, the

conditions of the previous calculation are in fact satisfied for Ac, so lim infn→∞ πn(A) ≤

1− lim supn→∞ πn(Ac) = 1− 1 = 0 a.s. which completes the proof.

3.2 Random walk point set convergence

3.2.1 Hausdorff distance

In this section, we will turn to the set convergence of the random walk points which is

our first step towards the results directly related to the convex hull, but first, we need

to add to our previously described metric spaces with another space of sets on which

this convergence should take place. The purpose of this subsection is to set this up.

Let Sd
0 denote the collection of bounded subsets of Rd containing 0. Let Kd0 denote the

set of compact subsets of Rd containing 0. The set of random walk points do not form

a convex set, so we will work with these more general spaces in this section. Recall

that Aε = {x ∈ Rd : ρE(x, A) ≤ ε} and ρE(x, A) is the distance between a point x

and a set A. Recall also the definitions of the Hausdorff distance from (1.3.1) and

(1.3.2) which can be applied to Sd
0 and Kd0, however note that ρH is a metric on Kd0

but on Sd
0, ρH is a only a pseudometric, since while the triangle inequality still holds,

ρH(A,B) = 0 does not imply A = B (e.g. take an open set A and take B to be its

closure; see Lemma 3.2.2 below). Thus convergence must take place in (Kd0, ρH).
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We need the following observations about the Hausdorff distance.

Lemma 3.2.1. Consider functions f, g ∈Md
0. Then f [0, 1], g[0, 1] ∈ Sd

0 and

ρH(f [0, 1], g[0, 1]) ≤ ρS(f, g) ≤ ρ∞(f, g).

Proof. Recall Λ is the set of λ : [0, 1]→ [0, 1] that are strictly increasing and surjective.

Then by (1.3.1),

ρH(f [0, 1], g[0, 1]) = sup
t∈[0,1]

ρE(f(t), g[0, 1]) ∨ sup
t∈[0,1]

ρE(g(t), f [0, 1])

= sup
t∈[0,1]

inf
s∈[0,1]

‖f(t)− g(s)‖ ∨ sup
t∈[0,1]

inf
s∈[0,1]

‖g(t)− f(s)‖

= sup
t∈[0,1]

inf
s∈[0,1]

‖f(t)− g ◦ λ(s)‖ ∨ sup
t∈[0,1]

inf
s∈[0,1]

‖g ◦ λ(t)− f(s)‖,

for any λ ∈ Λ′. Using the fact that for any h ∈ Md
0 and any t ∈ [0, 1], infs∈[0,1] h(s) ≤

h(t), we get

ρH(f [0, 1], g[0, 1]) ≤ sup
t∈[0,1]

‖f(t)− g ◦ λ(t)‖,

for any λ ∈ Λ′, and hence

ρH(f [0, 1], g[0, 1]) ≤ inf
λ∈Λ′
‖f − g ◦ λ‖∞.

It follows that ρH(f [0, 1], g[0, 1]) ≤ ρS(f, g), and Lemma 1.3.2 completes the proof.

Note that if f ∈ Cd0 then f [0, 1] is the continuous image of a compact set, containing

f(0) = 0, and hence f [0, 1] ∈ Kd0. Thus Lemma 3.2.1 shows that f 7→ f [0, 1] is a

continuous map from (Cd0 , ρ∞) to (Kd0, ρH). For f ∈ Dd0, we need to work instead with

cl f [0, 1]. We need the following simple fact.

Lemma 3.2.2. For any A,B ∈ Sd
0,

ρH(clA,B) = ρH(A,B).

Proof. Clearly A ⊆ clA, so

sup
x∈clA

ρE(x,B) ≥ sup
x∈A

ρE(x,B). (3.2.1)

For any z ∈ clA, there exist zn ∈ A such that zn → z; by continuity, ρE(zn, B) →

ρE(z,B). Also, since zn ∈ A, it is clear that ρE(zn, B) ≤ supx∈A ρE(x,B), which gives
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ρE(z,B) ≤ supx∈A ρE(x,B), and hence

sup
z∈clA

ρE(z,B) ≤ sup
x∈A

ρE(x,B). (3.2.2)

Combining (3.2.1) and (3.2.2) shows that supx∈clA ρE(x,B) = supx∈A ρE(x,B).

Since A ⊆ clA we have ρE(y, clA) ≤ ρE(y, A) for all y ∈ B. For any z ∈ clA, there

exist zn ∈ A such that zn → z. Then

ρE(y, z) = lim
n→∞

ρE(y, zn) ≥ ρE(y, A),

so that for any y ∈ B,

ρE(y, clA) = inf
z∈clA

ρE(y, z) ≥ ρE(y, A).

Hence ρE(y, clA) = ρE(y, A) for any y ∈ B, so the result follows from (1.3.1).

Combining the preceding two lemmas gives the following result, which shows that

f 7→ cl f [0, 1] is a continuous map from (Dd0, ρS) to (Kd0, ρH).

Corollary 3.2.3. Consider functions f, g ∈ Dd0. Then cl f [0, 1], cl g[0, 1] ∈ Kd0 and

ρH(cl f [0, 1], cl g[0, 1]) ≤ ρS(f, g) ≤ ρ∞(f, g).

Proof. First note that {f(x) : x ∈ [0, 1]} is contained in the closed Euclidean ball

centred at the origin with radius ‖f‖∞, which is finite for f ∈ Dd0 [Bil99, p. 121]. Thus

if f, g ∈ Dd0, then f [0, 1], g[0, 1] are bounded, and hence their closures are compact.

We use Lemma 3.2.2 twice to see ρH(cl f [0, 1], cl g[0, 1]) = ρH(f [0, 1], g[0, 1]), and the

result then follows from Lemma 3.2.1.

3.2.2 Point set convergence

Now we can present our limit theorems for the set {S0, S1, . . . , Sn}. First we state a

law of large numbers. Recall that Iµ(t) = µt.

Theorem 3.2.4. Suppose that we have a random walk as defined at (Wµ). Then, as

elements of (Kd0, ρH),

n−1{S0, S1, . . . , Sn}
a.s.−→ Iµ[0, 1].
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Proof. The functional law of large numbers, Theorem 3.1.2(b), shows that X ′n
a.s.−→ Iµ

on (Dd0, ρ∞). Corollary 3.2.3 shows that f 7→ cl f [0, 1] is continuous from (Dd0, ρ∞) to

(Kd0, ρH), so the mapping theorem, Theorem 3.1.4, shows that clX ′n[0, 1] a.s.−→ cl Iµ[0, 1];

note that clX ′n[0, 1] = X ′n[0, 1] = n−1{S0, S1, . . . , Sn} and cl Iµ[0, 1] = Iµ[0, 1].

Theorem 3.2.5. Suppose that we have a random walk as defined at (Wµ) with µ = 0

and satisfying (V). Then, as elements of (Kd0, ρH),

n−1/2{S0, S1, . . . , Sn} ⇒ Σ1/2bd[0, 1].

Proof. Donsker’s theorem, Theorem 3.1.5(b), shows that Y ′n ⇒ Σ1/2bd on (Dd0, ρS).

Corollary 3.2.3 shows that f 7→ cl f [0, 1] is continuous from (Dd0, ρS) to (Kd0, ρH), so

the mapping theorem, Theorem 3.1.6, shows that clY ′n[0, 1]⇒ cl Σ1/2bd[0, 1]; note that

clY ′n[0, 1] = Y ′n[0, 1] = n−1/2{S0, S1, . . . , Sn} and cl Σ1/2bd[0, 1] = Σ1/2bd[0, 1].

3.2.3 Diameter of random walks

As a first application of the results of this section (we see another application in Sec-

tion 3.3), we consider the diameter of the random walk, as defined at (1.3.7).

The following is a generalisation to d-dimensions of the 2-dimensional almost-sure result

contained in [MW18, Theorem 1.3].

Theorem 3.2.6. Suppose that we have a random walk as defined at (Wµ).

(a) n−1Dn
a.s.−→ ‖µ‖ as n→∞.

(b) If µ = 0 and (V) holds, then n−1/2Dn
d−→ diam(Σ1/2bd[0, 1]) as n→∞.

The theorem rests on the following result, which shows that A 7→ diamA is continuous

from (Kd0, ρH) to (R+, ρE) which can also be found at [MW18, Lemma 3.5].

Lemma 3.2.7. For any A,B ∈ Sd
0,

| diamA− diamB| ≤ 2ρH(A,B).
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Proof. Let ρH(A,B) = r. From (1.3.2) we have that for any x1,x2 ∈ A and any s > r,

there exist y1,y2 ∈ B such that ρE(xi,yi) ≤ s. Then,

ρE(x1,x2) ≤ ρE(x1,y1) + ρE(y1,y2) + ρE(y2,x2) ≤ 2s+ diamB.

Hence

diamA = sup
x1,x2∈A

ρE(x1,x2) ≤ 2s+ diamB,

and since s > r was arbitrary we get diamA − diamB ≤ 2r. Similarly, diamB −

diamA ≤ 2r, giving the result.

Proof of Theorem 3.2.6. For part (a), we have from the law of large numbers for sets,

Theorem 3.2.4, that n−1{S0, S1, . . . , Sn}
a.s.−→ Iµ[0, 1] on (Kd0, ρH), while Lemma 3.2.7

shows that A 7→ diamA is continuous from (Kd0, ρH) to (R+, ρE). Thus the mapping

theorem, Theorem 3.1.4, yields n−1Dn
a.s.−→ diam(Iµ[0, 1]) = ‖µ‖.

For part (b), we have from the central limit theorem for sets, Theorem 3.2.5, that

n−1/2 {S0, S1, . . . , Sn} ⇒ Σ1/2bd[0, 1] on (Kd0, ρH). Lemma 3.2.7 together with the map-

ping theorem, Theorem 3.1.6, yield the result.

3.3 Convergence of convex hulls

3.3.1 Trajectories and hulls

We use the notation for sets of subsets of Rd and for the Hausdorff distance ρH from

Section 3.2.1 and equations (1.3.1) and (1.3.2). We need the following result.

Lemma 3.3.1. For any A,B ∈ Sd
0,

ρH(hullA, hullB) ≤ ρH(A,B).

Proof. Note Carathéodory’s theorem: for any x ∈ hullA there exist finitely many

points x1,x2, . . . ,xn ∈ A and λ1, λ2, . . . , λn with λi ≥ 0, ∑n
i=1 λi = 1, for which

x = ∑n
i=1 λixi (see e.g. [Gru07, p. 42]). Let r := ρH(A,B). For any s > r, we have

from (1.3.2) that for each xi ∈ A there exists yi ∈ B such that ρE(xi,yi) ≤ s. Now
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consider y = ∑n
i=1 λiyi ∈ hullB. Then

ρE(x,y) ≤
n∑
i=1

λiρE(xi,yi) ≤ s.

This calculation implies that hullA ⊆ (hullB)s, and by a similar argument we get

hullB ⊆ (hullA)s. With (1.3.2) we get ρH(hullA, hullB) ≤ s. Since s > r was

arbitrary, the result follows.

Let Cd0 denote the set convex compact subsets of Rd containing 0. For A ∈ Cd0, we

define the support function of A by

hA(x) := sup
y∈A

(x · y), for any x ∈ Rd. (3.3.1)

Then for A,B ∈ Cd0 we have another equivalent description of ρH(A,B) (see e.g. [Gru07,

p. 84]):

ρH(A,B) = sup
e∈Sd−1

|hA(e)− hB(e)|. (3.3.2)

Given f ∈ Dd0, we have cl f [0, 1] is compact and contains 0 = f(0). A theorem

of Carathéodory [Gru07, p. 44] says that if A is compact then so is hullA; hence

hull cl f [0, 1] is compact. Moreover, we have that hull clA = cl hullA [Gru07, p. 45].

Hence if f ∈ Dd0 then cl hull f [0, 1] ∈ Cd0. Of course, if f ∈ Cd0 then f [0, 1] and hence

hull f [0, 1] is already compact. The following result shows that f 7→ cl hull f [0, 1] is a

continuous map from (Dd0, ρS) to (Cd0, ρH). This fact is also found as Lemma 5.1 in the

recent paper of Molchanov and Wespi [MW16].

Lemma 3.3.2. Consider two functions f, g ∈Md
0. Then,

ρH (cl hull f [0, 1], cl hull g[0, 1]) ≤ ρS(f, g).

Proof. First, Lemma 3.2.2 (twice) and Lemma 3.3.1 yield

ρH (cl hull f [0, 1], cl hull g[0, 1]) = ρH (hull f [0, 1], hull g[0, 1]) ≤ ρH(f [0, 1], g[0, 1]).

Lemma 3.2.1 completes the proof.

3.3.2 Limit theorems for convex hulls

The following is our law of large numbers for the convex hull.
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Theorem 3.3.3. Suppose that we have a random walk as defined at (Wµ). Then, as

elements of (Cd0, ρH),

n−1 hull{S0, . . . , Sn}
a.s.−→ Iµ[0, 1].

Proof. Theorem 3.2.4 states n−1{S0, . . . , Sn}
a.s.−→ Iµ[0, 1] on (Kd0, ρH). Lemma 3.3.1

shows that A 7→ hullA is a continuous map from (Kd0, ρH) to (Cd0, ρH), so the map-

ping theorem, Theorem 3.1.4, implies that hulln−1{S0, . . . , Sn}
a.s.−→ hull Iµ[0, 1]. Here

hull Iµ[0, 1] = Iµ[0, 1], and, since the convex hull is preserved under scaling,

hulln−1{S0, . . . , Sn} = n−1 hull{S0, . . . , Sn}.

Next we state the accompanying central limit theorem. Let hd := hull bd[0, 1], the

convex hull of d-dimensional Brownian motion run for unit time.

Theorem 3.3.4. Suppose that we have a random walk as defined at (Wµ) with µ = 0

and satisfying (V). Then, as elements of (Cd0, ρH),

n−1/2 hull{S0, . . . , Sn} ⇒ Σ1/2hd.

Proof. Theorem 3.2.5 states n−1/2{S0, . . . , Sn} ⇒ Σ1/2bd[0, 1] on (Kd0, ρH). Lemma 3.3.1

shows that A 7→ hullA is a continuous map from (Kd0, ρH) to (Cd0, ρH), so the map-

ping theorem, Theorem 3.1.6, implies that hulln−1/2{S0, . . . , Sn} ⇒ hull Σ1/2bd[0, 1].

Since the convex hull is preserved under affine transformations, hull Σ1/2bd[0, 1] =

Σ1/2 hull bd[0, 1].

Remark 3.3.5. Alternatively, we could obtain Theorems 3.3.3 and 3.3.4 directly from

the functional law of large numbers, Theorem 3.1.2, and Donsker’s theorem, Theo-

rem 3.1.5, using Lemma 3.3.2.

Suppose now d ≥ 2. To obtain second-order results in the case where µ 6= 0, an

additional scaling limit is required. Let {e1, . . . , ed} be the standard orthonormal basis

of Rd, and supposing that µ 6= 0, let {u1, . . . ,ud} be another orthonormal basis of Rd

with u1 = µ̂. Then we transform Z into Z ′, a vector with components in the standard

basis, by taking

Z ′ = (Z ′1, Z ′2, . . . , Z ′d) := (Z · u1, Z · u2, . . . , Z · ud),
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and consider Z ′⊥ := (Z ′2, . . . , Z ′d). Note that, since EZ · uk = µ · uk = 0 for k 6= 1, we

have EZ ′⊥ = 0. Then set

Σµ⊥ := E[Z ′⊥(Z ′⊥)>]. (3.3.3)

This defines a (d − 1)-dimensional covariance matrix, describing the covariances of

the process projected onto the hyperplane orthogonal to the mean vector. Note that

Σµ⊥ is non-negative definite and hence it has a unique non-negative definite symmetric

square root matrix Σ1/2
µ⊥

. It will be useful to have notation for Σ1/2
µ⊥

extended back to a

d-dimensional matrix which we will denote as Σ̃1/2
µ⊥

, specifically we define

Σ̃1/2
µ⊥

:=



1 0 . . . 0

0
... Σ1/2

µ⊥

0


. (3.3.4)

We will need a new weak convergence result and as we took a mapping of the increments

above, we need to define a different mapping for the walk process itself, for which we

use a d-dimensional analogue of that used in [WX15b]. Namely, for n ∈ N, define

ψn,µ : Rd → Rd by the image of x ∈ Rd in Cartesian components:

ψn,µ(x) =
(

x · u1

n‖µ‖
,
x · u2√

n
, . . . ,

x · ud√
n

)
,

where {u1, . . . ,ud} is the orthonormal basis defined above. We extend this, and sub-

sequent similar notation, to sets in the usual way, ψn,µ(A) = {ψn,µ(x) : x ∈ A}. This

mapping has an effect which is the natural extension of its 2-dimensional equivalent,

rotating Rd mapping µ̂ to the unit vector in the horizontal direction, and scaling space

with a horizontal shrinking factor of ‖µ‖n, but now also a factor of
√
n in all d − 1

directions orthogonal to the horizontal.

We will also need some notation for the first component of the mapping, and the d− 1

vector containing the elements orthogonal to the mean, so we define the following:

ψ1
n,µ(x) := x · u1

n‖µ‖
and ψ⊥n,µ(x) :=

(
x · u2√

n
, . . . ,

x · ud√
n

)
.

Naturally, we also need to define a new limiting process which combines the drift with
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Brownian motion in a time-space way. We denote this b̃d(t), which is defined as

b̃d(t) = (t, bd−1(t)), for t ∈ [0, 1], (3.3.5)

where we use the notation bd−1 to be clear that we mean (d−1)-dimensional Brownian

motion. We use the notation h̃Σ
d := hull Σ̃1/2

µ⊥
b̃d[0, 1], the hull of Σ̃1/2

µ⊥
b̃d run for unit

time.

Lemma 3.3.6. Suppose that we have a random walk as defined at (Wµ) with µ 6= 0

and satisfying (V). Then, as n→∞, as elements of (Cd0, ρH),

ψn,µ(hull{S0, S1, . . . , Sn})⇒ h̃Σ
d .

Proof. First, note that, since ψn,µ is an affine transformation, we have

ψn,µ(hull{S0, . . . , Sn}) = hull (ψn,µ({S0, . . . , Sn})) .

Noting that A 7→ hullA is continuous from (Kd0, ρH) to (Cd0, ρH) by Lemma 3.3.1, the

continuous mapping theorem, Theorem 3.1.6, means it is sufficient to show

ψn,µ({S0, . . . , Sn})⇒ Σ̃1/2
µ⊥
b̃d[0, 1] on (Kd0, ρH). (3.3.6)

In order to show this, we first define a new unscaled trajectory asW ′
n(t) := Sbntc. Then

we will show that,

ψn,µ(W ′
n)⇒ Σ̃1/2

µ⊥
b̃d, on (Dd0, ρS). (3.3.7)

First, recall Theorem 1.3.13: if Xn, Yn, and X are elements of a metric space (S, ρ),

such that Xn ⇒ X and ρ(Xn, Yn) P−→ 0, then Yn ⇒ X. Taking Xn = (I, ψ⊥n,µ(W ′
n))

where we recall I is the identity map on [0, 1], Yn = ψn,µ(W ′
n) and X = Σ̃1/2

µ⊥
b̃d, all

elements of (Dd0, ρS) it suffices to show that

ρS(ψn,µ(W ′
n), (I, ψ⊥n,µ(W ′

n))) P−→ 0, (3.3.8)

and

(I, ψ⊥n,µ(W ′
n))⇒ Σ̃1/2

µ⊥
b̃d(t), on (Dd0, ρS). (3.3.9)

To prove (3.3.8), notice that ψ1
n,µ(W ′

n) is the piecewise constant trajectory of a one-

dimensional walk with ‖µ‖ > 0 now normalised by ‖µ‖−1n−1, so Theorem 3.1.2 applies
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and we have

lim
n→∞

ψ1
n,µ(W ′

n) = I a.s. (3.3.10)

Using Lemma 1.3.2 it becomes a simple exercise to see that, for f ∈ Cd−1
0 and g, h ∈ C0

we have ρS((f, g), (f, h)) ≤ ρ∞((f, g), (f, h)) = ρ∞(g, h), which shows that (3.3.10)

implies (3.3.8).

For (3.3.9), note ψ⊥n,µW ′
n is the piecewise constant trajectory of a (d − 1)-dimensional

walk with µ = 0, normalised by n−1/2 so Theorem 3.1.5 gives

ψ⊥n,µ(W ′
n)⇒ Σ1/2

µ⊥
bd−1 on (Dd−1

0 , ρS).

This implies that, for all bounded, continuous f : Dd−1
0 → R,

E[f(ψ⊥n,µ(W ′
n))]→ E[f(Σ1/2

µ⊥
bd−1)], as n→∞. (3.3.11)

Now consider E[g(I, ψ⊥n,µ(W ′
n)] for any bounded, continuous g : Dd0 → R. Then, since

I is a non-random function, there exists a function f , defined such that f(·) = g(I, ·)

which is itself bounded and continuous on Dd−1
0 . By (3.3.11), it follows that

E[g(I, ψ⊥n,µ(W ′
n))] = E[f(ψ⊥n,µ(W ′

n))]→ E[f(Σ1/2
µ⊥
bd−1)] = E[g(I,Σ1/2

µ⊥
bd−1)],

and noting g(I,Σ1/2
µ⊥
bd−1) = g(Σ̃1/2

µ⊥
b̃d), we have proven (3.3.9) and hence (3.3.7).

The final step is to notice that Corollary 3.2.3 shows that f 7→ cl f [0, 1] is con-

tinuous from (Dd0, ρS) to (Kd0, ρH), so the mapping theorem, Theorem 3.1.6, with

(3.3.7) shows that clψn,µ(Wn[0, 1])⇒ cl Σ̃1/2
µ⊥
b̃d[0, 1]. Observing that clψn,µ(Wn[0, 1]) =

ψn,µ({S0, . . . , Sn}) and cl Σ̃1/2
µ⊥
b̃d[0, 1] = Σ̃1/2

µ⊥
b̃d[0, 1], we have proven (3.3.6) and so the

proof is complete.

3.3.3 Applications to functionals of convex hulls

We consider three functionals defined on non-empty convex compact sets. First, let

W : Cd0 → R+ denote the mean width defined by

W(A) :=
∫
Sd−1

hA(e)de,
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where hA is the support function of A as defined at (3.3.1). Define the volume functional

by

V(A) := µd(A),

the d-dimensional Lebesgue measure of A. Also we follow Gruber [Gru07, p. 104] and

define the surface area functional by

S(A) := lim
λ↓0

(
V(Aλ)− V(A)

λ

)
;

which was a definition originally suggested by Minkowski; the limit exists by the Steiner

formula of integral geometry [Gru07, Theorem 6.6] which states, for A ∈ Cd,

V(Aλ) = µd(Aλ) =
d∑
i=0

(
d

i

)
Qi(A)λi, (3.3.12)

where
(
x
y

)
is the binomial coefficient with the convention

(
x
0

)
= 1, and Qi(A) are the

quermassintegrals of A.

For the random walk, we use the notation

Wn :=W(hull{S0, . . . , Sn}); Vn := V(hull{S0, . . . , Sn}); Sn := S(hull{S0, . . . , Sn}).

We first investigate basic continuity properties of these functionals. We define the

Euler gamma function by

Γ(t) :=
∫ ∞

0
xt−1e−xdx, for t > 0.

Lemma 3.3.7. Suppose that A,B ∈ Cd0. Then

ρE(W(A),W(B)) ≤ 2ρH(A,B); (3.3.13)

ρE(S(A),S(B)) ≤ 2(d− 1)(diam(B) + ρH(A,B))d−2ρH(A,B); (3.3.14)

ρE(V(A),V(B)) ≤ 2πd−1ρH(A,B)d

+ max
S∈{A,B}

(
S(S) +

d−1∑
i=2

2πmax {diam(S), 1}d ρH(A,B)i−1
)

· ρH(A,B) . (3.3.15)
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Before we complete the proofs of these inequalities we note Cauchy’s surface area

formula and a further geometric lemma. Recall that if νd is the volume of the unit

ball in d-dimensions, then Cauchy’s surface area formula [Gru07, p. 106] states that

for A ∈ Cd,

S(A) = 1
νd−1

∫
Sd−1

µd−1(A|u⊥)du,

where A|u⊥ denotes the projection of A onto the (d − 1)-dimensional subspace of Rd

perpendicular to u.

Remark 3.3.8. In d = 2 Cauchy’s formula says S(A) =W(A).

The geometric lemma is a bound on the Lebesgue measure of the difference in volume

of two convex sets.

Lemma 3.3.9. Consider two sets S1, S2,∈ Cd0 with ρH(S1, S2) = r, then

µd(S1\S2) ≤ 2πd/2(diam(S2) + r)d−1

Γ(d2)
· r.

Proof. First we recall (3.3.12) and note that Q0(S) = µd(S); for a comprehensive

discussion on quermassintegrals see [Gru07, Ch. 6]. We also note one further result of

Steiner, see [Gru07, Theorem 6.14] which states, for S ∈ Cd,

S(Sλ) = d
d−1∑
i=0

(
d− 1
i

)
Qi+1(S)λi =

d∑
i=1

i

(
d

i

)
Qi(S)λi−1.

It is a simple exercise by comparison of terms in the summations and use of the fact

Q0(S) = µd(S) to see

µd(Sλ)− µd(S) = λ
d∑
i=1

(
d

i

)
Qi(S)λi−1 ≤ λS(Sλ). (3.3.16)

Now, if ρH(S1, S2) = r, for any s > r, S1 ⊆ Ss2, so S1 \ S2 ⊆ Ss2 \ S2. It follows from

(3.3.16),

µd(S1 \ S2) ≤ µd(Ss2 \ S2) = µd(Ss2)− µd(S2) ≤ sS(Ss2). (3.3.17)

Now, recall Bd is the d-dimensional unit ball. Then notice that it follows from Cauchy’s

formula that for convex sets A and B such that A ⊆ B, S(A) ≤ S(B), so, because

Ss2 ⊆ (diam(S2) + s)Bd, we have

sS(Ss2) ≤ sS((diam(S2) + s)Bd). (3.3.18)
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Since s > r was arbitrary, the statement of the lemma follows from (3.3.17), (3.3.18)

and the surface area formula for Bd, see for example [Som58, p. 136].

Now we turn to the proof of Lemma 3.3.7.

Proof of Lemma 3.3.7. We first prove (3.3.13). By Cauchy’s formula and the triangle

inequality,

|W(A)−W(B)| =
∣∣∣∣∫

Sd−1
(hA(e)− hB(e))de

∣∣∣∣
≤
∫
Sd−1

sup
e∈Sd−1

|hA(e)− hB(e)|de

= 2 sup
e∈Sd−1

|hA(e)− hB(e)|.

This equation with (3.3.2) gives (3.3.13).

Next we consider (3.3.14). Suppose, without loss of generality, S(A) ≥ S(B). In

this next calculation, we use Cauchy’s surface area formula and crudely replace the

difference in integrands, which should be a difference is (d − 1)-dimensional measures

of sets, by the (d− 1)-dimensional measure of the points in the larger but not smaller

set (ignoring the offset of the measure of the points in the smaller but not larger set).

This calculation, using the volume of Bd formula, see [Som58, p. 136],

ρE(S(A),S(B)) =
Γ(d+1

2 )
π(d−1)/2

∫
Sd−1

(
µd−1(A|u⊥)− µd−1(B|u⊥)

)
du

≤
Γ(d+1

2 )
π(d−1)/2

∫
Sd−1

µd−1(A|u⊥ \B|u⊥)du.

Now, noting that for a set B, diam(B|u⊥) ≤ diam(B), and that ρH(A|u⊥, B|u⊥) ≤

ρH(A,B) = r we can apply Lemma 3.3.9 to get,

ρE(S(A),S(B)) ≤
Γ(d+1

2 )
π(d−1)/2

∫
Sd−1

2π(d−1)/2(diam(B) + r)d−2 · r
Γ(d−1

2 )
du

=
Γ(d+1

2 )
π(d−1)/2 · 2

(
2π(d−1)/2(diam(B) + r)d−2 · r

Γ(d−1
2 )

)

= 2(d− 1)(diam(B) + r)d−2 · r.

and the result follows.

And finally, we consider (3.3.15). Set r = ρH(A,B). Then, by (1.3.2), A ⊆ Bs for

any s > r. Also note, if Qi(B) are the quermassintegrals of B then Q0(B) = V(B),
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Q1(B) = S(B) and Qd(B) = V(Bd) ≤ 2πd−1. Hence,

V(A) ≤ V(Bs)

≤ V(B) + S(B)s+ 2πd−1sd +
d−1∑
i=2

Qi(B)si ,

by the Steiner formula (3.3.12). However, as discussed at [Gru07, p. 109] the quermass-

integrals can be expressed as the mean of the (d−i)-dimensional volumes of the projec-

tions of the set B into (d− i)-dimensional subspaces. Thus using the very loose bound

that the d-dimensional volume of the sphere with radius r is V(rBd) ≤ 2πd−1rd, we

can establish the crude bound Qi ≤ 2πd−1 (max {diamB, 1})d for all i ∈ {2, . . . , d− 1}

and so each Qi is finite because B is compact (assume d fixed). By symmetry we can

get a similar inequality starting from V(B) and since s > r was arbitrary, (3.3.15)

follows.

So now we have the weak convergence result, continuity of the relevant functionals and

the mapping theorem, we can return to the weak convergence of the functionals. The

2-dimensional statements for the surface area and volume were previously studied in

[WX15b].

Theorem 3.3.10. Suppose we have the walk defined at (Wµ) with µ = 0, (V) and,

Wn, Sn and Vn are the mean width, surface area and volume respectively of the hull of

the d-dimensional random walk. Then, as n→∞,

n−1/2Wn
d−→W

(
Σ1/2hd

)
n−(d−1)/2Sn

d−→ S
(
Σ1/2hd

)
n−d/2Vn

d−→ V
(
Σ1/2hd1

)
= vd

√
det(Σ)

where vd is the volume of hd.

Proof. Notice that Theorem 3.3.4 gives

n−1/2hull{S0, S1, . . . , Sn} ⇒ Σ1/2hd, on (Cd0, ρH),

where hd is the hull of the d-dimensional Brownian motion starting at bd(0) = 0. Using

this fact and Lemma 3.3.7, it only remains to observe that the rescaling of the walk
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by n−1/2 in all directions rescales W by n−1/2, S by n−(d−1)/2 and V by n−d/2 which

are continuous functions and therefore the mapping from the original walk to that of

Brownian motion is also continuous. The result with the given limits follows, with

the additional equality for the volume functional following from the Jacobian of the

transformation x 7→ Σ1/2x being
√

det Σ.

In the special case d = 2, Ln := Sn is the perimeter length of hull{S0, . . . , Sn}; Cauchy’s

formula also confirms that Ln is equal to Wn in this case, see Remark 3.3.8.

Theorem 3.3.11. Let d = 2. Suppose that we have a random walk as defined at (Wµ).

Then

n−1Ln
a.s.−→ 2‖µ‖.

Remark 3.3.12. This result was proven in [MW18] ‘directly’ from the strong law of

large numbers and Cauchy’s surface area formula. Snyder and Steele [SS93] had previ-

ously obtained the result under the stronger condition E(‖Z‖2) <∞ as a consequence

of an upper bound on VarLn deduced from Steele’s version of the Efron–Stein inequal-

ity. In fact, Snyder and Steele state the result only for the case µ 6= 0, but their proof

works equally well when µ = 0.

Proof. Using Ln =Wn in the case d = 2, the almost-sure convergence of Theorem 3.3.3,

the continuity of Wn from Lemma 3.3.7, and the continuous mapping theorem from

Theorem 3.1.4 to establish n−1Ln
a.s.−→ W(Iµ[0, 1]). Without loss of generality, we will

assume µ = ‖µ‖eπ/2 in order to calculate the right hand side explicitly:

W(Iµ[0, 1]) =
∫
S
hIµ[0,1](e)de =

∫ π

0
(0, ‖µ‖) · (cos θ, sin θ)dθ +

∫ 2π

π
(0, 0) · (cos θ, sin θ)dθ

= −‖µ‖ cosπ + ‖µ‖ cos 0 = 2‖µ‖.

We finish this section with the weak convergence statement for the d-dimensional vol-

ume of the walk with drift. This was also studied in [WX15b] for the specific case

d = 2.

Theorem 3.3.13. Suppose we have the walk defined at (Wµ) with ‖µ‖ > 0, (V) holds

and Vn is the volume of the hull of the d-dimensional random walk. Then, as n→∞,

n−(d+1)/2Vn
d−→ ‖µ‖

√
det Σµ⊥ ṽd,
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where ṽd is the volume of h̃d := hull b̃d[0, 1] where b̃d[0, 1] =
{
b̃d(t) : t ∈ [0, 1]

}
with b̃d(t)

described at (3.3.5) and Σµ⊥ as described at (3.3.3).

Proof. Recall the definition of Σ̃1/2
µ⊥

from (3.3.4). Then note that hull Σ̃1/2
µ⊥
b̃d[0, 1] =

Σ̃1/2
µ⊥

hull b̃d[0, 1] because left multiplication by Σ̃1/2
µ⊥

is an affine transformation, and

that V(Σ̃1/2
µ⊥
A) =

√
det Σ̃µ⊥V(A) =

√
det Σµ⊥V(A) because

√
det Σ̃µ⊥ is the Jacobian

of the transformation. It follows that,

V(ψn,µ(A)) = n−(d+1)/2
(
‖µ‖

√
det Σµ⊥

)−1
V(A) (3.3.19)

for A ∈ Cd0. Then we use Lemma 3.3.6, the continuous mapping theorem, and the

continuity of the functional, Lemma 3.3.7 in the usual way with (3.3.19) to complete

the proof.

3.4 Functionals of Brownian motion

With all the functional limit theorem results stated, it is natural to ask what we know

about Brownian motion in order to understand the functional central limit theorem

results better. Of course, there is already a great deal of literature on this subject,

discussed in Section 1.1.3. However, we add to the literature with the following work on

the expected diameter of planar Brownian motion. There remain many open questions

relating to these functionals of Brownian motion which we discuss below too.

Recall b2 = (b2(t), t ∈ R+) is standard planar Brownian motion, and consider the set

b2[0, 1] = {b2(t) : t ∈ [0, 1]}. The Brownian convex hull h2 := hull b2[0, 1] has been

well-studied from Lévy [Lév48, §52.6, pp. 254–256] onwards; the expectations of the

perimeter length `2 := W(h2) = S(h2) and area a2 := V(h2) are given by the exact

formulae E `2 =
√

8π (due to Letac and Tákacs [Let78; Tak80]) and E a2 = π/2 (due

to El Bachir [EB83]).

Another characteristic is the diameter

d2 := diam h2 = diam b2[0, 1] = sup
x,y∈b2[0,1]

‖x− y‖,

for which, in contrast, no explicit formula is known. The exact formulae for E `2 and

E a2 rest on geometric integral formulae of Cauchy; since no such formula is available
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for d2, it may not be possible to obtain an explicit formula for E d2. However, one may

get bounds.

By convexity, we have the almost-sure inequalities 2 ≤ `2/d2 ≤ π, the extrema being

the line segment and shapes of constant width (such as the disc). In other words,

`2

π
≤ d2 ≤

`2

2 .

The formula of Letac and Takács [Let78; Tak80] says that E `2 =
√

8π, so we get:

Proposition 3.4.1.
√

8/π ≤ E d2 ≤
√

2π.

Note that
√

8/π ≈ 1.5958 and
√

2π ≈ 2.5066. In this section we improve both of these

bounds.

For the lower bound, we note that b2[0, 1] is compact and thus, as a corollary of Lemma

3.4.6 below, we have the formula

d2 = sup
0≤θ≤π

r(θ), (3.4.1)

where r is the parametrized range function given by

r(θ) = sup
0≤s≤1

(bs · eθ)− inf
0≤s≤1

(bs · eθ) ,

with eθ being the unit vector (cos θ, sin θ). Feller [Fel51] established that

E r(θ) =
√

8/π and E(r(θ)2) = 4 log 2, (3.4.2)

and the density of r(θ) is given explicitly as

f(r) = 8√
2π

∞∑
k=1

(−1)k−1k2 exp{−k2r2/2}, (r ≥ 0). (3.4.3)

Combining (3.4.1) with (3.4.2) gives immediately E d2 ≥ E r(0) =
√

8/π, which is just

the lower bound in Proposition 3.4.1. For a better result, a consequence of (3.4.1) is

that d2 ≥ max{r(0), r(π/2)}. Observing that r(0) and r(π/2) are independent, we get:

Lemma 3.4.2. E d2 ≥ Emax{X1, X2}, where X1 and X2 are independent copies of

X := r(0).

It seems hard to explicitly compute Emax{X1, X2} in Lemma 3.4.2, because although

the density given at (3.4.3) is known explicitly, it is not very tractable. Instead we
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obtain a lower bound. Since

max{x, y} = 1
2 (x+ y + |x− y|)

we get

Emax{X1, X2} = EX + 1
2 E |X1 −X2|. (3.4.4)

Thus with Lemma 3.4.2, the lower bound in Proposition 3.4.1 is improved given any

non-trivial lower bound for E |X1 − X2|. Using the fact that for any c ∈ R, if m is a

median of X, E |X − c| ≥ E |X −m|, we see that

E |X1 −X2| ≥ E |X −m|.

Again, the intractability of the density at (3.4.3) makes it hard to exploit this. Instead,

we provide the following as a crude lower bound on E |X1 −X2|.

Lemma 3.4.3. Taking X1, X2 to be two independent copies of the arbitrary random

variable X, for any a, h > 0,

E |X1 −X2| ≥ 2hP(X ≤ a)P(X ≥ a+ h).

Proof. We have

E |X1 −X2| ≥ E [|X1 −X2|1{X1 ≤ a,X2 ≥ a+ h}]

+ E [|X1 −X2|1{X2 ≤ a,X1 ≥ a+ h}]

≥ hP(X1 ≤ a)P(X2 ≥ a+ h) + hP(X2 ≤ a)P(X1 ≥ a+ h)

= 2hP(X ≤ a)P(X ≥ a+ h),

which proves the statement.

This lower bound yields the following result.

Proposition 3.4.4. For a, h > 0 define

g(a, h) := h

(
4
π

exp
{
− π2

2a2

}
− 4

3π exp
{
−9π2

2a2

})(
1− 4

π
exp

{
− π2

8(a+ h)2

})
.

Then E d2 ≥
√

8/π + g(1.492, 0.337) ≈ 1.6014.
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Proof. Consider

Z := sup
0≤s≤1

|bs · e0|.

Then it is known (see [JP75]) that for x > 0,

4
π

exp
{
− π2

8x2

}
− 4

3π exp
{
−9π2

8x2

}
≤ P(Z < x) ≤ 4

π
exp

{
− π2

8x2

}
. (3.4.5)

Moreover, with X = r(0) as above, we have

Z ≤ X ≤ 2Z.

Since X ≤ 2Z, we have

P(X ≤ a) ≥ P(Z ≤ a/2) ≥ 4
π

exp
{
− π2

2a2

}
− 4

3π exp
{
−9π2

2a2

}
,

by the lower bound in (3.4.5). On the other hand,

P(X ≥ a+ h) ≥ P(Z ≥ a+ h) ≥ 1− 4
π

exp
{
− π2

8(a+ h)2

}
,

by the upper bound in (3.4.5). Combining these two bounds and applying Lemma

3.4.3 we get E |X1 − X2| ≥ 2g(a, h). So from (3.4.4) and the fact that EX =
√

8/π

by (3.4.2) we get E d2 ≥
√

8/π+ g(a, h). Numerical evaluation using MAPLE suggests

that (a, h) = (1.492, 0.337) is close to optimal, and this choice gives the statement in

the proposition.

We also improve the upper bound in Proposition 3.4.1.

Proposition 3.4.5. E d2 ≤
√

8 log 2 ≈ 2.3548.

Proof. First, we claim that

d2
2 ≤ r(0)2 + r(π/2)2. (3.4.6)

It follows from (3.4.6) and (3.4.2) that

E(d2
2) ≤ E(X2

1 +X2
2 ) = 2E(X2) = 8 log 2.

The result now follows by Jensen’s inequality.

It remains to prove the claim (3.4.6). Note that the diameter is an increasing function,

that is, if A ⊆ B then diamA ≤ diamB. Note also, that by the definition of r(θ),
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b2[0, 1] ⊆ z + [0, r(0)] × [0, r(π/2)] =: Rz for some z ∈ R2. Since the diameter of the

set Rz is attained at the diagonal,

diamRz =
√
r(0)2 + r(π/2)2,

for all z ∈ R2, and we have diam b2[0, 1] ≤ diamRz, the result follows.

We make one further remark about second moments. In the proof of Proposition 3.4.5,

we saw that E(d2
2) ≤ 8 log 2 ≈ 5.5452. A bound in the other direction can be obtained

from the fact that d2
2 ≥ `2

1/π
2, and we have (see [WX15b, §4.1]) that

E(`2
2) = 4π

∫ π/2

−π/2
dθ
∫ ∞

0
du cos θ cosh(uθ)

sinh(uπ/2) tanh
(

(2θ + π)u
4

)
≈ 26.1677,

which gives E(d2
2) ≥ 2.651.

Finally, for completeness, we state and prove the lemma which was used to obtain

equation (3.4.1).

Lemma 3.4.6. Let A ⊂ R2 be a nonempty compact set, and let rA(θ) = supx∈A(x ·

eθ)− infx∈A(x · eθ). Then

diamA = sup
0≤θ≤π

rA(θ).

Proof. Since A is compact, for each θ there exist x,y ∈ A such that

rA(θ) = x · eθ − y · eθ

= (x− y) · eθ ≤ ‖x− y‖.

So sup0≤θ≤π rA(θ) ≤ supx,y∈A ‖x− y‖ = diamA.

It remains to show that sup0≤θ≤π rA(θ) ≥ diamA. This is clearly true if A consists

of a single point, so suppose that A contains at least two points. Suppose that the

diameter of A is achieved by x,y ∈ A and let z = y−x be such that ẑ := z/‖z‖ = eθ0

for θ0 ∈ [0, π]. Then

sup
0≤θ≤π

rA(θ) ≥ rA(θ0) ≥ y · eθ0 − x · eθ0

= z · ẑ = ‖z‖ = diamA,

as required.
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3.5 Application of results to our examples

We start by demonstrating the functional law of large numbers, Theorem 3.1.2. For

the zero drift case, we actually appeal to Theorem 3.3.3 because then we can show the

convergence of the hulls to the point at the origin. Since the walk is bounded by the

convex hull, the pictures don’t need the walk to be printed out to demonstrate that

they also are trivial on the law of large numbers scale. In Figure 3.2 and Figure 3.3

we show later hulls in a darker colour which certainly show the decreasing size of area

covered by the scaled random walks.
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Figure 3.2: Convex hulls of one simple symmetric random walk scaled accordingly at
1,000,000 step intervals

We then turn to the case with drift. Here, after the law of large numbers scaling, we

expect to see the trajectory converge to the linear vector from the origin to the mean.

To demonstrate this, in Figures 3.4, 3.5 and 3.6, we plot our three walks with drift and

at every 10, 000th point we draw a red cross. These crosses should be evenly spread

out along the mean vector, which is what we see. Again, note that the vertical axis is

on a smaller scale so small fluctuations in the vertical direction, as small as they are

in the plots, should be even more microscopic. Note also, the walk with mean (5, 0) is
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converging to the vector from (0, 0) to (5, 0) as expected.

The next result to see in action is Theorem 3.1.10. It is not necessary to demonstrate

this with all of our walks, so in one plot, Figure 3.7, we will use the simple symmetric

random walk in black, the walk with fixed drift, unit mean, in blue and the walk with

Normal drift and mean (5, 0) in red. For each we plot the running maximum scaled by

the appropriate law of large numbers factor at each timestep on the vertical axis and

the number of steps on the horizontal axis. It is clear that each walk converges to ‖µ‖

and quite quickly. It is hard to see any significant deviations from this value.

Our second example was the arcsine law. For this result we take our two zero drift

examples and show the proportion of time spent on the positive side of the vertical

axis as a process in itself, which is equivalent to taking A to be the upper half plane

and plotting πn(A) against n. The plots show the simple symmetric random walk

happened to spend most of the time on the positive side, in Figure 3.8, which would

mean it spends almost no time on the negative side. Noting the obvious fact that the

simple symmetric random walk is in fact symmetric and hence we were equally likely to

observe a walk spending almost no time on the positive side, we see this picture backs

up Corollary 3.1.16. The simulation of our standard Normal random walk, Figure 3.9,

also shows how this proportion of time in a given set can vary more than was seen in

our simple symmetric random walk simulation.

We also provide bar charts representing the empirical distributions for πn(A) where A

is the upper half plane and also where A is the positive quadrant for each of the simple

symmetric random walk, Figure 3.10 and Figure 3.12, and the standard Normal random

walk, Figure 3.11 and Figure 3.13. These empirical distributions were established by

running 10, 000 walks of each type and taking the proportion of time each had spent

in the relevant sets in the first 10, 000 steps.

The first two plots are consistent with the conclusions of Lévy [Lév40b], that the upper

half plane results display an empirical distribution that has greatest mass near 0 and

1 and the smallest mass around the centre. In order to add quantitative evidence that

these empirical distributions are close to the arcsine law Lévy described, we calculate

a simplified version of the Kolmogorov-Smirnov distance. Instead of taking ρ∞(En, F )

where En(x) := 1
n

∑n
i=1 1{πn,i(A) ≤ x} is the empirical distribution function with πn,i
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Figure 3.3: Convex hulls of one standard Normal random walk scaled accordingly at
1,000,000 step intervals
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Figure 3.4: A simulation of one random walk with drift and all coordinates Normally
distributed, unit mean to the right. Every 10,000th point of the walk plotted with a
red cross.
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Figure 3.5: A simulation of one random walk with drift and all coordinates Normally
distributed, mean of length 5 to the right. Every 10,000th point of the walk plotted
with a red cross.
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Figure 3.6: A simulation of one random walk with drift and no variance in the first
coordinate, unit mean to the right. Every 10,000th point of the walk plotted with a
red cross.
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Figure 3.7: Scaled running maximum of three random walks plotted for the first 104

steps. Simple symmetric random walk in black, a random walk with drift and no
variance in the first coordinate, unit mean to the right in blue, and a walk with Normal
drift and mean (5, 0) in red.
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independent copies of πn(A), and F (x) := 2/π arcsin(
√
x) is the arcsine law’s cumu-

lative distribution function, we just use a discrete approximation over the range [0, 1]

which we will call

ρkK−S(Ftest, F ) = sup
0≤i≤k

|En(i/k)− F (i/k)|. (3.5.1)

We took ρ40
K−S(Ftest, F ) which coincides with the binning in the bar charts. For the

simple symmetric random walk we got a a value of ρ40
K−S(Ftest, F ) = 0.099 and for the

standard Normal random walk a value of ρ40
K−S(Ftest, F ) = 0.094. Both of these results

are not too close to 0 but are not too far away either so could be considered as weak

evidence to support the arcsine law, at least in comparison with the quadrant results

below.

Meanwhile, the positive quadrant case backs up the conclusions of Bingham and Doney

[BD88] that the distribution is not the arcsine law. These plots look starkly different

with very little mass near 1 and most of the mass near 0. Again, calculating the

simplified Kolmogorov-Smirnov distance, we get a value of ρ40
K−S(Ftest, F ) = 0.325 for

the simple symmetric random walk and ρ40
K−S(Ftest, F ) = 0.314 for the standard Normal

random walk. These clearly indicate that the arcsine law is not the limiting distribution

for the case where A is a quadrant in the plane.

Beyond the preliminary examples, we next turned to results on the diameter. We

have seen simulations demonstrating the law of large numbers result in the previous

chapter, but now we can explore Theorem 3.2.6(b), the weak convergence statement for

the diameter. For this, we provide the empirical distribution for n−1/2Dn for the simple

symmetric random walk in 2-dimensions, Figure 3.14. The distribution seems slightly

skewed to the right, with a mode in the region of 1.25 and a mean approximately 1.40.

Multiplying these values by
√

2, which accounts for Σ1/2 in Theorem 3.2.6(b), we get

estimates of 1.77 and 1.98 for the mode and mean, respectively, of the distribution

of d2. This is in agreement with a larger simulation of diameters, this time following

the Normal zero drift increment distribution. We carried out 1, 000 simulations of the

random walk with 10, 000 steps, calculated the mean diameter of these simulations

and then repeated this process 1, 000 times to get a vector of 1, 000 estimates for E d2.

These values had mean 1.976 and variance only 0.0002 suggesting E d2 ≈ 1.98. We note



3.5. Application of results to our examples 99

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.8: Proportion of time spent on the upper half plane is plotted against the
number of steps taken, for 100, 000 steps of our simple symmetric random walk.
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Figure 3.9: Proportion of time spent on the upper half plane is plotted against the
number of steps taken, for 100, 000 steps of our standard Normal random walk.
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Figure 3.10: Empirical distribution of the proportion of time spent on the upper half
plane for our simple symmetric random walk.
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Figure 3.11: Empirical distribution of the proportion of time spent on the upper half
plane for our standard Normal random walk.
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Figure 3.12: Empirical distribution of the proportion of time spent in the positive
quadrant for our simple symmetric random walk.
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Figure 3.13: Empirical distribution of the proportion of time spent in the positive
quadrant for our standard Normal random walk.
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that it seems, running the simulations for different values of n it appears the diameter

values increase as n increases. Although this looks like it is only a small bias in the

simulations, it is not impossible that our simulations have enough error so that we are

underestimating the diameter and in fact it could be E d2 = 2. All of which agrees

with the bounds 1.6014 ≤ E d2 ≤ 2.3548 established in Section 3.4.
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Figure 3.14: Empirical distribution of the rescaled diameter for our simple symmetric
random walk.

These plots conclude the simulations for this section. We omit empirical distribution

plots for the functionals in Theorem 3.3.10 and Theorem 3.3.13 because the functionals

become increasingly complex to calculate for even d = 3. Note, however, that the law of

large numbers for the perimeter length in d = 2 was examined in the previous chapter

and some information on moments and the limit distribution in d = 2 was established

in [WX15b].



Chapter 4

A zero-one law and shape result

In Chapter 2 a law of large numbers result for the ratio Ln/Dn was established for

the 2-dimensional case with drift, Corollary 2.1.4. A natural question arises about the

behaviour of this ratio for the 2-dimensional zero drift case.

Some insight can be found by the observation in Chapter 3 that we have a non-

degenerate scaling limit for the zero drift case, namely planar Brownian motion. So

the question could be solved by considering the ratio L(Σ1/2b2)/D(Σ1/2b2). However,

as discussed previously, this ratio gives crude information about the shape of the con-

vex hull of the random walk, so we may be tempted to go further and ask about the

possible limiting shapes of the convex hull of planar Brownian motion.

This is exactly what we do in this chapter1, showing that the appropriately rescaled

convex hull of the zero drift random walk infinitely often approximates any convex set

with unit diameter. Hence, the convex hull infinitely often becomes arbitrarily close to

a shape with Ln/Dn = 2 and infinitely often becomes arbitrarily close to a shape with

Ln/Dn = π, and hence the ratio has no limit.

4.1 Shape results

Recall, Hn := hull(S0, S1, . . . , Sn), and with the extra condition E(‖Z‖2) < ∞, we let

Σ := E(ZZ>), viewing Z as a column vector. Also, recall ρH is the Hausdorff distance

1Based on work published in [MW18] which was joint work between the authors.
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between non-empty compact sets; see (1.3.2) above for a definition. Our result will be

stated for elements of the set of compact convex sets in R2 containing the origin, which

we recall is denoted C2
0.

Then the formal statement of the limit, or lack thereof, of the shape of the convex hull

is the following theorem.

Theorem 4.1.1. Suppose we have the walk defined at (Wµ) with µ = 0 and satisfying

(V) such that Σ is positive definite. Then, for any compact convex set K ∈ C2
0 with

diamK = 1,

lim inf
n→∞

ρH(D−1
n Hn, K) = 0, a.s.

Remark 4.1.2. • Note that under the hypotheses of Theorem 4.1.1, P(Z = 0) <

1, so that Dn > 0 for all but finitely many n, a.s.

• The non-random scaling of n−1/2 might seem more natural, and we posit that

a similar result would hold where K would be any compact convex set (not

necessarily with diamK = 1).

A consequence of Theorem 4.1.1 is the following result, which should be contrasted

with Corollary 2.1.4.

Corollary 4.1.3. Suppose we have the walk defined at (Wµ) with µ = 0 and satisfying

(V) such that Σ is positive definite. Then,

2 = lim inf
n→∞

Ln
Dn

< lim sup
n→∞

Ln
Dn

= π, a.s.

4.2 A zero-one law for convex hulls

A key ingredient in the proof of Theorem 4.1.1 is a zero-one law (Theorem 4.2.1 below).

Before we state the result, we need some extra notation. Define σ-algebras F0 := {∅,Ω}

and Fn := σ(Z1, . . . , Zn) for n ≥ 1; also set F∞ := σ(∪n≥0Fn). Also, recall the notation

B(C2
0) is used for the Borel σ-algebra in this case generated by the metric ρH .

Since the function (x0,x1, . . . ,xn) 7→ hull{x0,x1, . . . ,xn} (with x0 := 0) is continuous

from (R2(n+1), ρE) to (K, ρH) where ρE is here the Euclidean metric in R2(n+1), it is
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measurable from (R2(n+1),B(R2(n+1))) to (C2
0,B(C2

0)); thus Hn is a C2
0-valued random

variable, and Hn is Fn-measurable.

For n ≥ 0, set Tn := σ(Hn,Hn+1, . . .) and define T := ∩n≥0Tn. Also, for n ≥ 0 define

rn := inf{‖x‖ : x ∈ R2 \ Hn}.

Note that rn is non-decreasing. Here is the zero-one law.

Theorem 4.2.1. Suppose that rn →∞ a.s. Then if A ∈ T , P(A) ∈ {0, 1}.

Next we give a sufficient condition for rn → ∞. Recall [Dur10, p. 190] that Sn is

recurrent if there is a non-empty set R of points x ∈ R2 (the recurrent values) such

that, for any ε > 0, ‖Sn − x‖ < ε i.o., a.s.

Proposition 4.2.2. If Sn is genuinely 2-dimensional and recurrent, then rn →∞ a.s.

Remark 4.2.3. One may also have rn → ∞ a.s. in the case of a transient walk,

provided it visits all angles. However, limn→∞ rn <∞ a.s. may occur if the walk has a

limiting direction, such as if there is a finite non-zero drift.

Let B(x; r) denote the closed Euclidean ball centred at x ∈ R2 with radius r.

Proof of Proposition 4.2.2. Since Sn is recurrent, the set R of recurrent values is a

closed subgroup of R2 and coincides with the set of possible values for the walk:

see [Dur10, p. 190]. Since Sn is genuinely 2-dimensional, it follows from e.g. Theo-

rem 21.2 of [BR10, p. 225] that R contains a further closed subgroup R′ of the form

HZ2 where H is a non-singular 2 by 2 matrix. Hence there exists h > 0 such that for

every x ∈ R2 there exists y ∈ R′ with ‖x − y‖ < h/2. In particular, for any x ∈ R2,

P(Sn ∈ B(x;h) i.o.) = 1.

Fix r > h, and consider 4 discs, D1, D2, D3, D4, each of radius h, centred at (±2r,±2r).

Define Tr to be the first time at which the walk has visited all 4 discs, i.e.,

Tr := min{n ≥ 0 : ∃ i1, i2, i3, i4 ∈ [0, n] with Sij ∈ Dj for j = 1, 2, 3, 4}.

The first paragraph of this proof shows that Tr <∞ a.s. By construction, for n ≥ Tr

we have that Hn contains the square [−r, r]2, and so n ≥ Tr implies rn ≥ r. Hence,

P
(

lim inf
m→∞

rm ≥ r
)
≥ P(Tr ≤ n)→ 1,
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as n → ∞, and so lim infn→∞ rn ≥ r, a.s. Since r > h was arbitrary, the result

follows.

The first step in the proof of Theorem 4.2.1 is the following result, which uses the fact

that rn →∞ to show that any initial segment of the trajectory is eventually contained

in the interior of the convex hull, uniformly over permutations of the initial increments.

Lemma 4.2.4. Suppose that rn → ∞ a.s. Let k ∈ N. Then there exists a random

variable Nk with P(k < Nk <∞) = 1 such that (i) Nk is invariant under permutations

of Z1, . . . , Zk, and (ii) Hn = hull{Sk+1, . . . , Sn} for all n ≥ Nk and all permutations of

Z1, . . . , Zk.

Proof. Fix k ∈ N. Let Rk := ∑k
i=1 ‖Zi‖ and define Nk := min{n > k : rn > Rk}.

Note that since rn is non-decreasing, n ≥ Nk implies rn > Rk. Since Rk <∞ a.s. and

rn → ∞ a.s., we have Nk < ∞ a.s. Observe that if rn > Rk for n > k, then

S0, S1, . . . , Sk are all contained in the interior of Hn, for all permutations of Z1, . . . , Zk,

so that Hn = Hn,k := hull{Sk+1, . . . , Sn}. So statement (ii) holds. Moreover, if rn,k :=

inf{‖x‖ : x ∈ R2 \ Hn,k} we have that {rn > Rk} = {rn,k > Rk}. But the events

{rn,k > Rk}, n > k, which determine Nk, depend only on Rk and Sk+1, Sk+2, . . ., and

so statement (i) holds.

Heuristically, it seems clear that Theorem 4.2.1 is true, since any A ∈ T is determined

by HNk ,HNk+1, . . ., and Lemma 4.2.4 shows that this sequence in invariant under per-

mutations of Z1, . . . , Zk, as required for the Hewitt–Savage zero-one law. The formal

proof is as follows.

Proof of Theorem 4.2.1. We adapt one of the standard proofs of the Hewitt–Savage

zero-one law; see e.g. [Dur10, pp. 180–181]. Let A ∈ T and fix ε > 0. Recall a fact

from measure theory: if A is an algebra and A ∈ σ(A), then we can find A′ ∈ A such

that P(A4A′) < ε (see Theorem 1.3.1 or e.g. [Bil12, p. 179]). Applied to the algebra

∪n≥0Fn which generates F∞ ⊇ T , this result implies that we can find k ≥ 0 and Ak ∈

Fk such that P(A4Ak) < ε. Fix this k, and fix n such that P(N2k > n) < ε, where N2k

is as given in Lemma 4.2.4. Applied to the algebra An := ∪m≥0σ(Hn,Hn+1, . . . ,Hn+m),
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which has σ(An) ⊇ Tn ⊇ T , the same measure-theoretic result shows that we can find

En ∈ An such that P(A4En) < ε.

Now Ak ∈ Fk can be expressed as Ak = {Z1 ∈ Ck,1, . . . , Zk ∈ Ck,k} for Borel sets

Ck,1, . . . , Ck,k. Set A′k := {Zk+1 ∈ Ck,1, . . . , Z2k ∈ Ck,k}; since the Zi are i.i.d., P(A′k) =

P(Ak), and Ak and A′k are independent. We claim that

P((A′k4En) ∩ {N2k ≤ n}) = P((Ak4En) ∩ {N2k ≤ n}) ≤ 2ε. (4.2.1)

To see the equality in (4.2.1), observe that Lemma 4.2.4 shows that En ∩ {N2k ≤ n} is

invariant under permutations of Z1, . . . , Z2k, where the Zi are i.i.d. For the inequality

in (4.2.1), we use the fact that P(A4B) ≤ P(A4C) + P(B4C) to get

P((Ak4En) ∩ {N2k ≤ n}) ≤ P(Ak4En)

≤ P(Ak4A) + P(En4A) ≤ 2ε.

Hence the claim (4.2.1) is verified. Since P((A4B)∩D) ≤ P((A4C)∩D)+P(B4C),

we also get that

P((A4A′k) ∩ {N2k ≤ n}) ≤ P((A′k4En) ∩ {N2k ≤ n}) + P(A4En) ≤ 3ε,

by (4.2.1). Hence

P(A4A′k) ≤ P(N2k > n) + P((A4A′k) ∩ {N2k ≤ n}) ≤ 4ε.

The final sequence of the proof is a variation of the standard argument. First note that

|P(A)2 − P(A)| ≤ |P(A)2 − P(Ak ∩ A′k)|+ |P(Ak ∩ A′k)− P(A)|. (4.2.2)

For the first term on the right-hand side of (4.2.2), we use the fact that Ak and A′k are

independent with P(Ak) = P(A′k), along with the property of the symmetric difference

operator that |P(A)− P(B)| ≤ P(A4B), to get

|P(A)2 − P(Ak ∩ A′k)| = |P(A)2 − P(Ak)2|

= |P(A) + P(Ak)||P(A)− P(Ak)|

≤ 2P(A4Ak) ≤ 2ε.
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Now considering the second term on the right-hand side of (4.2.2) and using the fact

that P(A4(B ∩ C)) ≤ P(A4B) + P(A4C), we have

|P(Ak ∩ A′k)− P(A)| ≤ P(A4(Ak ∩ A′k))

≤ P(A4Ak) + P(A4A′k) ≤ 5ε.

Combining these two bounds, we obtain from (4.2.2) that |P(A)2 − P(A)| ≤ 7ε. Since

ε > 0 was arbitrary, we get the result.

The strategy of the proof of Theorem 4.1.1, carried out in the remainder of this section,

is as follows. We use Donsker’s theorem and the mapping theorem to show that D−1
n Hn

converges weakly to the convex hull of an appropriate Brownian motion, scaled to have

unit diameter (Lemma 4.2.7). This limiting set has positive probability of being an

arbitrarily good approximation to any given unit-diameter convex compact set K. An

application of the zero-one law (Theorem 4.2.1) then completes the proof.

For K ∈ C2
0 let D(K) := diamK. The next result shows that the map K 7→ D(K) is

continuous from (C2
0, ρH) to (R+, ρE).

Lemma 4.2.5. For K1, K2 ∈ C2
0, |D(K1)−D(K2)| ≤ 2ρH(K1, K2).

Proof. Let ρH(K1, K2) = r. From (1.3.1) we have that for any x1,x2 ∈ K1 and any

s > r, there exist y1,y2 ∈ K2 such that ‖xi − yi‖ ≤ s. Then,

‖x1 − x2‖ ≤ ‖x1 − y1‖+ ‖y1 − y2‖+ ‖y2 − x2‖ ≤ 2s+D(K2).

Hence D(K1) ≤ 2s+D(K2), and since s > r was arbitrary we get D(K1)−D(K2) ≤ 2r.

A symmetric argument gives D(K2)−D(K1) ≤ 2r.

For K ∈ C2
0 and x ∈ S := {y ∈ R2 : ‖y‖ = 1}, define hK(x) := supy∈K(y · x).

Equivalent to (1.3.2) for K1, K2 ∈ C2
0 is the formula [Gru07, p. 84]

ρH(K1, K2) = sup
x∈S
|hK1(x)− hK2(x)|. (4.2.3)

Let C? := {K ∈ C2
0 : D(K) > 0} = C2

0 \ {{0}}.
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Lemma 4.2.6. Suppose that K1, K2 ∈ C?. Then

ρH(K1/D(K1), K2/D(K2)) ≤ 3ρH(K1, K2)
D(K1) . (4.2.4)

In particular, the map K 7→ K/D(K) is continuous from (C?, ρH) to (C?, ρH).

Proof. We first claim that for K1, K2 ∈ C2
0 and α1, α2 > 0,

ρH(α1K1, α2K2) ≤ α1ρH(K1, K2) + |α1 − α2|D(K2). (4.2.5)

Suppose that K1, K2 ∈ C?. Applying (4.2.5) with αi = 1/D(Ki), we get

ρH(K1/D(K1), K2/D(K2)) ≤ ρH(K1, K2)
D(K1) + |D(K1)−D(K2)|

D(K1) ,

from which (4.2.4) follows by Lemma 4.2.5. This gives the desired continuity.

It remains to verify the claim (4.2.5). From (4.2.3), with the observation that, for

α > 0, hαK(x) = αhK(x), it follows that

ρH(α1K1, α2K2) = sup
x∈S
|α1hK1(x)− α1hK2(x) + (α1 − α2)hK2(x)|

≤ α1 sup
x∈S
|hK1(x)− hK2(x)|+ |α1 − α2| sup

x∈S
hK2(x),

from which the claim (4.2.5) follows.

Suppose that Σ := E(ZZ>) is positive definite and recall Σ1/2 denotes the (unique)

positive-definite symmetric matrix such that Σ1/2Σ1/2 = Σ. Further recall (b2(t), t ≥ 0)

is standard Brownian motion in R2 and h2 := hull b2[0, 1], the convex hull of Brownian

motion run for unit time. The map x 7→ Σ1/2x is an affine transformation of R2, such

that Σ1/2b2 is Brownian motion with covariance matrix Σ, and Σ1/2h2 = hull Σ1/2b2[0, 1]

is the corresponding convex hull.

Lemma 4.2.7. Suppose that E(‖Z‖2) <∞, µ = 0, and Σ is positive definite. Then

D−1
n Hn ⇒

Σ1/2h2

D(Σ1/2h2) ,

in the sense of weak convergence on (C2
0, ρH).

Proof. The convergence n−1/2Hn ⇒ Σ1/2h2 is given in Theorem 3.3.4, see also Theo-

rem 2.5 of [WX15b]. Since (by Lemma 4.2.6) K 7→ K/D(K) is continuous on C?, and
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P(Σ1/2h2 ∈ C?) = 1, we may apply the mapping theorem [Bil99, p. 21] to deduce the

result.

Proof of Theorem 4.1.1. Fix K ∈ C2
0 with D(K) = 1. We claim that, for any ε > 0,

P
(

lim inf
n→∞

ρH
(
D−1
n Hn, K

)
≤ ε

)
> 0. (4.2.6)

Under the conditions of the theorem, Sn is genuinely 2-dimensional and recurrent

[Dur10, p. 195], and so, by Proposition 4.2.2, rn →∞ a.s. Since the event in (4.2.6) is

in T , the zero-one law (Theorem 4.2.1) shows that the probability in (4.2.6) must be

equal to 1. Since ε > 0 was arbitrary, the statement of the theorem follows.

Thus it remains to prove the claim (4.2.6). To this end, observe that, for any ε > 0,

P
(

lim inf
n→∞

ρH
(
D−1
n Hn, K

)
≤ ε

)
≥ P

(
ρH

(
D−1
n Hn, K

)
< ε i.o.

)
= P

 ∞⋂
n=1

⋃
m≥n

{
ρH(D−1

m Hm, K) < ε
}

= lim
n→∞

P

 ⋃
m≥n

{
ρH(D−1

m Hm, K) < ε
}

≥ lim
n→∞

P
(
ρH(D−1

n Hn, K) < ε
)
.

By the triangle inequality, |ρH(K,K1) − ρH(K,K2)| ≤ ρH(K1, K2), i.e., for fixed K,

the function K1 7→ ρH(K,K1) is continuous. Thus by Lemma 4.2.7 and the continuous

mapping theorem

lim
n→∞

P
(
ρH(D−1

n Hn, K) < ε
)

= P
(
ρH

(
Σ1/2h2

D(Σ1/2h2) , K
)
< ε

)
. (4.2.7)

Let δ ∈ (0, ε/6). For convenience, set A = Σ1/2h2, note that A is not the normalised

hull so we do not yet assume that D(A) = 1. First suppose that 0 is in the interior of

K. Then, it is not hard to see that K ⊆ A ⊆ (1 + δ)K occurs with positive probability

(one can force the Brownian motion to make a ‘loop’ in ((1+δ)K)\K). On this event,

we have hK(x) ≤ hA(x) ≤ (1 + δ)hK(x) for all x ∈ S, so that, by (4.2.3),

ρH(A,K) = sup
x∈S
|hA(x)− hK(x)| ≤ δ sup

x∈S
hK(x) ≤ δD(K) = δ.
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It follows from taking K1 = K and K2 = A in (4.2.4) that

ρH(A/D(A), K) ≤ 3ρH(A,K) ≤ 3δ < ε/2.

If 0 is not in the interior of K, then we can find K ′ ∈ C2
0 with K ⊂ K ′ such that 0 is

in the interior of K ′ and ρH(K,K ′) < ε/2. Then

ρH(A/D(A), K) ≤ ρH(A/D(A), K ′) + ρH(K,K ′) < ε,

on the event K ′ ⊆ A ⊆ (1+δ)K ′, which has positive probability. Hence, in either case,

the probability on the right-hand side of (4.2.7) is strictly positive, establishing (4.2.6).

Proof of Corollary 4.1.3. For K ∈ C2
0, recall L(K) denotes the perimeter length of K;

then, Lemma 2.4 of [WX15b] shows that

|L(K1)− L(K2)| ≤ 2πρH(K1, K2), for any K1, K2 ∈ C2
0. (4.2.8)

First, take K to be a unit-length line segment in R2 containing 0. Theorem 4.1.1 shows

that, for any ε > 0, ρH(D−1
n Hn, K) < ε i.o., a.s. Hence, by (4.2.8),

Ln/Dn = L(D−1
n Hn) ≤ L(K) + 2πε, i.o.,

and L(K) = 2. Since ε > 0 was arbitrary, we get lim infn→∞ Ln/Dn ≤ 2, and the first

inequality in (2.1.4) shows that this latter inequality is in fact an equality.

Now take K to be a unit-diameter disc in R2 containing 0. Again, Theorem 4.1.1 shows

that, for any ε > 0, ρH(D−1
n Hn, K) < ε i.o., a.s. Hence, by (4.2.8),

Ln/Dn = L(D−1
n Hn) ≥ L(K)− 2πε, i.o.,

and since now L(K) = π we get lim supn→∞ Ln/Dn ≥ π, which combined with the

second inequality in (2.1.4) completes the proof.
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4.3 Application of results to our examples

The shape result is difficult to show in any static pictures from a simulation, however

Corollary 4.1.3 can be shown by plotting the ratio Ln/Dn against n for both our simple

symmetric random walk and the standard Normal random walk. These plots are below

and, although they do not demonstrate many values near the extremities, they do show

the ratio varying in time without the appearance of converging to a limit.
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Figure 4.1: The ratio Ln/Dn plotted against n for n = 1, . . . , 10, 000 for our simple
symmetric random walk.
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Figure 4.2: The ratio Ln/Dn plotted against n for n = 1, . . . , 10, 000 for our walk with
Normal increments.



Chapter 5

Martingale difference method for

diameter

So far, we have established both first and second order behaviour of functionals in the

case with zero drift, but only have established the law of large numbers behaviour in

the case with drift. Second order results for the perimeter length were established in

[WX15a]. We will use the same method but adapt it for the diameter1. The method

in question is the martingale difference method.

This method uses a sequence where the expected change is no change at all which

gives useful formulae for the expectation and variance of related random variables, see

Lemma 5.1.2 below or for example [Gut05, pp. 467–553] for an exposition of martingales

and martingale difference sequences. As for their use in geometric probability theory,

Steele [Ste90, p. 754] attributes the first use to Rhee and Talagrand [RT87] who apply

the method to the travelling salesman problem. In turn, Rhee and Talagrand point

towards some earlier uses in Banach space theory in particular referring to Milman

and Schechtman [MS86]. Both Steele’s and Rhee and Talagrand’s use of the method

uses a martingale difference sequence created by taking expectations having removed

an element of the sequence of random variables, whilst we will use a slight modification

whereby we resample (or replace after the removal) each random variable – this is the

same as the method from [WX15a].

1Based on work published in [MW18], which was joint work between the authors.

114
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We establish first Theorem 5.0.1, the analogue of Theorem 2.2.1, which states that the

diameter is not far from the distance the walk travels in the direction of the mean.

Theorem 5.0.1. Suppose that E(‖Z‖2) <∞ and µ 6= 0. Then, as n→∞,

n−1/2|Dn − Sn · µ̂| → 0, in L2. (5.0.1)

Theorem 5.0.1 yields variance asymptotics and a central limit theorem when σ2
µ > 0,

as follows.

Corollary 5.0.2. Suppose that E(‖Z‖2) <∞ and µ 6= 0. Then limn→∞ n
−1 VarDn =

σ2
µ. Moreover, if σ2

µ > 0, for ζ ∼ N (0, 1), as n→∞,

Dn − EDn√
VarDn

d−→ ζ, and Dn − n‖µ‖√
nσ2

µ

d−→ ζ.

5.1 Diameter in the case with drift

The main aim of this section is to establish the following result, from which we will

deduce Theorem 5.0.1.

Theorem 5.1.1. Suppose that E(‖Z‖2) <∞ and µ 6= 0. Then, as n→∞,

n−1/2 |Dn − EDn − (Sn − ESn) · µ̂| → 0, in L2. (5.1.1)

Theorem 5.1.1 is the analogue for Dn of the result (1.1.4) for Ln, established in The-

orem 1.3 of [WX15a]. Our approach to proving Theorem 5.1.1 is similar in outline to

that in [WX15a], where a martingale difference idea (which we explain below in the

present context) was combined with Cauchy’s formula for the perimeter length. Here,

the place of Cauchy’s formula is taken by the formula

diamA = sup
0≤θ≤π

ρA(θ), (5.1.2)

where A ⊂ Rd is a non-empty compact set, and ρA(θ) := supx∈A(x ·eθ)− infx∈A(x ·eθ);

see Lemma 3.4.6 for a derivation of (5.1.2).

Now we describe the martingale difference construction. Recall that F0 := {∅,Ω} and

Fn := σ(Z1, . . . , Zn) for n ≥ 1. Let Z ′1, Z ′2, . . . be an independent copy of the sequence
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Z1, Z2, . . .. Fix n ∈ N. For i ∈ {1, . . . , n}, define

S
(i)
j :=


Sj if j < i,

Sj − Zi + Z ′i if j ≥ i;

then (S(i)
j ; 0 ≤ j ≤ n) is the random walk (Sj; 0 ≤ j ≤ n) but with Zi ‘resampled’ and

replaced by Z ′i. For i ∈ {1, . . . , n}, define

D(i)
n := diam{S(i)

0 , . . . , S(i)
n }, and ∆n,i := E(Dn −D(i)

n | Fi). (5.1.3)

Observe that we also have the representation ∆n,i = E(Dn | Fi) − E(Dn | Fi−1) and

hence ∆n,i is a martingale difference sequence, i.e., ∆n,i is Fi-measurable with E(∆n,i |

Fi−1) = 0. The utility of this construction is the following result (see e.g. Lemma 2.1

of [WX15a]).

Lemma 5.1.2. Let n ∈ N. Then Dn−EDn = ∑n
i=1 ∆n,i, and VarDn = ∑n

i=1 E(∆2
n,i).

Recall that eθ denotes the unit vector in direction θ. For θ ∈ [0, π], define

Mn(θ) := max
0≤j≤n

(Sj · eθ), and mn(θ) := min
0≤j≤n

(Sj · eθ),

and define Rn(θ) := Mn(θ)−mn(θ). Note that since S0 = 0, we have Mn(θ) ≥ 0 and

mn(θ) ≤ 0, a.s. It follows from (5.1.2) that Dn = sup0≤θ≤π Rn(θ).

Similarly, when the ith increment is resampled, D(i)
n = sup0≤θ≤π R

(i)
n (θ), where

R(i)
n (θ) := M (i)

n (θ)−m(i)
n (θ), with

M (i)
n (θ) := max

0≤j≤n
(S(i)

j · eθ), and m(i)
n (θ) := min

0≤j≤n
(S(i)

j · eθ).

Thus to study ∆n,i as defined at (5.1.3), we are interested in

Dn −D(i)
n = sup

0≤θ≤π
Rn(θ)− sup

0≤θ≤π
R(i)
n (θ). (5.1.4)

For the remainder of this section we suppose, without loss of generality, that µ =

‖µ‖eπ/2 with ‖µ‖ ∈ (0,∞). An important observation is that the diameter does not

deviate far from the direction of the drift. For δ ∈ (0, π/2) and i ∈ {1, . . . , n}, define
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the event

An,i(δ) :=
{∣∣∣∣∣π2 − arg max

0≤θ≤π
Rn(θ)

∣∣∣∣∣ < δ

}
∩
{∣∣∣∣∣π2 − arg max

0≤θ≤π
R(i)
n (θ)

∣∣∣∣∣ < δ

}
.

Lemma 5.1.3. Suppose that E ‖Z‖ < ∞ and µ = ‖µ‖eπ/2 6= 0. Then for any δ ∈

(0, π/2), limn→∞min1≤i≤n P(An,i(δ)) = 1.

Proof. Fix δ ∈ (0, π/2). Note that Sj · e0 is a random walk on R with mean increment

E(Z · e0) = µ · e0 = 0. Hence the strong law of large numbers implies that for any

ε > 0,

max
0≤j≤n

|Sj · e0| ≤ εn,

for all n ≥ Nε with P(Nε < ∞) = 1. Similarly, since Sj · eπ/2 is a random walk on R

with mean increment ‖µ‖ > 0, there exists N ′ with P(N ′ <∞) = 1 such that

Sj · eπ/2 ≥ 1
2‖µ‖j, for all j ≥ N ′.

Let A′n(ε) denote the event
{

max
0≤j≤n

|Sj · e0| ≤ εn
}
∩
{
Sn · eπ/2 ≥ 1

2‖µ‖n
}
.

Then if A′n(ε) occurs, any line segment that achieves the diameter has length at least
1
2‖µ‖n and horizontal component at most 2εn. Thus if θn = arg max0≤θ≤π Rn(θ) we

have

| cos θn| ≤
4ε
‖µ‖

, on A′n(ε).

Thus for ε sufficiently small we have that A′n(ε) implies |θn − π/2| < δ. Hence

P(|θn − π/2| < δ) ≥ P(A′n(ε)) ≥ P (n ≥ max{Nε, N
′})→ P (max{Nε, N

′} <∞) = 1.

But θ(i)
n = arg max0≤θ≤π R

(i)
n (θ) has the same distribution as θn, so

min
1≤i≤n

P({|θn − π/2| < δ} ∩ {|θ(i)
n − π/2| < δ}) ≥ 1− 2P(|θn − π/2| ≥ δ),

and the result follows.

Lemma 5.1.3 tells us that the key to understanding (5.1.4) is to understand what is

happening with Rn(θ) and R(i)
n (θ) for θ ≈ π/2. The next important observation is that
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for θ ∈ (0, π), the one-dimensional random walk Sj · eθ has drift µ · eθ = µ sin θ > 0,

so, with very high probability Mn(θ) is attained somewhere near the end of the walk,

and mn(θ) somewhere near the start.

To formalize this statement, and its consequence for Rn(θ)−R(i)
n (θ), define

J̄n(θ) := arg max
0≤j≤n

(Sj · eθ), and ¯
Jn(θ) := arg min

0≤j≤n
(Sj · eθ);

J̄ (i)
n (θ) := arg max

0≤j≤n
(S(i)

j · eθ), and ¯
J (i)
n (θ) := arg min

0≤j≤n
(S(i)

j · eθ).

For γ ∈ (0, 1/2) (a constant that will be chosen to be suitably small later in our

argument), we denote by En,i(γ) the event that the following occur:

• for all θ ∈ [π/4, 3π/4],
¯
Jn(θ) < γn and J̄n(θ) > (1− γ)n;

• for all θ ∈ [π/4, 3π/4],
¯
J (i)
n (θ) < γn and J̄ (i)

n (θ) > (1− γ)n;

note that the choice of interval [π/4, 3π/4] could be replaced by any other interval

containing π/2 and bounded away from 0 and π. Define In,γ := {1, . . . , n} ∩ [γn, (1−

γ)n]. The next result is contained in Lemma 4.1 of [WX15a].

Lemma 5.1.4. For any γ ∈ (0, 1/2) the following hold.

(i) If i ∈ In,γ, then, on the event En,i(γ),

Rn(θ)−R(i)
n (θ) = (Zi − Z ′i) · eθ, for any θ ∈ [π/4, 3π/4]. (5.1.5)

(ii) If E ‖Z‖ <∞ and µ 6= 0 then limn→∞min1≤i≤n P(En,i(γ)) = 1.

In light of Lemma 5.1.3, the key to estimating (5.1.4) is provided by the following.

Lemma 5.1.5. Let γ ∈ (0, 1/2). Then for any δ ∈ (0, π/4) and any i ∈ In,γ, on

En,i(γ), ∣∣∣∣∣ sup
|θ−π/2|≤δ

Rn(θ)− sup
|θ−π/2|≤δ

R(i)
n (θ)− (Zi − Z ′i) · eπ/2

∣∣∣∣∣ ≤ δ‖Zi − Z ′i‖.

Before proving Lemma 5.1.5, we need a simple geometrical lemma.
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Lemma 5.1.6. For any x ∈ R2 and θ1, θ2 ∈ R,

|x · eθ1 − x · eθ2| ≤ ‖x‖|θ1 − θ2|.

Proof. We have

eθ1 − eθ2 = (cos θ1 − cos θ2, sin θ1 − sin θ2)

=
(
−2 sin

(
θ1 − θ2

2

)
sin

(
θ1 + θ2

2

)
, 2 sin

(
θ1 − θ2

2

)
cos

(
θ1 + θ2

2

))
,

so that ‖eθ1 − eθ2‖2 = 4 sin2
(
θ1−θ2

2

)
, and hence ‖eθ1 − eθ2‖ = 2

∣∣∣sin ( θ1−θ2
2

)∣∣∣. Now use

the inequality | sin x| ≤ |x| (valid for all x ∈ R) to get

‖eθ1 − eθ2‖ ≤ |θ1 − θ2|,

and the result follows.

Proof of Lemma 5.1.5. We claim that with i ∈ In,γ, for any θ1, θ2 ∈ [π/4, 3π/4], on the

event En,i(γ), it holds that

inf
θ1≤θ≤θ2

(Zi − Z ′i) · eθ ≤ sup
θ1≤θ≤θ2

Rn(θ)− sup
θ1≤θ≤θ2

R(i)
n (θ) ≤ sup

θ1≤θ≤θ2

(Zi − Z ′i) · eθ. (5.1.6)

Given the claim (5.1.6), and that, as follows from Lemma 5.1.6,

sup
|θ−π/2|≤δ

(Zi − Z ′i) · eθ ≤ (Zi − Z ′i) · eπ/2 + δ‖Zi − Z ′i‖, and

inf
|θ−π/2|≤δ

(Zi − Z ′i) · eθ ≥ (Zi − Z ′i) · eπ/2 − δ‖Zi − Z ′i‖,

the statement in the lemma follows on taking θ1 = π/2− δ and θ2 = π/2 + δ.

It remains to establish the claim (5.1.6). First we note that for f, g : R→ R and I an

interval in (−π, π], with supθ∈I |f(θ)| <∞ and supθ∈I |g(θ)| <∞,

inf
θ∈I

(f(θ)− g(θ)) ≤ sup
θ∈I

f(θ)− sup
θ∈I

g(θ) ≤ sup
θ∈I

(f(θ)− g(θ)). (5.1.7)

In particular, taking I = [θ1, θ2], with θ1, θ2 ∈ [π/3, 3π/4], we have

inf
θ1≤θ≤θ2

(
Rn(θ)−R(i)

n (θ)
)
≤ sup

θ1≤θ≤θ2

Rn(θ)− sup
θ1≤θ≤θ2

R(i)
n (θ) ≤ sup

θ1≤θ≤θ2

(
Rn(θ)−R(i)

n (θ)
)
,
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and, on the event En,i(γ), we have from (5.1.5) that

Rn(θ)−R(i)
n (θ) = (Zi − Z ′i) · eθ, for all θ ∈ [θ1, θ2],

which establishes the claim (5.1.6).

To obtain rough estimates when the events An,i(δ) and En,i(γ) do not occur, we need

the following bound.

Lemma 5.1.7. For any i ∈ {1, 2, . . . , n}, a.s.,

|D(i)
n −Dn| ≤ 2‖Zi‖+ 2‖Z ′i‖.

Proof. Lemma 3.1 from [WX15a] states that, for any i ∈ {1, 2, . . . , n}, a.s.,

sup
0≤θ≤π

∣∣∣Rn(θ)−R(i)
n (θ)

∣∣∣ ≤ 2‖Zi‖+ 2‖Z ′i‖.

Now from (5.1.4) and (5.1.7) we obtain the result.

Now define the event Bn,i(γ, δ) := En,i(γ) ∩ An,i(δ). Let Bc
n,i(γ, δ) denote the comple-

mentary event. The preceding results in this section can now be combined to obtain

the following approximation lemma for ∆n,i as given by (5.1.3).

Lemma 5.1.8. Suppose that E ‖Z‖ < ∞ and µ 6= 0. For any γ ∈ (0, 1/2), δ ∈

(0, π/4), and i ∈ In,γ, we have, a.s.,

|∆n,i − (Zi − µ) · µ̂| ≤ 3‖Zi‖P(Bc
n,i(γ, δ) | Fi) + 3E[‖Z ′i‖1(Bc

n,i(γ, δ)) | Fi]

+ δ (‖Zi‖+ E ‖Z‖) .

Proof. First observe that, since Zi is Fi-measurable and Z ′i is independent of Fi,

∆n,i − (Zi − µ) · µ̂ = E[Dn −D(i)
n − (Zi − Z ′i) · µ̂ | Fi].

Hence, by the triangle inequality,

|∆n,i − (Zi − µ) · µ̂| ≤ E
[∣∣∣Dn −D(i)

n − (Zi − Z ′i) · µ̂
∣∣∣1(Bn,i(γ, δ)) | Fi

]
+ E

[∣∣∣Dn −D(i)
n − (Zi − Z ′i) · µ̂

∣∣∣1(Bc
n,i(γ, δ)) | Fi

]
.
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Here, by Lemma 5.1.7, we have that

E
[ ∣∣∣Dn −D(i)

n − (Zi − Z ′i) · µ̂
∣∣∣1(Bc

n,i(γ, δ)) | Fi
]

≤ 3E
[
(‖Zi‖+ ‖Z ′i‖)1(Bc

n,i(γ, δ)) | Fi
]
.

Now, on An,i(δ) we have that

Dn = sup
|θ−π/2|≤δ

Rn(θ), and D(i)
n = sup

|θ−π/2|≤δ
R(i)
n (θ),

and hence, by Lemma 5.1.5, on An,i(δ) ∩ En,i(γ),

|Dn −D(i)
n − (Zi − Z ′i) · µ̂| ≤ δ‖Zi − Z ′i‖.

Hence

E
[∣∣∣Dn −D(i)

n − (Zi − Z ′i) · µ̂
∣∣∣1(Bn,i(γ, δ)) | Fi

]
≤ δ E[‖Zi‖+ ‖Z ′i‖ | Fi].

Combining these bounds, and using the fact that Zi is Fi-measurable and Z ′i is inde-

pendent of Fi, we obtain the result.

We are now almost ready to complete the proof of Theorem 5.1.1. To do so, we present

an analogue of Lemma 6.1 from [WX15a]; we set Vi := (Zi−µ)·µ̂, andWn,i := ∆n,i−Vi.

Lemma 5.1.9. Suppose that E(‖Z‖2) <∞ and µ 6= 0. Then

lim
n→∞

n−1
n∑
i=1

E(W 2
n,i) = 0.

Proof. The proof is similar to that of Lemma 6.1 of [WX15a]. Fix ε ∈ (0, 1). Take

γ ∈ (0, 1/2) and δ ∈ (0, π/4), to be specified later. Note that from Lemma 5.1.7 we

have |Wn,i| ≤ 3(‖Zi‖+E ‖Z‖), so that, provided E(‖Z‖2) <∞, we have E(W 2
n,i) ≤ C0

for all n and all i, for some constant C0 <∞, depending only on the distribution of Z.

Hence
1
n

∑
i 6∈In,γ

E(W 2
n,i) ≤ 2γC0.

From now on choose and fix γ > 0 small enough so that 2γC0 < ε.

Now consider i ∈ In,γ. For such i, Lemma 5.1.8 yields an upper bound for |Wn,i|. Note
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that, for any C1 <∞, since Z ′i is independent of Fi,

E[‖Z ′i‖1(Bc
n,i(γ, δ)) | Fi] ≤ E[‖Z‖1{‖Z‖ ≥ C1}] + C1P[Bc

n,i(γ, δ) | Fi].

Given ε ∈ (0, 1) we can take C1 = C1(ε) large enough such that E[‖Z‖1{‖Z‖ ≥ C1}] ≤

ε, by dominated convergence; for convenience we take C1 > 1 and C1 > E ‖Z‖. Hence

from Lemma 5.1.8 we obtain

|Wn,i| ≤ 3(‖Zi‖+ C1)P[Bc
n,i(γ, δ) | Fi] + 3ε+ δ (‖Zi‖+ E ‖Z‖) .

Using the fact that P[Bc
n,i(γ, δ) | Fi] ≤ 1, ε ≤ 1, δ ≤ 1, and C1 > 1, C1 > E ‖Z‖, we

can square both sides of the last display and collect terms to obtain

W 2
n,i ≤ 27C2

1(1 + ‖Zi‖)2P[Bc
n,i(γ, δ) | Fi] + 9ε+ 13C2

1δ (1 + ‖Zi‖)2 .

Since E(‖Z‖2) <∞, it follows that, given ε and hence C1, we can choose δ ∈ (0, π/4)

sufficiently small so that 13C2
1δ E[(1 + ‖Zi‖)2] < ε; fix such a δ from now on. Then

E(W 2
n,i) ≤ 27C2

1 E[(1 + ‖Zi‖)2P[Bc
n,i(γ, δ) | Fi]] + 10ε.

Here we have that, for any C2 > 0,

E[(1 + ‖Zi‖)2P[Bc
n,i(γ, δ) | Fi]] ≤ (1 + C2)2P(Bc

n,i(γ, δ)) + E[(1 + ‖Z‖)21{‖Z‖ ≥ C2}],

where dominated convergence shows that we may choose C2 large enough so that the

last term is less than ε/C2
1 , say. Then,

E(W 2
n,i) ≤ 37ε+ 27C2

1(1 + C2)2P(Bc
n,i(γ, δ)).

Finally, we see from Lemmas 5.1.3 and 5.1.4 than max1≤i≤n P(Bc
n,i(γ, δ))→ 0, so that,

for given ε > 0 (and hence C1 and C2) we may choose n ≥ n0 sufficiently large so that

maxi∈In,γ E(W 2
n,i) ≤ 38ε. Hence

1
n

∑
i∈In,γ

E(W 2
n,i) ≤ 38ε,

for all n ≥ n0. Combining this result with the estimate for i 6∈ In,γ, we see that

1
n

n∑
i=1

E(W 2
n,i) ≤ 39ε,
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for all n ≥ n0. Since ε > 0 was arbitrary, the result follows.

Proof of Theorem 5.1.1. First note that Wn,i is Fi-measurable with E(Wn,i | Fi−1) =

E(∆n,i | Fi−1)−EVi = 0, so thatWn,i is a martingale difference sequence. Therefore by

orthogonality, n−1 E[(∑n
i=1Wn,i)2] = n−1∑n

i=1 E(W 2
n,i)→ 0 as n→∞, by Lemma 5.1.9.

In other words, n−1/2∑n
i=1Wn,i → 0 in L2. But, by Lemma 5.1.2,

n∑
i=1

Wn,i =
n∑
i=1

∆n,i −
n∑
i=1

(Zi − µ) · µ̂ = Dn − EDn − (Sn − ESn) · µ̂.

This yields the statement in the theorem.

Finally we can give the proof of Theorem 5.0.1.

Proof of Theorem 5.0.1. Lemma 2.2.3 shows that

n−1/2|EDn − ESn · µ̂| → 0. (5.1.8)

Then by the triangle inequality

n−1/2|Dn − Sn · µ̂| ≤ n−1/2|Dn − EDn − (Sn − ESn) · µ̂|+ n−1/2|EDn − ESn · µ̂|,

which tends to 0 in L2 by (5.1.1) and (5.1.8).

Proof of Corollary 5.0.2. Corollary 5.0.2 is deduced from Theorem 5.0.1 in a very sim-

ilar manner to how Theorems 1.1 and 1.2 in [WX15a] were deduced from Theorem 1.3

there, so we omit the details.

5.2 Application of results to our examples

The first result and idea we would like to see in action is from Theorem 5.0.1. We

hope to see that the difference between the diameter and distance in the direction of

the mean does not grow as fast as n1/2. To demonstrate this, Figures 5.1 and 5.2 are

plots of the left hand side of (5.0.1) against n for our random walk with drift and all

coordinates Normally distributed and our random walk with drift and no variance in

the first coordinate, both with unit mean. Note, of course, Dn ≥ Sn · µ̂ so all of these

values must be bounded below by 0.
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The case with the Normal increments does seem to show a decreasing amount of points

far away from 0 but the process doesn’t look like a smooth path unlike the increments

where the jump in the direction of the mean is fixed. This is not so surprising because,

at least heuristically, the walk with Normal increments is more likely to attain the

diameter by a distance induced by two points other than the first at 0 and Sn. Since

the Normal increments allow for jumps back towards the origin which could be into the

interior of the hull, when these types of jump occur, the difference plottedDn−Sn·µ̂ will

be non-zero. Whereas the fixed increments can’t move towards the origin horizontally,

so any differences between Dn and Sn · µ̂ must be created by movement in the vertical

direction which is a relatively smooth process.
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Figure 5.1: Difference between the diameter and length of the vector created by pro-
jecting the endpoint of the walk onto the direction of the mean (Dn − Sn · µ̂) for our
random walk with drift and all coordinates Normally distributed, unit mean, plotted
for the first 105 steps.

For Corollary 5.0.2, we simulated 10, 000 independent copies of the random walks with

Normal drift, unit mean and have plotted the empirical distribution ofDn−n‖µ‖/
√
nσ2

µ

by taking the simulated values of this quantity when each walk reached n = 100, 000.

This is Figure 5.3. Note, we only show the range [−2, 2]. By visual inspection alone

the plot looks like it is following the standard Normal distribution. Further, 448 of the
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Figure 5.2: Difference between the diameter and length of the vector created by pro-
jecting the endpoint of the walk onto the direction of the mean (Dn − Sn · µ̂) for our
random walk with drift and no variance in the first coordinate, unit mean, plotted for
the first 105 steps.
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walks attained values outside the plotted range which is consistent with the well-known

fact that 95% of the probability mass of a standard Normal distribution is between

[−1.96, 1.96]. Again we can verify this using a simplified version of the Kolmogorov-

Smirnov distance as described at (3.5.1). Here though we will take F (x) = Φ(x) where

Φ(x) is the cumulative distribution function of the standard Normal distribution, and

we also slightly modify our definition of the test to run over the range [−2, 2] as follows

ρkK−S(Ftest, F ) = sup
0≤i≤k

|P(Ftest ≤ −2 + 4i/k)− F (−2 + 4i/k)|.

Using this definition, we will take k = 80 so that we are again in line with the binning

shown in our empirical distribution bar chart, Figure 5.3, and using the notation Demp

to represent the empirical distribution, we find ρ80
K−S(Demp, F ) = 0.023. This certainly

supports the central limit theorem of Corollary 5.0.2.
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Figure 5.3: Empirical distribution of the centralised and normalised diameter for the
random walk with drift and all coordinates Normally distributed, unit mean.



Chapter 6

Time-space processes

The final chapter of results fills in some of the details of the degenerate case, where

there is no variation in the direction of the mean, σ2
µ = 0, which corresponds to the

case where Z · µ̂ = ‖µ‖ a.s., and is of its own interest. It includes, for example, the case

where Z = (1, 1) or (1,−1), each with probability 1/2, in which the two-dimensional

walk Sn corresponds to the space-time diagram of a one-dimensional simple symmetric

random walk. In fact, all of the processes in this degenerate case can be considered as

time-space processes.

Regarding the diameter, in the case σ2
µ = 0 Corollary 5.0.2 says only that VarDn =

o(n). We will show that the variance converges to a constant and determine the

limiting distribution of the centred diameter too1. These results require some additional

conditions. For the perimeter length we do not obtain the limiting distribution but

do show that VarLn = o(nε) for any ε > 0 and conjecture that VarLn = O(log n).

In studying the perimeter length, the heuristic was motivated by consideration of the

number of faces, Fn, of the convex hull, and we use results regarding the expected

number of faces in our proof. Whilst considering this heuristic, we establish a partial

classification of when lim infn→∞ Fn = 1 and when limn→∞ Fn = ∞ which is to be

contrasted with the results of Qiao and Steele, which stated that there exists a random

walk for which Fn = 1 finitely often. In the case where limn→∞ Fn =∞ we go further

by showing that Fn = O(log n) with bounds on the possible constant in the growth

1Based on work published in [MW18], which was joint work between the authors.
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rate, if such a constant exists.

6.1 Diameter limit distribution

In this section we will prove the following theorem.

Theorem 6.1.1. Suppose that E(‖Z‖p) < ∞ for some p > 2, µ 6= 0, and σ2
µ = 0.

Then,

Dn − ‖µ‖n
d−→

σ2
µ⊥
ζ2

2‖µ‖ , (6.1.1)

where ζ ∼ N (0, 1). Further, if, in addition, E(‖Z‖p) <∞ for some p > 4, then

lim
n→∞

VarDn =
σ4
µ⊥

2‖µ‖2 . (6.1.2)

Remark 6.1.2.

(i) The higher moments conditions required in Theorem 6.1.1 are necessary for the

proofs that we employ, however we propose that 2 + ε moment should suffice; see

also Remark 6.1.7 below.

(ii) The statement (6.1.1) may be written as

Dn − Sn · µ̂
d−→

σ2
µ⊥
ζ2

2‖µ‖ . (6.1.3)

It is natural to ask whether (6.1.3) also holds in the case where σ2
µ > 0; if it

did, then it would provide an alternative proof of the central limit theorem in

Corollary 5.0.2. Simulations suggest that when σ2
µ > 0, equation (6.1.3) holds in

some, but not all cases, see Section 6.3.

The aim of this section is to prove Theorem 6.1.1; thus we assume µ 6= 0. An important

result for the proof is the following lemma which is interesting in its own right in that it

not only confirms the intuition that the diameter is close to ‖Sn‖ but seems particularly

strong in that it states the difference between these values converges to 0. We present

the proof of this lemma later in the chapter.

Lemma 6.1.3. Suppose that E(‖Z‖p) <∞ for some p > 2, µ 6= 0, and σ2
µ = 0. Then,

as n→∞, Dn − ‖Sn‖ → 0, a.s.
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The first step in the proof is to state another result that will enable us to obtain the

second statement in Theorem 6.1.1 from the first.

Lemma 6.1.4. Suppose that E(‖Z‖p) <∞ for some p > 4, µ 6= 0, and σ2
µ = 0. Then

(Dn − ‖µ‖n)2 is uniformly integrable.

Again, we write Xn := Sn · µ̂ and Yn := Sn · µ̂⊥, where µ̂⊥ is any fixed unit vector

orthogonal to µ. Note that if σ2
µ = 0, then Xn = n‖µ‖ is deterministic.

Proof of Lemma 6.1.4. For i ≤ j, we have ‖Sj−Si‖2 = (Yj−Yi)2 +(Xj−Xi)2, so that

(Dn − ‖µ‖n)2 =
(

max
0≤i≤j≤n

(
(Yj − Yi)2 + ‖µ‖2(j − i)2

)1/2
− ‖µ‖n

)2

≤

‖µ‖n max
0≤i≤j≤n

(
1 + (Yj − Yi)2

‖µ‖2n2

)1/2

− ‖µ‖n

2

.

Since (1 + y)1/2 ≤ 1 + (y/2) for y ≥ 0, and (a− b)2 ≤ 2(a2 + b2) for a, b ∈ R, we obtain

(Dn − ‖µ‖n)2 ≤
(
‖µ‖n max

0≤i≤j≤n

(Yj − Yi)2

2‖µ‖2n2

)2

≤ 4
‖µ‖2 max

1≤i≤n

Y 4
i

n2 .

Now, |Yn| is a non-negative submartingale, so Doob’s Lp inequality [Gut05, p. 505]

yields

E

(max
1≤i≤n

Y 4
i

n2

)p/4 = n−p/2 E
(

max
1≤i≤n

|Yi|p
)
≤ Cpn

−p/2 E(|Yn|p),

for any p > 1 and some constant Cp < ∞. Under the assumption that E(‖Z‖p) < ∞

for p > 4, Yn is a random walk on R whose increments have zero mean and finite

pth moments, so, by the Marcinkiewicz–Zygmund inequality, see Theorem 1.3.18 or

e.g. [Gut05, p. 151], E(|Yn|p) ≤ Cnp/2. Hence

sup
n≥0

E
[(

(Dn − ‖µ‖n)2
)p/4]

<∞,

which, since p/4 > 1, establishes uniform integrability.

Next we show that, under the conditions of Theorem 6.1.1, the diameter must be

attained by a point ‘close to’ the start and one ‘close to’ the end of the walk.
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Lemma 6.1.5. Suppose that E(‖Z‖2) <∞, µ 6= 0, and σ2
µ = 0. Let β ∈ (0, 1). Then,

a.s., for all but finitely many n,

Dn = max
0≤i≤nβ

n−nβ≤j≤n

‖Sj − Si‖.

Proof. Fix β ∈ (0, 1). Since Dn = max0≤i,j≤n ‖Sj − Si‖, we have

Dn = max

 max
0≤i≤nβ

n−nβ≤j≤n

‖Sj − Si‖, max
0≤i≤nβ

0≤j≤n−nβ

‖Sj − Si‖, max
nβ≤i,j≤n

‖Sj − Si‖

 . (6.1.4)

It is clear that

max
0≤i≤nβ

n−nβ≤j≤n

‖Sj − Si‖ ≥ ‖Sn‖ ≥ |Xn| = ‖µ‖n.

We aim to show that the other two terms on the right-hand side of (6.1.4) are strictly

less than ‖µ‖n for all but finitely many n.

A consequence of the law of the iterated logarithm, see Theorem 1.3.16, is that, for any

ε > 0, a.s., for all but finitely many n, max0≤i≤n Y
2
i ≤ n1+ε; see e.g. [Gut05, p. 384].

Take ε ∈ (0, β). Then,

max
0≤i≤nβ

0≤j≤n−nβ

‖Sj − Si‖2 ≤ max
0≤i≤nβ

0≤j≤n−nβ

|Xj −Xi|2 + max
0≤i≤nβ

0≤j≤n−nβ

|Yj − Yi|2

≤ ‖µ‖2(n− nβ)2 + max
0≤j≤n−nβ

Y 2
j + max

0≤i≤nβ
Y 2
i + 2 max

0≤i≤nβ
0≤j≤n−nβ

|Yj||Yi|

≤ ‖µ‖2n2 − 2‖µ‖2n1+β + ‖µ‖2n2β + n1+ε,

for all but finitely many n. Since ε < β < 1, this last expression is strictly less than

‖µ‖2n2 for all n sufficiently large. Similarly,

max
nβ≤i,j≤n

‖Sj − Si‖2 ≤ ‖µ‖2(n− nβ)2 + max
nβ≤j≤n

Y 2
j + max

nβ≤i≤n
Y 2
i + 2 max

nβ≤i,j≤n
|Yj||Yi|

≤ ‖µ‖2n2 − 2‖µ‖2n1+β + ‖µ‖2n2β + n1+ε,

for all but finitely many n, and, as before, this is strictly less than ‖µ‖2n2 for all n

sufficiently large. Then (6.1.4) yields the result.

The next result is required to control the fluctuations in the last part of the walk and
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can be considered as a technical result which will help us prove the more intuitive

result, Lemma 6.1.3 below.

Lemma 6.1.6. Let ξ, ξ1, ξ2, . . . be i.i.d. random variables with E(|ξ|p) < ∞ for some

p > 2, and E ξ = 0. For 0 ≤ j ≤ n, let Tn,j := ∑n
i=n−j ξi. Then there exist β0 ∈ (0, 1/2)

and ε0 ∈ (0, 1/2) such that for any β ∈ (0, β0) and any ε ∈ (0, ε0),

lim
n→∞

max
0≤j≤nβ

|Tn,j|
n(1/2)−ε = 0, a.s.

Remark 6.1.7. On first sight, by the fact that there are O(nβ) terms in the sum Tn,j,

one’s intuition may be misled to conclude that Tn,j should be only of size about nβ/2.

However, note that assuming only E(ξ2) < ∞, max0≤i≤n ξi can be almost as big as

n1/2, and with probability at least 1/n this maximal value is a member of Tn,j, and so

it seems reasonable to expect that Tn,j should be almost as big as n1/2 infinitely often.

Thus our p > 2 moments condition seems to be necessary.

Proof of Lemma 6.1.6. Let ξ′i = ξi1{|ξi| ≤ i1/2−δ} and ξ′′i = ξi1{|ξi| > i1/2−δ} for some

δ ∈ (0, 1/2) to be chosen later. Then we use the subadditivity of the supremum, the

triangle inequality, and the condition ε ∈ (0, ε0) to get

max
0≤j≤nβ

|Tn,j|
n1/2−ε ≤ max

0≤j≤nβ

|∑n
i=n−j(ξ′i − E ξ′i)|

n1/2−ε +
∑n
i=n−nβ |E ξ′i|
n1/2−ε0

+
∑n
i=n−nβ |ξ′′i |
n1/2−ε0

, (6.1.5)

where, and for the rest of this proof, if nβ appears in the index of a sum, we understand

it to be shorthand for bnβc. By Markov’s inequality, since E(|ξ|p) < ∞ for p > 2 we

have

P
(
|ξi| > i1/2−δ

)
≤ E(|ξ|p)
i(1/2−δ)p

= O(iδp−p/2).

Suppose that δ ∈ (0, (p − 2)/2p), so that δp − p/2 < −1, and thus the Borel–Cantelli

lemma implies that ξ′′i = 0 for all but finitely many i. Thus, for any β, ε0 ∈ (0, 1/2),

lim
n→∞

∑n
i=n−nβ |ξ′′i |
n1/2−ε0

= 0, a.s.

For the second term on the right-hand side of (6.1.5), E ξ = 0 implies |E ξ′i| = |E ξ′′i |,

so
n∑

i=n−nβ
|E ξ′i| =

n∑
i=n−nβ

|E ξ′′i | ≤ (nβ + 1)E
(
|ξ|1{|ξ| > (n/2)1/2−δ}

)
,
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for all n large enough so that n− nβ > n/2. Here

E
(
|ξ|1{|ξ| > (n/2)1/2−δ}

)
= E

(
|ξ|2|ξ|−11{|ξ| > (n/2)1/2−δ}

)
≤ Cnδ−1/2,

for some constant C depending only on E(ξ2). Suppose that δ ≤ 1/4. Then we get∑n
i=n−nβ |E ξ′i| = O(nβ−1/4), so that, for any β ∈ (0, 1/2) and ε0 ∈ (0, 1/4),

lim
n→∞

∑n
i=n−nβ |E ξ′i|
n1/2−ε0

= 0, a.s.

Finally, we consider the first term on the right-hand side of (6.1.5), with the truncated,

centralised sum, which we denote as T ′n,j := ∑n
i=n−j(ξ′i − E ξ′i). The ξ′i − E ξ′i are

independent, zero-mean random variables with |ξ′i − E ξ′i| ≤ 2n1/2−δ for i ≤ n, so we

may apply the Azuma–Hoeffding inequality, see Theorem 1.3.17, to obtain, for any

t ≥ 0,

P
(
|T ′n,j| ≥ t

)
≤ 2 exp

(
− t2

8(j + 1)n1−2δ

)
.

In particular, taking t = n1/2−ε0 we obtain

P
(

max
0≤j≤nβ

|T ′n,j| ≥ n1/2−ε0

)
≤ (nβ + 1) max

0≤j≤nβ
P
(
|T ′n,j| ≥ n1/2−ε0

)
≤ 2(nβ + 1) exp

(
− n1−2ε0

16n1+β−2δ

)
, (6.1.6)

for all n sufficiently large. Now choose and fix δ = δ(p) := min{1/4, (p − 2)/4p}, so

δ > 0 satisfies the bounds earlier in this proof, and then choose β < β0 := δ such that

n1−2ε0

n1+β−2δ = n2δ−2ε0−β ≥ nδ−2ε0 .

So choosing ε0 = δ/4 we have that the probability bound in (6.1.6) is summable. Thus

by the Borel–Cantelli lemma, we have that max0≤j≤nβ |T ′n,j| ≤ n1/2−ε0 for all but finitely

many n, a.s. It follows that, for any ε ∈ (0, ε0),

lim
n→∞

|∑n
i=n−nβ(ξ′i − E ξ′i)|

n1/2−ε = 0, a.s.,

which completes the proof.

The main remaining step in the proof of Theorem 6.1.1 is the proof of Lemma 6.1.3.

Proof of Lemma 6.1.3. Using the fact that ‖Sn‖2 = ‖µ‖2n2 + Y 2
n , we have that, for
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j ≤ n,

‖Sj − Si‖2 = ‖µ‖2(j − i)2 + (Yj − Yi)2

= ‖Sn‖2 + ‖µ‖2i2 + ‖µ‖2j2 − 2‖µ‖2ij − ‖µ‖2n2 + Y 2
i + Y 2

j − 2YiYj − Y 2
n

≤ ‖Sn‖2 + ‖µ‖2i2 − (Yn − Yj)(Yn + Yj) + 2Yi(Yn − Yj)− 2YiYn + Y 2
i .

Here we have that, for any ε > 0, max0≤i≤nβ |YiYn| ≤ n
1+β

2 +ε and max0≤i≤nβ Y
2
i ≤ nβ+ε

almost surely for all but finitely many n. For the terms involving Yj, Lemma 6.1.6

shows that we may choose β ∈ (0, 1/2) such that, for any sufficiently small ε > 0,

max
n−nβ≤j≤n

|Yn − Yj| ≤ n
1
2−ε a.s. and max

n−nβ≤j≤n
|Yn − Yj||Yn + Yj| ≤ n1−ε a.s.

for all but finitely many n. With this choice of β and sufficiently small ε, we combine

these bounds to obtain

max
0≤i≤nβ

n−nβ≤j≤n

‖Sj − Si‖2 ≤ ‖Sn‖2 + ‖µ‖2n2β + n1−ε + n
1+β

2 +ε + nβ+ε a.s.

for all but finitely many n. Since β ∈ (0, 1/2), we may apply Lemma 6.1.5 and choose

ε > 0 sufficiently small to see that D2
n ≤ ‖Sn‖2 + n1−ε, for all but finitely many n.

Hence

Dn ≤ ‖Sn‖
(
1 + ‖Sn‖−2n1−ε

)1/2
≤ ‖Sn‖

(
1 + ‖µ‖−2n−1−ε

)1/2
a.s.

since ‖Sn‖ ≥ n‖µ‖. Using the fact that (1 + x)1/2 ≤ 1 + (x/2) for x ≥ 0, we get

Dn ≤ ‖Sn‖
(
1 + 1

2‖µ‖
−2n−1−ε

)
≤ ‖Sn‖+ ‖µ‖−1n−ε a.s.

for all but finitely many n, since, by the strong law of large numbers, ‖Sn‖ ≤ 2‖µ‖n a.s.

all but finitely often. Combined with the bound Dn ≥ ‖Sn‖, this completes the proof.

Proof of Theorem 6.1.1. Combining Lemmas 6.1.3 and 2.2.6 with Slutsky’s theorem

[Gut05, p. 249] and the fact that, in this case, Xn = ‖µ‖n, we obtain (6.1.1).

From Lemma 6.1.4 we have that, if E(‖Z‖p) < ∞ for p > 4, both Dn − ‖µ‖n and
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(Dn − ‖µ‖n)2 are uniformly integrable. Thus from (6.1.1) we obtain

lim
n→∞

E(Dn − ‖µ‖n) = E
[
σ2
µ⊥
ζ2

2‖µ‖

]
=

σ2
µ⊥

2‖µ‖ , and

lim
n→∞

E[(Dn − ‖µ‖n)2] = E
[
σ4
µ⊥
ζ4

4‖µ‖2

]
=

3σ4
µ⊥

4‖µ‖2 .

Using the fact that

VarDn = Var(Dn − ‖µ‖n) = E[(Dn − ‖µ‖n)2]− E[Dn − ‖µ‖n]2,

we obtain (6.1.2) on letting n→∞.

6.2 Faces and Perimeter length

We continue to consider increments with E[(Z · µ̂−µ)2] = 0 and as before, without loss

of generality, we assume µ = ‖µ‖e0. We make use of some extra notation here, letting

Z⊥ = Z − (Z · µ̂)µ̂ and Z⊥i = Zi − (Zi · µ̂)µ̂ so S⊥n = ∑n
i=1 Z

⊥
i = Sn − (Sn · µ̂)µ̂. Note

that if E ‖Z‖ <∞ then EZ⊥ = 0.

6.2.1 Faces of the convex hull

Qiao and Steele [QS05] summarise nicely what is known about the faces of such walks

in the introduction of their paper.

If we let the number of records in an i.i.d. sequence X1, X2, . . . of random variables

with a continuous distribution be denoted Rn, that is

Rn = max{k : X⊥n1 < X⊥n2 < . . . < X⊥nk , 1 ≤ n1 < n2 < . . . < nk ≤ n},

then Rényi [Rén62] showed that this number has the same distribution as a sum of n

independent Bernoulli random variables with success probability 1/k.

Sparre Andersen had previously established the same result for the number of faces of

the concave majorant, although he stated the result in terms of the number of vertices

in the concave majorant, where the increments of the random walk have a common

density, see Section 1.1.3 or [SA54, p. 217]. Goldie [Gol89] connects these results,
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stating that the number of faces of the concave majorant (in fact, Goldie discusses

the convex minorant) of the time-space process, which we denote F+
n , had the same

distribution as the number of records, that is F+
n

d= Rn and gives a clear explanation

of how the Bernoulli sum representation can be established.

Then a Borel-Cantelli argument, using the Bernoulli sum representation of Rn and the

monotonicity Rn+1 ≥ Rn gives limn→∞Rn/ log n = 1 almost surely. However, F+
n is not

monotone so the same argument does not hold. In fact, the lack of monotonicity shows

that the process {Fn : 1 ≤ n <∞} must be different to the process {Rn : 1 ≤ n <∞},

whilst the latter is equivalent to the Bernoulli sum process. This is discussed in more

detail at [Ste02, §8]. However, Qiao and Steele do note that the Borel-Cantelli lemma

is enough to establish, if Z has a density then, a.s.,

1 ≤ lim sup
n→∞

F+
n

log n. (6.2.1)

In particular

lim sup
n→∞

F+
n =∞, a.s.

The main result of Qiao and Steele’s paper asserts that there exists some distribution of

Z such that lim infn→∞ F+
n = 1, and further, almost surely we have F+

n = m infinitely

often for any m ∈ N.

We now wish to show that the distribution of Z in their theorem is required to have the

property E ‖Z‖ = ∞, and thus it may in fact still be true that under the assumption

of finite mean limn→∞ F
+
n / log n = 1 almost surely.

Lemma 6.2.1. Let lim supn→∞ S⊥n = +∞ a.s. limn→∞ S
⊥
n /n = 0 a.s. and σ2

µ = 0

then P(F+
n = 1 i.o.) = 0.

Note, EZ⊥ = 0 and P(Z⊥ = 0) < 1 are sufficient conditions for the conditions of the

lemma since then the strong law of large numbers, Theorem 1.3.14, implies the second

condition and the first condition is implied by, for example, [Kal02, Prop 9.14].

Proof. Let n1 be the first ascending ladder time, that is

n1 := min{n > 0 : S⊥n > 0}.
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Then P(n1 < ∞) = 1 by the condition lim supn→∞ S⊥n = +∞ a.s. Denote the angle

relative to e0 of the leftmost edge of the concave majorant at time n by αn. Then

at time n1 we have αn1 = tan−1(S⊥n1/n1), and note 0 < αn < π/2 for all n > n1.

But limn→∞ S
⊥
n /n = 0 a.s., so there exists some almost surely finite time N such that

S⊥n < tan(αn1)n for all n > N , note that by this definition of N we have N ≥ n1. Since

the angle of the leftmost edge of the concave majorant is non-decreasing, at time N ,

αN ≥ αn1 . However, to change the first edge, we require S⊥n > tan(αN)n > tan(αn1)n

for some n > N , of course this contradicts the definition of N so the first edge is fixed

and P(F+
n ≥ 2 for all n ≥ N) = 1 and the proof is complete.

In fact, just as Qiao and Steele’s result is actually stated in terms of returns of the

process {Fn : 1 ≤ n <∞} to any natural number m and not just returns to 1, we can

extend our result to the following.

Theorem 6.2.2. When σ2
µ = 0,

(i) If lim supn→∞ S⊥n =∞ a.s. but limn→∞ S
⊥
n /n = 0 a.s. then limn→∞ F

+
n =∞ a.s.

(ii) If lim supn→∞ S⊥n /n =∞ a.s. then lim infn→∞ F+
n = 1 a.s.

Remark 6.2.3. • If EZ⊥ = 0 then the SLLN puts us in the case (i). It is not

difficult to think of many classical examples that fall into this category, for ex-

ample the time-space process of the simple symmetric random walk or the walk

with Z⊥ ∼ N (0, 1), the standard Normal distribution.

• Otherwise, a result of Kesten [Kes70, Corollary 3] states that if E |Z⊥| =∞, then

as n → ∞, n−1S⊥n either: (a) tends to +∞ a.s.; (b) tends to −∞ a.s.; or (c)

oscillates:

−∞ = lim inf
n→∞

n−1S⊥n < lim sup
n→∞

n−1S⊥n = +∞, a.s.

Erickson [Eri73] gives criteria for classifying such behaviour.

Clearly (a) implies (ii), whilst (b) implies that lim infn→∞ F−n = 1 a.s. by changing

sign and (ii). Then (c) implies both lim infn→∞ F+
n = 1 a.s. and lim infn→∞ F−n =

1 a.s., although trivially, since P(Z⊥ = 0) < 1, there exists some time n0 such

that, for all n > n0 we will have a truly 2-dimensional convex hull (not just a
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line), and so the minimum number of faces of the hull at any time is 3. Thus, for

all n > n0, F+
n = F−n = 1 is not possible.

In the case (a) ((b)), a similar proof to that of part (i) of the theorem can be

employed to show that limn→∞ F
−
n =∞ (limn → F+

n =∞). Instead of creating a

set of times when a new face is created with positive angle, see below for details,

all that is required is a new face in the convex minorant (concave majorant),

and then the last time in which the walk goes below (above) the line created by

extending this new face. By the assumptions in the theorem and the case we are

considering, all of these times will be finite almost surely ensuring an increasing

lower bound on the number of faces after each of these almost surely finite times.

For an example of a walk in category (c), consider Z⊥ to have a Cauchy distri-

bution. Then E |Z⊥| =∞ and

lim sup
n→∞

S⊥n
n

= +∞ and lim inf
n→∞

S⊥n
n

= −∞,

so F+
n = 1 i.o. and F−n = 1 i.o. Another example would be the symmetric α-stable

distribution with α ∈ (0, 1), see Section 7.2 for further discussion and references.

• Case (ii) can be compared with Qiao and Steele’s result. In fact, assuming that

Z has a density, then in this case F+
n = m i.o. a.s. for any natural number m.

To see this, note that a corollary of (6.2.1) is that lim supn→∞ F+
n = ∞, and if

F+
n > F+

n−1 then we have F+
n −F+

n−1 = 1 so if F+
n increases it cannot ‘jump over’

any number, so the fact that F+
n = 1 i.o. a.s. means that F+

n = m i.o. a.s. as

claimed.

Proof of Theorem 6.2.2. We will consider an increasing sequence of times, alternat-

ing between the time when a new face is created with angle greater than 0, and the

time when the trajectory last exits the cone, centred at the origin, with this angle.

Specifically, we denote these times as {n1, N1, n2, N2, . . .} where N0 := 0 and for i ∈ N,

ni := min{k > Ni−1 : S⊥k − max
0≤j≤Ni−1

S⊥j > 0},

and

Ni := max
{
k ≥ ni : S

⊥
k

k
≥

S⊥ni −max0≤j≤Ni−1 S
⊥
j

ni − arg max0≤j≤Ni−1 S
⊥
j

}
,
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where we use the convention that arg max0≤j≤Ni−1 S
⊥
j is the minimal value at which

the maximum is attained. Note, n1 is the same as n1 in the previous proof. Also

note that if Ni−1 is almost surely finite then ni is also almost surely finite by the fact

lim supn→∞ S⊥n = ∞ a.s., and then, if ni and Ni−1 are finite, so is Ni by the fact

limn→∞ S
⊥
n /n = 0 a.s.

The important observation is that, after each of the times Ni, the previous faces with

angle greater than the angle of the face created at time ni cannot be altered, because,

by definition the walk remains below the line parallel to the angle of the face and

positioned below, or at the same height, as the face. By only considering ni+1 after Ni,

we find a new face with positive angle after this time, to start the process again, but

the face containing the nith increment cannot be changed so we must have at least one

distinct face between each of the Ni.

To formalise this, note that at any time n > Ni, for all 1 ≤ j ≤ i there is at least one

face whose endpoints have horizontal coordinates in the interval [Nj−1, Nj], and whose

relative angle is αj, satisfying

0 < tan−1(S⊥n1/n1) ≤ α1 < π/2

and for any j ≥ 2

0 < αj < αj−1.

Thus we have at least i distinct faces which are no longer able to be changed of the

concave majorant, F+
n ≥ i for all n ≥ Ni, and since Ni was almost surely finite,

lim infn→∞ F+
n ≥ i a.s., and since i was arbitrary we have proven (i).

Conversely, for (ii) consider αj to be the angle of the first edge of the convex mi-

norant for the trajectory at some fixed time j. Then, due to the fact this is the

time-space process, we have −π/2 < αj < π/2 for all j ≥ 1. However, the vector

from 0 to S⊥n has angle tan−1(S⊥n /n), and since lim supn→∞ S⊥n /n = ∞ a.s., we have

lim supn→∞ tan−1(S⊥n /n) = π/2. Thus, there is some time Nj with P(Nj < ∞) = 1

such that

Nj := min{k ≥ j : tan−1(Sk/k) > αj},

at which time F+
n = 1. Since j was arbitrarily chosen, we have proven the result.
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Further to showing that the lim infn→∞ F+
n = ∞ in the case of finite first moment,

we also will use the Bernoulli sum representation of the number of faces along with

Bennett’s inequality to show that the growth rate is no faster than logarithmic.

Theorem 6.2.4. Suppose that Z has a continuous probability distribution and σ2
µ = 0.

Then

1 ≤ lim sup
n→∞

F+
n

log n ≤ e a.s.

Proof. By Sparre Andersen and Rényi’s work [SA54; Rén62], we have

P(F+
n ≤ k) = P

(
n∑
i=1

Yi ≤ k

)
,

where Yi ∼ Ber(1/i) that is, independent Bernoulli random variables with success

probability 1/i.

The relevant inequality for such sums of random variables is Bennett’s inequality

[Ben62]. For X1, X2, . . . , Xn, independent random variables with mean zero and fi-

nite variance, if Xi ≤ 1 a.s., and σ2
n = ∑n

i=1 Var(Xi), then for any t ≥ 0,

P
(

n∑
i=1

Xi ≥ t

)
≤ exp

(
t− σ2

n log
(

1 + t

σ2
n

)
− t log

(
1 + t

σ2
n

))
.

In order to use this we will centralise the previously described Bernoulli random vari-

ables, Xi := Yi − 1/i. Then we have Xi ≤ Yi ≤ 1 a.s. so the assumptions of the

inequality are met. This use of Bennett’s inequality gives

P
(
F+
n −

n∑
i=1

1
i
≥ t

)
≤ exp

(
t− σ2

n log
(

1 + t

σ2
n

)
− t log

(
1 + t

σ2
n

))
,

where σ2
n = ∑n

i=1 i
−1(1 − i−1). Using the fact ∑n

i=1 i
−2 ≤ π2/6 and that log(n) ≤∑n

i=1 i
−1 ≤ 1 + log(n) for n large enough, we get that log(n) − π2/6 ≤ σ2

n ≤ 1 + log n

for n large enough. Put t = (e− 1 + ε) log(n) for some ε > 0, then

log
(

1 + t

σ2

)
≥ log

(
1 + (e− 1 + ε) log n

1 + log n

)

= log
(
e+ ε− e− 1 + ε

1 + log n

)

= 1 + log
(

1 + ε

e
+O((log n)−1)

)
> 1 + ε

2e,
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for all n large enough. So putting this and t = (e−1+ε) log(n) into Bennet’s inequality,

P
(
Fn −

n∑
i=1

1
i
≥ t

)
≤ exp

(
(e− 1 + ε) log(n)− σ2

n

(
1 + ε

2e

)

−(e− 1 + ε) log(n)
(

1 + ε

2e

))
= exp

(
−ε(e− 1 + ε)

2e log(n)− σ2
n

(
1 + ε

2e

))
,

and since σ2
n > log(n)− π2/6,

P
(
Fn −

n∑
i=1

1
i
≥ t

)
≤ exp

(
−ε(e− 1 + ε)

2e log(n)−
(

log(n)− π2

6

)(
1 + ε

2e

))

≤ exp
(
−
(

1 + ε(e+ ε)
2e

)
log n+O(1)

)

≤ n−1−γ

for some γ > 0.

Applying the Borel-Cantelli lemma, we get that

Fn > (e− 1 + ε) log(n) +
n∑
i=1

1
i

finitely often, and so

lim sup
n→∞

F+
n

log n ≤ lim
n→∞

(
(e− 1 + ε) + (log n)−1

n∑
i=1

1
i

)
= e+ ε.

Since ε was arbitrary, we get the upper bound in the lemma.

The lower bound was discussed at (6.2.1), and was proven by Qiao and Steele [QS05].

6.2.2 Variance of the perimeter length of the convex hull

Just as with the diameter, when E(‖Z‖2) < ∞, µ 6= 0, and σ2
µ = 0, Theorem 2.2.1

(see also Theorem 1 in [WX15a]) only shows that VarLn = o(n). It was conjectured

in [WX15a] that VarLn = O(log n) in this case. We make the following stronger

conjecture.
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Conjecture 6.2.5. Suppose that E(‖Z‖2) <∞, µ 6= 0, σ2
µ = 0, and σ2

µ⊥
> 0. Then

lim
n→∞

VarLn
log n exists in (0,∞).

This will remain as a conjecture but we will prove the following weaker but related

statement.

Theorem 6.2.6. Suppose that Z has a continuous probability distribution, that P(‖Z‖ <

C) = 1 for some C <∞, µ 6= 0, σ2
µ = 0 and σ2

µ⊥
> 0. Then for any ε > 0,

lim
n→∞

VarLn
nε

= 0.

In order to get closer to the conjecture above, of course we wish to sharpen our upper

bound to be of order log n, but considering a lower bound would also be interesting.

We propose the following conjecture which is not only necessary for Conjecture 6.2.5

to be true but would be in contrast to (6.1.2), which states that the variance of the

diameter in the time-space degenerate case converges to a positive finite limit without

any scaling.

Conjecture 6.2.7. Suppose that E(‖Z‖2) <∞, µ 6= 0, σ2
µ = 0, and σ2

µ⊥
> 0. Then

lim
n→∞

VarLn =∞.

In order to prove Theorem 6.2.6, we start by just considering the concave majorant.

To simplify the following notation and subsequent descriptions we, without loss of

generality, consider the case µ = (1, 0) for the rest of this section.

Let the faces of the concave majorant be denoted e+
1 , . . . , e

+
F+
n
where F+

n is the number

of faces. We say an increment Zi belongs to the jth face of the concave majorant if

e+
j = Shr − Shl = (hr − hl, S⊥hr − S⊥hr) with hl < i ≤ hr and conversely we call e+

j the

parent face of Zi. Then we use yi := S⊥hr − S
⊥
hl

to denote the vertical component of the

parent face of the ith increment, and likewise we denote the horizontal component by

xi := hr − hl. We use li to denote the length of this parent face and αi to denote its

angle.

We denote the point on the concave majorant with horizontal coordinate j as bj.
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S_0

S_1

b_1

S_3 = b_3 S_7 = b_7

S_5

S_9

b_9

b_1 − S_1

Figure 6.1: Picture to demonstrate the definition of bi. The upper line shows the
concave majorant with bi points. The lower line is the random walk with points where
the walk intersects the convex hull shown by filled in points.

Formally, this is the point interpolating between Shl and Shr as follows,

bj = Shl + i− hl
hr − hl

(Shr − Shl).

Similar to the other notations, we will denote the point on the hull with horizontal

coordinate j after resampling the ith increment as b(i)
j .

When applying the Efron–Stein inequality, we will consider the change in perimeter

length upon resampling Zi. We also consider this as replacing Zi with Z ′i and hence

denote the perimeter length of the convex hull Ln and L(i)
n before and after the replace-

ment, with Mn and M (i)
n denoting the length of the concave majorant before and after

the replacement.

Before embarking on the proof of Theorem 6.2.6, we will give the heuristic behind

the proof including a probability bound of an event which will be a particular use to

us. The idea is to use Steele’s version of the Efron–Stein jackknife inequality, see for

example [BLM13, §3.1], which states

VarMn ≤
1
2

n∑
i=1

E
(
(Mn −M (i)

n )2
)
. (6.2.2)
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Given this sum, we will split indices into the (random) subsets of i where the parent

faces are short or long. The short faces, by definition, will not correspond to more than

O(nε) of the i, and the long faces will be flat and thus the difference, Mn −M (i)
n will

be controllable, see Lemma 6.2.10 below. In particular, for the long faces, we will need

to consider the event

En =
{
∪nk=0 ∪nm=bnεc {|S⊥k+m − S⊥k | ≥ m1/2+δ}

}
∪
{
∪nk=0 ∪nm=bnεc {|S

(i)⊥
k+m − S

(i)⊥
k | ≥ m1/2+δ}

}
, (6.2.3)

with ε > 0, δ > 0. This event describes the situation where a path of the walk

with at least nε increments, let us say x increments, creates an angle of more than

x1/2+δ between the start and end point of the path. We now consider a bound on the

probability of this event.

Lemma 6.2.8. Suppose that |Z · µ̂⊥| ≤ c for some c < ∞ and σ2
µ = 0. Then with

En as defined at (6.2.3), for any ε > 0, there exists ε′ > 0, c1 > 0 such that P(En) ≤

exp(−c1n
ε′).

Proof. We apply the Azuma–Hoeffding inequality, see Theorem 1.3.17, which states

that for any k ∈ {0, . . . , n} and m ≥ nε,

P
(
|S̃k+m − S̃k| ≥ m1/2+δ

)
≤ 2 exp

(
−m1+2δ

2mc2

)
≤ 2 exp(−c0m

2δ). (6.2.4)

where S̃j is used to represent either Sj or S(i)
j , but the two S̃j must both be Sj or both

be S(i)
j , i.e. the bound holds both before and after the resampling. Then an application

of the union bound with (6.2.4) gives

P(En) ≤ 2(n+ 1)2 max
0≤k≤n

max
m≥nε

P
(
|S̃k+m − S̃k| ≥ m1/2+δ

)
≤ 4(n+ 1)2 exp(−c0n

2δε)

≤ exp(−c1n
ε′).

Remark 6.2.9. Lemma 6.2.8 with the application of the Azuma-Hoeffding inequality

is the only place where we really require bounded jumps. Use elsewhere is only for

convenience.
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The final component before we can prove Theorem 6.2.6 is to describe the control we

have under this event when considering long faces.

Lemma 6.2.10. Suppose σ2
µ = 0. On the events Ec

n, {xi ≥ nε} and {|i−hl|∧|hr−i| >

xεi}, we have

|Mn −M (i)
n | ≤ (i− hl)−1/2+2δ (6.2.5)

for all i ∈ {1, . . . , n} and all n sufficiently large.

Proof. We begin by considering a few different cases. First, we will consider the cases

where the change upon the resampling in the vertical component of the ith increment

is positive and where it is negative separately. Trivially, we do not need to consider

the case where Zi · (0, 1)> = Z ′i · (0, 1)> because then the convex hull does not change,

so Mn = M (i)
n and the bound in (6.2.5) holds. Within each of these cases we will also

separate the situations where Mn > M (i)
n and where Mn < M (i)

n after the resampling.

Let us begin with the case Zi · (0, 1)> < Z ′i · (0, 1)> and Mn < M (i)
n . Then we show in

Figure 6.2, that, by convexity, M (i)
n is less than the length of the green path and Mn

is greater than the length of the blue path, and this bound on the change in length is

something we can calculate.

Note, using the notation from the figure, ∆ = |(Zi−Z ′i) · µ̂⊥| and x = i−h′l, and under

the event Ec
n we know y < (i − h′l)1/2+δ. Then, since the lengths of the faces before

vertex h′l and after bi remain unchanged, we only need to consider the change of the

length of the path between Sh′
l
and Si or S(i)

i . Note that ∆ > 0, so we have

M (i)
n −Mn ≤

√
x2 + (y + ∆)2 −

√
x2 + y2

≤
√
x2 + (|y|+ ∆)2 −

√
x2 + y2

=

(√
x2 + (|y|+ ∆)2 −

√
x2 + y2

) (√
x2 + (|y|+ ∆)2 +

√
x2 + y2

)
(√

x2 + (|y|+ ∆)2 +
√
x2 + y2

)
≤ 2|y|∆ + ∆2

2
√
x2 + y2

= |y|∆√
x2 + y2 +O

(
1√

x2 + y2

)
.

Then, applying the bounds on y and x gives that

M (i)
n −Mn ≤

|y|∆√
x2 + y2 +O

(
1√

x2 + y2

)
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D
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S
(i)
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h
l

S
h'
l

a

Figure 6.2: Picture to demonstrate the change in Mn possible upon resampling Zi.
The black line shows the concave majorant with bi indicated. The lower blue line is
the shortest path the concave majorant could be if it goes through h′l and bi, with
everything fixed up to translations before and after these points respectively. The
green upper line shows the longest path possible after the resampling, when bi moves
upwards.
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b j

S
(i)

j

S
h
l

S
h'

b

l

h
l

z

y

g

Figure 6.3: Picture to demonstrate the change inMn possible upon resampling Zi. The
black lines shows the concave majorant before and after resampling. The upper blue
line is in fact the concave majorant after resampling but shows the lower bound ofM (i)

n ,
with everything fixed up to translations before and after these points respectively. The
green upper line shows the longest path possible after the resampling, when bi moves
upwards.

≤ (i− hl)−1/2+δ +O
(
(i− h′l)−1

)
≤ (i− hl)−1/2+2δ, (6.2.6)

for all n large enough. Now let’s consider the case Mn > M (i)
n . Then any new convex

hull corner points must still have the index in [i, hr]. Let j be the smallest index in

this range that refers to a convex corner hull point. Note, j must exist, because the

point Shr must still be in the boundary of the convex hull. Then, given j we know the

shortest possible path for L(i)
n contributing toM (i)

n is the path from Sh′
l
to S(i)

j and then

to S(i)
hr
, which is shown in blue in Figure 6.3. If j = hr then there is one fewer vertex

in the hull than Figure 6.3 suggests, but the argument does not change. We then wish

to find an upper bound for the length of the original hull. By convexity of the section

of the concave majorant between h′l and j, such an upper bound is the length of the

path shown in green. The green path has the same length as the blue path except for

the vector starting at b(i)
hl
. The angle of the section from b

(i)
hl

to S(i)
j is the same as that

of Sh′
l
to S(i)

j and this angle is controlled by the event Ec
n so it has angle of size smaller
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than (j − hl)−1/2+δ. The difference in vertical position between S
(i)
j and bj, γ in the

figure, is less than that between S
(i)
j and Sj, because S(i)

j is inside the hull, which is

precisely ∆ from before. Note that both γ > 0 and ∆ > 0. These facts mean we can

compute a similar bound as we used in calculating the change in length in (6.2.6),

Mn −M (i)
n ≤

√
z2 + (y + γ)2 −

√
z2 + y2

≤
√
z2 + (|y|+ ∆)2 −

√
z2 + y2

≤ |y|∆√
z2 + y2 +O

(
1√

z2 + y2

)

≤ (i− hl)−1/2+δ +O
(
(i− h′l)−1

)
≤ (i− hl)−1/2+2δ,

for all n large enough. Similar arguments hold for the two cases where Z ′i · (0, 1) <

Zi · (0, 1).

Proof of Theorem 6.2.6. Take ε > 0, then separating (6.2.2) into two parts, we get

VarMn ≤
1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi ≤ nε}
)

+ 1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi > nε}
)
.

(6.2.7)

Further to this, we will need the Azuma–Hoeffding formula to apply within a long face,

so we will split the sum of the elements in the long faces into those elements “in the

middle” of the faces and those near the ends as follows.

VarMn ≤
1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi ≤ nε}
)

+ 1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi > nε}1{|i− hl| ∧ |hr − i| ≤ xεi}
)

+ 1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi > nε}1{|i− hl| ∧ |hr − i| > xεi}
)
. (6.2.8)

For the next part, we consider just the first two terms. Note Lemma 3.1 of [WX15a]

with Cauchy’s formula gives that (Mn−M (i)
n )2 ≤ 2π‖Zi‖+ 2π‖Z ′i‖. If we then use the

assumption P(‖Z‖ < C) = 1 then we choose C0 such that 4π‖Z‖ ≤ C0 a.s., then

1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi ≤ nε}
)
≤ 1

2 E
n∑
i=1

(C01{xi ≤ nε}) (6.2.9)
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= C1 E
nε∑
x=1

F+
n∑

j=1
1{‖e+

j · µ̂‖ = x}x

≤ C1n
ε E

nε∑
x=1

F+
n∑

j=1
1{‖e+

j · µ̂‖ = x}

≤ C1n
ε EF+

n

≤ C2n
ε log n (6.2.10)

where the final inequality uses Sparre Andersen’s [SA54] result EF+
n = 1 + ∑n−1

i=1 (i +

1)−1 which we have bounded by (C2/C1) log n for some large enough C2. Since ε was

arbitrary we have, for any ε > 0

lim
n→∞

n−ε
(

1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi ≤ nε}
))

= 0. (6.2.11)

We can use the same method of bounding the squared difference in perimeter length

by a constant and reindexing for the second term in (6.2.8). This time we get

1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi > nε}1{|i− hl| ∧ |hr − i| ≤ xεi}
)

≤ C1 E
F+
n∑

j=1

n∑
x=nε

(
2
xε∑
i=1

1{‖e+
j · µ̂‖ = x}

)

≤ C3n
ε EF+

n

≤ C4n
ε log n, (6.2.12)

and again, since ε was arbitrary we have, for any ε > 0

lim
n→∞

n−ε
(

1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi > nε}1{|i− hl| ∧ |hr − i| ≤ xεi}
))

= 0.

(6.2.13)

Now we consider the third term of (6.2.8). We begin by adding a further condition to

this term, the event En described at (6.2.3),

1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi > nε}1{|i− hl| ∧ |hr − i| > xεi}
)

≤ exp(−c0n
ε′)

n∑
i=1

E
(
(Mn −M (i)

n )21{En}1{xi > nε}1{|i− hl| ∧ |hr − i| > xεi}
)

+
n∑
i=1

E
(
(Mn −M (i)

n )21{Ec
n}1{xi > nε}1{|i− hl| ∧ |hr − i| > xεi}

)
.
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Again using the assumption (Mn−M (i)
n )2 ≤ C0 as at (6.2.9) we can simplify further to

1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{xi > nε}1{|i− hl| ∧ |hr − i| > xεi}
)

≤ C0n exp(−c0n
ε′)

+ 1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{Ec
n}1{xi > nε}1{|i− hl| ∧ |hr − i| > xεi}

)
. (6.2.14)

Then, focusing on the second term in (6.2.14), we can apply Lemma 6.2.10. Choosing

δ ∈ (0, ε/4) we get

1
2

n∑
i=1

E
(
(Mn −M (i)

n )21{Ec
n}1{xi > nε}1{|i− hl| ∧ |hr − i| > xεi}

)

≤ 1
2 E

n∑
x=nε

F+
n∑

j=1

∑
xε≤k≤x−xε

k−1+4δ1{‖e+
j · µ̂‖ = x}

≤ C E
n∑

x=nε

F+
n∑

j=1
x4δ1{‖e+

j · µ̂‖ = x} (6.2.15)

≤ Cn4δ EF+
n ≤ nε. (6.2.16)

Using the bounds (6.2.10), (6.2.12), (6.2.14) and (6.2.16) we see that

VarMn ≤ C ′nε,

for some large enough C ′. By symmetry we also have VarM−
n ≤ C ′nε where M−

n is

the length of the convex minorant. Then by the Cauchy–Schwarz inequality

VarLn ≤ 2VarMn + 2VarM−
n ≤ 4C ′nε,

and since ε was arbitrary, the result follows.

6.3 Application of results to our examples

Our first simulation for this chapter demonstrates the convergence of the difference

between the diameter and ‖µ‖n to a squared Normal distribution as described in The-

orem 6.1.1. Figure 6.4 shows the empirical distribution of the the difference between

the diameter and ‖µ‖n for the random walk with drift and no variance in the first

coordinate, unit mean, in the darker bars, whilst the lighter bars demonstrate what
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the limiting distribution looks like – these bars are in fact the empirical distribution of

10, 000 simulated values of a Normal distribution transformed appropriately.

As with in previous chapters, we can compare these distributions with a simplified

version of the Kolmogorov-Smirnov distance. Here, we are considering the range [0, 4]

and so this time our measurement of difference between the distributions is

ρkK−S(Ftest, F ) = sup
0≤i≤k

|P(Ftest ≤ 4i/k)− F (4i/k)|.

Again we use k = 80 to match the binning in the bar charts, and will take F =

σ2
µ⊥
ζ2/2‖µ‖, the limiting distribution of Theorem 6.1.1. If we take Demp as the empiri-

cal cumulative distribution of Dn−‖µ‖n, then we get ρ80
K−S(Demp, F ) = 0.0085 showing

strong evidence of the convergence stated in the theorem.
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Figure 6.4: The empirical distribution of Dn − ‖µ‖n for our random walk with drift
and no variance in the first coordinate, unit mean plotted in the darker bars with the
limiting distribution from Theorem 6.1.1 shown by the lighter bars for comparison.

We then demonstrate the claim in Remark 6.1.2 that the generalisation of considering

the difference between the diameter and Sn · µ̂ does not always follow the squared

Normal distribution. First, in Figure 6.5, we have the empirical distribution of Dn−Sn ·

µ̂ for our random walk with drift and all coordinates Normally distributed, unit mean.
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Here, the simulation distribution is less concentrated near 0, and our Kolmogorov-

Smirnov statistic with Demp as the empirical cumulative distribution of Dn − Sn is

ρ80
K−S(Demp, F ) = 0.1734 which suggests the limiting distribution is not the same as in

Theorem 6.1.1. Before speculating on why this is, we consider a further walk outside

of our usual set of examples.
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Figure 6.5: The empirical distribution of Dn − Sn · µ̂ for our random walk with Nor-
mal drift, unit mean plotted in the darker bars with the limiting distribution from
Theorem 6.1.1 shown by the lighter bars for comparison.

Here, in Figure 6.6, we will consider the walk where the increments are fixed unit

jumps in the horizontal direction added to a jump on the unit disc, thus Z = (1, 0) +

eθ where we recall eθ is the unit vector in direction θ which is chosen uniformly,

θ ∼ U [−π, π]. Here we see the empirical distribution is much closer to that of the

limiting distribution and this is supported by the now familiar Kolmogorov-Smirnov

statistic ρ80
K−S(Demp, F ) = 0.0049 where we have used Demp to represent the empirical

cumulative distribution of Dn − Sn · µ̂ for this random walk.

Recalling that our walks, without loss of generality, have mean (1, 0), so we can talk

about the walk going to the right as the direction of the mean. One suggestion as

to why the distributions look as they do, is that the Normal distribution increments
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have positive probability of jumping to the left of the origin which are likely to add

to the diameter but won’t add to Sn · µ̂ which, by the law of large numbers will be

approximately ‖µ‖n. Our second example, has variance in the direction of the mean

but still, with probability 1, has increments which jump to the right. This can be

summarized by the following conjecture.

Conjecture 6.3.1. Suppose that E(‖Z‖p) <∞ for some p > 2, µ 6= 0, and P(Z · µ̂ >

0) = 1. Then,

Dn − Sn · µ̂
d−→

σ2
µ⊥
ζ2

2‖µ‖ .
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Figure 6.6: The empirical distribution of Dn−Sn · µ̂ for a random walk with increments
comprising of (1, 0) + eθ plotted in the darker bars with the limiting distribution from
Theorem 6.1.1 shown by the lighter bars for comparison.



Chapter 7

Open problems and further

extensions

There are many ways in which these results and the work herein can be extended in-

cluding generalizing the results by removing assumptions where possible, generalizing

results to higher dimensions, or using further functionals to establish more information

about the convex hulls of random walks. In this chapter we will briefly mention a

few of these possibilities, state what is known in the literature where relevant, make

some conjectures about further possible results, and provide some pictures which give

evidence supporting some of the conjectures. We note, and do not repeat, the conjec-

tures in Chapter 6 which were the result of Remark 6.1.2 and the motivation for the

perimeter length section and thus better stated there.

7.1 Extending central limit theorems to trajectory

convergence

In Chapter 3, we used the random walk’s central limit theorem in establishing conver-

gence of the random walk trajectories to Brownian motion. On the face of it, we may

consider trying to perform the same calculation for the central limit theorems for the

perimeter length and diameter in the case with drift, Corollary 5.0.2 and Theorem 1.2

of [WX15a].

154
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Particularly suggestive are Theorem 5.1.1 and Theorem 1.3 of [WX15a], see (1.1.4),

which show that the centralised and rescaled diameter and perimeter length respectively

converge in L2 to the random walk when centralised and projected in the direction

of the mean. This walk is a one-dimensional random walk satisfying the conditions

of Theorem 3.1.5, and so the associated trajectory converges to Brownian motion.

Unfortunately the L2 convergence is not enough to give convergence of the diameter

or perimeter length processes. However, if the L2 convergence statements could be

strengthened to convergence in probability of maxima, then Slutsky’s theorem in the

context of weak convergence, Theorem 1.3.13, would indeed tell us that the diameter

and perimeter length processes converge to Brownian motion.

7.2 Removing variance assumptions

Throughout, we refer to our condition that the second moment of the increment distri-

bution is finite, E[‖Z‖2] <∞. Whilst this is the case for a wide class of commonly used

distributions, the theory can be extended to include other increment distributions.

Consider an increment distribution with heavy tails, for example the Pareto distribution

where P(‖Z‖ > t) = c · t−α for t > 1, α > 0 and some constant c. Here, if α < 2

then E[‖Z‖2] = ∞. Therefore, our usual scaling limit of the Normal distribution or

trajectory limit of Brownian motion will not pass over to this case.

However, there is much literature concerning such a distribution and it is known that a

different scaling limit exists, namely the class of stable distributions. Amongst others,

see [GK54; ST94; Nol15; Whi02; Pre72].

In particular, it should be noted that, whilst we do not delve into these broader classes

of random walks, we have made use of the Skorokhod space and metric. This is

important because it is the space in which discontinuities can be reasonably accounted

for, and therefore a lot of the theory in Chapter 3 will be relevant if this wider view

is to be considered. This is highlighted by Figure 7.1 which shows a trajectory with

EZ = 0 but EZ2 =∞, with 105 steps with the colour changing every 104 steps to help

determine the path of the walk. It is notable that there are several larger increments,

shown by long straight lines, which could be thought of as the discontinuities in the
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process (true discontinuities are not possible to see in a finite simulation as picture

here).

Figure 7.1: A random walk with zero drift with increments following a 2-dimensional
version of the Pareto distribution.

7.3 Brownian motion functionals

In Chapter 3, we studied the diameter of planar Brownian motion run for unit time

and noted that the expected diameter is still unknown. In order to get a better idea

about this problem there are several further questions which could be of interest in

their own right.

First, let d2(t) be the diameter of b2(t). Then we are interested in E d2(1) = t−1/2 E d2(1)

by Brownian scaling, but what does d2(t) look like as a process in itself? For which

set of t does d2(t) = d2(1)? For this second question, considering t ∈ [0, 1], one may be

tempted to suggest that the process follows the arcsine law, however this seems to be

incorrect. In one dimension, we have that both the time at which the minimum and

maximum of Brownian motion are attained follow the arcsine law, however this is not

a statement about the two times as a joint distribution. And in fact, if one is attained
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near the start of the process, it seems likely that the other will be attained near the

end. Can we formalize this idea and find the exact distribution for the maximum of

the two times?

Further to this question regarding the diameter, one could also ask more detailed

questions about the convex hull of Brownian motion. For example, we know quite a

lot of information about the perimeter length, but can we say something about the

number of edges which contribute to the perimeter length? A clearer but equivalent

set of questions are: what is the distribution of the length of the longest face, second

longest face, and so on?

Although there are a lot of open questions in this area, the book of Borodin and

Salmonin [BS02] is an extremely useful resource for finding all manners of distributions

and theory related to Brownian motion.

7.4 Higher dimension extensions

Much of the work contained in this thesis is generalised to so-called d-dimensions,

however there remains some results relating only to 2-dimensions.

The shape theorem, Theorem 4.2.1, in Chapter 4 could be generalised by considering

convergence to (d− 1)-dimensional shapes. In turn this would enable a generalisation

of Corollary 4.1.3 by considering the ratio of the (d− 1)-dimensional surface area and

the diameter, which would have limiting objects of the unit vector with ratio 0, and

the unit ball with ratio πd/2/2d−2Γ(d/2) where Γ is the Euler gamma function, see for

example [Som58, p. 136].

The martingale difference method does not seem to be specific to planar random walks,

and in Chapter 5, when we are considering the diameter functional, the whole method

seems to be easily generalised. The usual considerations of how to generalise other

functionals applies but for the diameter at least, there is no issue.

Finally, it also appears likely that with care, one could extend the results of Section 6.1

pertaining to the diameter in the case σ2
µ = 0 to higher dimensions. It seems reasonable

to suggest the diameter is still determined by a point near the start of the walk and a
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point near the end of the walk, and with some work the technical lemmas could also

be extended by taking d-dimensional norms instead of the fixed dimensional norms

applied so far.

7.5 Other shape properties of random walks

The aim of this work was to improve the understanding of the shape and size of convex

hulls of random walk for processes that have run for a long time. This may not always

be the most appropriate feature of a process to study depending on the application. We

conclude by mentioning two further properties of random walks which could provide

further insight into the walks.

For walks in a discrete setting, it might be more interesting to simply consider how

many different points are visited. This would give some crude information on the

size of the walk, and maybe some information about the shape could be derived too.

The functional described here has already been studied and is called the range of the

random walk. For references see [DE51; Spi76; JO68; JP70a; JP70b; JP71; JP72b;

JP72a; JP74; Fla76], and the introduction of [JP72b] provides a nice discussion of the

contribution of some of these papers.

In a similar vein, one could consider the area enclosed by a random walk. Considering

a walk in R2, this is defined as the set of points for which there is no line to infinity

that does not intersect the trajectory of the walk. Informally, consider this as the sum

of the areas of the polygons created when the trajectory intersects itself. It is a simple

exercise to see that this set is a subset of the convex hull of the random walk, but it

would be interesting to consider how much smaller this set is. Some simple examples,

such as our time-space processes, have trivial solutions. In this case, no subset of R2 is

enclosed by these walks because the trajectories are non-self-intersecting and so they

never form polygons which could add to the area enclosed. What about walks with zero

drift? In this case, is it reasonable to expect the area enclosed by the walk to converge

to that of the convex hull under an appropriate scaling? The only reference known

to the author studying this process is [Ham56], however, many papers in the natural

sciences consider a slightly different process which they also term the area enclosed,
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see for example [MN98].
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Appendix A

Functional limit theory

For the proofs in this section1 we will the the extra notation for the canonical projection

at time t ∈ [0, 1], πt : Md → Rd, defined as πtf = f(t) for f ∈ Md. We start by

describing some extra background theory relating to the metric space.

A.1 The space of trajectories - extra theory

A.1.1 The Skorokhod metric

We start by providing the motivation behind the Skorokhod metric, and then provide

some technical results related to this metric which are required in some proofs. First,

consider the following example.

Example A.1.1. Consider the following three functions,

1Based on work in [LMW18] which is the generalisation of [Bil99] to higher dimensions.
Lemma A.1.3, the Portmanteau theorem and generalisation of Etemadi’s inequality were written
by the first and third authors, whilst the rest of the work was all a joint collaboration.
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f(t) =


1 for t ∈ [0, 1/2);

0 for t ∈ [1/2, 1];

g(t) =


0.8 for t ∈ [0, 1/2);

0.2 for t ∈ [1/2, 1];

h(t) =


0.95 for t ∈ [0, 0.49);

0.05 for t ∈ [0.49, 1].
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Taking an overview of the plot, it seems reasonable to suggest that the blue function,

h(t), is ‘closer’ to the light-green function, f(t), than the red function, g(t), is to

the light-green function. However, if we consider the supremum metric, we find that

ρ∞(f, h) = 0.95 whilst ρ∞(f, g) = 0.2. This is due to the slightly earlier jump at

t = 0.49 for h, which, for a small interval of t, takes the function to the larger Euclidean

distance of 0.95 from f . So for processes with jumps, we may wish to consider a different

measure of distance.

As formally defined at (1.3.4), the metric we have used is the Skorokhod metric which

we can also describe as follows.

For f and g inMd, define ρS(f, g) to be the infimum of those positive ε for which there

exists in Λ a λ satisfying

sup
0≤t≤1

|λ(t)− t| = sup
0≤t≤1

|t− λ−1(t)| < ε (A.1.1)

and

sup
0≤t≤1

‖f(t)− g(λ(t))‖ = sup
0≤t≤1

‖f(λ−1(t))− g(t)‖ < ε. (A.1.2)

Applying this to the example above we see the difference in the metrics.

Example A.1.2. Consider the functions f(t), g(t) and h(t) from Example A.1.1. The

distance ρS(f, g) = 0.2 because there is no perturbation of the time which would

decrease the Euclidean distance between f and g. However, when we consider f and

h, we could define

λ(t) :=


49
50t for t ∈ [0, 1/2)

51
50t−

1
50 for t ∈ [1/2, 1].
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It turns out that this λ is optimal giving ρS(f, h) = 0.05 because equation (A.1.1) gives

us a lower bound of ε = 0.01 attained when t = 0.5 and λ(t) = 0.49, and equation

(A.1.2) gives the lower bound of ε = 0.05, which is attained at any t ∈ [0, 1].

So this is why we have the Skorokhod metric, and as we have described just after

(1.3.4), another metric, the Kolmogorov-Billingsley metric, is equivalent to the Sko-

rokhod metric in the sense of Proposition 3.1.1. This metric is useful in some of our

proofs but we will require the following technical observation about ‖λ‖◦.

Lemma A.1.3. Let λ ∈ Λ. Define c(λ) := max{e‖λ‖◦ − 1, 1− e−‖λ‖◦}. Then we have

|λ(t)− t| ≤ tc(λ), for all t ∈ [0, 1]; (A.1.3)

and

|λ′(t)− 1| ≤ c(λ), almost everywhere on t ∈ (0, 1). (A.1.4)

Proof. From the definition of ‖λ‖◦, we have that for any t ∈ [0, 1) and h > 0 sufficiently

small,

log
∣∣∣∣∣λ(t+ h)− λ(t)

h

∣∣∣∣∣ ≤ ‖λ‖◦
so that

e−‖λ‖◦ ≤ λ(t+ h)− λ(t)
h

≤ e‖λ‖◦ . (A.1.5)

By Lebesgue’s theorem on the differentiability of monotone functions, see [KF12,

p. 321], λ′(t) exists almost everywhere on t ∈ (0, 1), and when it does exist, we have

from (A.1.5) that

e−‖λ‖◦ ≤ λ′(t) ≤ e‖λ‖◦ .

Hence we see that (A.1.4) holds as required. For the first assertion, since λ(0) = 0,

another application of the definition of ‖λ‖◦ shows that log |λ(t)/t| ≤ ‖λ‖◦ for all

t ∈ (0, 1), so that |λ(t)| ≤ te‖λ‖◦ , hence

te−‖λ‖◦ ≤ λ(t) ≤ te‖λ‖◦ , for all t ∈ [0, 1].

It follows that

−t
(
1− e−‖λ‖◦

)
≤ λ(t)− t ≤ t

(
e‖λ‖◦ − 1

)
,

and so we get (A.1.3) as required. Hence we completed the proof.
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Another reason we may wish to consider the Kolmogorov-Billingsley metric, ρ◦S, is that

it has the advantage that it provides a metric with which the space Dd is a complete

metric space.

Theorem A.1.4. The space Cd is separable and complete under ρ∞.

Theorem A.1.5. The space Dd is separable under ρS and ρ◦S, and complete under ρ◦S.

The one-dimensional case of Theorem A.1.4 is discussed at [Bil99, p. 11]. The sep-

arability extends to higher dimensions by, for example [Fre03, §4A2Q]. This result

also implies that there exists some measure for which the space is complete, and it is

a simple exercise to see that every one-dimensional projection of a Cauchy sequence

under ρ∞ in d-dimensions is also a Cauchy sequence and therefore has a limit in the

product space.

As mentioned above, the one-dimensional case of Theorem A.1.5 was proven by Kol-

mogorov in [Kol56], but is also discussed at [Bil99, Theorem 12.2]. The separability

for higher dimensions extends as in the continuous case, using [Fre03, §4A2Q] and

the completeness of the space under the measure ρ◦S also follows with a similar simple

calculation.

A.1.2 Modulus of continuity

As well as the extra metric, we need to consider another way of comparing continuity

of trajectories, in particular when they have discontinuities. First of all, for f ∈ Cd,

the associated modulus of continuity is defined by

wf (δ) := sup
|s−t|<δ

‖f(s)− f(t)‖, for 0 < δ ≤ 1.

In Dd, the analogous concept is a little more involved (see [Bil99, p. 122]). A set

{ti : 0 ≤ i ≤ v} which has 0 = t0 < t1 < · · · < tv = 1 is called δ-sparse if it also satisfies

min1≤i≤v(ti − ti−1) > δ. Then define, for 0 < δ ≤ 1,

w′f (δ) := inf
{ti}

max
1≤i≤v

sup
t,s∈[ti−1,ti)

‖f(t)− f(s)‖, (A.1.6)

where the infimum extends over all δ-sparse sets {ti}.
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A.2 Functional laws of large numbers proofs

A.2.1 Almost-sure convergence and the strong law

We first provide a proof of the almost-sure mapping theorem, Theorem 3.1.4.

Proof. For any ω such that h is continuous at X(ω), Xn(ω) → X(ω) implies that

h(Xn(ω))→ h(X(ω)). Then

P({ω ∈ Ω : ρ′(h(Xn(ω)), h(X(ω)))→ 0 as n→∞})

≥ P({ω ∈ Ω : h is continuous at X(ω)})

= P(X ∈ Dc
h) = 1,

so that h(Xn) a.s.−→ h(X).

A.2.2 The functional law of large numbers

Next we provide a proof of the functional law of large numbers. Theorem 3.1.2 is

apparently stronger than Theorem 1.3.14 since convergence in the ρ∞ metric implies

convergence of the endpoints Xn(1) = n−1Sn
a.s.−→ µ = Iµ(1) and X ′n(1) = n−1Sn

a.s.−→

µ = Iµ(1). However, we will see that Theorem 3.1.2 is in fact just a recasting of

Theorem 1.3.14, so the two results are equivalent. See, for example, [Whi02, p. 26] for

a reference.

Proof of Theorem 3.1.2. Let ε > 0. By Theorem 1.3.14, there exists Nε with P(Nε <

∞) = 1 such that, for all n ≥ Nε, ‖n−1Sn − µ‖ ≤ ε. Then

sup
Nε/n≤t≤1

‖X ′n(t)− µt‖ ≤ sup
Nε/n≤t≤1

∥∥∥∥∥X ′n(t)− bntc
n

µ

∥∥∥∥∥+ sup
Nε/n≤t≤1

∥∥∥∥∥bntcn µ− tµ
∥∥∥∥∥

≤ sup
Nε/n≤t≤1

(
bntc
n

)∥∥∥∥∥Sbntcbntc
− µ

∥∥∥∥∥+ sup
0≤t≤1

∣∣∣∣∣bntcn − t
∣∣∣∣∣ ‖µ‖

≤ ε+ ‖µ‖
n
. (A.2.1)

On the other hand,

sup
0≤t≤Nε/n

‖X ′n(t)− µt‖ ≤ 1
n

max
0≤k≤Nε

‖Sk‖+ Nε‖µ‖
n

a.s.−→ 0 as n→∞, (A.2.2)
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since P(Nε <∞) = 1. Thus combining (A.2.1) and (A.2.2) we obtain

lim sup
n→∞

sup
0≤t≤1

‖X ′n(t)− µt‖ ≤ ε,

and since ε > 0 was arbitrary, we get ρ∞(X ′n, Iµ) a.s.−→ 0, proving part (b).

Let X ′′n(t) = Sbntc+1. A similar argument to that above shows that, for n ≥ 1,

sup
Nε/n≤t≤1

‖X ′′n(t)− µt‖ ≤ sup
Nε/n≤t≤1

(
bntc+ 1

n

)∥∥∥∥∥ Sbntc+1

bntc+ 1 − µ
∥∥∥∥∥+ sup

0≤t≤1

∣∣∣∣∣bntc+ 1
n

− t
∣∣∣∣∣ ‖µ‖

≤ 2ε+ ‖µ‖
n
,

and

sup
0≤t≤Nε/n

‖X ′′n(t)− µt‖ ≤ 1
n

max
0≤k≤Nε+1

‖Sk‖+ Nε‖µ‖
n

a.s.−→ 0 as n→∞.

It follows that ρ∞(X ′′n(t), Iµ) a.s.−→ 0 as well. Let αn(t) = nt − bntc; note that αn(t) ∈

[0, 1) for all n ≥ 1 and all t ∈ [0, 1]. Then

Xn(t) = X ′n(t) + n−1αn(t)ξbntc+1 = (1− αn(t))X ′n(t) + αn(t)X ′′n(t),

so that

ρ∞(Xn, Iµ) = sup
0≤t≤1

‖(1− αn(t))(X ′n(t)− Iµ(t)) + αn(t)(X ′′n(t)− Iµ(t))‖

≤ sup
0≤t≤1

|1− αn(t)|‖X ′n(t)− Iµ(t)‖+ sup
0≤t≤1

|αn(t)|‖X ′′n(t)− Iµ(t)‖

≤ ρ∞(X ′n, Iµ) + ρ∞(X ′′n, Iµ),

which tends to 0 a.s., establishing part (a).

A.3 Functional central limit theorems

The final section is dedicated to proving the functional central limit theorem, Theo-

rem 3.1.5, both in the space of continuous and discontinuous trajectories. This result

in the one-dimensional case was proved by Donsker in 1951 [Don51]. We point the

reader to [EK09, §5] for a comprehensive discussion of both d-dimensional Brownian

motion and the steps leading to this result.
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A.3.1 Proof overviews and a motivating example

In order to prove both the mappping theorem and Donsker’s theorem, we will need

to delve further into weak convergence theory. First, in Section A.3.2 we will present

different characterisations of weak convergence and note Slutsky’s theorem in this con-

text, all of which will be necessary for the proofs. Then we will present the proof of

the mapping theorem.

For the proof of Donsker’s theorem, it could be suggested that a sufficient method would

be to take some finite number of points on the trajectory, and see if the distribution of

their location converges to the equivalent distribution for such points on a Brownian

path. We now demonstrate why this will not be sufficient.

First, for t ∈ [0, 1] and f ∈ Md, recall the projection πt : Md → Rd is denoted

πtf := f(t). More generally, for k ∈ N and t1, t2, . . . , tk ∈ [0, 1], we define πt1,t2,...,tk :

Md → (Rd)k by

πt1,...,tkf := (f(t1), . . . , f(tk)).

We say the finite-dimensional distributions of a function converge if we have the fol-

lowing,

(FDD) (i) If X,X1, X2, . . . is a sequence in Cd then, for all ti ∈ [0, 1],

πt1,t2,...,tkXn = (Xn(t1), Xn(t2), . . . , Xn(tk))

⇒ (X(t1), X(t2), . . . , X(tk)) = πt1,t2,...,tkX,

where the convergence is on (Rd)k.

(ii) If X,X1, X2, . . . is a sequence in Dd then,

πt1,t2,...,tkXn = (Xn(t1), Xn(t2), . . . , Xn(tk))

⇒ (X(t1), X(t2), . . . , X(tk)) = πt1,t2,...,tkX,

where the convergence is on (Rd)k and holds for all (t1, t2, . . . , tk) such that

each πti is continuous.

Note that, in both cases, the weak convergence on (Rd)k is convergence in distri-

bution.
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Noting that ‖πtf − πtg‖ ≤ ‖f − g‖∞ and so ‖πt1,t2,...,tkf − πt1,t2,...,tkg‖ ≤
√
k‖f − g‖∞,

it follows that the projection is a continuous function from (Cd, ρ∞) to (Rd, ρE), hence

it is a direct consequence of the mapping theorem, Theorem 3.1.6, that, if Xn ⇒ X on

Cd, then the finite-dimensional distributions also converge. Unfortunately, the reverse

is not necessarily true; there exist sequences of probability measures whose finite-

dimensional distributions converge weakly, though the measures themselves do not.

Example A.3.1. Consider the following functions, with examples z3 plotted in blue,

z4 plotted in light-green and z10 plotted in red;

zn(t) =



nt for t ∈ [0, 1/n);

2− nt for t ∈ [1/n, 2/n);

0 for t ≥ 2/n.
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If we set Pn = δzn , the point mass at the function zn, and P = δ0, then as soon as

ti ≥ 2n−1 for all i, πt1,...,tkzn = (0, . . . , 0) = πt1,...,tk0, so weak convergence of finite-

dimensional distributions holds; but, since ρ∞(zn, 0) = 1 for all n, zn 9 0 so Pn ; P ;

we do not have weak convergence.

Based on this example, it is clear that we need a further condition on the family {Pn}.

For trajectories in Cd0 it happens that such a sufficient condition is relative compactness,

but it is hard to directly prove that a family of measures is relatively compact. However,

Prokhorov’s theorem tells us that tightness implies relative compactness, so we can

work with tightness. Finally, we will use a couple of probability bounds on the running

maximum of the trajectory to prove the tightness in Cd0 . We complete the proof by

showing the finite-dimensional distributions do in fact converge in this case.

Of course, the results for continuous trajectories are only enough to prove part (a) of

Theorem 3.1.5. For part (b), we will show that tightness is still a sufficient condition to

ensure the finite-dimensional limit is in fact the weak limit of the family of measures.
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Then we note some relevant changes to the conditions for tightness which we will prove

are satisfied in Dd0. Finally, we show the finite-dimensional distribution convergence

enabling us to conclude the weak convergence statement of Theorem 3.1.5 part (b).

Remark A.3.2. It suffices to prove Donsker’s theorem for the case Σ = Id. To see

this, consider the walk defined at (Wµ) with µ = 0, for which (V) holds with some

arbitrary Σ. Assuming σ2 > 0, if any of the eigenvalues of Σ are zero, then the walk is

not truly d-dimensional and can be mapped to a walk with smaller dimension such that

the covariance matrix for this walk is positive definite, see for example [LL10, p. 4].

Any results where this is the case, would of course then relate to weak convergence

to the Brownian path in the lower dimension contained on the hypersurface, and this

statement can be mapped back to the original space. Hence, it suffices to assume Σ is

positive definite. Indeed, if Σ is positive definite, then the (unique) symmetric square-

root Σ1/2 is also positive definite, and Σ1/2 has inverse Σ−1/2. Then set ζ := Σ−1/2ξ,

and let ζi = Σ−1/2ξi for i ∈ N. By linearity of expectation, E ζ = Σ−1/2 E ξ = 0 and

E[ζζ>] = E[Σ−1/2ξξ>Σ−1/2] = Σ−1/2 E[ξξ>]Σ−1/2 = Id.

Let S̃n := ∑n
i=1 ζi be the random walk associated with ζ. Then S̃n = Σ−1/2Sn, and S̃n

satisfies (Wµ) and (V) with µ = 0 and Σ = Id. The analogue of Y ′n for S̃n is

Ỹ ′n(t) = n−1/2S̃bntc = Σ−1/2Y ′n(t),

so Y ′n = Σ1/2Ỹ ′n. The case of Theorem 3.1.5(b) where Σ = Id yields Ỹ ′n ⇒ bd. Since

x 7→ Σ1/2x is continuous, the mapping theorem, Theorem 3.1.6, shows that Y ′n =

Σ1/2Ỹ ′n ⇒ Σ1/2bd, which is the conclusion of Theorem 3.1.5(b) in the general case. A

similar argument holds for Theorem 3.1.5(a). Thus we can conclude that Donsker’s

theorem holds for general Σ following from the special case where Σ = Id.

A.3.2 Some weak convergence theory

First we note the notion of convergence in distribution for random variables on Rd.

Given a random variable X taking values in Rd, we write X = (X1, . . . , Xd)> in com-

ponents. The distribution function F of X is defined for t = (t1, . . . , td)> ∈ Rd by

F (t) := P(X1 ≤ t1, . . . , Xd ≤ td).
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Definition A.3.3. LetX,X1, X2, . . . be a sequence of Rd-valued random variables with

corresponding distribution functions F, F1, F2, . . .. Then we say that Xn converges in

distribution to X, and write Xn
d−→ X, if limn→∞ Fn(t) = F (t) for all continuity points

t of F .

We also state a theorem of Pólya, see for example [Leh99, Theorem 2.6.1], which will

allow us to take the convergence in the central limit theorem, Theorem 1.3.15, to be

uniform convergence.

Theorem A.3.4. Let F1, F2, . . . be a sequence of cumulative distribution functions such

that Fn d−→ F . If F is continuous, then Fn(x) converges to F (x) uniformly in x.

The Portmanteau theorem (see e.g. [Bil99, Theorem 2.1]) gives several different charac-

terisations of weak convergence. We only state them in terms of probability measures,

but throughout consider random variables Xn to be endowed with the respective mea-

sure Pn, and hence statements like (ii) could be written as convergence of expectations

of the respective random variables, notation we will use later.

Theorem A.3.5 (Portmanteau theorem). Let P, P1, P2, . . . be probability measures on

metric measure space (S,S, ρ). The following statements are equivalent.

(i) Pn ⇒ P .

(ii)
∫
S fdPn →

∫
S fdP for all bounded, uniformly continuous f .

(iii) lim supn→∞ Pn(F ) ≤ P (F ) for all closed sets F .

(iv) lim infn→∞ Pn(G) ≥ P (G) for all open sets G.

(v) limn→∞ Pn(A) = P (A) for all A such that P (∂A) = 0.

Proof. First, note that (i) implies (ii) by definition.

Next we show that (ii) implies (iii). Let F be a closed set, let ε > 0 and recall 1A is

the indicator function of the set A. Take f defined by f(x) = (1 − ε−1ρ(x, F ))+, so

f(x) = 1 for x ∈ F and f(x) = 0 for x /∈ F ε, which gives 1F (x) ≤ f(x) ≤ 1F ε(x).
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Thus f is bounded. A simple calculation also shows |f(x)− f(y)| ≤ ε−1ρ(x, y), so f is

also uniformly continuous. Then,

lim sup
n→∞

Pn(F ) = lim sup
n→∞

∫
1FdPn ≤ lim sup

n→∞

∫
fdPn.

So by (ii) we get

lim sup
n→∞

Pn(F ) ≤
∫
fdP ≤

∫
1F εdP = P (F ε).

Take ε = 1/k. Since F is closed, F = ∩k∈NF 1/k. Then continuity along monotone

limits shows that P (F 1/k) ↓ P (F ) as k →∞, and we obtain (iii).

Next, observe that (iii) is equivalent to (iv) by complementation.

We next show that (iii) and (iv) together imply (v). Indeed,

P (clA) ≥ lim sup
n→∞

Pn(clA) ≥ lim sup
n→∞

Pn(A)

≥ lim inf
n→∞

Pn(A) ≥ lim inf
n→∞

Pn(intA) ≥ P (intA).

If P (∂A) = 0, then the extreme terms have the same value, and we obtain (v).

Finally, we show that (v) implies (i). Take f bounded and continuous; assume without

loss of generality that 0 < f(x) < 1 for all x. Let t ≥ 0. Note that {x ∈ S : f(x) >

t}c = {x ∈ S : f(x) ≤ t}, and, since f is continuous, cl{x ∈ S : f(x) > t} ⊆ {x ∈ S :

f(x) ≥ t}. Hence

∂{x ∈ S : f(x) > t} ⊆ {x ∈ S : f(x) = t}.

Here we have that P ({x ∈ S : f(x) = t}) = 0 except for countably many t. To see

this, consider {t : P ({x ∈ S : f(x) = t}) ∈ (1/(n + 1), 1/n]} for each n ∈ N. The

number of elements in each of these sets must be finite, or the law of total probability

is contradicted, and thus we can label the set of t starting with those in the set with

n = 1, then n = 2, and so on, hence there are only countably many of such t.

Using the short-hand {f > t} = {x ∈ S : f(x) > t}, we have by Fubini’s theorem that
∫
S
fdPn =

∫
S

∫ 1

0
1{f>t}dtdPn =

∫ 1

0

∫
S

1{f>t}dPndt =
∫ 1

0
Pn({f > t})dt,



A.3. Functional central limit theorems 188

and then by (v) and the bounded convergence theorem, we obtain
∫
S
fdPn =

∫ 1

0
Pn({f > t})dt→

∫ 1

0
P ({f > t})dt =

∫
S
fdP,

which completes the proof.

Another useful consequence of the Portmanteau theorem is the following characterisa-

tion of weak convergence [Bil99, Theorem 2.6], which we do state in terms of random

variables.

Theorem A.3.6. Xn ⇒ X if and only if every subsequence {Xni} contains a further

subsequence converging weakly to X.

Proof. The ‘only if’ part is easy: if Xn ⇒ X, then for any bounded, continuous f we

have E f(Xn) =
∫
fdPn →

∫
fdP = E f(X), and then by properties of convergence of

real numbers we have that any subsequence of E f(Xni) =
∫
fdPni also converges to∫

fdP = E f(X), i.e., Xni ⇒ X.

For the ‘if’ part, we prove the contrapositive. Suppose that Xn ; X, then E f(Xn) =∫
fdPn 6→

∫
fdP = E f(X) for some bounded, continuous f . We then have that for

some subsequence ni of N and some ε > 0, |E f(Xni)−E f(X)| = |
∫
fdPni−

∫
fdP | > ε

for all i, so that Xni has no weakly convergent subsequence.

A.3.3 Proof of the mapping theorem

The Portmanteau theorem is enough for us to prove the mapping theorem.

Proof of Theorem 3.1.6. Given that Pn ⇒ P , it follows that for any F ∈ S ′,

lim sup
n→∞

Pn
(
h−1F

)
≤ lim sup

n→∞
Pn
(
cl(h−1F )

)
≤ P

(
cl(h−1F )

)
, (A.3.1)

by the equivalence of parts (i) and (iii) of the Portmanteau theorem, Theorem A.3.5.

Also, let F ∈ S ′ be closed; then, since h is measurable, h−1F ∈ S. If x ∈ cl(h−1F ),

then there exist xn ∈ h−1F such that ρ(xn, x) → 0. Since h(xn) ∈ F , we have

h(xn)→ h(x) ∈ clF = F if h is continuous at x. We therefore have

Dc
h ∩ cl(h−1F ) ⊆ h−1F. (A.3.2)
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Combining (A.3.2) and (A.3.1) gives

lim sup
n→∞

Pn
(
h−1F

)
≤ P (cl(h−1F )) = P

(
Dc
h ∩ cl(h−1F )

)
≤ P (h−1F ),

since P (Dc
h) = 1. This holds true for all closed F, thus another application of parts (i)

and (iii) of the Portmanteau theorem yields weak convergence of Pnh−1 to Ph−1.

A.3.4 Weak convergence conditions for continuous trajecto-

ries

In order to show weak convergence in the case of Cd we need to show a collection

of probability measures on Cd is relatively compact for which we have the following

definition stated for an arbitrary measure space.

(RC) A collection of probability measures Π on (S,S) is called relatively compact if for

every sequence Pn of elements of Π, there exists a weakly convergent subsequence

Pnm .

We say that (RC) holds for random variables X1, X2, . . . if (RC) holds for probability

measures P1, P2, . . . and the random variables and probability measures are associated

as described at (1.3.6).

Considering Theorem A.3.6, it seems that the two concepts of relative compactness

and convergence of finite-dimensional distributions would be sufficient to determine

weak convergence. The following result confirms that this is in fact the case. We state

the result for random variables, the result for probability measures can be found as

Example 5.1 from [Bil99].

Theorem A.3.7. For elements X,X1, X2, . . . of Cd, if (FDD) and (RC) hold, then

Xn ⇒ X.

Proof. By (RC) we have that any subsequence Xnm has a further subsequence Xnmi

such that Xnmi
⇒ Y for some random variable Y , possibly depending on the sub-

sequences chosen. Then the mapping theorem implies πt1,...,tkXnmi
⇒ πt1,...,tkY . But

by (FDD), we have πt1,...,tkXnmi
⇒ πt1,...,tkX, so πt1,...,tkX has the same distribution
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as πt1,...,tkY . Since the class of finite-dimensional sets is a separating class for Cd, see

[Bil99, p. 12], this implies that X and Y have the same distribution, and since the

subsequences were arbitrary, we have that all such subsequences contain a further sub-

sequence which weakly converges to X. By the ‘only if’ statement in Theorem A.3.6,

we complete the proof.

It is difficult to prove relative compactness directly; however, a more convenient con-

dition that we can work with and which implies relative compactness in certain spaces

is tightness. For a family of probability measures tightness is defined as follows.

(T) A family Π of probability measures on metric measure space (S,S, ρ) is called

tight if for every ε > 0 there exists a compact K ∈ S such that for all P ∈ Π,

P (K) > 1− ε.

Again, we use the terminology in the natural way for random variables: a collection

(Xα, α ∈ I) of random variables on a probability space (Ω,F ,P) and taking values

in a metric measure space (S,S, ρ) is tight if the collection of probability measures

(Pα, α ∈ I), defined by Pα(B) = P(Xα ∈ B) for B ∈ S, is tight.

To formalise the statement tightness implies relative compactness we state the following

theorem of Prokhorov [Bil99, Theorems 5.1 & 5.2].

Theorem A.3.8 (Prokhorov’s theorem). (T) implies (RC). If S is separable and

complete, and Π satisfies (RC), then Π also satisfies (T).

Here we only need the implication (T) implies (RC), however note that Theorem A.1.4

tells us Cd is separable and complete, so we do indeed have that tightness and relative

compactness are equivalent in this space.

Instead of replicating the full proof of Billingsley here [Bil99, pp. 59–63], we only give

an outline of the proof of the first statement, the proof of the second is brief so we do

provide that here.

Proof. Using the tightness, one can construct a sequence of increasing compact sets

which cover deterministically large amounts of the probability mass for all the proba-

bility measures Pn. Then a measure theory result states that we can use this sequence
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to construct a countable class of sets for which any element of an arbitrary open set G

must lie in one of these sets. Taking the σ-algebra of the compact sets and these count-

able sets, we get a countable class of compact sets which contain good approximating

sets of the arbitrary set G, we will call this class H.

Now, since the class was countable, a Cantor diagonal method allows us to be sure

that there exists a subsequence Pni for which limi→∞ PniH exists for all H ∈ H. Then

we will try to find a probability measure P such that

P (G) = sup
H⊂G

lim
i→∞

PniH.

If this was true, then since the supremum is over H ⊂ G we have P (G) ≤

lim infi→∞ PniG, which is condition (iv) of the Portmanteau theorem, Theorem A.3.5

so we have Pni ⇒ P as desired. The proof that such a measure exists can be found at

[Bil99, pp. 61–63], we move on to the reverse implication.

Consider a non-decreasing sequence of open sets Gn with limn→∞Gn = S. For each

ε, there exists an n for which P (Gn) > 1 − ε for all P ∈ Π, otherwise the relative

compactness assumption would mean the limit of this subsequence of bad measures is

the whole space but with non-total probability.

Now consider a sequence of open balls Ak1 , Ak2 , . . . with radius 1/k which cover S,

and take nk such that P (∪i≤nkAki) > 1 − 2−kε for all P ∈ Π which we can do by the

previous fact. Then by completeness of S, there exists a compact set K ∈ S defined

by

K = ∩k≥1 ∪i≤nk Aki ,

with P (K) > 1− ε for all P ∈ Π, hence tightness holds.

Corollary A.3.9. For elements X,X1, X2, . . . of Cd, if (FDD) and (T) hold, then

Xn ⇒ X.

A.3.5 Tightness conditions for continuous trajectories

Having proven that tightness is sufficient, we need to find a way to prove the tightness

holds. In order to do this, we first need to state the Arzelà-Ascoli theorem in d-

dimensions. The proof at [Rud76, Theorem 7.25] is not dimension dependent so carries
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across. Recall a subset A of a topological subspace is relatively compact if it has a

compact closure.

Theorem A.3.10. A set A in Cd is relatively compact if and only if

sup
f∈A
‖f(0)‖ <∞ and lim

δ→0
sup
f∈A

wf (δ) = 0.

This allows us to generalise the conditions for tightness at [Bil99, Theorem 7.3] to

d-dimensions.

Lemma A.3.11. Let Pn be a sequence of probability measures on Cd. Then (T) holds

if and only if the following two conditions hold.

(i) We have

lim
a→∞

lim sup
n→∞

Pn({f : ‖f(0)‖ ≥ a}) = 0. (A.3.3)

(ii) For each ε > 0,

lim
δ↓0

lim sup
n→∞

Pn ({f : wf (δ) ≥ ε}) = 0. (A.3.4)

Proof. For the ‘only if’ case, given some γ > 0, consider a compact K such that

Pn(K) > 1 − γ for all n; such a K exists by the tightness. Since K is compact,

Theorem A.3.10 tells us that supf∈K ‖f(0)‖ <∞ so K ⊆ {f : ‖f(0)‖ ≤ a} for a large

enough choice of a. Further, limδ→0 supf∈K wf (δ) = 0 so for a small enough choice of

δ, K ⊆ {f : wf (δ) ≤ ε}. These two facts imply (A.3.3) and (A.3.4) respectively.

For the reverse implication, we start by recalling Theorem A.1.4 which says that Cd is

separable and complete under ρ∞. Noting that a single measure clearly satisfies (RC),

it follows from Prokhorov’s theorem, Theorem A.3.8 that a single measure is tight.

Then, using the ‘only if’ part of this lemma, for a fixed probability measure P , and a

given γ > 0 there is an a such that P ({f : ‖f(0)‖ ≥ a}) ≤ γ, and for a given ε and γ

there is a δ such that P ({f : wf (δ) ≥ ε}) ≤ γ.

If we have (A.3.3) and (A.3.4), then there exists a finite n0 such that, for all n > n0,

Pn({f : ‖f(0)‖ ≥ a}) ≤ γ, (A.3.5)

holds for some large enough a and

Pn({f : wf (δ) ≥ ε}) ≤ γ, (A.3.6)
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holds for some small enough δ. Then, for each of the finitely many measures

P1, P2, . . . , Pn0 we have tightness so (A.3.5) and (A.3.6) still hold for these mea-

sures, possibly requiring a larger choice of a or smaller choice of δ. Using this, we can

assume there exists some a and some δ for which (A.3.5) and (A.3.6) hold for all n.

Using this assumption, given γ, we can choose a and δk such that the sets B = {f :

‖f(0)‖ ≤ a} and Bk = {f : wf (δk) < 1/k} have probabilities Pn(B) ≥ 1 − γ and

Pn(Bk) ≥ 1 − γ2−k for all n. Consider the set K = cl(B ∩ (∩k≥1Bk)) which has

Pn(K) ≥ 1 − γ − γ2−k ≥ 1 − 2γ for all n. This closed set satisfies both conditions of

Theorem A.3.10, so it is compact, hence the {Pn} are tight.

The next ingredient we need is a theorem bounding the modulus of continuity which

is the d-dimensional equivalent to [Bil99, Theorem 7.4].

Theorem A.3.12. Suppose that 0 = t0 < t1 < . . . < tk = 1 and min1<i<k(ti−ti−1) ≥ δ.

Then, for arbitrary f ∈ Cd,

wf (δ) ≤ 3 max
1≤i≤k

sup
ti−1≤s≤ti

‖f(s)− f(ti−1)‖, (A.3.7)

and, for any probability measure P on Cd,

P{f : wf (δ) ≥ 3ε} ≤
k∑
i=1

P

{
f : sup

ti−1≤s≤ti
‖f(s)− f(ti−1)‖ ≥ ε

}
. (A.3.8)

Proof. Letm be the maximum in (A.3.7). If s and t lie in the same interval Ii = [ti−1, ti],

then ‖f(s)−f(t)‖ ≤ ‖f(s)−f(ti−1)‖+‖f(t)−f(ti−1)‖ ≤ 2m. If s and t lie in adjacent

intervals Ii and Ii+1, then ‖f(s)−f(t)‖ ≤ ‖f(s)−f(ti−1)‖+‖f(ti−1)−f(ti)‖+‖f(ti)−

f(t)‖ ≤ 3m. If |s− t| ≤ δ then s and t must either lie in the same interval, or adjacent

ones, which proves (A.3.7). The second statement follows by Boole’s inequality.

Next we present a lemma that gives a sufficient condition for tightness in Cd0 .

Lemma A.3.13. Suppose that we have a random walk as defined at (Wµ), and define

Yn as at (3.1.3). Then a sufficient condition for {Yn : n ∈ N} to be tight is

lim
λ→∞

lim sup
n→∞

λ2P
(

max
0≤j≤n

‖Sj‖ ≥ λ
√
n
)

= 0. (A.3.9)
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Proof. We will show the two conditions in Lemma A.3.11 hold. The first, (A.3.3),

clearly holds, since Yn(0) = 0. For the second condition, we use the bound in (A.3.8). In

particular, we take ti = mi/n for integers mi satisfying 0 = m0 < m1 < . . . < mk = n.

Then the supremum in (A.3.8) becomes a maximum of differences as follows,

P (wYn(δ) ≥ 3ε) ≤
k∑
i=1

P
(

max
mi−1≤j≤mi

‖Sj − Smi−1‖√
n

≥ ε

)

=
k∑
i=1

P
(

max
0≤j≤mi−mi−1

‖Sj‖ ≥ ε
√
n
)
,

where the equality is due to the identical distribution of the increments. For this

to hold, of course we need the choice of mi to satisfy the condition min1<i<k(mi −

mi−1)n−1 ≥ δ. We can further simplify this choice by taking mi = im for each i < k

and some m > 1. In order to satisfy the criterion we take m = dnδe. By this choice,

we naturally fix k = dn/me, with mk = n. Note that this means, for large enough n,

|k − δ−1| ≤ 1, so for large enough n and δ < 1, we have k < 2δ−1. Also, for large

enough n, |n/m − δ−1| < 1 so for large enough n and δ < 1/2, we have n > m/2δ.

Using these inequalities, we have, for large enough n and small enough δ,

P (wYn(δ) ≥ 3ε) ≤
k∑
i=1

P
(

max
0≤j≤mi−mi−1

‖Sj‖ ≥ ε
√
n
)
≤ 2
δ
P
(

max
0≤j≤m

‖Sj‖ ≥
ε
√
m√

2δ

)
.

If we now take λ = ε/
√

2δ, we get,

lim sup
n→∞

P (wYn(δ) ≥ 3ε) ≤ 4λ2

ε2 lim sup
m→∞

P
(

max
0≤j≤m

‖Sj‖ ≥ λ
√
m
)
.

Now, under the suggested condition (A.3.9), for a fixed ε and any γ > 0, there exists

a λ such that
4λ2

ε2 lim sup
m→∞

P
(

max
0≤j≤m

‖Sj‖ ≥ λ
√
m
)
< γ.

Fixing ε and a large enough λ means fixing δ to be small enough. The second condition

in Lemma A.3.11 follows, and the proof is complete.
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A.3.6 Donsker’s theorem for d-dimensional continuous trajec-

tories - proof

We need two final pieces before completing the proof of Donsker’s theorem in d-

dimensions. First, this is the d-dimensional version of the inequality of Etemadi [Bil12,

Theorem 22.5].

Lemma A.3.14. Let Sn = ∑n
i=1 Zi be a random walk on Rd. Then for any x ≥ 0,

P
(

max
0≤j≤n

‖Sj‖ ≥ 3x
)
≤ 3 max

0≤j≤n
P(‖Sj‖ ≥ x).

Proof. For given x and fixed n, let

Bk :=
{

max
0≤j≤k−1

‖Sj‖ ≤ 3x
}
∩ {‖Sk‖ ≥ 3x}

B :=
n⋃
k=1

Bk =
{

max
0≤k≤n

‖Sk‖ ≥ 3x
}

Then the Bk are disjoint for x > 0, and for k ≤ n, by the triangle inequality,

Bk ∩ {‖Sn‖ ≤ x} ⊆ Bk ∩ {‖Sn − Sk‖ > 2x} ,

and the terms on the right hand side are independent of each other. We therefore have

that,

P(B) = P (B ∩ {‖Sn‖ > x}) + P (B ∩ {‖Sn‖ ≤ x})

≤ P (‖Sn‖ > x) + P (B ∩ {‖Sn‖ ≤ x})

= P (‖Sn‖ > x) +
n∑
k=1

P (Bk ∩ {‖Sn‖ ≤ x})

≤ P (‖Sn‖ > x) +
n∑
k=1

P (Bk ∩ {‖Sn − Sk‖ > 2x})

≤ P (‖Sn‖ > x) +
n∑
k=1

P(Bk)P (‖Sn − Sk‖ > 2x)

≤ P (‖Sn‖ > x) + max
k≤n

P (‖Sn − Sk‖ > 2x)

≤ P (‖Sn‖ > x) + max
k≤n

[P (‖Sn‖ > x) + P (‖Sk‖ > x)]

≤ 3 max
k≤n

P (‖Sk‖ > x) ,

as required.
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Using Etemadi’s inequality, we can state the following estimate, which we have as a

separate lemma because it will be useful in the proof of both parts of Theorem 3.1.5,

not just in the continuous case.

Lemma A.3.15. Suppose that we have a random walk as defined at (Wµ) with µ = 0,

and satisfying (V) with Σ = Id. Then there exists a constant C ∈ R+ such that for all

k ∈ N and all λ ≥ 0,

lim sup
n→∞

P
(

max
0≤j≤bn/kc

‖Sj‖ ≥ λ
√
n

)
≤ Ck−2λ−4.

Proof. Let Z ∼ N (0, Id). Then by Markov’s inequality there is a constant C ∈ R+

depending only on d such that, for all a ≥ 0,

P
(
‖Z‖ ≥ a

3

)
= P

(
‖Z‖4 ≥

(
a

3

)4
)
≤ Ca−4. (A.3.10)

We apply the d-dimensional version of Etemadi’s inequality, see Lemma A.3.14, to

obtain, for λ ≥ 0,

P
(

max
0≤j≤bn/kc

‖Sj‖ ≥ λ
√
n

)
≤ 3 max

0≤j≤bn/kc
P
(
‖Sj‖ ≥

λ
√
n

3

)
.

Now for any n0 ∈ N,

max
0≤j≤bn/kc

P
(
‖Sj‖ ≥

λ
√
n

3

)

≤ max
0≤j≤n0

P
(
‖Sj‖ ≥

λ
√
n

3

)
+ max

n0≤j≤bn/kc
P
(
‖Sj‖ ≥

λ
√
n

3

)

≤ max
0≤j≤n0

P
(
‖Sj‖ ≥

λ
√
n

3

)
+ max

n0≤j≤bn/kc
P

j−1/2‖Sj‖ ≥
λ
√
n/j

3


≤ max

0≤j≤n0
P
(
‖Sj‖ ≥

λ
√
n

3

)
+ max

n0≤j≤bn/kc
P
(
j−1/2‖Sj‖ ≥

λ
√
k

3

)
.

≤ max
0≤j≤n0

P
(
‖Sj‖ ≥

λ
√
n

3

)
+ max

j≥n0
P
(
j−1/2‖Sj‖ ≥

λ
√
k

3

)
.

Now if we consider Theorem 1.3.15 in conjunction with Theorem A.3.4, and the a =

λ
√
k case of (A.3.10), then we can choose n0 sufficiently large so that for all k ∈ N and

all λ ≥ 0,

max
j≥n0

P
(
j−1/2‖Sj‖ ≥

λ
√
k

3

)
≤ 2Ck−2λ−4.



A.3. Functional central limit theorems 197

Therefore,

lim sup
n→∞

{
max

0≤j≤n0
P
(
‖Sj‖ ≥

λ
√
n

3

)
+ max

j≥n0
P
(
j−1/2‖Sj‖ ≥

λ
√
k

3

)}
≤ 2Ck−2λ−4,

which gives the claimed result.

Now we are ready to complete the statement that the measures associated with trajecto-

ries in Cd0 are tight, so we must turn our attention to showing that the finite-dimensional

distributions do in fact converge to those of Brownian motion. The following lemma

will again be useful for both the continuous and discontinuous cases, hence we state it

as a separate result.

Lemma A.3.16. Suppose that we have a random walk as defined at (Wµ) with µ = 0,

and satisfying (V) with Σ = Id. Then for any 0 ≤ t1 < t2 < · · · < tk ≤ 1, we have that

as n→∞,

n−1/2
(
Sbnt1c, Sbnt2c − Sbnt1c, . . . ,Sbntkc − Sbntk−1c

)
d−→ (bd(t1), bd(t2)− bd(t1), . . . , bd(tk)− bd(tk−1)) .

Proof. The idea is contained already in the case k = 2, so for simplicity we present

that case here. By the Markov property, Sbnt2c−Sbnt1c and Sbnt1c are independent. By

the multidimensional central limit theorem, Theorem 1.3.15, we have

1√
n
Sbnt1c =


√
bnt1c√
n

 1√
bnt1c

Sbnt1c
d−→ t

1/2
1 Z1,

where Z1 ∼ N (0, Id), using the fact that, if αn → α in R and ζn
d−→ ζ in Rd, then

αnζn
d−→ αζ in Rd. Similarly,

1√
n

(
Sbnt2c − Sbnt1c

) d−→ (t2 − t1)1/2Z2,

where Z2 ∼ N (0, Id). Here Z2 is independent of Z1 because if Xn
d−→ X and Yn d−→ Y ,

and Xn and Yn are pairwise independent, then (Xn, Yn) d−→ (X, Y ) where (X, Y ) are

independent.

Now we can complete the proof of part (a) of Donsker’s theorem.
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Proof of Theorem 3.1.5(a). We follow [Bil99, §8], and aim to apply Corollary A.3.9.

Recall from Remark A.3.2 that it suffices to consider the case where Σ = Id.

First we must establish convergence of the finite-dimensional distributions of Yn. We

need to show that for any 0 ≤ t1 < t2 < · · · < tk ≤ 1 we have

(Yn(t1), Yn(t2), . . . , Yn(tk)) d−→ (b(t1), b(t2), . . . , b(tk)).

By continuity of the function (x1, x2, . . . , xk) 7→
(
x1, x1 + x2, . . . ,

∑k
i=1 xi

)
, it is suffi-

cient to prove that

(Yn(t1), Yn(t2)−Yn(t1), . . . , Yn(tk)−Yn(tk−1)) d−→ (b(t1), b(t2)−b(t1), . . . , b(tk)−b(tk−1)).

Lemma A.3.16 provides the main step here, but there is a little more work due to the

definition of Yn in terms of interpolation. Again, the main idea is contained in the case

k = 2 so we describe only that case here. Let 0 ≤ t1 < t2 ≤ 1. Using (3.1.3) we may

write

(Yn(t2), Yn(t2)− Yn(t1)) = 1√
n

(
Sbnt1c, Sbnt2c − Sbnt1c

)
+ (ψn,t1 , ψn,t2 − ψn,t1) ,

where ψn,t := nt−bntc√
n

ξbntc+1. Using Markov’s inequality, we have that for r > 0,

P(‖ξ‖ ≥ r) ≤ E[‖ξ‖2]
r2 = tr Σ

r2 = d

r2 ,

since µ = 0 and Σ = Id. Since ‖ψn,t‖ ≤ n−1/2‖ξbntc+1‖, we get

P (‖ψn,t‖ > r) ≤ P
(
‖ξbntc+1‖ ≥ r

√
n
)
≤ d

r2n
.

It follows that ψn,t1
P−→ 0, and similarly for ψn,t2−ψn,t1 . Hence (ψn,t1 , ψn,t2−ψn,t1) P−→

0. Thus by Lemma A.3.16 and Theorem 1.3.13, we get

(Yn(t2), Yn(t2)− Yn(t1)) d−→
(
t
1/2
1 Z1, (t2 − t1)1/2Z2

)
,

which is exactly the distribution of (b(t1), b(t2)− b(t1)), as required.

Next we use Lemma A.3.13 to establish tightness. The k = 1 case of Lemma A.3.15

shows that

lim sup
n→∞

λ2P
(

max
0≤j≤n

‖Sj‖ ≥ λ
√
n
)
≤ Cλ−2,
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which converges to 0 as λ → ∞. Thus Lemma A.3.13 gives tightness, and Theo-

rem A.3.9 completes the proof of part (a) of Theorem 3.1.5.

A.3.7 Weak convergence conditions in the Skorokhod topol-

ogy

Now we turn to part (b) of Theorem 3.1.5.

The first difference for trajectories with discontinuities is that the spaces D and Dd do

not automatically have the class of finite-dimensional sets as a separating class. This

means the proof of Theorem A.3.7 does not translate to this setting. However, we

extract the following result from Theorem 12.5 of [Bil99] which will help us.

Theorem A.3.17. Let T ⊆ [0, 1] with 1 ∈ T such that T is dense in [0, 1], then the

class of finite-dimensional sets taking values in T is a separating class of Dd.

To prove this result we recall, without proof, some standard results from measure

theory, see e.g. [Dur10, Theorem A.1.4].

Definition A.3.18. Any non-empty collection of sets P is a π-system if for any A,B ∈

P , then A ∩B ∈ P .

Theorem A.3.19. [Bil12, Theorem 3.3] Suppose that P1 and P2 are probability mea-

sures on σ(P), where P is a π-system and σ(P) is the σ-algebra generated by P. If P1

and P2 agree on P then they agree on σ(P).

We omit the proof of this result because it would require a considerable diversion into

Dynkin’s π − λ theorem which is already well covered ground in the literature, see

[Bil12, Theorem 3.2].

Proof of Theorem A.3.17. For the duration of this proof, let B denote the Borel subsets

of (Dd, ρS), and recall that Bd denotes the Borel subsets of Rd. Let C denote the finite

cylinder sets over T , that is, the collection of all subsets of Dd of the form{
f ∈ Dd : πt0,t1,...,tkf ∈

k∏
i=1

Ai

}
, (A.3.11)
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where k ∈ Z+, t1, . . . , tk ∈ T , and A1, A2, . . . , Ak ∈ Bd. If C1, C2 ∈ C are of the

form (A.3.11) with k = k1, k2 respectively, then C1∩C2 is also a set of the form (A.3.11)

with k = k1 + k2. Thus C is a π-system. It generates the σ-algebra σ(C).

By the assumption that T is dense, there is a sequence t1 > t2 > · · · of elements

of T such that tn ↓ 0 as n → ∞, and then any f ∈ Dd has π0f = limn→∞ πtnf by

right continuity. Hence π0 = limn→∞ πtn pointwise, and so π0 is a limit of functions

measurable with respect to σ(C), and hence is itself measurable with respect to σ(C).

Thus we may assume that 0 ∈ T . Then, for a given m ∈ N, choose a positive integer

k and points s0, s1, . . . , sk of T such that 0 = s0 < · · · < sk = 1 and max1≤i≤k(si −

si−1) < m−1. For α = (α0, . . . , αk) in (Rd)k+1, let Vmα be the element of Dd such

that Vmα(t) = αi−1 for t ∈ [si−1, si) for each 1 ≤ i ≤ k, and Vmα(1) = αk. Since

Vm : (Rd)k+1 → Dd is continuous, it is measurable, i.e., V −1
m (B) ∈ Bd(k+1) for each B ∈

B. Since πs0,...,sk is measurable from (Dd, σ(C)) to ((Rd)k+1,Bd(k+1)), the composition

Vmπs0,...,sk is measurable from (Dd, σ(C)) to (Dd,B). It is a straightforward exercise to

show that ρS(f, Vmπs0,...,skf) ≤ max(m−1, w′f (m−1)) for any f ∈ Dd, which implies that

f = limm→∞ Vmπs0,...,skf . Hence the identity function on Dd is a limit of a sequence

of functions measurable from (Dd, σ(C)) to (Dd,B) and hence is itself measurable from

(Dd, σ(C)) to (Dd,B). It follows that σ(C) = B, i.e., the π-system C generates the full

Borel σ-algebra. Theorem A.3.19 now completes the proof.

Now, we can take T ⊆ [0, 1] to be the set of continuity points of X ∈ Dd, which

must contain 1 by the right continuity of Dd and must be dense because the set of

discontinuity points has measure 0. Thus, we have the following replacement of Corol-

lary A.3.9, with the proof now being identical to that of Theorem A.3.7, with the

use of Prokhorov’s theorem to allow us to claim the result for tightness not relative

compactness.

Theorem A.3.20. For elements X,X1, X2, . . . of Dd, if (FDD) and (T) hold, then

Xn ⇒ X.
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A.3.8 Tightness conditions in Skorokhod topology

First we need to state a generalised form of the Arzelà-Ascoli theorem, not only for the

Skorokhod topology case, but also in d-dimensions. The proof of the Skorokhod case

in 1-dimension was done at [Bil99, Theorem 12.3], but the proof has no dimensional

dependency so we refrain from copying it here. Recall the definition of w′f from (A.1.6).

Theorem A.3.21. A set A in Dd is relatively compact if and only if

sup
f∈A
‖f‖∞ <∞ and lim

δ→0
sup
f∈A

w′f (δ) = 0.

Now we can also generalize the tightness conditions of [Bil99, Theorem 13.2] to d-

dimensions, the proof reads the same as that for Lemma A.3.11 with the modulus of

continuity wf replaced with w′f so we omit it.

Lemma A.3.22. Let Pn be a sequence of probability measures on Dd. Then (T) holds

if and only if the following two conditions hold.

(i) We have

lim
a→∞

lim sup
n→∞

Pn({f : ‖f‖∞ ≥ a}) = 0. (A.3.12)

(ii) For each ε > 0,

lim
δ↓0

lim sup
n→∞

Pn
(
{f : w′f (δ) ≥ ε}

)
= 0. (A.3.13)

A.3.9 Donsker’s theorem in d-dimensional Skorokhod space -

proof

Proof of Theorem 3.1.5(b). The convergence of the finite-dimensional distributions is

a consequence of Lemma A.3.16 and the continuous mapping theorem, Theorem 3.1.4,

which is applicable because the mapping (x1,x2, . . . ,xk) 7→ (x1,x1 + x2, . . . ,
∑k
i=1 xi)

defined for x1, . . . ,xk ∈ Rd is continuous. For tightness, it will be sufficient to check the

conditions in Lemma A.3.22 applied to the measures Pn defined by Pn(B) = P(Y ′n ∈ B).

The condition (A.3.12) then becomes

lim
a→∞

lim sup
n→∞

P
(

max
0≤j≤n

‖Sj‖ ≥ a
√
n
)

= 0,
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which is easily verified by the k = 1 case of Lemma A.3.15.

The condition (A.3.13) becomes

lim
δ↓0

lim sup
n→∞

P
(

inf
{ti}

max
1≤i≤v

sup
t,s∈[ti−1,ti)

‖Y ′n(s)− Y ′n(t)‖ ≥ ε

)
= 0,

where the infimum is over all δ-sparse sets {t0, t1, . . . , tv}. It suffices to suppose δ =

1/2k, with k ∈ N, and then choose ti = i/k and v = k to obtain an upper bound for

the probability. This gives

P
(

inf
{ti}

max
1≤i≤v

sup
t,s∈[ti−1,ti)

‖Y ′n(s)− Y ′n(t)‖ ≥ ε

)
≤ P

max
1≤i≤v

sup
t,s∈[ i−1

k
, i
k

)
‖Y ′n(s)− Y ′n(t)‖ ≥ ε


= P

 k⋃
i=1

 sup
t,s∈[ i−1

k
, i
k

)
‖Y ′n(s)− Y ′n(t)‖ ≥ ε




≤
k∑
i=1

P

 sup
t,s∈[ i−1

k
, i
k

)
‖Y ′n(s)− Y ′n(t)‖ ≥ ε

 .
Here we have ‖Y ′n(s)−Y ′n(t)‖ = ∑bntc

j=bnsc+1 ξj if s < t (and we can restrict the supremum

to such t, s) so that the distribution of supt,s∈[ i−1
k
, i
k

) ‖Y ′n(s)−Y ′n(t)‖ is the same for each

i. Hence

lim
δ↓0

lim sup
n→∞

P
(

inf
{ti}

max
1≤i≤v

sup
t,s∈[ti−1,ti)

‖Y ′n(s)− Y ′n(t)‖ ≥ ε

)

≤ lim
k→∞

lim sup
n→∞

kP

 sup
t,s∈[0, 1

k
)
‖Y ′n(s)− Y ′n(t)‖ ≥ ε

 .
Here we have that

P

 sup
t,s∈[0, 1

k
)
‖Y ′n(s)− Y ′n(t)‖ ≥ ε

 ≤ P

 sup
t,s∈[0, 1

k
)
(‖Y ′n(s)‖+ ‖Y ′n(t)‖) ≥ ε


= P

 sup
t∈[0, 1

k
)
‖Y ′n(t)‖ ≥ ε/2


= P

(
max

0≤j≤bn/kc
‖Sj‖ ≥ (ε/2)

√
n

)
.

Then by Lemma A.3.15 we have that

lim
k→∞

lim sup
n→∞

kP

 sup
t,s∈[0, 1

k
)
‖Y ′n(s)− Y ′n(t)‖ ≥ ε

 ≤ lim
k→∞

Ck−1(ε/2)−4 = 0,

which verifies condition (A.3.13). This completes the proof of tightness which, with
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the convergence of the finite-dimensional distributions and Theorem A.3.20, completes

the proof.


