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A Dual-Cameras-Based Driver Gaze Mapping
System With an Application on Non-Driving
Activities Monitoring

Lichao Yang™, Kuo Dong™, Arkadiusz Jan Dmitruk, James Brighton, and Yifan Zhao

Abstract— Characterisation of the driver’s non-driving activ-
ities (NDAs) is of great importance to the design of the take-
over control strategy in Level 3 automation. Gaze estimation is
a typical approach to monitor the driver’s behaviour since the
eye gaze is normally engaged with the human activities. However,
current eye gaze tracking techniques are either costly or intrusive
which limits their applicability in vehicles. This paper proposes
a low-cost and non-intrusive dual-cameras based gaze mapping
system that visualises the driver’s gaze using a heat map. The
challenges introduced by complex head movement during NDAs
and camera distortion are addressed by proposing a nonlinear
polynomial model to establish the relationship between the face
features and eye gaze on the simulated driver’s view. The Root
Mean Square Error of this system in the in-vehicle experiment
for the X and Y direction is 7.80+5.99 pixel and 4.64+3.47 pixel
respectively with the image resolution of 1440 x 1080 pixels.
This system is successfully demonstrated to evaluate three NDAs
with visual attention. This technique, acting as a generic tool
to monitor driver’s visual attention, will have wide applications
on NDA characterisation for intelligent design of take over
strategy and driving environment awareness for current and
future automated vehicles.

Index Terms— Driver attention evaluation, Level 3 automation,
camera mapping, system identification, heat map.

I. INTRODUCTION

N RECENT years, the exciting developments of highly

automated driving (HAD) vehicle have been made in the
field of both academic research and industrial manufactur-
ing [1]. According to SAE (J3016) Automation Levels, all
the dynamic driving tasks can be achieved by the automated
driving system, but drivers are expected to response appropri-
ately when the intervene is requested by vehicle in Level 3 [2].
Although at present legislation does not allow drivers in a
Level 3 autonomous vehicle to engage in non-driving activities
(NDAs), HAD may in the future allow drivers to more freely
engage in NDAs during much of the time while the automated
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system monitors and reacts to the driving environment. Based
on the research of Sivak and Schoettle [3], when vehicle is
in the self-driving mode, 57.1% respondents in UK choose to
watch the road. The main NDAs are reading (9.9%), sleeping
(9.4%), texting or talking with friends (7.1%), working (6.4%)
and watching movie (5.4%). Since driving is considered as a
complex activity which requests the people’s sensory, cogni-
tive and psychomotor process to be synchronized, for the con-
cern of driving safety, it needs to be ensured that the state of
driver is suitable for driving. Therefore, the drivers’ behaviour
in NDAs needs to be monitored and their attention level needs
to be evaluated. This is particularly important when vehicle
requests the drivers’ intervene when the driving environment is
complicated, for example, when approaching a complex or less
predictable driving scenario, such as temporary road works.
Furthermore, it is crucial to evaluate drivers’ awareness of
driving environment (e.g. pedestrian, obstacle or neighbouring
vehicles) right before the take-over. Developing a drivers’ gaze
mapping system for evaluating visual attention is therefore
hugely demanded for the development of Level 3 automated
vehicles. Such a research can also be easily extended for the
studies of driver distraction in human driving [4]-[6].

Gaze tracking and head movement estimation is the com-
mon way for allocating the driver’s visual attention in auto-
mated driving [7]-[9]. Several approaches and devices were
designed by using scleral search lens and head-mounted eye
trackers [10], [11]. They provide the accurate gaze information
but are not practical in real applications as they are intru-
sive and costly. The non-intrusive eye tracking based on the
human-computer interaction (HCI) system is well used due
to the user friendliness [12], [13]. Mizuno et al. [14] used
a vehicle-mounted camera in front of the driver to estimate
the driver’s visual attention area to check if the driver is
aware of the driving environment. Some researchers extracts
the facial features of drivers and allocates the driver’s gaze
into different regions with a single camera to provide the
information regarding to the driver’s attention [7], [15]-[17].
All of these studies made a fixed assumption between the
eye gaze direction and the driver’s behaviour, which is not
applicable for characterisation of NDA due to its high com-
plexity and uncertainty. The main difference of this paper
with other researches about eye gaze tracking is how to
represent the eye gaze. The existing gaze tracking researches,
including pupil and gaze modelling [18]-[20], camera-based
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tracking [15], [21], [22] or artificial intelligence implemented
system [23]-[25], use the gaze data to validate the system
and optimise the accuracy. This research is interested in the
gaze mapping on the driver’s visual scene, which focuses on
how the gaze engages with the driving environment, including
both inside and outside the vehicle. The mapping can then
be further used for attention analysis of NDAs or evaluation
of environment awareness. Xiao and Feng [26] proposed a
driver’s visual attention system by using a smartphone. The
back camera of the smartphone is used to capture the moving
object and the frontal camera is used to estimate the driver’s
gaze. The view of the back camera is divided into 9 zones. The
system aims to check if the driver is aware there is a moving
object inside zones. However, this solution is not appropriate
to monitor the driver’s NDAs inside the vehicle. On the other
hand, the eye gaze tracking researches in automotive field are
generally used for driving behaviour and distraction analysis
in human drive [7], [27], [28]. As far as we are concerned,
there is very limited literature reported aiming to imple-
ment the system into autonomous vehicles for characterisation
of NDAs.

This paper presents a non-intrusive, low-cost and user-
friendly driver gaze mapping solution based on two cameras.
A nonlinear finite impulse response model powered by Error
Reduction Ratio is introduced to estimate and map the gaze
location by automatically selecting the face features and corre-
sponding parameter estimation. Heat map is introduced in this
system to visualise the trajectory of eye gaze, which could
be used to identify the type of NDA and even its attention
level.

The proposed system flowchart. There are two processes in this system including calibration in red and testing in blue.

II. METHODOLOGY

A. System Architecture

The framework of the proposed system is divided into
four steps including video acquisition, feature extraction, gaze
mapping and heat map visualisation. As shown in the flowchart
illustrated by Fig. 1, the first feed of video is captured
through a camera placed in front of the driver, as indicated
Camera-1, to capture the facial features including eye gaze
and head movement. The second feed of video is captured
through a camera placed on the top of the driver, referred as
Camera-2 in Fig. 1, to mimic the driver’s view. The driver’s
gaze directions along with other parameters including face
location and orientation are extracted based on videos from
Camera-1. These parameters are considered as the inputs of
the model for gaze mapping. The proposed method tends
to include the driver’s face features as more as possible
and let the later modelling/mapping process to determine
which features should be included for estimating the output,
the mapped location of eye gaze in images of Camera-2.
The mapping model calibration is to establish a model to
represent the relationship between the face features in images
of Camera-1 and eye-gaze locations on images of Camera-2.
In the calibration (or training) process, the eye-gaze location
in images of Camera-2 is known using markers placed on
the vehicle. This paper assumes that the gaze is a region
with an approximate Gaussian distribution which represents
the driver’s observation intensity [29]. Gaussian noise with a
pre-set sigma is therefore applied on the marker locations on
images from Camera-2, as the known outputs of training data.
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Fig. 2. (a) The spatial distribution of the markers in land rover discovery
4 for the in-vehicle experiment. (b) The spatial distribution of the markers in
laboratory for the indoor experiment.

From the system identification point of view, adding noise to
the desired output can reduce overfitting and improve model
generalisation. A large value of sigma will reduce the accuracy
of fitting, but improve the model generalisation. In this paper,
the sigma value was chosen as 10 pixels to achieve the optimal
balance. Once this relationship is established, this model can
be deployed on face features extracted from a testing video of
Camera-1 and produce a mapping on the scene captured by
Camera-2.

Considering the NDA as a dynamical process, this study
focuses on the eye gaze on a certain time window and a form
of heat map is proposed for visualisation. The details of each
step are presented below.

B. Video Acquisition

The Land Rover Discovery 4 was used as the test vehicle.
Camera-1 is located in the wind shield in front of the driver.
The location of Camera-2 is set on the top of driver towards the
windscreen. The markers shown in Fig. 2(a) were placed on
the strategic locations inside the vehicle including dashboard,
side mirrors, rear-view mirror, windscreen, multimedia display
and steering wheel etc. These locations are fixed and friendly
for the driver to look at. In this paper, a total number
of 12 markers were used.

Before implementing the system in vehicle, a feasibility
study has been conducted in the laboratory to better evalu-
ate the performance of the proposed system. The layout of
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Fig. 3. OpenFace facial behaviour analysis process.

cameras is the same as mentioned above. Ten markers are
located randomly and shown in Fig. 2(b). It should be noted
that there are 4 markers on the monitor which has shorter
distance to Camera-2.

For both experiments, the employed cameras were Garmin
Virb Action Camera. Camera-1 provides the video with a
resolution of 1024 x 768 pixel and 24 frames per second. Since
a wider field of view is requested for Camera-2, the resolution
is set as 1440 x 1080 pixels and the temporal resolution
remains the same value.

C. Feature Extraction

In recent years, several gaze and head tracking methods
have been proposed [30], [31]. As one of the most popular
open-source facial analysis tools, OpenFace is utilized for the
purpose of extracting the features of the driver’s gaze and
head due to its fine performance and robustness. It is capable
of facial landmark detection and action unit recognition, head
pose and eye-gaze estimation [32], [33]. The algorithm starts
with face detection then is followed by the 68 facial landmarks
detection. These landmarks are used to estimate the head
pose and track the eye gaze. The process is illustrated in
Fig. 3. Conditional Local Neural Fields (CLNF) framework
is utilized as a shape registration approach for detecting the
facial landmarks [34]. There are two components for CLNF
which are Point Distribution Model (PDM) and patch experts.
PDM captures variations of the landmark shape and the local
appearance variations of each landmark are captured by patch
experts. For head pose estimation, the orthographic camera
projection is used to project the 3D representation of facial
landmarks. The SynthesEyes training dataset [35] is used to
train the PDM and CLNF patch experts for the eye-region
registration task. Once the eye and the pupil are located,
the data are used to calculate the gaze vector for each eye.



The gaze estimation ability of this model is validated by the
MPIIGaze dataset [36]. The performance of this approach
on driver monitoring has been evaluated in the research of
Zhao et al. [1].

Considering the complexity and uncertainty of the driver’s
behaviours during NDAs, this paper proposes to use both
head information and gaze information to build up the gaze
heat map. The selected parameters are divided into two
categories: the head pose related parameters (HRPs) and the
gaze related parameters (GRPs). HRPs include the position of
detected head with respect to Camera-1, denoted by pose_Tx,
pose_Ty and pose_Tz, and head orientation in 3D, denoted by
pose_Rx, pose_Ry and pose_Rz. GRPs include the information
of the gaze direction in radians, denoted by gaze_angle_x
and gaze_angle_y. It should be noted that, to simplify the
model, this study only considers the information of one eye.
Experiments show that the information of another eye has no
significant contribution to the performance.

D. Feature Mapping

This paper proposes to use the orthogonal least squares
(OLS) algorithm to establish the correspondence between the
face features based on the coordinate of Camera-1 and the eye
gaze mapping based on the coordinate of Camera-2. This is an
approach that has been used in nonlinear system identification
where OLS searches through all possible candidate model
terms to select the most effective ones to build the model.
The significance of each selected model term is measured by
the Error Reduction Ratio (ERR) index which indicates how
much of the change in the system response, in percentage,
can be accounted for by including the relevant model terms.
This capability is important for this study because the face
features have been extracted as more as possible to ensure the
proposed system can accommodate the diversity of driver’s
behaviour, meanwhile we need avoid producing an over-
complex model that over-fits the training data and produces
relatively poor testing performance. This algorithm allows us
to only select the important face features for modelling to
reach the balance between model complexity and gaze estima-
tion performance. Furthermore, the capability to accommodate
nonlinear modelling is important to cope the distortion of
images of Camera-2, which is the by-product where a wide
field-of-view is required.

The Volterra Non-linear Regressive with eXogenous inputs
(VNRX) model, also known as nonlinear finite impulse
response (NFIR) model, is used in this paper to represent a
multi-inputs and single-output system, where the inputs are
the face features and the output is the eye gaze location on
images of Camera-2. It should be noted that the eye gaze
location includes two values: x and y, which will be modelled
independently. The models can be expressed as:
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Zy = fy (Xl» X, ..
where X1, X5, ..., X, are the face features; n is the number

of collected face features; Z, and Z, are the eye gaze location
in x and y direction respectively; fy and fy are some unknown

linear or nonlinear mappings link the inputs and output;
&y and &y are module residual.
Consider a function in a linear form:
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where Y (k) is the system output (eye gaze location in X or y
direction), p; (k) are regressors constructed by input variables,
6; is the vector of unknown coefficients of regressions to be
estimated, M denotes the number of data points in the training
data set, and N denotes the number of terms in the model that
is yet to be determined. If the model order is set as g, the
candidate term set where p; (k) select from, denoted by C,
can be expressed
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where Cj is the linear term set, expressed as
n

=, X 5)

and Cy is the 214 order nonlinear term set, expressed as

n n

Cy = Um:l Uaz:a1 Xoy Xas (6)

and Cj is the I"" order nonlinear term set, expressed as
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Equation (3) is re-written as
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decomposed as P = Wx A where
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and A = {a;;} is an upper triangular matrix with unity diagonal
elements. Equation (4) is then rewritten as

Y = WG (11)

where G = A® = [g1 g2 ... gN]T. Equation (11) is now
ready to represent the relation between Y and G.

We then estimate the importance of each model term to the
variation of the system output. Initially, set values a;;j= Ofor
i # j (A then becomes an identity matrix), so w; (k) = p1(k),
and calculate g1 as
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For j =2,3,...,M, seta;; =1 and then calculate
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Values of ERR range always from 0% to 100%. The larger
the ERR the higher dependence between the p; terms and the
output. Therefore, it is an indicator to represent the importance
of each term (constructed by the face features as inputs) to the
output.

The estimation of the coefficient of each selected term can
be computed from

Oy = gv ]
A . A7)
0; = gi _Zliv:iﬂaik@k,l =N-1,...,1
Through the above algorithm, a polynomial model based on
Eq. (3) can be established for each direction of the eye gaze
location. The models can then be used for estimation of eye
gaze location by given the face features.

E. Heat Map Visualisation

Heat map is a common visualisation approach to represent
the spatial distribution of the data [37]. This paper assumes
that the eye gaze at a certain time or frame () can be
represented by a circle which is defined by three parameters:
xo (t) and yo(¢), the location of the centre, and d, the diameter
of the circle. The spatial distribution inside the circle follows
the Gaussian distribution. The value of d is affected by the
image resolution of Camera-2. It was set as 40 pixels for gaze
visualisation.

Considering at the framer, the eye gaze centred at
(x0(2), yo(t)), the intensity of the pixel(x, y) in the heat map,
where 2 % |x —xo (t)] < d and 2 % |y — yo(¢)| < d, can be
defined as

(= =204 0500 )

s(x,y,t)=¢e 202 * 100% (18)

The intensity of the pixels unsatisfied with the constraints is
set as 0.

To represent the trajectory of gaze, this study integrates
the gaze spatial distribution within a certain time window
[t — h,t], where ¢ is the number of the frame and % is the
window length. The accumulated eye gaze can be written as
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Fig. 4. Histograms of the facial features of the training data for the model
calibration of the first test of the indoor experiment.

To better visualise the gaze trajectory in real-time, this paper
proposes a weighted accumulation of eye gaze to construct the
trajectory, written as

1 h—1 ) i
sty 0) = 2 275Gy —i)x(l=2)  Q0)

The value of s,(x,y, ) and s.(x, y,t) is between O and 1.
The window length & can be adjusted in terms of various
applications.

ITI. RESULTS
A. Indoor Experiment

Two tests were conducted in this experiment based on
the level of freedom of head movement. In the first test,
the participant was asked to gaze at the 10 markers one
by one avoiding moving head forward or backward, so the
shift of eye gaze was primarily achieved by head rotation.
In the second test, the participant was given more freedom
of head movement and both rotation and translation were
allowed, aiming to simulate the increased complexity and
uncertainty of head movement during NDAs. The participant
was required to gaze at each marker for at least 5 seconds.
The data of transition period when moving from one marker
to another was removed. A total number of 1000 frames
(100 frames per marker) were selected for training and testing.
For each marker, 70% data were randomly selected for training
and the remaining 30% data were for testing.

Fig. 4 presents the histograms of eight facial features of the
training data in the first test. It can be observed that the head
rotation movement is within 0.5 rad in pitch (pose_Rx) and
yaw (pose_Ry). The roll movement of head (pose_Rz) is rela-
tively small, within 0.15 rad, which is expected because there
is not much rolling movement required to scan all markers.
The variation of head position in z axis (pose_T7), indicating
the distance from the head to Camera-1, is within 30 mm.
Although the translation of head was limited in this test,
the head rotation caused a small variation of head depth.



TABLE I
AN EXAMPLE OF THE ESTIMATED 2"d ORDER NONLINEAR MODEL FOR THE FIRST TEST OF THE INDOOR EXPERIMENT

Model X Y

Priority Model term Coefficient Priority Model term

1 constant 811.25 constant 528.27
2 gaze angle x -1582.93 gaze angle y 47431
3 pose_Tz* pose Rx 53.43 pose_Tx -2.03
4 gaze angle y -917.28 pose Tx* pose Rx -35.57
5 pose_Tx -0.58 gaze angle x 465.13
6 pose_Tx* pose_Rx -46.94 gaze_angle y* gaze angle y 821.15
7 pose Rx 853.26 pose Ty* pose Ty 0.21
8 pose_Rx* pose Ry -4419.04 gaze angle y* pose Rz 16140.28
9 pose_Ry 450.32 gaze_angle x* gaze angle y -2771.10
10 gaze angle y* pose Tz -62.47 pose Rx 1248.56

TABLE 11 TABLE III

MODEL PERFORMANCE COMPARISON OF THE INDOOR EXPERIMENT

Term Root Mean Square Error
Pixel Millimetre
Testl_X 11.89+£9.00 9.25+7.00
Testl Y 9.22+6.55 7.17+5.10
Test2_X 27.33+14.29 2126 £11.12
Test2 Y 20.71+11.51 16.11 £8.95

Table 1 shows an example of the estimated 2"d-order
nonlinear models of gaze in X and Y directions. The number of
model term is limited to 10. The model term is ranked based on
the ERR value which represents the importance of each model
term to the variation of gaze. It can been observed from Table I
that the most important term is ‘constant’ for both X and Y
which refers to the base line of the head movement and relates
to the initial state of the participant. As expected, the second
important term is the gaze angle for the considered direction.
It is interesting to observe that HRPs also make significant
contribution to the model, which suggests that both HRPs and
GRPs must be considered due to the complexity of human
behaviour and distortion of cameras.

To quantify the performance of the proposed system in the
first test, the produced models were applied in the testing data
and the Root Mean Square Error (RMSE) of the estimated gaze
location and the centre of marker (without adding Gaussian
noise) for all markers was computed to represent the model
accuracy. Since the testing data were randomly selected, this
process was repeated 1000 times to ensure the statistical
significance. Table II provides the mean (overall accuracy of
model) and the standard deviation (precision of model) of
the 1000 calculated accuracies for two tests. The size of the
markers in the mapping frame is 37 pixels (28.8 mm). From
the results of the first test in the Table I, it can be observed that
the error of gaze estimation in X direction is 11.89+£9.00 pixel
(9.25+7.00 mm), while for the Y direction the error is smaller
with a value of 9.22+6.55 pixel (7.17£5.10 mm). The errors
of both directions are well smaller than the marker size, which
indicates a fine performance of the proposed system when the
head translation is limited. The performance of Y direction is
better than X direction. This observation is reasonable because
the makers cover larger range of X direction which leads to

THE DATA RANGE COMPARISON OF THE EXTRACTED FACIAL FEATURES
OF THE TRAINING DATA OF THE INDOOR EXPERIMENT

The second test

[-0.35, 0.25] rad

The first test
[-0.35,0.15] rad

Features

Gaze angle x

Gaze angle y [0.08, 0.38] rad [0.1, 0.4] rad
Pose_Tx [30, 110] mm [25, 115] mm
Pose Ty [-110, -70] mm [-108, -70] mm
Pose Tz [750, 780] mm [660, 870] mm
Pose Rx [-0.05, 0.35] rad [-0.05, 0.38] rad
Pose Ry [-0.1, 0.45] rad [-0.25, 0.45] rad
Pose Rz [-0.14, 0.04] rad [-0.14, 0.07] rad

a higher level of distortion. The accumulated eye gaze map,
calculated by Eq. (19), is presented in Fig. 5(a), where all
estimated gaze points well fall into the markers, although there
are some slight shifts between the centre of the gaze circle and
the centre of the markers.

In the second test, the head movement was more complex
by introducing both translation and rotation of head. It has
been observed from Table III that the head position in z axis
(pose_Tz) has a variation of 210 mm, which is 7 times higher
than the first test. The ranges of other features are similar
with the ones of the first test. The second test aims to test
the flexibility of the proposed mapping algorithm against
the diverse head movement of NDAs. Tables IV presents
an example of the estimated 2"-order nonlinear models of
gaze in X and Y directions. The number of model term is
limited to 10. It can be observed that the top 2 terms are
the same as the ones of the first test, however, HRPs make
more contribution to the model evident by more appearance
in the selected model terms, particularly pose_Tz. As shown
in Table SI and SII in Supplementary Materials, the proportion
of ERR of HRPs in x direction is increased from 0.55% in the
first test to 5.88% in the second test. The proposed algorithm
successfully demonstrated the flexibility by selecting terms
including pose_Tz to reflect the increased variation of head
translation.

Table II also shows the quantified performance of the
second test, using the same approach as the first test. It is
shown that the RMSE in X direction is 27.334+14.29 pixel
(21.26 £ 11.12 mm) and 20.71£11.51 pixel (16.11 +
895 mm) for Y direction. As expected, the overall



TABLE IV
AN EXAMPLE OF THE ESTIMATED 2 "™ ORDER NONLINEAR MODEL FOR THE SECOND TEST OF THE INDOOR EXPERIMENT

Model X Y

Priority Model term Coefficient Model term Coefficient

1 constant 776.76 constant 545.12
2 gaze angle x -2253.33 gaze angle y 1612.76
3 pose_Tz* pose Ry 1.92 gaze angle x -207.97
4 pose_Tx* pose Tx 0.04 pose_Tz* pose Tz -0.01
5 pose Ry -863.78 pose_Tx* pose Rx -27.94
6 pose_Tx -5.23 gaze angle y* gaze angle y 3018.13
7 gaze angle x* pose Tz -2.32 pose_Tx* pose Ty 0.23
8 pose Rz -62.47 pose_Ry* pose Rz -2826.91
9 gaze angle x* pose Rz 987.56 pose Ry -432.25
10 pose Tz 0.46 pose Ty 2.89

TABLE V

(b)

Fig. 5. (a) The accumulated eye gaze mapping for the first test of the indoor
experiment. (b) The accumulated eye gaze mapping for the second test of the
indoor experiment.

performance is not as good as the first test due to the increased
complexity of head behaviour, but the error is still smaller
than the marker size (28.8 mm). It is interesting to observe
that the performance in X and Y directions are similar for this
case which suggests that the interference caused by camera
distortion is overtaken by the interference caused by severe
head movement. Fig. 5(b) illustrates the accumulated eye
gaze map for the second test. In comparison with Fig. 5(a),
the regions of the gaze estimation are larger and more irregular
but still well cover the majority markers. It can be observed
from Fig. 5 that the visualised results of the 4 markers on the
monitor which have shorter distance to Camera-2 than other
markers also show a similar performance, which demontrates
the robustness of the proposed system in terms of the depths
of object.

MODEL PERFORMANCE OF THE IN-VEHICLE EXPERIMENT

Term Root Mean Square Error

Pixel Millimetre
X 7.80 +5.99 12.00 £9.22
Y 4.64 + 3.47 7.14 +5.34

Fig. 6.

The accumulated eye gaze mapping for the vehicle experiment.

B. In-Vehicle Experiment

In this experiment, a wider field of view of Camera-2 in
comparison to the in-door experiment was used due to limited
space in vehicle, which inevitably introduced more distortion
on images. Furthermore, 12 markers were laid out on the
regions of interest, which have more diverse distances to the
plane of Camera-2 in comparison with the indoor testes. Due
to these factors, a more sophisticated model is required to cope
the increased complexity. Therefore, a 3"-order nonlinear
model was estimated with the number of model term of 25.
It should be noted that in this experiment the participant was
asked to scan the markers with limited translation of head,
as the first indoor test. The approach to select the training and
testing data was the same as the indoor experiment.

As shown in Table V, the RMSE in X and Y direction is
12.00 £ 9.22 mm and 7.14+£5.34 mm respectively, which is
well smaller than the marker size (28.8 mm). The performance
is better than the first indoor test with a cost of increased



Fig. 7.
(c) Gaze mapping when the driver is reading a book.

TABLE VI

MODEL PERFORMANCE BASED ON DIFFERENT MODEL
ORDER FOR THE IN-VEHICLE EXPERIMENT

Term Root Mean Square Error (pixel)

X Y
Linear 56.49 = 11.09 20.21+791
2 order 10.39+£7.50 5.94+4.49
3" order 9.04 +6.77 4.87 £ 3.66

mode complexity. The error in Y direction is almost half of
that of X direction which is due to the head movement range
in X direction is much larger than the range in Y direction.
The interference of distortion is therefore more significant in
X direction. The accumulated eye gaze mapping is visualised
in Fig. 6, which clearly demonstrates the fine performance of
the proposed system.

C. Use Case

After established the model from the vehicle experiment,
the participant was requested to conduct three NDAs including
playing games on cell phone, watching movie on tablet and
reading a book. This use case aims to demonstrate how to use
this system to identify the NDAs with the support of object
recognition. As illustrated by Fig. 7, the gazes are successfully
estimated and mapped on the regions of cell phone, tablet and
book. Two videos are available for download from the link
provided in the Acknowledgment.

IV. DISCUSSION

In the proposed system, the order of model and the number
of model term determine the model complexity which affects
the model performance. Table VI presents the model perfor-
mance based on the different model orders, where the number
of model term was set as 20. It can be observed that the
RMSE in X direction has been reduced from 56.49 pixel to
10.39 pixel, equal to 81.6% improvement of accuracy, when
the 2" order model is used instead of the linear model. When
the model complexity is increased from 2" order to 3™ order,
the increment of mode performance is much less significant
(13% improvement). A similar pattern has been observed
in Y direction. On the one hand, the model is preferred

©

(a) Gaze mapping when the driver is playing game by using a cell phone. (b) Gaze mapping when the driver is watching movie by using a tablet.

Model accuracy over the change of marker locations

second order polynominal V

Root mean square error (pixel)

4 \ , . \ \ , )
0% 10% 20% 30% 40% 50% 60% 70%
Pecentage of the distance between marker locations and centre of the image

Fig. 8. The model accuracy change of the location of the markers, which
suggests the influence of t distortion.

to be as simple as possible to a) ensure low computational
time for real-time applications, and b) avoid the over-fitting
problem. On the other hand, the model should be sophisticated
enough to cope the interference of camera distortion and head
movement. For all tests conducted in this study, the 20d order
nonlinear is appropriate. However, the optimal model order can
be different if a different camera is used. Generally speaking,
a camera with high distortion requires a high order of model
and more number of model terms. All these observations
can be applied to the number of selected model term. It is
suggested to select the model as simple as possible as long as
the error of estimation is smaller than the markers. If a high
resolution of eye gaze mapping is required, smaller markers
should be used.

The selection of the markers’ location affects the system
performance. In the vehicle experiment, some strategic loca-
tions were chosen such as windscreen, wing mirrors, steer
wheel and dashboard aiming to cover popular areas which the
driver is often gaze on. Fig.8 plots the RMSE of estimated gaze
on markers against the percentage of the distance from makers
to the centre of image to the image size. It can be seen that
there is an average error around 6 pixels for the markers around
the center, and the error increases following the increment of
distance with an approximately quadratic relationship. This
observation is a clear evidence that the model performance
is affected by distortion of lens. Apart from the distortion,



another reason of relatively poor performance on the edge of
the image is caused by the OpenFace algorithm. When the
driver gazes on the area around the edge of the image from
Camera-2, the head rotation is usually large. The accuracy of
facial features extracted by Camera-1 is compromised because
some landmarks are hidden or partly visible. Using multiple
cameras to capture the driver’s facial features can address
the problem but will increase the complexity and cost of the
system.

V. CONCLUSION

This paper proposed a low-cost and non-intrusive eye gaze
mapping system based on two cameras, which could act as
a powerful tool to reasoning the driver’s visual attention.
A nonlinear polynomial model was proposed to establish the
relationship between the driver’s facial features from Camera-1
and the eye gaze on images from Camera-2. Both indoor
experiment and in-vehicle experiment qualitatively and quan-
titatively demonstrated the efficiency of the proposed system.
The system was then successfully applied to characterise three
common NDAs including playing phone, reading book and
playing tablet. There are a few key findings from this study.

1. The error of this system in the in-vehicle experiment
for the X and Y direction is 7.80£5.99 pixel and
4.64+3.47 pixel respectively with the image resolution
of 1440x 1080 pixels.

2. A high order nonlinear model can reduce the interfer-
ence of distortion caused by Camera-2.

3. Apart from the gaze related parameters, the head pose
related parameters must be considered in the model due
to the complexity and diversity of eye gaze shifting.

4. Increasing the complexity of head movement will reduce
the model performance. Including the object depth into
the model may improve the performance, which requires
a further study.

4. The model could be subjective. A calibration process
therefore is suggested for each driver before testing.
Achieving a generic model to remove the calibration
process requires further studies.

It should be noted that this paper focuses on the develop-
ment of the eye gaze mapping system not its applications.
Potential problems to apply it in a driving vehicle include
that (a) facial feature extraction will be compromised due
to the potential heavy movement of driver body and camera
movement caused by poor road condition; (b) it will be more
difficult for the driver to gaze on an object. A comprehensive
and systemic evaluation of its performance in driving vehicles
requires a further study. The developed system could impact
studies on NDA characterisation for intelligent design of take
over strategy, driving environment awareness for current and
future automated vehicles.
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