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ABSTRACT 

Free-wake models are routinely used in aeroacoustic analysis of helicopter rotors; however, their semi-empiricism is 
essentially accompanied with uncertainty related to physical wake parameters. In some cases, analysts have to resort to 
empirical adaption of these parameters based on previous experimental evidence. This paper investigates the impact of 
inherent uncertainty in wake aerodynamic modeling on the robustness of helicopter rotor aeroacoustic analysis. A free-
wake aeroelastic rotor model is employed to predict high-resolution unsteady airloads, including blade-vortex 
interactions. A rotor aeroacoustics model, fundamentally based on Acoustic Analogy, is utilized to calculate aerodynamic 
noise in the time-domain. The individual analytical models are incorporated into a stochastic analysis numerical 
procedure, implemented through non-intrusive Polynomial Chaos expansion. The possible sources of uncertainty in 
wake tip-vortex core modeling are identified and their impact on noise predictions quantified. When experimental data to 
adjust the tip-vortex core model are not available the uncertainty in acoustic pressure and ground noise impact at 
observers dominated by blade-vortex interaction noise can reach up to 25% and 3.50 dB respectively. This work aims to 
devise generalized uncertainty maps to be used as modeling guidelines for aeroacoustic analysis in the absence of the 
robust evidence necessary for calibration of semi-empirical vortex core models. 
 
 
NOMENCLATURE   

Roman Symbols 
a  Lower limit of uniform distribution  

csA  Blade element cross sectional area m
2
 

b  Upper limit of uniform distribution  

0c  Speed of sound  m/s 

bc  Blade chord m 

LC  Rotor disc rolling moment coefficient 

= 
2 5/ ( )L R   

MC  Rotor disc pitching coefficient  

= 
2 5/ ( )M R    

2
nC M  Normal force coefficient 

 = 
2
0/ (0.5 )n bF c c   

TC  Rotor disc thrust coefficient 

 = 
2 4/ ( )T R   

COV  Coefficient of variation = /    

d  Perpendicular distance between a 
point and a vortex filament m 

dy  Blade differential span length m 

0f  Acoustic data line function  

nF  Sectional normal force  N/m 

12l  Vortex filament vector m 

L  Blade sectional loading vector N/m 

L  Rotor rolling moment Nm 

M  Relative Mach number vector  

M  Magnitude of relative Mach number 
 

M  Rotor pitching moment  Nm 

Mo  Mode of distribution  
n  Number of uncertain input 

parameters  
   

   
   

PearsonN

 
Pearson’s correlation index 

 

OASPL  Overall Sound Pressure Level dB 
p  Order of polynomial expansion  

p  Acoustic pressure Pa 

mp  Monopole acoustic pressure Pa 

dp  Dipole acoustic pressure Pa 

r  Position vector of a point on a vortex 
filament m 

r̂  Unit radiation vector  
r  Radiation distance m 

cr  Tip vortex viscous core radius m 

0cr  Initial tip vortex viscous core radius m 

1r  Position vector of a point relative to 
the beginning of a vortex filament m 

2r  Position vector of a point relative to 
the end of a vortex filament m 

R  Rotor radius m 

( , )R n m  Shorthand notation function m
-n

 

iS  Sobol sensitivity index  

t  Observer time s 

T  Rotor thrust N 

indV  Induced velocity vector m/s 

W  Shorthand notation term m/s 

x  Observer position vector, with 

components ix  m 
y  Stochastic response of system at 

specific collocation point  
 

Y  Stochastic response of system  
 
Greek Symbols 
  Oseen constant for the vortex core 

radius  
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1  Squire parameter for the eddy 
viscosity factor  

ia  Coefficient of orthogonal 
polynomial basis function  

sα  Wind tunnel rotor shaft angle rad 

  Circulation m
2
/s 

1  Skewness of distribution  

2  Excess kurtosis of distribution  

  Eddy viscosity parameter  

  Distance along trailed tip vortex rad 

  Mean value of distribution  
ν  Kinematic viscosity m

2
/s 

  Distribution  

  Density of quiescent medium kg/m
3
 

  Standard deviation of distribution  

i  Polynomial basis function  

  Blade azimuthal position rad 

  Rotor rotational speed rad/s 

   
Subscripts 

 
 

amp
 Amplitude  

   
Superscripts 

 
 adv

 
Quantity referring to rotor advancing 
side 

 

 
inflow

 
Vortex core quantity used to 
evaluate induced velocity for inflow 
calculations 

 

 
ret

 
Quantity referring to rotor retreating 
side 

 

 
wake

 
Vortex core quantity used to 
evaluate induced velocity for wake 
calculations 

 

 
 

1. INTRODUCTION 

Helicopter noise prediction is essentially affiliated with 
the aerodynamic modeling of the rotor flowfield (Ref. 
[1]). Free-wake aerodynamic modeling methods are 

capable of efficiently predicting complex aerodynamic 
phenomena like blade-vortex interactions (BVI), through 
detailed resolution of rotor wake behavior (Ref. [2]). 

The aforementioned models require some user-defined 
input parameters related to rotor wake physics. These 
parameters are typically obtained from experiments or 
empiricism; hence they are effectively associated with 
inherent uncertainty which is propagated in the 
prediction of rotor aeroacoustics. The identification of 
wake aerodynamic sources of uncertainty and 
quantification of their impact on aeroacoustic 
predictions are deemed as indispensable towards the 
design, certification and operation of present and future 
rotorcraft. 

The majority of aeroacoustic uncertainty 
investigations to date have predominantly focused on 
geometrical and operational input uncertainties. In Ref. 
[3] a benchmark rod-airfoil configuration was assessed 

in terms of geometric uncertainty and its propagation in 
aeroacoustics. A Large-Eddy Simulation (LES) solver 

was coupled with an aeroacoustic solver within a non-
intrusive stochastic collocation method (Ref. [4]). It was 

shown that an uncertainty of ±0.004 m in the position of 
the rod led to an uncertainty of 0.5-1 dB in the Overall 
Sound Pressure Levels (OASPL) (Ref. [3]).  

Olsman (Ref. [5]) quantified the uncertainty 

associated with ground acoustic footprint of noise 
abatement flight procedures in the presence of 
randomness in the operational flight path. A noise 
hemisphere approach was employed for the prediction 
of noise footprint and incorporated into a Polynomial 
Chaos expansion (PCE) based framework for 
uncertainty quantification. Standard deviations of up to 
3 dB were calculated with respect to the deterministic 
solution, which dictate the potential importance of 
stochastic noise footprint prediction in helicopter 
mission planning.  

Ricks et al. (Refs. [6], [7]) investigated the 

impact of operational and geometrical uncertainty in the 
acoustic propagation stage of hybrid computational 
aeroacoustics. A Computational Fluid Dynamics (CFD) 
solver based on the inviscid Euler equations was 
coupled with an integral solution of the noise 
propagation equation for the prediction of noise 
generation and propagation. A non-lifting helicopter 
rotor in hover was considered and an in-plane noise 
observer located 3.09 rotor radii upstream of the rotor. 
PCE was employed for the quantification of uncertainty 
and sensitivity analysis using Sobol indices. Uncertainty 
of 7.36% was observed in the peak acoustic pressure, 
primarily attributed to the randomness in blade tip Mach 
number. The investigations of this study were carried 
out for in-plane observers, dominated by thickness 
noise.  

Gennaretti et al. (Ref. [2]) assessed the 

capabilities of a boundary-element-based computational 
methodology as regards BVI noise prediction. The 
study included a sensitivity analysis which showed that 
the wake model is sensitive to vortex core diffusion 
empirical coefficients. The analysis was a sensitivity 
investigation, based on the assumption of ± 50% 
variation of wake diffusion parameters.  

Bhagwat and Ramasamy (Ref. [8]) examined 

the effect of tip-vortex aperiodicity on the measurement 
uncertainty of vortex-core properties. Uncertainties in 
the order of 10% were calculated for the vortex core 
radius of the HART II rotor (Ref. [9]) in BVI conditions. 

These levels of uncertainty are representative of the 
state-of-the-art in tip-vortex measurements, although 
they have never been incorporated into helicopter rotor 
aeroacoustic simulation. In some cases, robust 
experimental evidence referring to tip-vortex core radius 
is not available, forcing analysts to resort to empiricism 
for the determination of the associated physical 
properties necessary for aerodynamic calculations. 

The vortex core radius is a critical 
aerodynamic parameter which affects airloads and 
consequently, noise. To the authors’ knowledge, the 
impact of tip-vortex core modeling uncertainty on the 
robustness of aeroacoustic predictions has not yet been 
systematically investigated. The general scope of this 
work is the quantification of the impact of wake 
modeling uncertainty on helicopter rotor BVI noise 
predictions. Furthermore, it is aimed to devise a set of 
fundamental modeling guidelines applicable when 
uncertainty is present in the governing wake tip-vortex 
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core physical parameters. 
 

2. MATHEMATICAL FORMULATION 

2.1. Aeroelastic rotor model 

A free-wake and unsteady aeroelastic rotor 
model is utilized to predict elastic rotor blade unsteady 
motion and unsteady airloads, including BVIs (Ref. 
[10]). A minimum potential energy method, similar to 
the one reported in Ref. [11], is deployed for the 

estimation of coupled flap-lag-torsion vibration 
characteristics of the elastic rotor blades (Ref. [12]). 
The matrix/vector based formulation presented in Ref. 
[13] is employed for modeling the flexible rotor blade 

kinematics along with the Leishman-Beddoes indicial 
response method (Ref. [14]) for the prediction of 

unsteady blade airloads. The aforementioned models 
have been extensively described in the corresponding 
references; thus, further discussion will be omitted.  

A relaxation-type free-wake aerodynamic 
model is employed for the modeling of unsteady rotor 
inflow, able to capture the complex blade-vortex 
interaction phenomena (Ref. [15]). Each vortex is 

discretized as a series of straight vortex filaments with 
Lagrangian markers located at the ends of each 
filament. It is assumed that viscous effects are 
significant only within the vortex core region of the 
filaments. Subsequently, the flow can be considered as 
inviscid outside the vortex singularity (Ref. [16]). The 

governing equation which describes the convection of 
the Lagrangian markers is the unsteady Vorticity 
Transport Equation for incompressible and isotropic 
fluids (Ref. [16]). 

The velocity induced by a single vortex 
filament is evaluated through numerical integration 
using the Biot-Savart law for straight vortex filaments 
including the Vatistas vortex core model (Ref. [17]): 
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where   is the circulation strength of the vortex, 12l  is 

the vortex filament vector, 1r  and 2r  are the position 

vectors of the arbitrary point P relative to the 

Lagrangian markers of the filament and r  is the 
position vector of point P relative to the vortex segment. 
The perpendicular distance between point P and the 

vortex filament is 12 12/ d l r l . The tangential 

velocity profile of the Vatistas model is defined by the 
general constant n  which best matches the 

experimental velocities measured in Ref. [17]. Finally, 

the vortex core radius cr  is given by Squire’s equation: 

(2)     2
0 4 c cr r


 


ν  

where 0cr  is the initial core radius and 1.25643  is 

the Oseen constant. The eddy viscosity parameter   is 

calculated by: 

(3)            11 


 


 

Bhagwat et al. (Ref. [18]) suggested values in 

the order of 10
-4

 to 10
-3

 for the Squire parameter 1  to 

represent viscous core growth of small scale rotors. 
Although the initial vortex core radius of 5-10% chord is 
typically used for forward flight, a larger initial core 

radius 0 0.6cr c  has been used in some studies to 

reduce spurious BVI response in descending flight (Ref. 
[9]). Different core radii may be used for the evaluation 

of induced velocity for wake calculations and rotor 
inflow calculations, to improve convergence stability 
and speed (Ref. [9]). For the present analysis, the 

reference values of 0 0.1wake
cr c  and 1 0.001wakea  are 

used for wake calculations, and 0 0.6
inflow
cr c  and 

1 0.008
inflow

a  for rotor inflow calculations. These 

values provide the best match between predicted and 
measured wake, airloads and noise data. These values 
will serve are mean values for the uncertainty analysis, 
with appropriately chosen statistical distributions around 
them. This will be further discussed in Section 3.2. 

The wake is split in the near wake and far 
wake regions which are linked via a vortex roll-up model 
based on the distribution of bound circulation and local 

vorticity   / r r . The rotor azimuthal step 

implemented is 1   deg.  to efficiently capture the 

BVI airloads. The blades are discretized into 30 radial 
elements and six vibration modes are considered. The 
aforementioned resolutions have been selected after 
sensitivity analyses and literature suggestions (Ref. 
[16]). Shed vortices are not resolved in the wake model 

as they are fundamentally accounted for in the 
unsteady blade aerodynamic model through the 
deficiency functions applied on the circulatory normal 
force coefficient (Ref. [14]). 

The aforementioned individual aerodynamic 
and structural models are incorporated into a globally-
convergent trim algorithm based on Broyden’s 
numerical algorithm. The trim algorithm solves for the 
rotor collective and longitudinal and lateral cyclic 
controls for given wind tunnel conditions and rotor thrust 

TC , rolling LC  and pitching moment MC  coefficients. 

 

2.2. Rotor aeroacoustics model 

The noise prediction code ICARUS (Integral 
Computational AeRoacoustics Unified Software), is 
deployed to model helicopter rotor aeroacoustics (Ref. 
[19]). This code is an integral implementation of the 
Ffowcs Williams-Hawkings (FW-H) equation (Ref. [20]), 

which is the most general form of Lighthill’s Acoustic 
Analogy (Ref. [21]). The FW-H equation describes 

acoustic pressure disturbances as a three-dimensional 
mechanical wave, equal to three noise source terms, 
which are monopole, dipole and quadrupole sources, 
respectively. 
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Formulation 1A of Farassat (Refs. [22], [23]) 

is the most extensively utilized and validated integral 
solution of the FW-H equation. It is based on the free-
space Green’s function solution of the three-
dimensional wave equation. Formulation 1A resolves 
thickness and loading noise components, which 
correspond to the monopole and dipole acoustic terms, 
respectively. The high-speed impulsive noise 
component which corresponds to the quadrupole term 
of the FW-H equation is neglected. This is valid as long 
as the rotor tip Mach number is below the transonic 
limit, which is the typical condition for the majority of 
civil rotorcraft operations.  

Chordwise compact acoustic expressions of 
Formulation 1A are utilized since the blade chord can 
be considered small compared to the wavelength of the 
radiated acoustic content (Ref. [16]). Brentner et al. 
(Ref. [24]) introduced a compact form of the loading 

noise term of the Formulation 1A, utilizing the blade-

element lift distribution L  across the blade span. 
Consequently, the computation reduced from a surface 
integral to a line integral. Lopes (Ref. [25]) presented 

and validated a compact expression of the monopole 
term of Formulation 1A, based on the geometrically 
compact assumption that the radiation distance is large 
compared to the blade chord. The proposed formulation 
utilizes the spanwise distribution of the airfoil cross-

sectional area csA  as a blade design parameter of each 

blade element with differential span length dy . Hence, 

the thickness acoustic pressure is also evaluated as a 

line integral defined by the line equation 0f , which 

describes the blade elastic line ranging from the root to 
the tip. Using the shorthand notation introduced by Lee 
et al. in Ref. [26] and followed by Lopes in Ref. [25], 

the compact expressions of thickness and loading 
acoustic pressure employed in this work can be formed 
as follows: 

(4) 
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where mp  and dp  are the monopole and dipole 

acoustic disturbance terms respectively, evaluated at 

the observer position x  and observer time t   and 0c  

and 0  are the speed of sound and density of the 

quiescent acoustic medium, respectively. The vectors 

L , M  and r̂  correspond to the loading vector, the 
local relative Mach number vector and the unit radiation 
vector, respectively. It is noted that the time derivatives 
are being evaluated in the source time  . The 

subscript "ret"  represents numerical integration within 

the retarded-time (i.e. source-time). The following 
shorthand functions are being used, as suggested by 
Lopes (Ref. [25]): 
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The source-time-derivative of the function W  

has been analytically determined by Lee (Ref. [26]): 
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where r  is the radiation distance and M  is 

the magnitude of the local relative Mach number vector. 
The overall discrete frequency acoustic 

pressure ( , )p x t  can be expressed as the summation 

of monopole and dipole acoustic disturbance 
contributions. The compact acoustic formulations 
adopted in this study are compatible with the lifting-line-
type aerodynamic input provided by the free-wake 
airloads model. Moreover, computational savings of up 
to 99.5% have been reported with only slight deviations 
from the corresponding non-compact deterministic 
acoustic pressure computations (Refs. [24], [25]). 

 

2.3. Uncertainty quantification method 

Traditional approaches for uncertainty analysis 
involve Monte Carlo (MC) simulation which is based on 
random sampling of the uncertain input parameters. 
Subsequently, deterministic evaluations of the 
investigated model are performed for each sample point 
and the output quantities of interest statistically 
examined. MC methods are widely used due to the 
ease of implementation, but the number of samples 
required for convergence of the statistical properties of 
the outputs is typically in the order of thousands of 
evaluations (Refs. [27], [28]). This number becomes 

prohibitive when the deterministic model evaluations 
are computationally demanding.  

Stochastic spectral methods constitute an 
efficient alternative to the computationally expensive 
MC-based methods for uncertainty quantification (UQ). 
PCE has been utilized for the quantification of 
uncertainty in aeroacoustics when the deterministic 
model is computationally demanding (Refs. [5]–[7]). A 
PCE approach (Ref. [29]) is employed for the 

quantification of uncertainty in aeroacoustic analysis 
due to the uncertainty in wake tip-vortex core physical 
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parameters utilized in this work. PCE describes the 

response  Y   of a system encompassing stochastic 

input of known distribution   as an infinite series of 

orthogonal polynomial basis functions  i  , provided 

that the response behavior is smooth. For practical 
engineering applications, the infinite series is truncated 

to a number of 1p  basis functions. Hence: 

(9)              
0

 



p

i i

i

Y a    

where ia  are the coefficients of the orthogonal 

polynomial basis functions. The orthogonal polynomials 

basis functions  i   are solely specified by the known 

random distribution  , hence no input from the 

deterministic model is yet required. Therefore, the 
estimation of the stochastic response of the system, 
according to Eq. 9, requires only the determination of 

the coefficients ia  of the polynomial terms. These are 

determined by solving the linear system of equations 
formed by the expansion of Eq. 9: 

(10)  

 

 

   

   

0 0 00

0 0

    
    

     
    

    

p p

m p m m

ay

y a

   

    

 

where i  are the 1m  collocation points at 

which the system’s deterministic response is evaluated, 

 iy   is the response of the system at each collocation 

point and ia  the unknown coefficients of the polynomial 

of order p . The number of collocation points, which 

corresponds to the number of deterministic evaluations 
of the system with n  uncertain input parameters, is the 

cardinality of the dataset   and is given by: 

(11)   
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The low-discrepancy Halton sequence is 
employed for the determination of collocation points, 
which offers better coverage of the stochastic space 
compared to random sampling methods (Ref. [30]). 

Typically, over-sampling is required to improve the 
accuracy of the system’s response approximation with 
PCE (Ref. [30]). The effective polynomial expansion is 
finally derived through least-squares regression (Ref. 
[31]). PCE treats the deterministic model as a black-

box; hence it is a non-intrusive method for uncertainty 
quantification, which is a suitable approach for 
engineering applications.   

Orthogonal polynomials are based on the 
probability density function of the random parameters; 
hence they feature convenient properties for statistical 
analysis. According to Ref. [32] the mean and variance 

of the system’s output can be analytically derived from 
the polynomial basis functions and corresponding 
coefficients. However, for the purposes of this study the 
developed PCE-based approximation will be used as a 

meta-model to be provided to a MC analysis method. 
Apart from computing statistical moments, this can 
provide an extensive, but now computationally 
affordable stochastic dataset for detailed statistical 
analysis. Additionally, PCE enables the capability of 
directly performing variance-based sensitivity analysis 
to identify the relative sensitivity of the stochastic output 
to the uncertain input parameters. Sensitivity analysis 

based on Sobol indices iS  (Refs. [33], [34]) is allowed 

when the response of the system can be decomposed 
in summands that are mutually orthogonal.  

A comprehensive statistical method based on 
the aforementioned approach has been developed for 
the purposes of this work. An overview of the integrated 
statistical method is presented in Fig. 1.  

 
Fig. 1: Overview of uncertainty quantification method. 

 

3. RESULTS AND DISCUSSION 

3.1.  Comparison with experimental 
measurements 

The accuracy and validity of the developed 
aeroacoustic simulation method is assessed through 
comparing predictions with experimental measurements 
retrieved from the baseline case of the HART II 
experiment (Ref. [9]). The rotor is a 40% scale model of 

the 4-bladed hingeless Bo 105 helicopter rotor. The 
rotor radius is 2  R m  and the rotational speed is 

109.12  Ω rad / s . The rotor is descending with a 

shaft angle s 4.5    deg , advance ratio 0.15  

and thrust coefficient 0.0044TC . Fig. 2 (a) illustrates 

the comparison of predicted and measured acoustic 
pressure history at the advancing side observer located 
2.215 m below the rotor disc, 0.0 m upstream and 1.81 
m at the advancing side of the rotor. It is shown that the 
developed method accurately predicts the generated 
BVI noise in terms of amplitude and phase. 

A spectral comparison of the acoustic pressure 
time histories is required to thoroughly quantify the 
predictive accuracy of the aeroacoustic formulation. 
Fig. 2 (b) presents the spectral content of the predicted 

acoustic signal, compared with the corresponding noise 
results of the measured acoustic history for the first 40 
harmonics of the Blade Passage Frequency (BPF), 
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where BVI noise dominates (Ref. [9]). It is observed 

that the measured acoustic signal is not entirely 
periodic due to the additional pressure sensors installed 
on Blade 1, which caused flapping and loading 
discrepancies relative to Blades 2-4 (Ref. [9]).For this 

reason, each of the pulses of the measured signal has 
been individually analyzed.  

 

 
Fig. 2: Acoustic pressure prediction for the HART II 
rotor – comparison with experimental data from Ref. 
[9]: (a) acoustic pressure history; (b) spectral analysis. 

 

 

 
Fig. 3: Ground noise prediction for the HART II rotor – 
comparison with experimental data from Ref. [9]: (a) 

wind tunnel; (b) simulation. 
 

As regards the low-frequency content of the 
noise signal, good agreement between predictions and 
measurements is observed for the first five BPF 
harmonics, albeit with discrepancies associated with the 
4

th
 and 5

th
 harmonic. These can be attributed to the 

deviations observed around the second negative peak 

of each acoustic pulse and especially in pulses 3 and 4. 
As regards the higher-frequency BVI content, good 
agreement is observed up to the 30th BPF harmonic, 
with a mean relative error of 6.54%. Higher 
discrepancies are recorded at the higher harmonics 
which showcase the limitations of chordwise compact 
aerodynamic and aeroacoustic formulations. 
Nevertheless, the amplitude of higher harmonic noise 
components is significantly smaller. 

Fig. 3 (a) illustrates the ground noise contours 

corresponding to the BL case of the HART II 
experiment. The measurement plane is located 2.215 m 
below the rotor disc. The OASPL were calculated via 
frequency-integration of the Fast Fourier 
Transformation (FFT) on the original acoustic pressure 
signal at microphone location. Only BPF harmonics 
between the 6

th
 and the 40

th
 were considered to isolate 

the mid-frequency content of the emitted noise, where 
BVI noise is dominant. Fig. 3 (b) presents the predicted 

ground noise for the same conditions using the 
developed computational models. It can be seen that 
the advancing and retreating side BVI peaks are 
accurately predicted in terms of directivity and intensity. 
An average absolute deviation of 4.1 dB was 
calculated, which can be deemed as satisfactory given 
the complexity of the simulated case. It is noted that the 
experimental scatter of the noise radiation was found to 
be up to 2 dB (Ref. [9]). 

 

3.2. Polynomial Chaos expansion 

 The uncertain input parameters considered in 
this work are the tip-vortex core radius model governing 

parameters, 0
wake

cr , 1
wakea , 0

inflow
cr  and 1

inflow
a . Two 

distinct cases of input uncertainty are examined: (a) the 
case when experimental data referring to tip vortex core 
geometry are available and (b) the case of absent 
experimental data. For the case of available 
experimental data, the probability density function 
(PDF) of all input parameters will be considered to be 

Gaussian with coefficient of variation 10%COV . 

This is in correspondence with experimental 
measurements of tip-vortex core radius and circulation 
strength undertaken by Bhagwat and Ramasamy (Ref. 

[8]). The associated values of mean   and standard 

deviation   of the uncertain inputs considered are 

summarized in Table 1.  

 
Table 1: Distributions of uncertain input variables when 

experimental data are available (Gaussian distribution 

with 10%COV ). 

Uncertain input     Unit 

wake
c0r  0.10 0.01 [chords] 

wake
1a  0.001 0.0001 [-] 

inflow
c0r  0.60 0.06 [chords] 

inflow
1a  0.008 0.0008 [-] 

 
As regards the case of absent experimental 

data for tip-vortex core radius calibration, a uniform 
distribution is used for all uncertain inputs, as they can 



Page 7 of 14 

 

Presented at the 45th European Rotorcraft Forum, Warsaw, Poland, 17-20 September, 2019  

This work is licensed under the Creative Commons Attribution International License (CC BY). Copyright © 2019 by author(s). 

take any value within the designated limits, with equal 
probability of occurrence. The determination of the 

upper limit a  and lower limit b  for each uncertain input 

is dependent upon the availability of relevant literature 
and practical experience. Based on the suggestions of 
Ref. [18] and Ref. [9], as well as the discussion of 

Section 2.1, an uncertainty of 30%COV  will be 

adopted for this investigation, which can be considered 
as a relatively conservative choice. The resulting limits 
of the uniform distribution of each uncertain input 
variable are provided in Table 2. It is noted that in both 

examined cases, the mean values of uncertain inputs 
correspond to the values found that provide the best 
agreement between predicted and experimental noise 
data, as validated in Section 3.1.  

 
Table 2: Distributions of uncertain input variables when 

experimental data are not available (Uniform distribution 

with 30%COV ). 

Uncertain input a  b  Unit 

wake
c0r  0.0480 0.1519 [chords] 

wake
1a  0.00048 0.00152 [-] 

inflow
c0r  0.2882 0.9117 [chords] 

inflow
1a  0.00384 0.01215 [-] 

 
Fig. 4 presents the probability distributions of 

the 0
wake

cr  uncertain input for the two examined cases. 

The rest of uncertain input parameters are 
stochastically described by similarly shaped 
distributions. It is noted that for the case of availability of 
experimental evidence, the COV values reported in Ref. 
[8] do not exactly match at 10%. However, due to the 

fundamental character of this study, it has been 
deemed as more easily interpretable to maintain a 
common COV for each uncertain variable, thus allowing 
the expansion and generalization of obtained results, as 
will be described in Section 3.6. 

 
Fig. 4: Comparison of probability density functions for 

the distribution of 0
wake

cr  referring to the two examined 

cases of input uncertainty. 
 
The stochastic space is discretized based on 

the sampling method described in Section 2.3. An 

over-sampling coefficient of 4 is used in this work to 

generate a reliable sample. A polynomial order 2p  

is selected in this work, as also followed in Ref. [7]. 

Based on Eq. 11 and for the given number of uncertain 

inputs 4n , a total of 60 collocation points are 

required for the PCE. The coupled approach comprising 
free-wake aerodynamics and ICARUS aeroacoustics is 
employed for the evaluation of each collocation point, 
as shown in Fig. 1. The output objectives of interest 

constitute aerodynamic and aeroacoustic descriptors of 
parameters which govern BVI noise generation and 
propagation. Specifically, the objectives chosen for UQ 
are: (a) amplitude of time-derivative of normal force 

coefficient at 0.87R  on the advancing side of the rotor 

 2
 adv

n
amp

dC M d , (b) amplitude of time-derivative of 

normal force coefficient at 0.87R  on the retreating side 

of the rotor  2
ret

n
amp

dC M d , (c) amplitude of acoustic 

pressure signal at the advancing-side microphone 

' adv
ampp , (d) amplitude of acoustic pressure signal at the 

retreating-side microphone ' ret
ampp , (e) overall noise 

levels at the advancing-side microphone 
 advOASPL  

and (f) overall noise levels at the retreating-side 

microphone 
 retOASPL . The microphone positions 

considered are the ones reported in Ref. [9].  

Before commencing the UQ process, the 
predictive accuracy of the derived PCE is assessed 
through Leave-One-Out Cross-Validation (LOOCV). 
The leave-one-out method is based on the construction 
of a dedicated PCE at each collocation point after 
excluding this specific point from the dataset. Then, the 
PCE-predicted value of the objective functions at this 
sample point is compared with the corresponding value 
obtained from the direct evaluation of this point using 
the actual simulation model. The aforementioned 
process is repeated for the entire set of sample points 
of the PCE procedure. The quality of the original PCE is 
assessed in terms of Pearson’s product moment of 

correlation PearsonN  along with the gradient of the 

associated linear regression line (Ref. [35]). A perfectly 

linear correlation would correspond to 1.00PearsonN  

and a regression line gradient of 45.00 deg.  
 
Table 3: Statistics of LOOCV of the derived PCE when 

experimental data are available (Gaussian distribution 

with 10%COV ). 

Objective PearsonN

 [-] 

Grad 
[deg] 

NRMSE 
[%] 

  

[%] 

 
 adv

2
n

amp
dC M dψ  0.999 45.05 0.469 0.473 

 
ret

2
n

amp
dC M dψ  0.995 44.55 1.004 1.011 

 adv
ampp'  0.998 44.68 0.649 0.632 

 ret
ampp'  0.996 45.34 0.977 0.963 

 adv
OASPL  0.999 45.01 0.109 0.110 

 ret
OASPL  0.996 44.76 0.161 0.169 
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Table 3 summarizes the statistical properties 

of LOOCV for all objectives corresponding to the case 
of known experimental data for tip vortex core 
calibration. Excellent linear correlation is observed for 

all objectives, with PearsonN  and gradients very close to 

the ideal values. This showcases the ability of the 
developed PCE to replicate the physical behavior of the 
direct simulation. Furthermore, the normalized root-
mean-square error (NRMSE) of each objective is lower 
than 1.004% which quantified the predictive accuracy of 
the developed PCE. Finally, the corresponding standard 
deviation   of the calculated error is again in the same 

order for all variables. This indicates that the PCE error 
is uniformly distributed throughout the investigated 
design space. As regards the case of absent 
experimental data with uniformly distributed uncertain 

inputs with 30%COV , similar trends with the 

previous case are observed, albeit with slightly higher 
NRMSE (less than 2%), which is attributed to the wider 
spread of the vortex-core related input variables. 
However, higher values of output uncertainty are 
anticipated in this case, which brings the relative 
contribution of LOOCV uncertainty to similar levels to 

the 10%COV  Gaussian case.  Summarizing, the 

quantification of quality and accuracy of the developed 
PCE confirms the applicability of the method in the 
context of uncertainty quantification for BVI noise 
prediction. 
 

3.3. Uncertainty quantification 

The derived computationally efficient PCE-
based meta-models can now be utilized for UQ in BVI 
noise prediction subject to tip vortex core radius 
uncertainty. The quantification of uncertainty is 
implemented through MC simulation based on results of 
the PCE meta-model. Table 4 provides the results of 

UQ for the case when vortex-core experimental data 

are available (Gaussian distribution with 10%COV ).  

 
Table 4: Uncertainty quantification when experimental 

data are available (Gaussian distribution with 

10%COV ). 

Objective [unit] 
  

[unit] 

  

[unit] 

1γ  

 [-] 

2γ  

 [-] 

  1
 

rad

 adv
2

n
amp

dC M dψ [ ]  0.82 0.12 0.424 0.112 

  1
 

rad

ret
2

n
amp

dC M dψ [ ]  0.62 0.07 0.608 0.364 

 Pa adv
ampp' [ ]  84.12 9.91 0.327 0.046 

 Pa ret
ampp' [ ]  46.64 5.56 0.318 0.024 

 dB adv
OASPL [ ]  114.4 1.17 0.013 -0.113 

 dB ret
OASPL [ ]  111.1 1.14 0.027 -0.064 

 
It is observed that the mean values of 

 2
 adv

n
amp

dC M d  and  2
ret

n
amp

dC M d  are identical 

to the deterministic simulation results, whilst the 
corresponding uncertainties reach 15.35% and 11.90% 

of the associated mean values, respectively. As regards 

' adv
ampp  and ' ret

ampp , the stochastic mean values are 

slightly higher than the corresponding deterministic 
amplitudes (0.36% and 0.88%), with associated 
uncertainties of 11.78% and 11.93%, respectively. The 

stochastic prediction of mean 
 advOASPL  and 

 retOASPL  is almost identical to the corresponding 

deterministic noise values. The associated uncertainty 
is 1.02% for both microphone locations, which 
represents a standard deviation of approximately 1.1 
dB.  

The skewness 1  of each objective distribution 

describes the degree of distortion from the symmetrical 
“bell-shaped” distribution. It can be seen that for the 

10%COV  case with Gaussian input uncertainty 

distributions, the stochastic output objectives are fairly 

symmetrical, with values of 1  generally below 0.5. 

Especially for 
 advOASPL  and 

 retOASPL , skewness is 

below 0.05 which corresponds to an almost fully-

symmetrical distribution. The excess kurtosis 2  is a 

measure of outliers present in the distribution. It is 
noted that the kurtosis of Gaussian distribution is 3 by 

definition. Hence, a value of 2 0  would represent a 

perfectly Gaussian distribution. It is shown that for the 

10%COV  case with Gaussian input uncertainty the 

stochastic output objectives follow distributions close to 

mesokurtic, with values of 2  generally below 0.5. 

Overall, it can be concluded that in cases when 
experimental data referring to the tip vortex core radius 
are available, fairly robust aeroacoustic predictions can 
be made, which confirms the suitability of free-
wake/FW-H approaches in the context of complex BVI 
noise prediction. 
 
Table 5: Uncertainty quantification when experimental 

data are not available (Uniform distribution with 

30%COV ). 

Objective [unit] 
  

[unit] 

  

[unit] 

1γ  

 [-] 

2γ  

 [-] 

  1
 

rad

 adv
2

n
amp

dC M dψ [ ]  0.87 0.28 0.946 -0.037 

  1
 

rad

ret
2

n
amp

dC M dψ [ ]  0.67 0.18 0.841 -0.008 

 Pa adv
ampp' [ ]  86.96 21.74 0.704 -0.267 

 Pa ret
ampp' [ ]  48.37 12.43 0.782 -0.074 

 dB adv
OASPL [ ]  114.6 3.71 0.024 -0.705 

 dB ret
OASPL [ ]  111.2 3.32 0.061 -0.618 

 
Table 5 presents the uncertainty analysis for 

the case of absent experimental evidence regarding tip 
vortex core radius, essentially described by uniformly 

distributed uncertain input variables with 30%COV . 

Trends similar to Table 4 are observed, albeit with 

higher levels of uncertainty. Specifically, the uncertainty 
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in ' adv
ampp  and ' ret

ampp  prediction is approximately 25% 

for both microphone locations, whilst the associated 
stochastic mean values are 3.75% and 12.84% higher 
that the corresponding deterministic predictions. 
Standard deviations of 3.71 dB and 3.32 dB are 

calculated for the 
 advOASPL  and 

 retOASPL  

objectives, respectively, although these retain 
stochastic mean predictions almost identical to the 
deterministic ones.  

Furthermore, the distributions of 

 2
n

amp
dC M d  and ' ampp  are moderately skewed 

to the right with 1  reaching positive values of almost 1. 

In this case, the mean value of output objectives is 
significantly higher than the mode of the distributions, 
which is the objective value with the highest probability 
of occurrence. Hence, by neglecting the input 
uncertainty in this case, the most probable output would 
be an under-estimated descriptor of unsteady airloads 
or acoustic pressure. Nevertheless, the symmetry of 
OASPL is retained at even high values of input 
uncertainty. However, the associated excess kurtosis is 
considerably negative, with values lower than -0.5, 
which is primarily attributed to the uniform distribution of 
input uncertainty. 
 

3.4. Sensitivity analysis 

The relative contribution of individual uncertain 
inputs to the overall stochastic response is quantified 
through sensitivity analysis based on Sobol indices, as 
described in Section 3.3. Table 6 presents the 

sensitivity indices iS  referring to the case of available 

tip-vortex data with Gaussian 10%COV . 

Table 6: Sensitivity of output objectives to uncertain 

inputs when experimental data are available (Gaussian 

distribution with 10%COV ). 

 Sensitivity index iS  [%] 

Objective wake
c0r  

wake
1a  

inflow
c0r  

inflow
1a  

 
 adv

2
n

amp
dC M dψ  0.018 0.009 27.610 72.360 

 
ret

2
n

amp
dC M dψ  0.263 0.029 35.511 64.195 

 adv
ampp'  0.010 0.015 27.383 72.590 

 ret
ampp'  0.037 0.004 46.923 53.034 

 adv
OASPL  0.002 0.013 27.755 72.228 

 ret
OASPL  0.023 0.003 47.171 52.801 

 
It is observed that uncertainty in the 

parameters used for wake geometry calculations, 0
wake

cr  

and 1
wakea , has insignificant influence on aeroacoustic 

outputs. However, inflow-related input uncertainty and 
especially uncertainty in the value of Squire parameter 

1
inflow

a  has approximately 72% contribution to the 

overall system’s response. It is noted that similar trends 
have been observed in the sensitivity analysis of the 

30%COV  case with uniform input distributions, 

which illustrates that the relative contribution of input 
parameters is not dependent upon the shape and value 
of input uncertainty. 

Additionally, it is observed that the sensitivity 

indices of 1
inflow

a  are consistently higher at the 

advancing side, compared with the corresponding 
indices of retreating side. This is attributed to the tip 
vortex behavior at both sides of the rotor.  As shown in 
Refs. [9], [10], retreating rotor blades interact with 

trailed tip vortices of age less than 90 deg. At the early 
stages of tip vortex propagation, vortex core growth is 

minimal, which in combination with a small 0cr  can lead 

to small vortex core radii which directly affect induced 

velocity and airloads. A larger 0cr  would act as a 

“damper” of excessively high vortex core radii. This 
highlights the importance of the initial vortex core radius 
parameter in UQ of retreating-side BVI noise. As 
regards advancing-side BVIs, most of interactions 
comprise relatively older tip vortex filaments with an age 

greater than 90 deg., hence the impact of 0
inflow
cr  is 

reduced relative to the retreating-side BVI uncertainty. 
 

3.5. Stochastic aeroacoustic predictions 

 

 
Fig. 5: Stochastic prediction of acoustic pressure at the 

HART II advancing side observer – mean acoustic 
pressure and uncertainty bars representing two 
standard deviations: (a) Gaussian input with 

10%COV ; (b) Uniform input with 30%COV . 

 
Fig. 5 (a) presents the stochastic prediction of 

full time-history of a single BVI acoustic pressure pulse 
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for the case of Gaussian 10%COV  input distribution 

of the tip vortex core parameters. The acoustic pressure 
time-histories of all sample collocation points have been 
aligned together to remove any phase shift between the 
60 acoustic signals. The illustrated acoustic pressure 

distribution represents the mean ' advp  value at each 

point of the time-history. The distribution of stochastic 
mean acoustic pressure is almost identical to the 
deterministic predictions illustrated in Fig. 2 (a). 

Superimposed are the uncertainty bars representing 

two standard deviations of ' advp  at each time-point. It 

can be seen that a standard deviation of 4.23 Pa 
corresponds to the positive peak of BVI pulse, whilst a 
5.15 Pa uncertainty is recorded at the negative peak. 
The resulting stochastic amplitude of acoustic pressure 

is very close to the ' 9.91 
 

adv
ampp Pa  calculated in 

Section 3.3, which confirms the suitability of the 

employed descriptor as objective of the UQ process. 
Fig. 5 (b) presents the corresponding 

stochastic prediction for uniform input distributions of 

30%COV . The mean stochastic acoustic pressure 

distribution is similar to the deterministic, although 
slightly over-predicted, with peak local differences 
reaching 2.1%. The width of uncertainty bars follows 

same trends as in the Gaussian 10%COV  case, 

however, the maximum uncertainties reach 14.67 Pa 
and 15.55 Pa at the positive and negative peaks of the 
BVI pulse, respectively.  

 

 
Fig. 6: Stochastic prediction of spectral content at the 

advancing side observer of the HART II experiment – 
mean SPL and uncertainty bars representing two 
standard deviations: (a) Gaussian input with 

10%COV ; (b) Uniform input with 30%COV . 

 

The distribution of uncertainty in the time-
domain stochastic prediction of acoustic pressure is 
reflected in the spectral analysis in the frequency range 
where BVI noise is dominant. Fig. 6 (a) and Fig. 6 (b) 

illustrate the mean Sound Pressure Levels (SPL) with 
superimposed uncertainty bars corresponding to the 

10%COV  and 30%COV  cases, respectively. 

The stochastic mean values are identical across the 
entire frequency range, which confirms the immunity of 
mean SPL to vortex core input uncertainties. For the 

case of Gaussian input with 10%COV , relatively 

small levels of uncertainty are observed across the 
entire frequency range, with standard deviations in the 
order of 1 dB. This highlights the robustness of free-
wake/FW-H approaches in predicting BVI noise when 
experimental data referring to tip vortex core growth are 
available. However, in the case without this data, 
uncertainties in the order of 3.5 dB govern the mid-
frequency content, corresponding to the BVI signal, 
which can primarily be attributed to the high standard 
deviations observed around the peaks of the acoustic 
pressure pulse. It is noted that the low-frequency 
harmonic noise is less affected by vortex-core-related 
uncertainty, as standard deviations below 1 dB are 
associated with the first three BPF harmonics.  

 

 
Fig. 7: Standard deviation of stochastic prediction of 

ground noise 2.215 m below the HART II rotor: (a) 

Gaussian input with 10%COV ; (b) Uniform input 

with 30%COV . 

 
The impact of uncertainty in the BVI ground 

noise predictions is illustrated in Fig. 7 (a) and Fig. 7 
(b), which present the distribution of standard deviation 

in dB for the stochastic prediction of 6-40 BPF mean 
ground noise distribution of the HART II experiment 
(Ref. [9]). It is noted that the mean OASPL distribution 
is very similar to the deterministic presented in Fig. 3 
(b), hence it was deemed sufficient to only present the 

corresponding standard deviations. Generally, the 
prediction of ground noise contour is adequately robust 

in the 10%COV  case, with values of standard 

deviations not exceeding 1 dB at most measurement 

nodes. As regards the uniform-input 30%COV  

case, uncertainty can reach up to 4.6 dB, dictating the 
importance of stochastic simulation when experimental 
evidence referring to the vortex core geometry is not 
available. 
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3.6. Fundamental modeling guidelines 

The previous analysis has shown that the 
impact of input uncertainty on the robustness of 
aeroacoustic predictions is dependent upon the shape 
and COV of input distributions.  

 
Fig. 8: Probability histograms for Gaussian and uniform 

input uncertainty of 30%COV . 

 
Fig. 8 presents the probability histograms of 

' adv
ampp , comparing the cases of Gaussian and uniform 

uncertain input distributions, both with 30%COV . 

The distributions are expressed as relative deviation 

from the ' adv
ampp  which achieves the best match with 

experimental data, as presented in Fig. 2 (a). This 

value will be used as reference for the entire analysis 
presented in this section. It can be seen that both 

distributions are positively skewed with modes Mo  

around -25% of the reference value. This depicts the 
importance of stochastic simulation at high values of 
input uncertainty: a considerable under-prediction of 

' adv
ampp  will most probably occur if the case is 

approached deterministically. On the other hand, 
stochastic simulation would result to an over-prediction 

of only 5.8% relative to the reference ' adv
ampp .  

The uncertainty quantification method 
described in Section 2.3 is repeated for a wide range of 

input COV and for two different shapes of input 
distributions, Gaussian and uniform. The outcome of 
this process is a set of generalized uncertainty maps 
which can serve as modeling guidelines for analysts. 
Fig. 9 (a) and Fig. 9 (b) illustrate the uncertainty map 

referring to ' adv
ampp  for input COV ranging from 0% to 

55% and for Gaussian and uniform input distributions, 
respectively. Each point of the map essentially 
represents the outputs of full UQ based on dedicated 
PCEs comprising 60 collocation points each, resulting 
in a total of 1320 deterministic simulations.  

The output ' adv
ampp  predictions are provided as 

percentage changes relative to the reference ' adv
ampp , 

whilst output uncertainty is presented as percentage of 

the reference ' adv
ampp .  It can be seen that output 

uncertainty is almost linearly correlated with input 
uncertainty, with a gradient of approximately 58 deg. for 

both distributions. As regards the relative deviation of 

stochastic mean ' adv
ampp , it is described by a 2nd order 

polynomial trend, with values generally higher than the 

reference. The relative deviation of the Mo  of ' adv
ampp  

presents a diverging trend, leading to significant under-
predictions at COV greater than 15%. This is the point 
where input uncertainty starts to become important for 
the accuracy of acoustic pressure predictions. The 
difference between the curves corresponding to    

and Mo  of the acoustic pressure amplitude predictions 

essentially quantifies the benefits that arise from 
stochastic simulation relative to the most probable 
outcome of the corresponding deterministic execution. 

 

 
Fig. 9: Impact of input uncertainty on the prediction of 

acoustic pressure: (a) Gaussian; (b) Uniform input. 
 

Fig. 10 (a) and Fig. 10 (b) present the same 

analysis for the 
 advOASPL  output objective. The 

stochastic mean-value discrepancies from the reference 
 advOASPL , as well as standard deviation are provided 

in dB. Generally low deviations of the stochastic mean 
from the reference are observed, with values not 
exceeding 1 dB even at high levels of input uncertainty. 
The associated output uncertainty is again linearly 
correlated with input COV, with a gradient of 6.4 deg. 

The relative deviation of the Mo  of 
 advOASPL  

presents again a diverging trend, with under-predictions 
of approximately 2 dB at excessively high values of 
input uncertainty. 

Summarizing, for given requirements in terms 
of accuracy and robustness, the analyst can resort to 
the developed uncertainty maps in order to: (a) estimate 
the anticipated error of deterministic simulation (b) 
evaluate the necessity of stochastic simulation and 
assess the expected improvement in accuracy, and (c) 
quantify the associated uncertainty depending on output 
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objectives and analysis requirements. The above 
guidelines are applicable for both detailed acoustic 
pressure prediction and holistic ground noise evaluation 
referring to helicopter rotors in BVI-dominated flight 
conditions. 

 

 
Fig. 10: Impact of input uncertainty on the prediction of 

OASPL: (a) Gaussian; (b) Uniform input. 
 

4. CONCLUSIONS 

A holistic uncertainty analysis has been 
undertaken, examining the impact of tip vortex core 
modeling uncertainty on the aeroacoustic simulation of 
helicopter rotors in BVI conditions. A thorough 
validation study of the employed free-wake/FW-H solver 
against the benchmark HART II case depicted the 
excellent noise predictive accuracy of this method when 
robust experimental data for the calibration of tip-vortex 
core model are available. However, considerable 
uncertainty may be induced to the aeroacoustic 
predictions when such data are not available.  

Two distinct cases have been defined for 
uncertainty analysis: (a) when experimental data about 
the geometry of tip vortex core are available and (b) 
when experimental data are absent. For both cases 
uncertainty quantification was conducted based on 
Polynomial Chaos expansion. The quality of the 
approximation was assessed through Leave-One-Out 
Cross-Validation, demonstrating the excellent predictive 
accuracy of the Polynomial expansion and its suitability 
for uncertainty quantification of highly complex BVI 
noise cases. The output objectives for statistical 
analysis were descriptors representative of unsteady 
rotor airloads, acoustic pressure and OASPL noise.  

The BVI acoustic pressure signal is sensitive 
to even low-levels of input uncertainty. The amplitude of 
acoustic pressure pulses which effectively determines 
BVI noise levels, has shown uncertainties around 12% 
and 25% for the cases of availability and absence of tip-
vortex-core experimental evidence, respectively. 

A sensitivity analysis based on Sobol indices 
has been carried out to identify the relative contribution 
of each uncertain parameter to the overall stochastic 
response of the system. It was found that the inflow-
related parameters, and especially the Squire 
parameter, have the greatest influence on BVI airloads 
and noise-related output uncertainty.  

It has been shown that in the case of 
availability of experimental data, the levels of OASPL 
uncertainty are in the order of 1 dB, which dictates the 
suitability of free-wake/FW-H approaches as robust 
tools for modeling helicopter BVI noise. When vortex-
core-related experimental data are absent, output 
uncertainty in the order of 3.5 dB can occur for 
conservative selection of input uncertainty. This 
highlights the necessity of stochastic simulation when 
correlations with tip-vortex experimental data are not 
feasible.  

Furthermore, it has been demonstrated that in 
the absence of experimental evidence, deterministic 
approaches could lead to acoustic pressure under-
predictions in the order of -25%. For the same case, 
employment of stochastic simulation improves the 
accuracy of simulation to values corresponding to only 
5.8% over-predictions, relative to the validated 
reference acoustic pressure. 

A generalized set of stochastically derived 
aeroacoustic predictions, expressed with reference to 
the validated solution which achieves the best match 
with experimental data have been provided. The 
simulations have been carried out at different levels and 
distributions of input uncertainty, thus providing an 
uncertainty map which can serve as modeling 
guidelines for analysts. Specifically, for given 
requirements in terms of predictive robustness, the 
analyst can estimate the anticipated error of their 
deterministic simulation, evaluate the necessity and 
benefit of stochastic simulation, and quantify the 
associated levels of uncertainty depending on output 
objectives and analysis requirements. 
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