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In this paper, a family of stencil selection algorithms is presented for WENO schemes 
on unstructured meshes. The associated freedom of stencil selection for unstructured 
meshes, in the context of WENO schemes present a plethora of various stencil selection 
algorithms. The particular focus of this paper is to assess the performance of various stencil 
selection algorithm, investigate the parameters that dictate their robustness, accuracy 
and computational efficiency. Ultimately, efficient and robust stencils are pursued that 
can provide significant savings in computational performance, while retaining the non-
oscillatory character of WENO schemes. This is achieved when making the stencil selection 
algorithms adaptive, based on the quality of the cells for unstructured meshes, that can 
in turn reduce the computational cost of WENO schemes. For assessing the performance 
of the developed algorithms well established test problems are employed. These include 
the least square approximation of polynomial functions, linear advection equation of 
smooth functions and solid body rotation test problem. Euler and Navier-Stokes equations 
test problems are also pursued such as the Shu-Osher test problem, the Double Mach 
Reflection, the supersonic Forward Facing step, the Kelvin-Helmholtz instability, the Taylor-
Green Vortex, and the flow past a transonic circular cylinder.

Crown Copyright © 2019 Published by Elsevier Inc. This is an open access article under 
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Weighted Essentially non-Oscillatory (WENO) schemes have established themselves as a prevalent technique, for pro-
viding non-oscillatory properties, to various high-fidelity high-order numerical frameworks suited for unstructured meshes 
including the Finite Volume (FV) [1–14] and the Discontinuous Galerkin (DG) [15–21] frameworks. Their goal is to non-
linearly combine the reconstructions emerging from a central stencil and various directional stencils. The stencil with the 
smoothest variation of the variables is going to have the largest influence in the reconstruction process. Although they 
carry a significant computational cost mostly associated with the reconstruction of polynomials from various stencils, they 
greatly enhance the robustness of high-order schemes when applied to challenging flow problems including the Large Eddy 
Simulation (LES) and implicit iLES simulation for the time-dependent compressible Navier-Stokes Equations. The presence 
of regions with smooth flow features and strong non-linear phenomena including shock-waves, the underlying mechanism 
of the WENO schemes of identifying the spatial regions in the close vicinity of a cell with the best quality -smoothest-
information is the catalyst of the robustness of this family of schemes.
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Due to the inherent increased computational cost of the WENO schemes for unstructured meshes, a recent focus has been 
to reduce their computational cost by employing optimised numerical libraries [22], or using a compact implementation 
of them called Compact WENO (CWENO) schemes [8–10] in order to reduce the size of the directional stencils. CWENO 
schemes are widely used for various problems [23–34], since they are considerably more compact, and efficient due to the 
simpler stencil selection algorithms. For instance the CWENO of Dumbser et al. [8] on unstructured meshes, employs a large 
central stencil suitable for the desired high-order of the accuracy, and several directional stencils of lower-order of accuracy. 
These are then non-linearly combined by considering the smoothness indicators of each of the stencils, although it has to be 
noted that the smoothness indicators might require some scaling [28] since they are coming from different size stencils and 
polynomial order. The compactness therefore emanates from the significantly smaller directional stencils compared to the 
original WENO schemes. Therefore they are considered an exciting alternative towards the traditional WENO schemes, with 
significant better computational performance due to their compactness. However there are numerous challenges associated 
with them such as the smoothness indicators scaling (WENO-Z)[28], distinguishing of discontinuous and high frequency 
waves from stencils with different polynomial orders, the need for reconstruction in characteristics variables as reported 
by Levy et al. [23] etc. Due to the unstructured meshes, and the nature of the WENO schemes in this context, it can be 
argued that there is a lot of freedom regarding the choice of stencils, since the arbitrariness of the meshes dictates that 
generic algorithms that can be employed for any mesh are desirable. The focus of this study is to develop various stencil 
selection algorithms, by firstly investigating the parameters that can influence the accuracy, robustness and efficiency, and 
then assessing the performance of the developed algorithms for various realistic test-problems.

The stencil selection algorithms are going to be differentiated in central and directional ones, since different challenges 
and requirements are encountered for each of these types. Although there is not a panacea in terms of the ideal stencil, due 
to the fact that realistic unstructured meshes have a variation in their cell-quality metrics, thus there are a lot parameters 
that need to be considered. In the present study the WENO-FV type of schemes based on the approaches of [2,3,11,35] is 
considered. It needs to stressed though that the subject stencil algorithms are valuable to other frameworks such as DG or 
Multi-dimensional Optimal Order Detection (MOOD) [36,37], since the associated freedom of selecting the stencils presents 
an overwhelming number of approaches to be adopted. It is evident that using only one central stencil and an unlimited 
scheme in the context of the MOOD approach one might observe a significantly better computational efficiency, and parallel 
performance compared to a WENO scheme. In practice however the frequent violation of the solution admissibility criteria 
of the MOOD paradigm arising from a high-order unlimited scheme, can translate in a significant computational overhead of 
recomputing the solutions for the cells and their neighbours that have been contaminated with invalid solutions. Therefore 
a central stencil of favourable characteristics in terms of size, quality, compactness and adaptive on the mesh topology can 
assist towards reducing this overhead.

A usually unfavourable characteristic of the WENO stencils is that they propagate farther away from the considered 
cell, that is directly related to the complexity of a parallel code, and its increased communication requirements due to 
the width of the stencils. The ultimate goal of the present approach is to reduce the computational cost, by producing 
compact stencils for WENO schemes that can provide significant savings in computational cost for realistic flow problems 
and unstructured meshes, while retaining their favourable non-oscillatory properties. The novelty of this study lies in the 
fact that adaptive stencil selection algorithms are developed that take into account various parameters, in order to reduce 
their computational footprint, and therefore make WENO schemes more affordable. To the best of the author’s knowledge 
this is the first systematic approach of assessing the computational efficiency, accuracy and robustness of various developed 
stencil selection algorithms for WENO schemes on unstructured meshes. All the present stencil selection algorithms are 
developed in the UCNS3D code [22], which is also employed for all the test-problems.

A series of stringent 2D and 3D test-problems including the Linear advection, Euler and Navier-Stokes equations using 
unstructured meshes of various elements types are considered for assessing the performance of all the developed stencil 
selection algorithms. The paper is organized as follows. Section 2 is dedicated to the numerical framework used to describe 
the high-order finite-volume framework for unstructured meshes, focusing on the central and directional stencil selection 
algorithms and the parameters that need to be considered, their implementation in terms of pseudo-code algorithms, the 
fluxes and temporal discretisation. The numerical results obtained for the Linear-advection, Euler and Navier-Stokes equa-
tions are presented in Section 3 where the focus is on the performance of the developed algorithms. The conclusions drawn 
from the present study are outlined in the last section.

2. Numerical framework

Consider a 2D hyperbolic system defined on a 2D domain �, written in its conservative form:

∂U

∂t
+ ∇(F (U)) = 0, (1)

where U = U(x, t) is the unknown function, x = (x, y) denotes the coordinates of a point of the domain �, and F is the 
physical flux. The physical domain � in 2D consists of any combination of conforming quadrilateral and triangular elements 
of surface area Si , indexed by a unique mono-index i. Integrating Eq. (1) over a mesh element using a high-order explicit 
finite-volume formulation the following equation is obtained:
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Fig. 1. Drawing illustrating the region around the considered cell i and the union of the direct-side only and vertex-based only neighbours, in yellow and 
pink colour respectively. The normal vectors for each of its sides, and the quadrature points at the edges in white colour are also depicted.

Un+1
i = Un

i − �t
1

|Si |
N f∑
j=1

Nqp∑
α=1

F nij
(

Un
i j,L(xi j,α, t),Un

i j,R(xi j,α, t)
)
ωα |Eij|, (2)

where Ui are the volume averaged unknown function, F nij is a numerical flux function in the direction normal to the 
cell interface between cell i and the neighbouring cell at the cell face j, N f is the number of sides per element, Nqp is 
the number of quadrature points used for approximating the line integrals, |Eij | is the length of the corresponding edge, 
Un

i j,L(xi j,α, t) and Un
i j,R(xi j,α, t) are the high-order approximation of the solution at the left (considered cell) and the right 

(neighbouring cell) of the cell interface respectively; finally α corresponds to different Gaussian integration points xα and 
weights ωα over the edge as shown in Fig. 1.

The Gauss-Legendre quadrature is employed for this study and the high-order approximation of the unknown function 
intercell fluxes is obtained by a reconstruction process that employs cell-averaged data. The following sections describe the 
methodology adopted for space and time discretisation.

2.1. Spatial discretisation

The spatial discretisation entails building a high-order polynomial pi(x, y) of order r, for each considered cell i, so that 
it has the same average as a general quantity Ui . This can be formulated as:

Ui = 1

|Si|
∫
Si

U(x, y)dS = 1

|Si|
∫
Si

pi(x, y)dS. (3)

The reconstruction algorithm used is based upon the approaches [2,3,11,35], that have been applied to smooth and discon-
tinuous flow problems [22,38–47] and only key-components will be presented herein, since the focus is towards the stencil 
selection algorithms and the reader is referred to [2,3,35] for further details.

For reducing the scaling effects for elements of different size the reconstruction is carried out in a transformed system 
of coordinates for improving the condition number of the system of equations as suggested by Dumbser et al. [11,12,48]. 
The main difference being that for non triangular or tetrahedral elements the transformation is done by decomposing each 
element into triangular or tetrahedral elements and using one of the decomposed elements as the reference element for 
transforming to the new system of coordinates as suggested by Tsoutsanis et al. [2,3,35]. The reader is referred to [3] for 
details regarding the decomposition strategy adopted.

Let vi j , j = 1, 2, . . . J i be the vertices of the considered 2D general element. By decomposing non triangular elements 
into triangles and choosing one of them with w1 = (x1, y1), w2 = (x2, y2), w3 = (x3, y3), being its three vertices. The 
transformation from the Cartesian coordinates x, y into a reference space ξ, η is given by the following equations:(

x
y

)
=

(
x1
y1

)
+ J ·

(
ξ

η

)
, (4)

with the Jacobian matrix given by:
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J =
[

x2 − x1 x3 − x1
y2 − y1 y3 − y1

]
. (5)

Using an inverse mapping the element Si can be transformed to the element S ′
i in the reference co-ordinate system as:

v′
i j = J−1 · (vi j − w1

)
, j = 1,2, . . . J i, (6)

and the spatial average of the conserved variable Ui does not change during transformation

Ui = 1

|Si|
∫
Si

U(x, y) dS ≡ 1

|S ′
i |

∫
S ′

i

U(ξ,η) dξdη. (7)

To perform the reconstruction on the target element Si , the central stencil S is formed by recursively adding neighbour-
ing elements, consisting of M + 1 elements, including the target element Si

S =
M⋃

m=0

Sm, (8)

where the index m refers to the local numbering of the elements in the stencil, with the element with index 0 being the 
considered cell i.

Remark 1. Different ways to add the M neighbouring elements for the central stencil, how many to add, and what parame-
ters to be considered are investigated in this study.

The considered cell and its corresponding stencil elements are transformed in the reference space,

S ′ =
M⋃

m=0

S ′
m, (9)

and the rth order reconstruction polynomial at the transformed cell S ′
0 is sought as an expansion over local polynomial 

basis functions φk(ξ, η) given by:

p(ξ,η) =
K∑

k=0

akφk(ξ,η) = U0 +
K∑

k=1

akφk(ξ,η), (10)

where U0 corresponds to the vector of conserved variables at the considered cell i, and ξ, η are the coordinates in the 
reference system. ak are the degrees of freedom and the upper index in the summation of expansion K corresponds to the 
number of the degrees of freedom.

To find the unknown degrees of freedom ak for each cell m from the stencil the cell average of the reconstruction 
polynomial p(ξ, η) must be equal to the cell average of the solution Um:

∫
S ′

m

p(ξ,η)dξdη = |S ′
m|U0 +

K∑
k=1

∫
S ′

m

akφk dξdη = |S ′
m|Um, m = 1, . . . , M. (11)

Where S ′
m is the surface area of the cell m in the stencil in the transformed coordinate system. Since for general cells the 

transformation in a unit quadrilateral cell cannot be guaranteed, the basis functions ψk used should satisfy the constraint of 
equation (3) irrespective of the values of degrees of freedom. The basis functions ψk for all the elements in the stencil are 
defined as follows:

φk(ξ,η) ≡ ψk(ξ,η) − 1

|S ′
0|

∫
S ′

0

ψk dξdη k = 1,2, . . . , K , (12)

where S ′
0 is the surface area of the considered cell i, in the transformed coordinate system, and in the present study ψk are 

Legendre polynomials basis functions. Denoting the integrals of the basis function k over the cell m in the stencil, and the 
vector of right-hand side by Amk and b respectively as given by

Amk =
∫
S ′

m

φk dξdη, bm = |S ′
m|(Um − U0),

the equations for degrees of freedom ak can be rewritten in a matrix form as:



P. Tsoutsanis / Journal of Computational Physics: X 4 (2019) 100037 5
K∑
k=1

Amkak = bm, m = 1,2, . . . M. (13)

The complete linear system is given by:⎡
⎢⎢⎢⎣

A1,1(ξ,η) A1,2(ξ,η) A1,3(ξ,η) · · · A1,K (ξ,η)

A2,1(ξ,η) A2,2(ξ,η) A2,3(ξ,η) · · · A2,K (ξ,η)
...

...
... · · · ...

AM,1(ξ,η) AM,2(ξ,η) AM,3(ξ,η) · · · AM,K (ξ,η)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1
a2
...

aK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

|S ′
1|(U1 − U0)

|S ′
2|(U2 − U0)

...

|S ′
M |(UM − U0)

⎤
⎥⎥⎥⎦ . (14)

The matrix Amk is purely based on the geometry of the elements in the stencils, which remains unchanged for the present 
study, while the information on the right-hand vector bm is dependent upon the solution, and the surface area of each of 
the element in the stencil in the transformed coordinate system. The matrix AT

km Amk , is invertible and the equation (13), 
can be rewritten in the following form:

ak =
(

AT
km Amk

)−1
AT

kmbm = A†
kmbm, (15)

where the matrix A†
km corresponds to the Moore-Penrose pseudo-inverse of Amk . The polynomial coefficients are there-

fore obtained through a matrix vector multiplication of A†
km with bm . In the present study a QR decomposition based on 

Householder transformation [49] is used, where the pseudo-inverse is decomposed in the following manner in an orthogo-
nal matrix Q and an upper triangular one R , and the inverse of RT R is obtained by a forward-substitution followed by a 
backward-substitution.

A†
km =

(
(Q R)T (Q R)

)−1
AT

km =
(

RT R
)−1

AT
km (16)

The main memory requirements of the present least-squares reconstruction is the associated storage of the pseudo-inverse 
matrix A†

km , that is only computed once at the preprocessing stage of the simulation.

2.1.1. WENO scheme
The WENO scheme used in this study, employs a non-linear combination of various reconstruction polynomials from the 

central stencil and additional directional stencils; each polynomial is weighted according to the smoothness of its solution, 
and it is based on the approaches of [2,3,11,48].

Remark 2. In this study, the number of directional stencils, how to be constructed, and aspects that need to be taken into 
account are investigated.

The polynomials are given as:

pi(ξ,η)weno =
st∑

s=1

ωm ps(ξ,η), (17)

where st is the total number of WENO stencils. Substituting back to Eq. (10) for ps(ξ, η), we obtain the following expression:

ps (ξ,η) =
K∑

k=0

a(s)
k φk(ξ,η). (18)

Using the condition that the sum of all weights is unity, yields:

pi(ξ,η)weno = U0 +
K∑

k=1

(
st∑

s=0

ωsas
k

)
φk(ξ,η)

≡ U0 +
K∑

k=1

ãkφk(ξ,η),

(19)

where ãk are the reconstructed degrees of freedom; and the non-linear weight ωm is defined as:

ωs = ω̃s
st∑

ω̃s

where ω̃s = λm

(ε + SIs)b
. (20)
s=1
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The smoothness indicator SIm is given by:

SIs =
∑

1≤|β|≤r

∫
V ′

0

(
Dβ ps(ξ,η)

)2
(dξ,dη), (21)

where β is a multi-index, r is the polynomial’s order, λm is the linear weight. The central stencil is assigned a large linear 
weight of λ1 = 1000 and a value to prevent division by zero of ε = 10−6 is used and D is the derivative operator. The 
smoothness indicator is a quadratic function of the degrees of freedom (as

k ) and Eq. (21) can be rewritten as:

SIs =
K∑

k=1

as
k

⎛
⎝ K∑

q=1

OIkqas
q

⎞
⎠ , (22)

where the oscillation indication matrix OIkq is given by:

OIkq =
∑

1≤|β|≤r

∫
V ′

0

(
Dβφk(ξ,η)

) (
Dβφq(ξ,η)

)
(dξ,dη), (23)

and can be easily precomputed and stored at the initialisation stage of the simulation. Additionally the WENO reconstruction 
for the present study is carried out with respect to the characteristic variables, and the reader is referred to [2,3,35] and 
references therein regarding the implementation. The algorithms involved in the construction of the stencils for WENO 
schemes are going to be differentiated between the central and directional stencils, since each family of stencils are subject 
to different requirements.

2.2. Central stencil algorithms

Before considering the most important parameters for developing the central stencils, it is of great significance to high-
light their role. For the present WENO implementation the central stencil is assigned a large linear weight, thus at smooth 
regions of the flow the reconstruction polynomial from the central stencil is going to have the largest influence in the result-
ing non-linear polynomials. Additionally for k-exact least square reconstruction, the central stencil is ultimately employed 
for obtaining the unlimited gradients for the diffusive terms. Therefore the parameters considered for the central stencil 
with the greater substance in the context of the present WENO implementation are the following:

• Number of Cells (M): The number of cells included in the stencil are related to the computational cost and robustness of the 
scheme. The number of unknowns in the polynomials is given by K where it is K = 1

2 (r + 1)(r + 2) − 1 and K = 1
6 (r + 1)(r +

2)(r + 3) − 1 in 2D and 3D respectively. Therefore at least K number of elements are required in the stencil, in order to have 
at least as many equations as unknowns. In practice, however this is not sufficient it is prevalent in most of the approaches 
[2,11,36,37,48,50,51] in the k-exact least squares framework tend to use more elements (ranging from M = 1.5K to M = 3K ) 
and thus equations, than the number of the unknowns. The more equations used, the more robust and computationally expensive 
the scheme becomes. This is due to a lower probability of the cells distribution suffering from alignment resulting in a singular 
the Moore-Penrose, or at least provide a very large condition number of matrix Amk. One approach is adding neighbours in the 
stencil until a target condition number for the matrix of the linear system has been achieved similarly to the approaches of [36,37]. 
However one should ensure that some stop criteria regarding the maximum number of cells are introduced, in case the target metric 
(this could be condition number, error approximation etc) can not be reached. It needs to be stressed that all the stencil formation 
algorithms and their accompanying quality indicators operators (condition number etc.) are performed in the initialisation phase 
of the simulation (assuming the mesh remains the same in time) and therefore algorithms should have stop criteria to ensure 
that this initialisation phase is not prolonged due to unrealistic target not being met. A similar approach of having a max limit of 
number of cells is followed by Diot [52] as outlined in his thesis where an upper limit of M = 1.5K and M = 2K is used for 2D 
and 3D meshes respectively. Another approach could be to add layers of neighbours that surround all the vertices of the considered 
element, until the required number of layers has been reached [50], although there still might be cases where an excessive number 
of cells has been used. It is therefore crucial to reduce the computational cost without sacrificing the robustness of the scheme. The 
task is not as straightforward since there are other parameters such as compactness, cell quality that all of them interact with each 
other.

• Compactness: Independently of the number of cells used, the stencil size should be as compact as possible for better locality when 
computing polynomials and for an enhanced locality when dealing with the parallelisation of the WENO schemes, and the associ-
ated communication overheads when exchanging information for the halo stencil elements. Compactness results in lower errors of 
polynomial approximations and more importantly in the vicinity of a shock, a compact stencil provides better chance of resolving 
a shock without producing spurious oscillations compared to a larger stencil. This is one of the cornerstones of the success of the 
compact WENO schemes (CWENO) on unstructured meshes of Dumbser et al. [8] and Levy et al. [10] where a large central stencil 
of the desired order of polynomials is combined with several smaller directional stencils of lower-order polynomials, and therefore 
improvement in computational times, parallelisation efficiency and resolution at shocks is achieved. However compactness can 



P. Tsoutsanis / Journal of Computational Physics: X 4 (2019) 100037 7
Fig. 2. Examples of central stencils using the Naive Cell based algorithm for various polynomial orders P . The considered cell in red colour, and the 
neighbouring elements are numbered with the order that they are added in the stencil (starting with 1 from the first element), highlighting how the 
algorithm works.

be pursued only when certain cell quality criteria are satisfied. Due to the multidimensional nature of the present reconstruction, 
when most of the stencil elements are aligned with any direction, this reduces the robustness of the simulation. Therefore in the 
presence of highly-skewed, high-aspect ratio cells selecting the closest one for the central stencil will result in linear matrix system 
of equations with a large condition number and thus reduced robustness and accuracy.

• Cell Quality: For realistic meshes where there will be combination of regions of good and bad quality cells, it is of paramount 
importance to take that into account, for the sake of fortifying the stencil selection algorithm. In the course of selecting how many 
cells to add, if the closest ones to the considered cell can be used, how to add the number of elements etc, the quality of the 
considered cell, or even its close vicinity needs to be taken into account. There various options that one could explore in order to 
adapt the stencil selection algorithm. There could be a focus on cell quality characteristics of the considered cell only, the direct 
side neighbours, or the entire stencil neighbourhood. In meshes of smooth transition from one elements size/shape to another 
the quality criterion based on a cell or direct side neighbours only might be sufficient to indicate the quality characteristics of the 
region, whereas in generic meshes where the transitions between element sizes and shapes is rapid the entire stencil neighbourhood
quality characteristics need to be considered. If the objective is to resort to more compact algorithms and take advantage of the 
benefits offered then numerous quality criteria in a cell-level, direct-side level, or stencil-level could be deployed to determine 
if such an algorithm is feasible and robust within this context. Additionally various cell quality metrics could be used such as 
aspect-ratio, skewness, maximum angle etc.

Within the context of these aforementioned parameters there is an overwhelming plethora of combinations, configura-
tions that could be explored ranging from condition number, different cells quality criteria, computational costs etc. In this 
study a computational framework of four central stencils algorithms is presented by taking into account the most dominant 
parameters for the set of test-problems presented. It need to be stressed that the stencil selection process for the present 
WENO algorithm is taking place only once at the initialisation of the UCNS3D code, since the mesh remains fixed during 
the calculation, therefore the computational cost of the selection algorithms is of limited substance. All the stencil algo-
rithms developed in this study, make use of a “Big Stencil” which consists of mx number of elements (mx >> M) -typically 
(mx = 4 · M)- for ensuring that various selection criteria can be employed for defining the selection of the central stencil 
Sm . Finally the target number of elements M is given by (M = E X · K ) where E X is the expansion factor.

2.2.1. The Naive Cell based algorithm (NCB)
The first algorithm which seems a natural selection for a cell based solver, is recursively adding the direct side-neighbours 

of the considered cell, until the target number of cells has been reached. This algorithm does not take into account the 
quality of the mesh neither the distance of the candidate elements from the considered cell, and is therefore labelled the 
Naive Cell based algorithm. As it can be seen in Algorithm 1, the Big Stencil and the Sort Store procedures are used as 
shown in Algorithm 5, for recursively adding the direct side neighbours until mx number of elements have been collected 
and storing the M number of elements in the stencil Sm respectively. It must be highlighted that the Big Stencil procedure 
avoids adding duplicate elements in the stencil (line 14 of Algorithm 5). Variables definitions for stencil algorithms are 
presented in Table 9, Appendix B.

From Fig. 2 typical examples of stencils from the NCB algorithm can be seen. It can be noticed that the first direct 
side-neighbours of the considered cell are added, and then the direct side neighbours of the first-neighbours as seen by 
the numbering of the elements. The key-advantage of this algorithm is its simplicity, robustness (provided that sufficient 
number of cells are used), and reduced computational cost since there is no requirement for any information with respect 
to the quality of the mesh. The associated low-computational cost can be beneficial when considering meshes that change 
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Fig. 3. Examples of central stencils using the Vertex based Compact Algorithm for various polynomial orders P . The considered cell in red colour, and 
the neighbouring elements are numbered with the order that they are added in the stencil (starting with 1 from the first element), highlighting how the 
algorithm works.

with time. Its key disadvantages are the non-compactness of the stencil and the arbitrary distribution of the elements that 
can result in non-symmetric stencils.

2.2.2. The vertex based compact algorithm (VBC)
Independently of the nature of the numerical framework (cell-based or vertex-based), a stencil algorithm that is com-

plemented by a process to include the cells closest to the considered cell is beneficial since the resulting stencils can be 
symmetrical with respect to the considered cell for regions of good mesh quality. The key challenges regarding the number 
of cells for the VBC algorithm are the following:

• For low-quality meshes the number of vertex neighbours for the considered cell could become excessive, since there 
could be vertices that are shared by numerous elements -in particular triangles, tetrahedrals and pyramids.

• For good-quality meshes the number of vertex neighbours for the considered cell, might not be sufficient to reach the 
target number of cells in the stencil.

Therefore the algorithm is designed in such a way that firstly the vertex-based neighbours of the considered cell are 
added, and if the required number of elements has not being reached mx, then direct-side neighbouring elements are 
recursively added (starting from the list of the existing vertex based neighbours) until the required number of elements mx
has been reached as shown in Algorithm 2 and Algorithm 5.

The course of making the stencil more compact is pursued by firstly computing the maximum distance of the centre 
of all the vertex based neighbours from the cell centre of the considered cell i. Then all the remaining elements in the 
Big Stencil are sorted with respect to their distance from the considered cell i, and the ones that are within the radius 
of the farthest vertex based element in the stencil are added until the target number of elements has been reached M =
max(counter3, E X · K ). This way the robustness of the compactness algorithm is increased by sorting with respect to the 
distance only the non-vertex based neighbours, and only if the Cells quality criterion has been satisfied. One could use 
various cell quality criterion including the aspect-ratio, skewness, maximum angles etc. In the subject study any cell with 
an aspect ratio less than 10 is considered suitable for enabling the compactness function. In Fig. 3 the resulting stencils 
form the VBC algorithm can be seen for E X = 2. It can be noticed that in the P = 2 examples the left one (a) has 8 vertex 
based neighbours (1-8) and the closest additional three direct-side neighbours (9-11) are added then. Whereas in the right 
one (b) all the vertex based neighbours are added M = max(13 + 1, 2 · 6) which happen to be more than the number of 
elements required. Finally for the P = 4 stencil all the remaining direct-side neighbours from 14 − 29 are selected based on 
their distance from the considered cell i.

2.2.3. The face based compact algorithm (FBC)
The face based compact algorithm is similar to the (VBC) algorithm in the sense that a specific number of elements is 

firstly added, and then the remaining added ones are subject to the compactness procedure. Therefore initially the direct-
side neighbours are added and then succeeded by the closest ones to the considered cell i for cells of good quality, as it 
can be seen in Algorithm 3. The key motivation for developing this algorithm is that there might be instances where the 
direct-side neighbours might result in a shorter maximum distance as opposed to the first-layer of vertex-based neighbours 
for meshes of poor quality. It is therefore a way to make the resulting stencil more compact, by always selecting only the 
direct-side neighbours (obtaining their maximum distance d f from the considered cell i) and then adding as many elements 
required that are within the radius of d f until the target number of elements has been reached M = max(counter3, E X · K ).



P. Tsoutsanis / Journal of Computational Physics: X 4 (2019) 100037 9
Fig. 4. Examples of central stencils using the Face based Compact Algorithm for various polynomial orders P . The considered cell in red colour, and the 
neighbouring elements are numbered with the order that they are added in the stencil (starting with 1 from the first element), highlighting how the 
algorithm works.

Fig. 5. Examples of central stencils using the Stencil based Compact Algorithm for various polynomial orders P . The considered cell in red colour, and 
the neighbouring elements are numbered with the order that they are added in the stencil (starting with 1 from the first element), highlighting how the 
algorithm works.

The resulting stencils from the FBC algorithm for E X = 2 can be seen in Fig. 4, where it can be noticed that the direct 
side neighbours are firstly added and then the numbering sequence from 4 and onwards indicates the immediately closest 
elements. Where from the VBC this sequencing is noticed once the vertex side neighbours have been added.

2.2.4. The stencil based compact algorithm (SBC)
The stencil based compact algorithm, is the only algorithm in the group where the number of elements that are added 

to the stencil without being sorted with respect to their distance is dependent upon the order of accuracy. In particular as 
the number of polynomial coefficients (K ) increase with the order of accuracy r, the number of elements that are initially 
added to the stencil without any criterion are also increased since the counter3 = 1.2 · K . Then the same process as the 
other compact algorithm is followed, where the maximum distance d f within the first counter3 elements is found and the 
closest remaining direct side neighbours within this distance are added until the target number of cells has been reached 
as seen in Algorithm 4.

The main motivation for developing this algorithm is that for the first set of counter3 elements this algorithm features 
similar robustness to the Naive Cell based algorithm. Since elements are added without any restriction based solely on 
their direct-side connectivity. For the remaining elements the compactness procedure is applied until the target number of 
elements has been reached.

From the examples of the stencils built with this algorithm as seen in Fig. 5 it can be noticed that for the P = 2 examples 
the right one (b) is quite similar to the equivalent VBC, since the compactness algorithm is only applied for the elements 
8–11. This algorithm in theory should be the most robust one, since it combines the robustness of the naive for the first 
1.2 · K elements, and a significant portion of the additional elements subject to the compactness procedure belongs to the 
vertex-based neighbours of the considered cell i.
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2.3. Directional stencil algorithms

The purpose of the directional stencils in the present WENO schemes is to provide additional polynomial reconstructions 
from different spatial directions, so that in regions of the flows with sharp gradients at least one of the directional stencils 
will be located in a smooth region. In other words the probability of at least one polynomial arising from a stencil being 
in a smooth region is greater when using multiple directional stencils. The most dominant-parameters that need to be 
considered for constructing the directional stencils are as follows:

• Width: The directional stencils ideally should not be defined by narrow geometrical sectors, where elements of bad quality can 
lead to directional stencils that most of the elements are aligned along a direction, and due to the multidimensional nature of the 
reconstruction the condition number of the matrices is going to be very high in such cases. The width of the stencil can be described 
by the parameter (ws) which is the maximum distance of any element -from the list of stencil elements M- from the considered 
cell i, and will be non-dimensionalised with respect to the radius (ri) of the inscribed circle or sphere size of the considered cell i
(ws = max(dm)

ri
).

• Symmetry: Ideally the directional stencils should be as symmetric as possible away from the boundaries with respect to the 
considered cell and hence more compact, similar to the central stencils with respect to the considered cell for accuracy reasons. 
The symmetry property however, limits the number of stencils that can be built around cells of various shapes, hence limiting the 
non-oscillatory properties of the resulting WENO schemes.

• Number: The number of the directional stencils is proportional to the robustness and non-oscillatory character of the scheme. On 
the other hand increasing the number of directional stencils translates in an increase in computational cost, since reconstructions 
need to be performed for each one of them. Therefore finding a balance between these aspects is far from trivial.

• Cover: The directional stencils should be covering the region of a complete circle in 2D, or a sphere in 3D, in order to ensure that 
all elements from all possible directions within a distance from the considered cell are considered. Ultimately, this will lead in 
improved robustness of the algorithm at regions of sharp gradients, since all possible directions are considered. The radius (Rs) of 
the associated circle, or sphere as a fraction of the considered cell inscribed circle or sphere size, is dependent upon the polynomial 
order and stencil algorithm used.

• Uniqueness: The number of common elements across various directional stencils for a considered cell is defined as uniqueness. This 
is one of the most obscure components of the directional stencils, since it is linked with the number of stencils that can be produced, 
the non-oscillatory properties of the scheme and the compactness of the directional stencils. For example an algorithm that can 
accept non-unique directional stencils, in other words some elements can be shared with other directional stencils can result in 
many more and more compact stencils. This might be beneficial in terms of the condition number of the resulting matrices, and the 
fact that since many more directional stencils can be admitted. On the other hand, the possibility of significantly more stencils with 
some overlapping might not jeopardise the non-oscillatory properties of the scheme but it will increase the computational cost. 
Therefore overlapping can be admitted if the number of directional stencils is larger than the number of the sides of the considered 
cell, whereas in other cases overlapping has not been proven to be beneficial as outlined in the directionality condition of Tsoutsanis 
[53].

For the scope of the present study only unique stencils are considered since they have provided a more robust WENO 
framework so far for various set of applications [2,3,22,38–42,44,46]. The Big Stencil from the central stencil algorithm is 
employed here, and all the elements from the Big Stencil that satisfy a set of geometrical conditions are added to the 
directional stencils. In particular the geometrical condition that needs to be satisfied for any selected geometrical sector 
is the cell centre of a candidate element must lie within this sector. This is achieved by using a triangular or tetrahedral 
sector in 2D or 3D, consisting of two vertices and the cell centre or three vertices and the cell centre respectively. Once 
these triangles or tetrahedrals emerging from these separate geometrical sectors as seen throughout Fig. 6, Fig. 7 and Fig. 8
have been defined, they are transformed to the reference co-ordinate system. Subsequently the coordinates (cc) of the cell-
centres of any candidate cell are transformed to the reference co-ordinate system based on the same Jacobian matrix and 
vertices w1,2,..,N of the pre-defined triangle or tetrahedral sector, and if all of the transformed coordinates cc′ are positive 
then -the coordinates lie in the pre-defined geometrical sector- the geometrical condition is satisfied.

cc′ = J−1 · (cc − w1) . (24)

It needs to be noted that depending on the quality of the cells, similarly to the central stencil algorithms the compact-
ness procedure can be applied to ensure that the closest elements with respect to the considered cell i, that also satisfy 
the geometrical conditions are selected. A description of the directional stencil algorithms procedure can be found in the 
Algorithm 6 provided. For this study four different types of directional stencil algorithms are developed and explored as 
listed below:

• Type 1: This algorithm uses two sectors per face by combining the cell centre, the vertices of the considered face and one additional 
point either from the centre of the considered edge (2D) or any of the face edges in 3D, as it can be seen in Fig. 6, Fig. 7 and Fig. 8. 
This algorithm is characterised by the largest number of directional stencils, and the widest stencils, since the geometrical sectors 
are quite narrow and as a result they propagate farther in all directions. In principle it is expected to be the most robust one, since 
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Fig. 6. Schematics of various directional stencil algorithms illustrating the directional sectors, and their corresponding stencils for a triangular considered 
cell for a scheme using a fourth-order polynomial.

it used the most directional stencils, hence largest possibility of at least one stencil lying in a smooth region. However if the quality 
of cells is such that these sectors become narrow, there might be instances where even if one of the stencils lies in a smooth region 
the condition number of the least squares matrix is relatively high due to the alignment of the stencil elements along a direction.

• Type 2: This algorithm uses the exact same sectors per face as the Type 1, with the main difference that the sectors opposite to 
each other are combined in such a way that the total number of stencils is equal to the number of faces or edges in 2D as it can be 
seen in Fig. 6 and Fig. 7. The primary motivation for this developing this algorithm is firstly to reduce the total number of stencils, 
secondly to increase the compactness of the set of all the stencils, and finally to improve the symmetry of the directional stencils by 
clustering all the elements around the considered cell. There are two prevalent challenges of this algorithm firstly that the width of 
the directional stencils is now worse than Type 1 since they span a greater distance, and secondly that the narrow sectors arising 
from cells of low-quality has not been eliminated.

• Type 3: This algorithm is focused on finding a good balance between all the dominant-parameters including width, cover, symme-
try and uniqueness. There is only one geometrical sector per face or edge as shown in Fig. 6, Fig. 7 and Fig. 8. It has to be noted that 
for quadrilateral faces in 3D as shown in Fig. 7, the geometrical sector defined by vertices (v1, v2, v3, v4, vc) implies that there 
are four tetrahedrals (v1, v2, v3, vc), (v2, v3, v4, vc), (v3, v4, v1, vc) and (v4, v1, v2, vc) that at least one of them must satisfy 
the geometrical condition set by equation (24). Similar algorithms have been previously used in the context of WENO schemes by 
[2,3,8,35] with good results in smooth and discontinuous flow problems.

• Type 4: This algorithm employs the same sectors as Type 3, with the main difference being that the opposite facing stencils are 
combined in such a way that the total number of directional stencils is reduced to two for a quadrilateral element as seen in 
Fig. 7. One of the key challenges of this type is that it is difficult to define suitable symmetrical sectors for triangles and triangular 
faces for 2D and 3D respectively. The main disadvantage of this scheme is the fact that the number of stencils is very limited and 
consequently the non-oscillatory properties of the WENO scheme might be impaired if strong gradients from various directions are 
experienced, on the other hand the computational cost is certainly going to be significantly reduced compared to other types.

2.4. Fluxes approximation & temporal discretisation

For the evaluation of the intercell numerical flux function Fnij for the Euler and Navier-Stokes equations the approximate 
HLLC (Harten-Lax-van Leer-Contact) Riemann solver of Toro [54] is employed. For the evaluation of the viscous fluxes the 
unlimited k-exact least square reconstruction is used for the gradients and they are then averaged from two discontinuous 
states as detailed in [3,9]. For the gradients additionally penalty terms are included following the formulation of Gassner et 
al. [55] for suppressing odd-even decoupling modes in the numerical solutions [56], in the following manner:

∇U = 1
(∇UL + ∇UR) + α

(UR − UL) �n, (25)

2 Lint
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Fig. 7. Schematics of various directional stencil algorithms illustrating the directional sectors, and their corresponding stencils for a quadrilateral considered 
cell for a scheme using a fourth-order polynomial.

Fig. 8. Schematics of the two directional stencil algorithms for triangular and quadrilateral faces illustrating the directional sectors, and their corresponding 
stencils for a triangular and quadrilateral faces of a considered cell for a scheme using a fourth-order polynomial.

where Lint is the distance between the cell centres of adjacent cells, and α = 4/3 similarly to previous approaches [56,57]. 
The solution is advanced in time by the explicit Strong Stability Preserving (SSP) Runge-Kutta 4th-order method of Spiteri 
and Ruuth [58] which is stable for C F L ≈ 1.50, with a constant wave speed estimate during the 5 stages, and a C F L of 
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1.3 is used for all the test-cases in the present study, unless otherwise stated. For all the test problems involved the initial 
condition is approximated with a 7th-order Gaussian quadrature rule, to ensure that the initial condition is of high-accuracy, 
and during the simulation the volume/surface/line integrals are approximated by Gaussian quadrature rule suitable for the 
order of polynomial employed.

2.5. Implementation

The present algorithms and schemes are developed and implemented in the UCNS3D code [22]. The UCNS3D solver, is 
written in Fortran 2003 programming language, making use of object oriented programming, including abstract data types. 
It employs the message passing interface (MPI), and the Open Multi-Processing (OpenMP) application programming interface 
(API). The Metis partitioner [59] is used to decompose the mesh to numerous partitions; the total number of partitions is 
equal to the number of MPI processes.

Following previous work done under the PRACE project HOVE [22] it has been revealed that the present code is both 
CPU and memory bounded, due to the nature of the schemes and implementation employed. Following extensive testing 
in 5 different HPC facilities it was concluded that the major performance bottlenecks where associated with the WENO 
weights computation (32-59%), the least squares reconstruction (13-36%) and lastly the extrapolation of the reconstructed 
solutions at the Gaussian quadrature points (7-14%). Following optimisation of the relevant subroutines by formula rewrit-
ing, reduction of operations, inclusion of linear system libraries significant speed-up was achieve ranging from 1.5 to 8.5 
with very high-order WENO schemes benefiting the most. The reader is referred to [22] for more details regarding the 
implementation.

Significant improvements in the computational cost associated with the least square reconstruction can be achieved if 
the linear dependence of the polynomial reconstruction and evaluation on mean values is pursued similarly to Diot [52]. 
In particular for the WENO schemes only the linear dependence of the polynomial coefficients on neighbour mean values 
can be used, since the polynomial coefficients from various stencils are non-linearly combined by WENO algorithm to 
compute the extrapolated boundary reconstructed solutions at the Gaussian quadrature points. This is something that will 
be explored in the near future to further speedup the reconstruction process, since the use of the pseudo-inverse permits 
such operations.

Benchmarking performed on three different systems with similar hardware architecture namely the UK National HPC 
facility ARCHER (KNL) 10 Intel Knights Landing Xeon Phi 7210 processors with 64 cores each, the Cambridge University 
Service for Data Driven Discovery (CSD3), on the UK national Tier-2 system Peta 4 system consisting of 342 Intel Knights 
Landing Xeon Phi 7210 processors with 64 cores each and the Marconi A2 at CINECA (IT) with 3600 nodes of Intel Knights 
Landing Xeon Phi 7250 processors with 68 cores each, has suggested that the subject platform is beneficial for the nature of 
the UCNS3D code. The increased memory bandwidth of these hardware platforms provides significantly better performance 
speed-up 8.5 with respect to the original code in comparison to the Intel Xeon E5 platforms (v1,v2,v3) where a maximum 
speed-up of approximately 5.2 was obtained. Additionally the configuration that resulted in the best performance was in 
a quad100 mode, with MPI+OMP, and the OMP SCHEDULE GUIDED for all the parallel loops, using 4 MPI processes (1 per 
quadrant) and 64 OMP threads per MPI process, with 4 hyper threads as documented in the performance report [60]. The 
single threaded version of intel MKL was used for all the DGEMM computations of the reconstruction process, and the Intel 
Fortran compiler version 18.0.1 was used with the following settings -i4 -r8 -O3 -xmic-avx512 -ipo -fp-model 
precise -qopenmp -qopenmp-link=static.

It needs to be highlighted that the total computing time could be masking the influence of important parameters such as 
of CPU hardware, vectorisation implementation, communication patterns, network bandwidth, memory access patterns etc. 
The focus of the present study is not concerned in such level of analysis and the reader is referred to [22] for a more detailed 
algorithmic overview of the processes involved. The present computational times provide an indication of the performance 
of various algorithms under the same hardware, setup (MPI+OMP, number of threads per MPI task), and compiling options. 
For the present work all the simulations and the corresponding computational times have been obtained at the CSD3 Peta 
4 system.

3. Numerical results

3.1. Least squares approximation

For assessing the quality of the approximation of the least squares reconstruction and the impact of the various stencil 
selection algorithms a procedure similar to Petrovskaya [61] and Syrakos et al. [62] is pursued. The least squares recon-
struction φ̃ of a polynomial function φ of degree equal to the order of the method minus one, leads to some small errors 
that are good indicators of the matrix approximations and the impact of the stencils selection algorithms. A 2D polynomial 
function is considered of the following type:

φ(x, y) = (x + y)P , (26)

where P stands for the polynomial order (P = 1 linear, P = 2 quadratic etc) and a P + 1 order method is assessed through 
the mean relative errors with respect to the solution and the gradient defined similarly to [61,62] as:
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Fig. 9. Grids used for the least-squares approximation study with a blown-up view of the mesh in the right hand corner.

e(x0, y0) = 1

Nc

Nc∑
i=1

|φ(x0, y0)i − φ̃(x0, y0)i|
|φ(x0, y0)i | , (27)

and

e∇(x0, y0) = 1

Nc

Nc∑
i=1

‖∇φ(x0, y0)i − ∇φ̃(x0, y0)i‖
‖∇φ(x0, y0)i‖ , (28)

respectively. Nc being the number of cells in the domain and the gradient norm ‖∇φ(x, y)‖ being defined as:

‖∇φ(x, y)‖ =
√√√√(

∂φ(x, y)

∂x

)2

|P0

+
(

∂φ(x, y)

∂ y

)2

|P0

. (29)

The solution point P0(x0, y0) is considered to be the cell-centre. The computational domain considered is given by 
[0, 1]2 and 8 different types of grids are considered for this study as shown in Fig. 9 with 256 edges per side. For this 
study the four stencil selection algorithms are assessed, and also the impact of an inverse distance weighted least squares 
reconstruction is also explored by multiplying both sides of equation (13) with 1/|�rM |2 where �rM = �rM − �r0, �rM being the 
distance of the stencil element M from the considered cell 0.

The obtained results are summarised in Table 1, Table 2, Table 3, Table 4, Table 5 for 2nd-order to 6th-order schemes. 
It is evident that only for the linear polynomial the approximation of both the gradient and the solution is exact, and for 
higher orders of polynomials only the solutions exhibit very small errors.

All the algorithms for the linear polynomial exhibit minute differences regarding the weighted and unweighted least 
squares reconstructions, and the differences become more evident for the Grid 7, Grid 8, whereas the weighted least squares 
provides a better estimate. For the quadratic polynomial it is evident that the FBC algorithm exhibits orders of magnitude 
larger errors for Grid 3, Grid 7, Grid 8 with or without weights compared to the other algorithms, while the other algorithms 
seem to benefit from the weighted least squares mainly for Grid 7, Grid 8. As the order of the polynomial and the scheme is 
increased the weighted least squares provides a marginal improvement on the solution approximation for all grid types and 
algorithms, but not for the gradient approximation. For linear polynomials and second order schemes the influence of the 
algorithms is pronounced since the number of the elements in the stencil is considerably smaller compared to higher-order 
schemes. It can be noticed that for the 2nd-order scheme the VBC and NCB algorithms are marginally better than the others 
with respect to the errors, and this trend is diminished as the order of accuracy and the polynomial function is increased, 
since the stencils become significantly larger and hence they do not differ significantly.
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Table 1
Mean relative errors for the various central stencil selection algorithms for calculating the solution and the gradient of a linear (P = 1) polynomial on a 
series of grids as shown in Fig. 1 using a 2nd-order reconstruction.

Grid LSQ NCB FBC VBC SBC

W/U e e∇ e e∇ e e∇ e e∇
1 W 1.0640E-20 3.1502E-16 1.0640E-20 1.5815E-16 1.0640E-20 3.1502E-16 1.0640E-20 3.1453E-16
1 U 1.0640E-20 9.3792E-16 1.0640E-20 1.5815E-16 1.0640E-20 9.3792E-16 1.0640E-20 1.5815E-16
2 W 2.2515E-17 2.3002E-15 2.2515E-17 1.9133E-15 2.2515E-17 2.3002E-15 2.2515E-17 2.3002E-15
2 U 2.2515E-17 1.1380E-15 2.2515E-17 1.9133E-15 2.2515E-17 1.1380E-15 2.2515E-17 1.1380E-15
3 W 6.1511E-17 2.9111E-14 6.1511E-17 2.9190E-14 6.1511E-17 2.9111E-14 6.1511E-17 2.9168E-14
3 U 6.1511E-17 2.9585E-14 6.1511E-17 2.9190E-14 6.1511E-17 2.9585E-14 6.1511E-17 2.9639E-14
4 W 6.0799E-17 5.0646E-14 6.0799E-17 3.1825E-14 6.0799E-17 5.0646E-14 6.0799E-17 5.0646E-14
4 U 6.0799E-17 5.0069E-14 6.0799E-17 3.1825E-14 6.0799E-17 5.0069E-14 6.0799E-17 5.0069E-14
5 W 5.4741E-17 1.3565E-14 5.4741E-17 1.2627E-14 5.4741E-17 1.3565E-14 5.4741E-17 1.3692E-14
5 U 5.4741E-17 1.2805E-14 5.4741E-17 1.2627E-14 5.4741E-17 1.2805E-14 5.4741E-17 1.2884E-14
6 W 8.1188E-17 1.2066E-14 8.1149E-17 1.2282E-14 8.1188E-17 1.2066E-14 8.1140E-17 1.2247E-14
6 U 8.1224E-17 1.1947E-14 8.1149E-17 1.2282E-14 8.1224E-17 1.1947E-14 8.1204E-17 1.2117E-14
7 W 5.7367E-17 4.3377E-15 7.0186E-17 2.3690E-14 5.7367E-17 4.3377E-15 5.7358E-17 4.3701E-15
7 U 7.0087E-17 1.5423E-14 7.0186E-17 2.3690E-14 7.0087E-17 1.5423E-14 7.0102E-17 1.5468E-14
8 W 4.4808E-17 4.5862E-15 4.4808E-17 1.8362E-14 4.4808E-17 4.5862E-15 4.4808E-17 4.6169E-15
8 U 4.4808E-17 1.8523E-14 4.4808E-17 1.8362E-14 4.4808E-17 1.8523E-14 4.4808E-17 1.8680E-14

Table 2
Mean relative errors for the various central stencil selection algorithms for calculating the solution and the gradient of a quadratic (P = 2) polynomial on 
a series of grids as shown in Fig. 1 using a 3rd-order reconstruction.

Grid LSQ NCB FBC VBC SBC

W/U e e∇ e e∇ e e∇ e e∇
1 W 1.2918E-15 7.0106E-02 1.2919E-15 7.0106E-02 1.2918E-15 7.0106E-02 1.2919E-15 7.0106E-02
1 U 1.2927E-15 7.0106E-02 1.2927E-15 7.0106E-02 1.2927E-15 7.0106E-02 1.2927E-15 7.0106E-02
2 W 1.3061E-15 7.0420E-02 1.3051E-15 7.0420E-02 1.3061E-15 7.0420E-02 1.3061E-15 7.0420E-02
2 U 1.3073E-15 7.0420E-02 1.3073E-15 7.0420E-02 1.3073E-15 7.0420E-02 1.3073E-15 7.0420E-02
3 W 1.2872E-15 5.6015E-02 4.6144E-04 7.7870E-01 1.2872E-15 5.6015E-02 1.2872E-15 5.6015E-02
3 U 1.2871E-15 5.6015E-02 5.5518E-05 2.0492E+00 1.2871E-15 5.6015E-02 1.2871E-15 5.6015E-02
4 W 1.2986E-15 5.6410E-02 1.2988E-15 5.6410E-02 1.2986E-15 5.6410E-02 1.2986E-15 5.6410E-02
4 U 1.2987E-15 5.6410E-02 1.2959E-15 5.6410E-02 1.2987E-15 5.6410E-02 1.2987E-15 5.6410E-02
5 W 1.2877E-15 7.0584E-02 1.2877E-15 7.0584E-02 1.2877E-15 7.0584E-02 1.2877E-15 7.0584E-02
5 U 1.2876E-15 7.0584E-02 1.2877E-15 7.0584E-02 1.2876E-15 7.0584E-02 1.2876E-15 7.0584E-02
6 W 1.2919E-15 6.7704E-02 1.2918E-15 6.7704E-02 1.2919E-15 6.7704E-02 1.2919E-15 6.7704E-02
6 U 1.2919E-15 6.7704E-02 1.2919E-15 6.7704E-02 1.2919E-15 6.7704E-02 1.2919E-15 6.7704E-02
7 W 1.5432E-15 7.1201E-02 2.5434E-04 4.1143E-01 1.5432E-15 7.1201E-02 1.5433E-15 7.1201E-02
7 U 1.2130E-14 7.1201E-02 2.7086E-05 9.5525E-02 1.2130E-14 7.1201E-02 1.2130E-14 7.1201E-02
8 W 1.3212E-15 7.8708E-02 1.5296E-15 7.8708E-02 1.3212E-15 7.8708E-02 1.3209E-15 7.8708E-02
8 U 4.9900E-15 7.8708E-02 5.6759E-15 7.8708E-02 4.9900E-15 7.8708E-02 4.9214E-15 7.8708E-02

Table 3
Mean relative errors for the various central stencil selection algorithms for calculating the solution and the gradient of a cubic (P = 3) polynomial on a 
series of grids as shown in Fig. 1 using a 4th-order reconstruction.

Grid LSQ NCB FBC VBC SBC

W/U e e∇ e e∇ e e∇ e e∇
1 W 2.1860E-15 1.2794E-01 2.1881E-15 1.2794E-01 2.1860E-15 1.2794E-01 2.1864E-15 1.2794E-01
1 U 2.1812E-15 1.2794E-01 2.1878E-15 1.2794E-01 2.1812E-15 1.2794E-01 2.1828E-15 1.2794E-01
2 W 2.2082E-15 1.2847E-01 2.2082E-15 1.2847E-01 2.2082E-15 1.2847E-01 2.2082E-15 1.2847E-01
2 U 2.2069E-15 1.2847E-01 2.2062E-15 1.2847E-01 2.2069E-15 1.2847E-01 2.2069E-15 1.2847E-01
3 W 2.1800E-15 1.0287E-01 2.4305E-04 6.7213E-01 2.1800E-15 1.0287E-01 2.1800E-15 1.0287E-01
3 U 2.1821E-15 1.0287E-01 1.5773E-04 1.9181E-01 2.1821E-15 1.0287E-01 2.1821E-15 1.0287E-01
4 W 2.2036E-15 1.0355E-01 9.5005E-04 2.4376E+00 2.2036E-15 1.0355E-01 2.2036E-15 1.0355E-01
4 U 2.2215E-15 1.0355E-01 1.3409E-03 1.4946E+00 2.2215E-15 1.0355E-01 2.2215E-15 1.0355E-01
5 W 2.1898E-15 1.2873E-01 2.1898E-15 1.2873E-01 2.1898E-15 1.2873E-01 2.1898E-15 1.2873E-01
5 U 2.1898E-15 1.2873E-01 2.1898E-15 1.2873E-01 2.1898E-15 1.2873E-01 2.1898E-15 1.2873E-01
6 W 2.1893E-15 1.2368E-01 2.1892E-15 1.2368E-01 2.1893E-15 1.2368E-01 2.1893E-15 1.2368E-01
6 U 2.1929E-15 1.2368E-01 2.1974E-15 1.2368E-01 2.1929E-15 1.2368E-01 2.1931E-15 1.2368E-01
7 W 5.8052E-13 1.2930E-01 1.8848E-03 2.9434E-01 5.8052E-13 1.2930E-01 5.8052E-13 1.2930E-01
7 U 6.6583E-11 1.2930E-01 1.6561E-03 3.1559E-01 6.6583E-11 1.2930E-01 6.6583E-11 1.2930E-01
8 W 1.0592E-13 1.4286E-01 2.0123E-03 2.7684E-01 1.0592E-13 1.4286E-01 1.0544E-13 1.4286E-01
8 U 1.4110E-11 1.4286E-01 2.3645E-03 3.9101E-01 1.4110E-11 1.4286E-01 1.4092E-11 1.4286E-01
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Table 4
Mean relative errors for the various central stencil selection algorithms for calculating the solution and the gradient of a quartic (P = 4) polynomial on a 
series of grids as shown in Fig. 1 using a 5th-order reconstruction.

Grid LSQ NCB FBC VBC SBC

W/U e e∇ e e∇ e e∇ e e∇
1 W 1.8042E-15 2.0803E-01 1.8093E-15 2.0803E-01 1.8042E-15 2.0803E-01 1.8076E-15 2.0803E-01
1 U 1.7133E-15 2.0803E-01 1.7966E-15 2.0803E-01 1.7133E-15 2.0803E-01 1.7369E-15 2.0803E-01
2 W 1.8376E-15 2.0873E-01 1.8356E-15 2.0873E-01 1.8376E-15 2.0873E-01 1.8376E-15 2.0873E-01
2 U 1.8290E-15 2.0873E-01 1.8418E-15 2.0873E-01 1.8290E-15 2.0873E-01 1.8290E-15 2.0873E-01
3 W 1.7758E-15 1.4714E-01 2.8472E-03 1.5501E+00 1.7758E-15 1.4714E-01 1.7758E-15 1.4714E-01
3 U 2.0158E-15 1.4714E-01 1.1631E-03 4.3677E-01 2.0158E-15 1.4714E-01 2.0174E-15 1.4714E-01
4 W 1.8219E-15 1.4817E-01 8.4654E-04 3.4397E-01 1.8219E-15 1.4817E-01 1.8219E-15 1.4817E-01
4 U 2.0503E-15 1.4817E-01 4.9884E-04 2.0191E-01 2.0503E-15 1.4817E-01 2.0503E-15 1.4817E-01
5 W 1.8130E-15 2.0909E-01 1.8132E-15 2.0909E-01 1.8130E-15 2.0909E-01 1.8128E-15 2.0909E-01
5 U 1.8185E-15 2.0909E-01 1.8201E-15 2.0909E-01 1.8185E-15 2.0909E-01 1.8188E-15 2.0909E-01
6 W 1.8311E-15 2.0187E-01 1.8339E-15 2.0187E-01 1.8311E-15 2.0187E-01 1.8315E-15 2.0187E-01
6 U 2.0750E-15 2.0187E-01 1.9133E-15 2.0187E-01 2.0750E-15 2.0187E-01 2.0679E-15 2.0187E-01
7 W 1.6439E-09 2.0884E-01 1.5640E-03 3.7262E-01 1.6439E-09 2.0884E-01 1.6439E-09 2.0884E-01
7 U 3.9829E-09 2.0885E-01 2.5027E-03 6.0272E-01 3.9829E-09 2.0885E-01 3.9829E-09 2.0885E-01
8 W 4.9136E-12 2.3044E-01 2.4829E-03 4.9882E-01 4.9136E-12 2.3044E-01 4.9295E-12 2.3044E-01
8 U 3.9701E-10 2.3044E-01 6.2611E-04 6.0950E-01 3.9701E-10 2.3044E-01 3.9702E-10 2.3044E-01

Table 5
Mean relative errors for the various central stencil selection algorithms for calculating the solution and the gradient of a quintic (P = 5) polynomial on a 
series of grids as shown in Fig. 1 using a 6th-order reconstruction.

Grid LSQ NCB FBC VBC SBC

W/U e e∇ e e∇ e e∇ e e∇
1 W 2.3505E-16 2.4556E-01 2.7572E-16 2.4556E-01 2.3505E-16 2.4556E-01 2.7779E-16 2.4556E-01
1 U 5.0611E-16 2.4556E-01 5.7609E-16 2.4556E-01 5.0611E-16 2.4556E-01 5.5044E-16 2.4556E-01
2 W 3.2102E-16 2.4645E-01 3.3091E-16 2.4645E-01 3.2102E-16 2.4645E-01 3.2102E-16 2.4645E-01
2 U 6.6941E-16 2.4645E-01 8.9724E-16 2.4645E-01 6.6941E-16 2.4645E-01 6.6941E-16 2.4645E-01
3 W 2.2236E-15 1.7646E-01 4.9766E-03 1.7615E+00 2.2236E-15 1.7646E-01 1.6063E-15 1.7646E-01
3 U 2.2531E-14 1.7646E-01 1.2580E-02 1.3384E+00 2.2531E-14 1.7646E-01 2.0451E-14 1.7646E-01
4 W 1.4792E-15 1.7766E-01 7.3896E-04 3.8524E-01 1.4792E-15 1.7766E-01 1.4792E-15 1.7766E-01
4 U 6.9944E-15 1.7766E-01 9.7157E-04 5.0577E-01 6.9944E-15 1.7766E-01 6.9944E-15 1.7766E-01
5 W 3.2363E-16 2.4683E-01 3.2219E-16 2.4683E-01 3.2363E-16 2.4683E-01 3.1891E-16 2.4683E-01
5 U 5.9915E-16 2.4683E-01 5.2399E-16 2.4683E-01 5.9915E-16 2.4683E-01 5.6858E-16 2.4683E-01
6 W 1.5745E-15 2.3804E-01 1.0439E-15 2.3804E-01 1.5745E-15 2.3804E-01 1.7040E-15 2.3804E-01
6 U 1.0120E-14 2.3804E-01 1.8096E-14 2.3804E-01 1.0120E-14 2.3804E-01 1.0893E-14 2.3804E-01
7 W 8.5194E-09 2.4689E-01 7.9739E-03 1.4152E+00 8.5194E-09 2.4689E-01 8.5194E-09 2.4689E-01
7 U 1.9124E-08 2.4691E-01 6.5781E-02 6.4546E+00 1.9124E-08 2.4691E-01 1.9124E-08 2.4691E-01
8 W 2.0976E-10 2.7303E-01 1.0908E-03 3.4390E-01 2.0976E-10 2.7303E-01 2.0963E-10 2.7303E-01
8 U 1.5072E-08 2.7302E-01 6.3635E-03 9.0821E-01 1.5072E-08 2.7302E-01 1.5051E-08 2.7302E-01

It needs to be stressed that exploring the performance of various stencil algorithms on all possible types of meshes, 
is an open-ended task where an overwhelming number of algorithms can be developed, but one must consider the main 
use of the targeted algorithms in terms of types of problems and constrain the study to the algorithms that make sense, 
and can provide robustness and accuracy at the same time. For this reason there have been comprehensive studies in the 
past focusing on exploring various combinations of gradient approximations [62–65], including weighted and unweighted 
least squares, cell-based and node-based, augmented stencil mappings etc, however their main focus was on schemes up 
to 2nd-order accurate. Therefore as seen in this test-problem the differences in stencil construction algorithms are more 
pronounced for up to second-order schemes, as seen between a NCB and VBC in Fig. 2 and Fig. 3 respectively. Consequently 
for Reynolds-Averaged Navier-Stokes (RANS) equations where very high-aspect ratio cells can be encountered the stencil 
selection algorithm used can influence dramatically the approximation of the gradients of the turbulence model in the close 
vicinity of the wall. In these circumstances, measures of grid quality can be used to switch to different stencil algorithms 
in these regions, or even other measures for suppressing odd-even decoupling modes in the numerical solutions generated 
by the gradients approximation such as additionally penalty terms as initially suggested by Gassner et al. [55] and being 
successfully applied to various test problems by other researchers [55–57].

However very high-order WENO schemes on unstructured meshes present a completely different landscape in terms of 
grid quality requirements, and grids with qualities of Grid 7 and Grid 8 are rarely expected to be encountered for these 
schemes in the context of LES or implicit iLES of real-life problems, where these schemes are mainly targeted for. This does 
not imply that the WENO schemes cannot be successfully employed in the context of RANS equations, but there are no 
significant benefits in applying a higher than 3rd-order WENO scheme for RANS on 3D unstructured meshes as a series of 
previous studies have concluded [3,38,39]. Within the context of this study the inverse weighted least squares reconstruction 
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translates in an additional memory storage requirement for the right hand side of equation (13) without significant benefits 
for the grids involved except Grid 7 and Grid 8, and is therefore not considered furthermore in this study.

3.2. Linear advection equation

The 2D linear advection equation of a smooth test function U (x, y,0) = sin (2πx) · sin (2π y) is solved on computational 
domain given by [0, 1]2 with periodic boundary conditions applied on all sides. Initially the result obtained with the various 
central stencils algorithms are explored for good quality and bad quality meshes. They are then succeeded by the results 
obtained from the various directional stencil algorithms. Four different mesh types are used including uniform and non-
uniform triangular meshes, quadrilateral and hybrid meshes at resolutions corresponding to 16, 32, 64 and 128 edges per 
side. The computations are run for one period t = 1 where and the eL2 error is computed as follows:

eL2 =

√√√√∑
i

∫
�i

(
Ue

(
x, t f

) − Uc
(
x, t f

))2
dV∑

i |�i | , (30)

where Uc
(
x, t f

)
and Ue

(
x, t f

)
are the computed and exact solutions at the end of the simulation t = 1. The exact solution 

Ue
(
x, t f

)
being given by the initial condition itself at t = 0.

3.2.1. Central stencils
On the pursue for the most compact stencil algorithm and the associated benefits in terms of reduced computational 

cost, increased accuracy etc., the impact of the expansion factor E X = M/K where M is the total number of elements in 
the stencil and K being the total number of polynomial coefficients/degrees of freedom is investigated as well. Ideally an 
algorithm that can consistently produce accurate results for various types of meshes with lower expansion factor E X values 
would be preferred. By varying E X from 1.6 to 2 up to 3, it can be seen from Fig. 10, Fig. 11, Fig. 12 and Fig. 13 that no 
scheme can consistently produce accurate results for all the selected meshes and resolutions for an E X = 1.6. On the other 
hand all the algorithms are robust when an E X = 2 and higher is used as supported by previous studies [2,11,35–37,50,51]. 
As expected the lower the E X value the better the accuracy of the scheme, with a minor reduction in total computational 
time. It needs to be stressed that for the present 2D test problem, and at the subject resolutions significant differences in 
terms of computational times are not expected.

It is important to realize that for the subject test problem the meshes used are of good quality, and all the algorithms 
perform quite similarly producing the expected results and achieving convergence rates close to their theoretical ones. The 
primary reason that the subject results include schemes only up to fourth-order polynomials is that for higher spatial-order 
of accuracy the time-step needs to be further reduced to impractical levels in order to achieve higher than 4th-order of 
accuracy. For this reason the results obtained with such a time-step size restriction for only the SBC algorithm are shown 
in Fig. 14, where it can be noticed that the errors are significantly reduced for higher polynomial orders.

By keeping the stencil expansion factor fixed at E X = 2, which is the most prevalent choice amongst many similar ap-
proaches [2,11,35–37,50,51] , and employing a triangular mesh that consists of high-aspect ratio cells as seen in Fig. 16, the 
robustness of the algorithms at regions of high-aspect ratio cells is explored. Firstly from the central stencils obtained from 
all the algorithms as shown in Fig. 15 the differences between them becomes more apparent. The NCB selects significant 
number of cells farther away from the considered cell, the VBC algorithm includes all the vertex neighbours of the consid-
ered cell which are significantly more than the ones that emerge from a good quality mesh, and the FBC stencil is the most 
compact of all since it adds only the direct-side neighbours and then applies the compactness procedure to the rest of the 
elements. Finally the SBC algorithm combines some of the features of the VBC and NCB algorithm.

Remark 3. There are two striking features that need to be commented in the stencils algorithm when meshes of bad quality 
are experienced. The first one is that the Cell Quality criterion might not be sufficient since it can not identify regions of 
transition from good quality to bad quality meshes as seen in this example. Since the considered cell i indicated by red 
colour is having good quality characteristics. Therefore a more representative quality criterion would be to include a region 
in the vicinity of the considered cell in order to perform some quality metrics on all the enclosed cells, and based on the 
findings to activate the most suitable algorithm. This strategy however would loose the local nature of the algorithm, will 
require substantially more computational effort and might not be suitable for mesh adapting strategies. The second feature 
being that for realistic meshes for viscous flows that include higher-aspect ratio cells close to the walls, this transition 
regions will exist and therefore robust central stencil selection algorithms that are as compact as possible are needed in 
these regions.

It can be seen from the obtained results of Table 6 that the early activation of the compactness procedure of the FBC 
algorithm leads to a complete failure, and the only algorithm that consistently produces correct results (although not ex-
pected to reach the theoretical order of accuracy for such meshes) without crashing is the SBC algorithm. Even the NCB can 
not produce the correct results for all the resolutions, since a higher stencil expansion factor is required to do so. For the 
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Fig. 10. Plots of L2 error vs. CPU time measured in (number of cores x seconds) for the linear advection equation with smooth initial conditions at 
t = 1.0. The influence of various polynomial orders P , stencil expansion factors (ranging from 1.6 to 3.0), grid types (quadrilateral and triangular), and grid 
resolution (16, 32, 64, 128 edges per side) using the Naive Cell based algorithm is explored.

VBC algorithm the compactness procedure is activated quite early for low-number of the vertex-neighbours of the consid-
ered cell and as a result the added elements might be aligned with a direction that will eventually impair the robustness 
of the least-square reconstruction. The robustness of the SBC algorithm is characterised by a slightly increased run time 
compared to NCB algorithm for both spatial orders examined. Looking closer at the differences of the algorithms in terms of 
their width ws seen in Fig. 16 as defined in the previous section, it can be noticed that all the algorithms except SBC have 
high values of stencil width close to the transition between good quality and bad quality meshes. They reach the maximum 
value of 12 which is equivalent to central stencils as wide as 12 cells in each direction for a fourth-order polynomial. On 
the other hand the widest stencil with the SBC algorithm is 7 cells wide, and more uniform-favourable distribution of the 
width of the stencils throughout the domain is achieved. Therefore from this point onwards the SBC algorithm is going to 
be used in conjunction with the WENO schemes, unless otherwise specified.

3.2.2. Directional stencils
For investigating the influence of the directional stencil algorithms for the subject test problem a stencil expansion 

factor of E X = 2 is used along with the S BC central stencil algorithm. From the obtained results as seen in Fig. 17 all 
the directional stencil algorithm produce the same errors as expected, since this is a smooth problem and the central 
stencil gets assigned the largest non-linear weight hence it has the greatest influence in the obtained results. However the 
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Fig. 11. Plots of L2 error vs. CPU time measured in (number of cores x seconds) for the linear advection equation with smooth initial conditions at 
t = 1.0. The influence of various polynomial orders P , stencil expansion factors (ranging from 1.6 to 3.0), grid types (quadrilateral and triangular), and grid 
resolution (16, 32, 64, 128 edges per side) using the Vertex based Compact Algorithm is explored.

Table 6
L2 error, convergence rate OL2 and CPU time (cores × time(sec)) for the 2D linear advection equation with smooth initial conditions test problem obtained 
with various orders of accuracy with the NCB, VBC, FBC, and SBC central stencil algorithms at the final time of t = 1 on bad quality meshes. It can be 
noticed that the only algorithm that is robust enough to complete the simulation is the SBC.

Mesh Elements NCB O = 3 VBC O = 3 FBC O = 3 SBC O = 3

eL2 OL2 CPU eL2 OL2 CPU eL2 OL2 CPU eL2 OL2 CPU

1368 1.634E-02 – 7.41 1.656E-02 – 5.16 NaN – 7.84 1.668E-02 – 7.58
3816 NaN – 60.38 NaN – 50.21 NaN – 64.12 1.115E-02 0.58 67.16
10328 NaN – 392.22 NaN – 396.35 NaN – 399.22 1.003E-02 0.15 406.61

Mesh Elements NCB O = 5 VBC O = 5 FBC O = 5 SBC O = 5

eL2 OL2 CPU eL2 OL2 CPU eL2 OL2 CPU eL2 OL2 CPU

1368 6.952E-04 – 10.98 6.937E-04 – 12.15 NaN – 15.52 6.792E-04 – 15.41
3816 3.381E-04 1.03 100.35 3.379E-04 1.03 96.82 NaN – 112.53 3.269E-04 1.05 109.71
10328 NaN – 613.80 NaN – 644.99 NaN – 618.34 4.322E-04 -0.40 626.98
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Fig. 12. Plots of L2 error vs. CPU time measured in (number of cores x seconds) for the linear advection equation with smooth initial conditions at 
t = 1.0. The influence of various polynomial orders P , stencil expansion factors (ranging from 1.6 to 3.0), grid types (quadrilateral and triangular), and grid 
resolution (16, 32, 64, 128 edges per side) using the Face based Compact Algorithm is explored.

computational cost of the algorithms differs significantly where Type 4 on quadrilateral meshes is 3 times faster than Type 1, 
and for triangular meshes Type 3 is approximately 2 times faster than Type 1 for the same order of accuracy. These trends 
should be treated with caution since for more complicated test problems the number of variables, and number of operations 
will increase significantly as highlighted in Table 7.

3.3. 2D solid body rotation

The solid body rotation test of Leveque [66] is employed to assess the impact of the directional stencil algorithms on the 
correct and accurate revolution of a body. The continuity equation is considered as follows:

∂U

∂t
+ ∇ · (vU ) = 0, (31)

on a computational domain given by [0, 1]2 with periodic boundary conditions applied on all sides. The velocity v describing 
the revolution of the profile around the centre of the domain (0.5, 0.5) is given by:

v(x, y) = (0.5 − y, x − 0.5). (32)
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Fig. 13. Plots of L2 error vs. CPU time measured in (number of cores x seconds) for the linear advection equation with smooth initial conditions at 
t = 1.0. The influence of various polynomial orders P , stencil expansion factors (ranging from 1.6 to 3.0), grid types (quadrilateral and triangular), and grid 
resolution (16, 32, 64, 128 edges per side) using the Stencil based Compact Algorithm is explored.

Table 7
Number of entries, for all the directional stencils reconstruction matrices Amk per flow variable for 
3D meshes with WENO schemes and various directional stencil algorithms on hexahedral meshes.

Order Type 1 Type 2 Type 3 Type 4

P = 1 216 108 108 54
P = 2 1944 972 972 486
P = 3 8664 4332 4332 2166
P = 4 27744 13872 13872 13872
P = 5 72600 36300 36300 18150
P = 6 165336 82668 82668 41334
P = 7 339864 169932 169932 84966
P = 8 645504 322752 322752 161376

In this particular test three bodies are considered namely a smooth centered at (x0 = 0.25, y0 = 0.5), a sharp cone cen-
tered at (x0 = 0.5, y0 = 0.25) and a slotted cylinder centered at (x0 = 0.5, y0 = 0.75) described by the following functions 
respectively:
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Fig. 14. Plots of L2 error vs. CPU time measured in (number of cores x seconds) for the linear advection equation with smooth initial conditions at t = 1.0
with a CFL=0.01 and a stencil expansion factor of 2. The influence of various polynomial orders P , grid types (quadrilateral and triangular), and grid 
resolution (16, 32, 64, 128 edges per side) using the Stencil based Compact Algorithm is explored.

Fig. 15. Examples of central stencils with the considered cell in red colour using various stencil algorithms for meshes of poor quality.

f(x, y) = 1 + cos(πr(x, y))

4
, (33)

f(x, y) = 1 − r(x, y), (34)

and

f(x, y) =
{

1, if |x − x0| ≥ 0.025 or y ≥ 0.85

0, if otherwise.
(35)
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Fig. 16. Contour plots of the variation of the stencil width parameter ws (20 equidistant levels used from 1.14 to 12) for various stencil selection algorithms 
using a P = 4 polynomial for a mesh of poor quality.

Fig. 17. Plots of L2 error vs. CPU time measured in (number of cores x seconds) for the linear advection equation with smooth initial conditions at t = 1.0. 
The influence of various polynomial orders P , grid types (quadrilateral and triangular), grid resolution (16, 32, 64, 128 edges per side) and directional 
stencil selection algorithms are explored.
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Fig. 18. Initial solution for the solid body rotation test problem, using a mixed-element and triangular mesh with 128 edges per side.

Fig. 19. Computed results after one revolution (t = 2π) of the solid body rotation test problem, using a mixed-element mesh with 128 edges per side and a 
WENO 3 scheme with various directional stencil selection algorithms (from left to right Type 1, Type 2, Type 3, Type 4). Three-dimensional elevations (bottom) 
and top views (top) of ten uniformly distributed isolines from 0.1 to 1.0. It can be noticed that all directional stencil algorithms capture the correct shapes 
without any oscillations, and the Type 1 being the most dissipative since there are three isolines outside the slotted cylinder, while in the other types there 
are only two.

Where the normalised distance from the centres (x0, y0) is given by:

r(x, y) = (1/r0)

√
(x − x0)2 + (y − y0)2, (36)

with r0 = 0.15. The rest of the domain the solution is initialised with zero, and after one full revolution t f = 2π the 
exact solution coincides with the initial solution as shown in Fig. 18. Two unstructured meshes are used a mixed-element 
one and a triangular one with 128 edges per side of the computational domain.

From the obtained results using the WENO 3 scheme as shown in Fig. 19 and Fig. 21, it is evident that the Type 1
algorithm is the most dissipative one, since the number of isolines outside the slot is greater than the other types since the 
exact solution isolines would fit the slot shape. This is to be expected since it has the largest number of directional stencils 
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Fig. 20. Computed results after one revolution (t = 2π) of the solid body rotation test problem, using a mixed-element mesh with 128 edges per side and a 
WENO 6 scheme with various directional stencil selection algorithms (from left to right Type 1, Type 2, Type 3, Type 4). Three-dimensional elevations (bottom) 
and top views (top) of ten uniformly distributed isolines from 0.1 to 1.0. It can be noticed that all directional stencil algorithms capture the correct shapes 
but oscillations in the solutions are present. The Type 2 and Type 4 symmetric directional algorithms exhibit more symmetric solution profiles of the slotted 
cylinder as seen in the top views, whereas the non-symmetric ones Type 1 and Type 3 do not. The Type 1 being the most dissipative since there are two 
isolines outside the slotted cylinder, while in the other types there are none.

Fig. 21. Computed results after one revolution (t = 2π) of the solid body rotation test problem, using a triangular mesh with 128 edges per side and a 
WENO 3 scheme with various directional stencil selection algorithms (from left to right Type 1, Type 2, Type 3). Three-dimensional elevations (bottom) and 
top views (top) of ten uniformly distributed isolines from 0.1 to 1.0. It can be noticed that all directional stencil algorithms capture the correct shapes but 
some oscillations are present in particularly for the Type 2 algorithm as seen in the three-dimensional elevations, and the Type 1 being the most dissipative 
since there is one isoline outside the slotted cylinder, while in the other types there are none.

and the largest width (smallest compactness) compared to the other ones. For the triangular mesh as shown in Fig. 21
it can be noticed that the results are characterised by some oscillations being more pronounced for the Type 2 algorithm, 
compared to the other ones due to the symmetric nature of this algorithm.

Now when switching to the WENO 6 scheme as shown in Fig. 20 and Fig. 22 although the accuracy regarding repre-
senting the slot of the slotted cylinder is improved for all types compared to the WENO 3 scheme, the computed solutions 
exhibit oscillations. These ones are more pronounced for the mixed-element mesh due to the combination of the high-order 
of accuracy, the coarse grid resolution that translates to having (7-8 cells across the slot) when the stencil sizes have grown 
compared to the WENO 3 schemes and none of them is being compact enough to fit within the slot section of the cylinder.
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Fig. 22. Computed results after one revolution (t = 2π) of the solid body rotation test problem, using a mixed-element mesh with 128 edges per side and 
a WENO 6 scheme with various directional stencil selection algorithms (from left to right Type 1, Type 2, Type 3). Three-dimensional elevations (bottom) and 
top views (top) of ten uniformly distributed isolines from 0.1 to 1.0. It can be noticed that all directional stencil algorithms capture the correct shapes but 
oscillations in the solutions are present. The Type 2 symmetric directional algorithm exhibit more symmetric solution profile of the slotted cylinder as seen 
in the top views, whereas the non-symmetric ones Type 1 and Type 3 do not. The Type 1 being the most dissipative since it exhibits slightly narrower slot 
for the slotted cylinder compared to the other two.

3.4. Shu-Osher problem

The well established 2D Shu-Osher [67] test problem is employed, which involves the interaction between a shock wave 
and an entropy wave. The computational domain is [−5, 5] × [−0.1, 0.1], with periodic boundary conditions in y-axis, a 
supersonic inflow and outflow on the left and right side of the domain respectively. The initial profile consists of a shock 
wave (ρ, u, v, p) = (3.857143,2.629369,0,10.333333) on the left when x < −4 and an entropy wave in the rest of the 
domain (ρ, u, v, p) = (1 + 0.2sin(5x),0,0,1).

A 2D quadrilateral mesh is employed with 512 edges for the top and bottom sides with approximately 51, 200 elements. 
The reference solution is computed with an one-dimensional Euler equations on 10, 000 grid points using a WENO-5th 
order scheme. The calculation is run until t = 1.8 with WENO 5th-order scheme using all four types of directional stencil 
algorithms. From the density distribution plots at the left image of Fig. 23 it can be noticed that all the stencil algorithms 
obtained results are in good agreement with the reference solution, although it can be identified that Type 1 algorithm is 
the most dissipative in the entropy wave region compared to the rest of the algorithms.

Looking closer at the interaction of the entropy wave with the shock wave region as shown at the right image of Fig. 23, 
it can be noticed that Type 2 and Type 4 exhibit more oscillations from Type 1 and Type 3. This is to be expected since 
although their stencils are more symmetric, they are wider, hence they have a higher probability of crossing discontinuous 
regions. Type 3 preserves a better agreement with the reference solution compared with Type 1. Type 4 is not going to 
be used for any subsequent test-problems since although it might have a reduced stencil width, the fact that there are 
only two-directional stencils to choose from constrains its applicability to flow problems with sharp-gradients arising from 
various directions.

3.5. Double Mach reflection

The widely-used double Mach reflection test problem of Woodward and Colella [68] is employed for assessing the accu-
racy and non-oscillatory properties of the subject directional stencils algorithms. Initially a shock wave moves with Mach 
number M = 10 at an inclination of α = 60◦ . Ahead of the shock the fluid is at rest with uniform density and pressure 
ρ = 1.4 and p = 1.0. Supersonic inflow boundary conditions are prescribed on the left side and supersonic outflow bound-
ary conditions on the right side, and reflecting boundary conditions for the bottom of the domain beginning at x = 1/6 and 
post shock conditions before. At the top boundary the exact solution of an isolated moving oblique shock wave with M = 10
is prescribed. For additional details regarding the setup of the problem the reader is referred to the work of Woodward and 
Colella [68]. The computational domain is given by [0, 4] × [0, 1] and is discretised by an unstructured mesh of approxi-
mately 320, 000 triangular cells, that corresponds to an equivalent resolution of h = 1/180. WENO 3rd-, 5th-, and 7th-order 
schemes are employed with Type 1,Type 2, and Type 3 directional stencil algorithms. The calculations are performed until 
time t = 0.2, as seen in Fig. 24.
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Fig. 23. Density distribution for the Shu-Osher [67] shock tube test problem at the final time t = 1.8 using various directional stencil algorithms for a WENO 
5th-order scheme on a quadrilateral mesh and compared with the reference solution obtained from the one-dimensional Euler equations on 10, 000 grid 
points using a WENO-5th order scheme. It can be noticed that Type 2 and Type 4 exhibit more oscillations from Type 1 and Type 3. Type 3 preserves a better 
agreement with the reference solution compared with Type 1.

All the stencil algorithms capture the correct flow pattern with the reflected shock, the two Mach stems and two contact 
discontinuities. However looking closer at the interaction zone there are two aspects that differentiate the results between 
these types of directional stencil algorithms. The first one is the rolling of the shear waves which is more pronounced 
for Type 1 and Type 3 algorithms for all the spatial orders. The second aspect which is the most crucial is related to the 
structure of the Mach stem. The curved Mach stem is associated with the carbuncle sensitivity of the scheme, the influence 
of the inclination of the shock wave to the grid itself and the presence or not of a Triple-Mach White-Reflection TM-WR as 
documented by other computational and experimental studies [69,70]. The only algorithm that is consistently free from a 
curved Mach stem is Type 3 for all spatial orders of accuracy, indicating that it less sensitive to carbuncle and in agreement 
with results of Woodward and Colella [68]. It is worth noting that the Type 2 algorithm although it is the least dissipative 
in smooth regions of the flow due to the symmetric directional stencils with respect to the considered cell, in this test 
problem it exhibits the least pronounced rolling of the shear waves. This symmetry is translating to reduced compactness 
of the directional stencils, therefore it is more likely for a larger portion of the total number of directional stencils to cross 
discontinuous regions compared to the other two algorithms. Hence the activation of the WENO limiting across the shear 
waves is more likely to occur for Type 2 algorithm. Type 1 and Type 3 algorithms are not so prone to this behaviour due to 
the larger number of directional stencils and more compact ones respectively.

3.6. Mach 3 forward facing step

A well suited test problem for assessing the performance of the stencil algorithms due to the presence of complicated 
flow structures and interacting shocks is the Mach 3 forward facing step, introduced by Woodward and Colella [68]. The size 
of the domain is 3 units length with the step placed at 0.6 length units from the left side of the domain, with a height of 0.2 
units. An ideal gas is considered with constant density ρ = 1.4, velocity (u, v) = (3, 0) and pressure p = 1.0. A supersonic 
inflow condition is applied on the left, a supersonic outflow condition on the right and reflective boundary conditions on 
the upper and lower sides. The computational domain is discretised by an triangular mesh of approximately 180, 000 cells, 
that correspond to an equivalent resolution of h = 1/200. The corner of the step was rounded off as suggested in [71]
with a curvature of radius 0.003 in order to avoid the numerical treatment of the singularity point by different means. The 
3rd-order and 5th-order numerical schemes are employed with Type 1,Type 2, and Type 3 directional stencil algorithms. The 
calculations are performed until time t = 4.0, as seen in Fig. 25.

All the algorithms capture the correct flow pattern with the contact discontinuity resulting from the three-shock inter-
action. As expected the Kelvin-Helmholtz instabilities that develop along the contact discontinuity are better resolved as 
the order of accuracy is increased, with the Type 3 algorithm having slightly better resolution than the others. Their key 
difference lies in the region behind the bow shock and close to the three-shock interaction where some algorithms produce 
“noisier” results than others which means that they are more prone to some oscillations developing. Type 3 is the least 
susceptible to this behaviour, since there are sufficient number of stencils that are more compact than Type 1 or Type 2.
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Fig. 24. Density distribution with various directional stencil algorithms for WENO 3rd-, 5th-, and 7th-order schemes for the double Mach reflection problem 
at t = 0.2. Zoomed on the wave interaction zone where it can be noticed that key difference is that Type 3 algorithm consistently produced a less curved 
Mach stem, which is a result of the less propagated jet along the reflection axis. All the algorithms produce more pronounced shear waves as the order of 
accuracy is increased, but only Type 3 is free from the carbuncle effect revealed from the curved Mach stem.

3.7. Kelvin-Helmholtz instability

The 2D Kelvin-Helmholtz instability and the resulting evolution of small shear layer into chaotic vortical structures is con-
sidered. This type of problems is widely used [72–75] for assessing the performance of various numerical methods in terms 
of accuracy and dissipation characteristics for evolving a linear perturbation into a non linear one. The computational do-
main is [−0.5, 0.5]2, with periodic boundary conditions. The initial profile is (ρ, u, v, p) = (1,0.5,0.01sin(2πx/L),2.5) when 
y ≥ 0.25, (ρ, u, v, p) = (2,−0.5,0.01sin(2πx/L),2.5) when −0.25 < y < 0.25 and (ρ, u, v, p) = (1,0.5,0.01sin(2πx/L),2.5)

when y ≤ −0.25. An unstructured triangular mesh is employed with 512 edges across each side with 818670 elements. The 
calculation is run until t = 5 with an unlimited and WENO schemes of 3rd- and 6th-order of accuracy. The WENO scheme 
using Type 1, Type 2 and Type 3 directional stencil algorithms. Due to the initial conditions in the absence of viscosity, the 
fine resolution of the mesh and the variation of the numerical methods employed, that a converged solution will not be 
obtained. Due to the instabilities interacting with each other and forming new vortices the flow becomes chaotic at late 
times, hence different solutions are obtained with different numerical methods.

From the density distribution plots at various instants as shown in Fig. 27 and Fig. 28 it can be noticed that the Type 
2 and Type 3 directional stencil algorithms resolve vortices of finer scales compared to the Type 1 algorithm and therefore 
result to more pronounced vortex filamentation processes. This trend is valid for both 3rd and 6th-order WENO schemes. 
Investigating the time evolution of the total kinetic energy E K as seen in Fig. 26 it can be noticed that Type 1 is the most 
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Fig. 25. 3D elevation contour plots of density with various directions stencil algorithms for WENO 3rd-, and 5th-order schemes for the Mach 3 forward 
facing step problem, at t = 4. It can be noticed that all the algorithms when used with WENO 5th-order scheme resolve the contact discontinuity from the 
three-shock interaction and the resulting Kelvin-Helmholtz instabilities, however all the algorithms are susceptible to some oscillations emanating behind 
the strong shock, with Type 1 algorithm being more pronounced than Type 2 and Type 3.

Fig. 26. Time histories of total kinetic energy E K for the Kelvin-Helmholtz instability obtained with various directional stencil algorithms and an unlimited 
scheme. It can be noticed that Type 1 is the most dissipative, while Type 2 is the least dissipative, however the Type 3 algorithm is getting closer agreement 
to Type 2 in terms of dissipation for the WENO 6th-order scheme.
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Fig. 27. Contour plots of the density (15 equidistant contours from 0.5 to 2.25) obtained with WENO 3rd-order scheme with various directional stencil 
algorithms for the Kelvin-Helmholtz instability test problem at various instants. It can be noticed that the Type 2 and Type 3 directional stencil algorithms 
resolve vortices of finer scales compared to the Type 1 algorithm.

dissipative, while Type 2 is the least dissipative of the WENO schemes as expected due to the more symmetric directional 
stencils, however the Type 3 algorithm is getting a closer agreement to the unlimited scheme at late times in terms of 
dissipation for 6th-order schemes.

Comparison of the obtained solutions with unlimited and WENO schemes is useful for understanding how the WENO 
schemes might influence the solution for a smooth flow problem. Ideally the non-linear weight of the central stencil should 
be approximately equal to 1.0, hence almost only the central stencil contributing to the reconstruction. In practice however, 
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Fig. 28. Contour plots of the density (15 equidistant contours from 0.5 to 2.25) obtained with WENO 6th-order scheme with various directional stencil 
algorithms for the Kelvin-Helmholtz instability test problem at various instants. It can be noticed that the Type 2 and Type 3 directional stencil algorithms 
resolve vortices of finer scales compared to the Type 1 algorithm.

this is not the case since the resulting shear layers that trigger the instabilities and the characteristics reconstruction, round-
off errors, varying morphology of the unstructured mesh itself can result in a sub-optimal non-linear weight assigned to the 
central stencil. For this purpose the solutions obtained at late times with unlimited schemes and WENO scheme with Type 3
are compared in Fig. 29, and in terms of resolved features there are not significant differences between them. Comparing the 
various directionals stencil algorithms with respect to the percentage of elements with a non-linear weight (for the density) 
for the central stencil which is less than ω1 < 0.999 as shown in Fig. 30 reveals that the Type 2 is superior with respect to 
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Fig. 29. Contour plots comparison of the density (15 equidistant contours from 0.5 to 2.25) obtained with WENO Type 3 algorithm and Unlimited scheme 
for the Kelvin-Helmholtz instability test problem at the final time t = 5.0. There are not significant differences between the results obtained by the two 
approaches.

the other algorithms for 3rd-order WENO schemes. This is again justified by the more symmetric directional stencils which 
results in just 1.10% being below this threshold. When switching to a 6th-order scheme however, the larger width of the 
Type 2 algorithm and its narrower sectors results in significantly more elements being limited by the directional stencils, as 
opposed by Type 3 which has the lowest percentage of elements limited 6.78%.

All the simulations where performed on 8 Intel Xeon Phi 7210 processors, and the CPU times required for every timestep 
of all the schemes are normalised with respect to the fastest scheme which is the Unlimited 3rd-order scheme. For the 
WENO schemes the computational cost increases by a factor of (2 −3.2) and (4.9 −8.0) for 3rd-order and 6th-order schemes 
respectively as shown in as shown in Table 8. Therefore the stencil algorithms selected can have a profound impact on the 
computational times. Interestingly Type 2 algorithm has slightly higher computational cost as shown in Table 8 compared 
to Type 3 for WENO 3rd-order and WENO 6th-order scheme, due to the stencils having a greater width hence resulting 
in significantly more elements across interprocessor boundaries. For WENO 6th-order scheme the difference in CPU times 
between the different types of stencil algorithms is more pronounced with Type 3 being the fastest and Type 1 the slowest 
performing algorithms.
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Fig. 30. Plot only of the cells (the remaining are blanked) with a WENO weight (for the density) for the central stencil which is less than ω1 < 0.999 for the 
Kelvin-Helmholtz instability test problem with a WENO 3rd-order (top) and WENO 6th-order (bottom) scheme at t = 5.0 with various directional stencil 
algorithms. The percentage of the elements in the computational domain with ω1 < 0.999 provides an additional measure of how each WENO algorithm is 
limiting the reconstruction arising from the central stencil. It can be noticed that the Type 2 has the lowest percentage of limited elements for the WENO 
3rd-order scheme and for WENO 6th-order scheme Type 3 algorithm has the lowest percentage.

Table 8
Normalised CPU times for the Kelvin-Helmholtz instability obtained with various directional stencil 
algorithms and an unlimited scheme.

Scheme Central Type 1 Type 2 Type 3

Unlim 3 1 – – –
Unlim 6 3.34 – –
WENO 3 – 3.2 2.2 2.0
WENO 6 – 8.0 5.6 4.9

3.8. iLES of Taylor Green vortex Re = 1600

The iLES of the 3D viscous Taylor-Green vortex test problem at Re = 1600 is employed, for assessing the influence 
of the directional stencil algorithms. Primarily it is used for studying the vortex stretching and transition to turbulence 
and secondly for the validation of developed numerical methods. This test problem when employed at relative coarse-
“under-resolved” meshes, reveals the dissipation and dispersion characteristics of non-linear methods at resolutions typically 
found in regions close to the boundary layer for larger Reynolds number wall bounded flows. It has been widely used by 
many researchers to assess the behaviour of various numerical schemes [3,46,76–82], in the context of iLES. Furthermore 
there are well-documented DNS results of Brachet et al. [83] to compare against and are used as a reference for this 
study.

The computational domain is defined as � = [0, 2π ]3 with periodic boundary conditions. This formulation of the Taylor-
Green vortex problem is initialized with the following velocity, density and pressure fields:
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u(x, y, z,0) = sin(kx) cos(ky) cos(kz), (37)

v(x, y, z,0) = − cos(kx) sin(ky) cos(kz), (38)

w(x, y, z,0) = 0, (39)

ρ(x, y, z,0) = 1, (40)

p(x, y, z,0) = 100 + ρ

16
[cos(2z) + 2] · [cos(2x) + cos(2y)]. (41)

The initial condition corresponds to an initial Mach number M ≈ 0.08, with k = 2π/λ = 1 being the wavenum-
ber. Simulations were carried out on a hexahedral mesh of 963 using the WENO 4th-order scheme with Type 1, and 
WENO-5th order schemes with Type 3 directional stencils. The primary reason for this is to demonstrate that for a sim-
ilar computational cost to a WENO 4th-order with the Type 1 algorithm, a higher-order scheme (WENO 5th-order) can 
be used by just switching Type 3 directional stencil algorithm which is more compact. The simulations were run with 
a CFL number of 1.3 for the explicit Runge-Kutta 4th-order scheme, up to t = 20 for obtaining the dissipation statis-
tics.

From the obtained results as shown in Fig. 31 it can be noticed that the kinetic energy dissipation rate for the WENO 5th-
order Type 3 scheme is in closer agreement with the reference DNS results for Re = 1600, than the WENO 4th-order Type 1
scheme. Furthermore to the previous expected finding, the WENO 5th-order Type 3 scheme is just 11% more computationally 
expensive compared to the WENO 4th-order Type 1. There are two reasons for that, firstly the stencils are more compact 
in the sense that they occupy less space, and secondly the computational performance favours fewer and larger matrix
multiplications as it has also been mentioned in the WENO performance optimisation study by Tsoutsanis et al. [22]. The 
WENO reconstruction process is the most computationally intensive part of the algorithm and it mainly involves matrix-
matrix and matrix-vector multiplications. Since optimised linear algebra libraries are used in the UCNS3D code [22], using 
larger and fewer matrices typical of Type 1 algorithm a higher throughput is achieved, therefore resulting in increased 
performance and accuracy compared to the WENO 4th-order Type 1.

3.9. iLES of transonic cylinder Re = 3900

The last test case concerns the iLES of a transonic infinite cylinder of diameter D = 1 at Re = 3900 and Minf = 0.8. 
At this Reynolds number Re = 3900 there are numerous computational results [82,84–91] for subsonic Mach numbers, 
since the low Reynolds number is suitable for exploring various high-fidelity numerical methods in the context of iLES. The 
main motivation for employing a transonic flow in this configuration is firstly to better justify the use of WENO schemes 
due to the presence of shock-waves and secondly to highlight the computational performance benefits associated with the 
utilisation of a more compact stencil algorithm.

For this case a hybrid unstructured mesh of approximately 9.3 million cells is generated, consisting of hexahedral and 
prismatic cells as illustrated in Fig. 32. The domain extends 10D upstream and 25D downstream, and 2π D in the z-
direction. The grid resolution at the boundary layer region gives a y+ ≈ 1 at the first cell off the surface, 180 cells are used 
in the z-direction, and a refinement region at the wake of the cylinder is used for 10D downstream with an average cell 
length of 0.05. Periodic boundary conditions are used in the z-direction, no-slip boundary conditions at the surface of the 
cylinder and free-stream conditions at the farfield. Due to the periodic boundary conditions and the nature of the grid being 
extruded in the z-direction from a 2D-mesh, there are regions with relatively medium aspect ratio (4 < AR < 15) cells close 
to the wall, and very high-aspect ratio cells (AR > 1000).

Two numerical methods are used a WENO 4th-order Type 1 scheme with the NCB algorithm and a WENO 5th-order Type 
3 scheme with the SBC algorithm. A CFL number of 1.3 is set along with the explicit Runge-Kutta 4th-order scheme. The 
main objective of employing an NCB algorithm which is inferior to the SBC in all the tests performed, is to further high-
light the impact that a non-carefully selected stencil algorithm can have in the computational efficiency of a 3D unsteady 
simulation. The simulations were run for t = 10tc where tc = D/U∞ , for obtaining an average drag coefficient, and due to 
the computational budget available the analysis of turbulent statistics was not pursued, since the focus for this paper was 
to highlight in a realistic test problem the influence of the stencil algorithm.

From the obtained results as it can be seen in Fig. 33, the typical regime at this Mach number associated with the 
elongated vortex formation, wake shock wave and the pressure waves aft the wake shock wave are better resolved by the 
WENO 5th-order Type 3 scheme with the SBC algorithm and in better agreement with the experimental results of Ackerman 
et al. [92]. Furthermore, the drag coefficient obtained with the WENO 5th-order scheme C D = 1.06 and the WENO 4th-order 
scheme C D = 1.12, are within the error threshold of the results of Ackerman et al. [92].

It needs to be highlighted that the WENO 5th-order Type 3 scheme with the SBC algorithm is just 19% more expen-
sive compared to the WENO 4th-order Type 3 scheme with the NCB algorithm. This is due to the fact that the central 
and directional stencils are more compact and therefore they have reduced communication requirements across cpus for 
halo cells, as well as the better throughput achieved with fewer and larger matrices under the current implementation of 
the UCNS3D code [22]. This is demonstrated in Fig. 34, where it can be noticed that the WENO 5th-order scheme em-
ploys stencils of similar-size if not more compact than the WENO 4th-order scheme. The geometrical sectors for the Type 
1 directional algorithm are narrow and they result in wide stencils, furthermore the NCB central algorithm is not taking 
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Fig. 31. Kinetic Energy dissipation rate and isosurfaces of Q criterion for the viscous iLES of the Taylor-Green Vortex Re = 1600 obtained with WENO 4th-
order Type 1 scheme and WENO 5th-order Type 3 scheme on a 963 hexahedral mesh, and comparison with the DNS results of Brachet et al. [83]. It can be 
noticed that the WENO 5th-order Type 3 scheme is in much closer agreement with the DNS results for Re = 1600 and resolves finer scales, compared to 
WENO 4th-order type 1, while costing 11% more in computational time.



36 P. Tsoutsanis / Journal of Computational Physics: X 4 (2019) 100037
Fig. 32. Overview of the hybrid unstructured mesh used for the transonic flow past an infinite cylinder at Re = 3900 and M∞ = 0.8.

Fig. 33. Instantaneous iso-surfaces of Q criterion (Q=200) coloured by Mach number using a WENO 4th-order Type 1 scheme with NCB algorithm (left) and 
a WENO 5th-order Type 3 scheme with SBC algorithm (right) for the transonic flow past an infinite cylinder at Re = 3900 and M∞ = 0.8. It can be noticed 
that flow structures typical of this regime [92] the wake shock wave, the elongated vortex formation region and the pressure waves are more pronounced 
with the WENO 5th-order Type 3 scheme, as well as finer vortical structures are resolved.

Fig. 34. Plots of stencils at various regions of the computational domain, for the transonic flow past an infinite cylinder at Re = 3900 and Minf = 0.8 using 
a WENO 4th-order Type 1 scheme with NCB algorithm (top) and a WENO 5th-order Type 3 scheme with SBC algorithm (bottom). It can be noticed that the 
stencils arising from the WENO 5th-order Type 3 scheme have equivalent if not smaller spatial footprint compared to the WENO 4th-order Type 3 scheme.

into account the distance of the candidate elements from the considered cell, making the situation even worse. The re-
sults highlight that higher-order WENO schemes on unstructured meshes can be employed using more compact stencil 
algorithms.
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4. Conclusions

This paper investigates various stencil selection algorithms for WENO schemes for smooth and discontinuous flow 
problems. The algorithms are differentiated with respect to the central stencil and directional stencils since different 
parameters need to be considered for each one of them. From the various central stencil algorithms presented the 
SBC algorithm in its present implementation is the most robust, for good and bad quality meshes, and it is there-
fore the selected algorithm for the present WENO schemes. Regarding the directional stencils, the situation is more 
complicated, in the sense that a fine balance between computational cost and non-oscillatory properties of the WENO 
schemes are pursued. The Type 3 directional stencil algorithm provides significant computational savings and a satis-
factory level of robustness for all the test-problems investigated and remains the algorithm of choice for the present 
implementation.

For other WENO implementations on unstructured meshes including the CWENO [8,10] and hybrid DG-WENO [17,19], 
Type 1 algorithm might be more suitable. CWENO and hybrid DG-WENO schemes have the advantage of employ-
ing compact directional stencils of P = 1 or P = 2 polynomial order. Therefore the computational cost associated 
with them is not as significant as the using high-order polynomial reconstructions for the directional stencils. Hence 
Type 1 algorithm might be the most suitable for these implementations due to its enhanced non-oscillatory proper-
ties.

Comprehensive studies devoted to the comparison of WENO and CWENO schemes on unstructured meshes are lim-
ited, hence there is a need to identify potential benefits of switching to CWENO schemes as part of a future study. 
It can be expected though that the compactness of the CWENO schemes might prove beneficial close to discontinu-
ities on coarse grids, but in smooth regions of the flow a falsely reduction of the non-linear weight of the central 
stencil due to the grid topology/morphology will reduce the order of accuracy significantly more than the traditional 
WENO schemes. Finally expanding the WENO schemes to be able to adapt their stencil algorithm usage in real-time, 
based on some oscillation indicator metrics, so that the optimal one is used at any instant is a future research direction 
pursued.
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Appendix A. Central stencil algorithms

Algorithm 1 NCB.
1: procedure NCB(output=i,counter3)
2: USE Stencil Algorithms
3: for All cells i do
4: counter3=0,Icomp=0,Ivert=0
5: Call Big Stencil
6: Call Sort Store
7: end for
8: end procedure

Appendix B. Directional stencil algorithms

https://doi.org/10.17862/cranfield.rd.8983772.v1
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Algorithm 2 VBC.
1: procedure VBC(output=i,counter3)
2: USE Stencil Algorithms
3: for All cells i do
4: Icomp=0
5: Call Cells Quality
6: if Qual=1 then
7: Icomp=1
8: end if
9: counter3=0,Ivert=1

10: Call Big Stencil
11: Call Sort Store
12: end for
13: end procedure

Algorithm 3 FBC.
1: procedure FBC(output=i,counter3)
2: USE Stencil Algorithms
3: for All cells i do
4: Icomp=0
5: Call Cells Quality
6: if Qual=1 then
7: Icomp=1
8: end if
9: counter3=number of faces, Ivert=0

10: Call Big Stencil
11: Call Sort Store
12: end for
13: end procedure

Algorithm 4 SBC.
1: procedure SBC(output=i,counter3)
2: USE Stencil Algorithms
3: for All cells i do
4: Icomp=0
5: Call Cells Quality
6: if Qual=1 then
7: Icomp=1
8: end if
9: counter3=1.2 · K , Ivert=0

10: Call Big Stencil
11: Call Sort Store
12: end for
13: end procedure

Table 9
Variables definitions for stencil algorithms.

Variable Definition

AR Aspect ratio of cell
cc List of direct side neighbours
cv List of vertex based neighbours
counter Loop counter
counter2 Counter for number of stored elements in the stencil
counter3 The number of elements in the stencil not to be sorted
d f The farthest distance from the considered cell, from the counter3 list of elements
d f The farthest distance from the considered cell, from the list of temporary stencil elements excluding the elements in the 

counter3 list
E X Expansion factor of the stencil (M = E X · K )

Icomp Compactness flag
Ivert Vertex based neighbours flag
Qual Quality criterion flag
K Number of degrees of freedom of polynomial
mx Number of elements (mx >> M) -typically (mx = 4 · M) of “Big Stencil”
S g List of temporary stencil elements
Sm List of finalised stencil elements
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Algorithm 5 Stencil Algorithms.

1: procedure Big Stencil(input=counter3,Ivert,output=S g
mx ,counter3)

2: S g
1 = i,counter=1,counter2=0,counter3

3: for Loop 1: cell c, counter2=counter2+1 do
4: If counter=1 and vertex mode is active (Ivert=1) then
5: List the number of all the vertex-based neighbours of cell c, cv = 1, ...., V 1
6: for each vertex-based neighbour cv do
7: If the element does not belong in the stencil list S g

counter
8: Store in the next available position, counter=counter+1, counter3=counter3+1
9: endif

10: end for
11: else
12: List the number of direct side neighbours of cell c, cc = 1, ...., V
13: for each direct side neighbours cc do
14: if the element does not belong in the stencil list S g

counter
15: store in the next available position, counter=counter+1
16: endif
17: end for
18: end if
19: end for
20: if counter ≤ mx then
21: set c = S g

counter2 and repeat process from Loop 1
22: else
23: exit
24: endif
25: end procedure
26: procedure Sort Store(input=S g

mx ,counter3,Icomp,output=Sm)
27: if Compact is active, (Icomp=1) then
28: Copy the first counter3 elements from S g

mx and store in Sm
29: Compute the distance d f of the farthest element in the list for the first counter 3 elements wrt to cell i
30: Compute the distance dn of the elements from counter3 to mx wrt to cell i
31: Bubble sort the rest of the elements from counter3 to mx wrt dn
32: for each candidate element in the sorted list S g

n ,n = counter3, ...., mx do
33: if dn ≤ d f or n ≤ M then
34: Store to next available position n in Sm until M = max(counter3, E X · K )
35: end if
36: end for
37: elseCompact is not active,(Icomp=0)
38: Copy the first M elements from S g

mx and store in Sm
39: end if
40: end procedure
41: procedure Cells Quality(input=i,output=Q ual)
42: Q ual = 1
43: if Aspect Ratio AR ≥ 10 then
44: Q ual = 0
45: end if
46: end procedure

Algorithm 6 WENO stencil algorithm (WSA).
1: procedure WSA(output=i)
2: USE Stencil Algorithms
3: for All cells i do
4: Determine considered cell centre coordinates ci , inverse jacobian for transformation J−1
5: for All faces j do
6: Determine the coordinates of the triangular (2D), or tetrahedral (3D) element from vertices of cell centre ci and the vertices of the face 

considered for the subject directional stencil algorithm w1,2,...,N

7: for All candidate elements in the “Big Stencil” k = 1, ..., mx do
8: Check if the transformed coordinates of the candidate element centre cc′
9: Satisfy the condition cc′ = J−1 · (cc − w1) ≥ 0

10: If condition is satisfied and the element is not already in the list of the considered directional stencil, store in the next available memory 
location until the target number of elements M has been reached

11: end for
12: end for
13: end for
14: end procedure
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