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Abstract 

A high temperature micro-impact test has been developed to assess the fracture resistance of 

hard coatings under repetitive dynamic high strain rate loading at elevated temperatures. The 

test was used to study the temperature dependence of the resistance to micro-scale impact 

fatigue of TiAlSiN coatings on cemented carbide at 25-600 C. Nanoindentation and micro-

scratch tests were also performed over the same temperature range. The results of the micro-

impact tests were dependent on the impact load, coating microstructure, coating and substrate 

mechanical properties, and their temperature dependence. At higher temperatures there was a 

change in failure mechanism from fracture-dominated to plasticity-dominated behaviour under 

the cyclic loading conditions. This was attributed to coating and substrate softening. 
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1. Introduction 

Monolayered PVD (physical vapour deposition) ternary transition metal nitrides such as TiAlN 

and AlCrN have excellent wear resistance in metal cutting applications [1-11]. This is due to a 

combination of factors which act in synergy including improved oxidation resistance, thermal 

stability, age-hardening through spinodal decomposition and more protective tribofilm 

formation in comparison to binary nitrides such as TiN or CrN [12-14]. Despite this, hot 

microhardness and elevated temperature nanoindentation studies have shown that their hot 

hardness can decrease dramatically in comparison to room temperature measurements [15-19]. 

More advanced multilayer coatings and quaternary compositions are being developed with 

improved properties such as enhanced high temperature mechanical properties and wear 

resistance [19-36]. 

To obtain coating characterisation data under more controlled conditions than field trials small 

scale mechanical tests and instrumented accelerated laboratory wear tests are used. This 

enables rapid screening for promising compositions and optimisation of coating architectures. 

As they can easily and quickly be replicated they provide a statistical overview of coating 

performance. Nano- and micro-scale mechanical/tribological characterisation by the 

combination of indentation, scratch and impact tests has shown potential to improve our 

fundamental understanding of the link between coating properties and durability in cutting and 

streamline coating development. 

To be a more reliable predictor of actual service performance it is important that the tests 

closely simulate the contact conditions so that the major wear mechanisms are replicated. 

Nano-impact testing with sharp cube corner diamond indenters has proved effective in 

simulating the highly loaded repetitive contact in interrupted turning and face and end milling 

applications with coating performance in the rapid lab-scale test showing strong correlation to 

their lifetime in the actual application [7,37,38]. Bouzakis and co-workers used the technique 



3 
  

to study influence of post-deposition coating treatment and the developed compressive stresses 

on coating brittleness and tool life [7]. They reported strong correlation between the results of 

nano-impact tests with a cube corner diamond probe and the cutting performance when milling 

hardened steel (AISI 4140) with micro-blasted Ti40Al60N coated cemented carbide tools. 

Focussed ion-beam cross-sectioning has been used to study deformation mechanisms in the 

nano-impact test. In nano-impact tests on multilayer titanium aluminium silicon nitride and 

monolayer TiN coatings on hardened tool steel with a cube corner probe at 10-150 mN a higher 

load was required for chipping in the multilayered TiAlSiN coating but there was no 

delamination on either coating [39].  

By changing the applied load and probe geometry in the impact test, it is possible to alter the 

severity of the test and to move the positions of peak impact-induced stresses relative to the 

coating-substrate interface. Increasing the energy delivered per impact enables different 

indenter geometries to be used instead of the sharp cube corner. Tarrés and co-workers have 

noted that, by switching from sharp to blunter spherical indenters, there is an intrinsic 

suitability for examining damage evolution in bulk materials as a function of number of cycles 

[40]. By performing repetitive indentation tests at 50-4000 N with 0.5-2.5 mm radii cemented 

carbide indenters Ramírez and co-workers increased the test sensitivity to substrate properties 

at the expense of losing the influence of the coating on the yield behaviour [41]. 

Between the nano- and macro- impact a recently developed micro-impact test typically 

employs impact loads in the micro- range (~0.5-5 N) together with spheroconical diamond 

probes with end radii of ~10-50 m. The maximum energy supplied per impact with the micro-

impact technique is around 2 orders of magnitude greater than the maximum possible in the 

nano-impact technique. Nano- and micro-scale tests have been used in the study of the 

resistance to impact fatigue of Al-rich PVD nitride coatings on cemented carbide [42]. A 
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Ti0.25Al0.65Cr0.1N coating with high H3/E2 performed best in the nano- and micro- impact tests 

although it was not the hardest coating studied.  

In applications such as turning, end milling and hot-forming high temperatures are generated 

in contact. The temperature dependence of mechanical properties will alter the wear rate and 

may change the predominant deformation mechanism. In these cases the results of room 

temperature tests are less relevant, Jinhal and co-workers reported that in hot hardness 

measurements over 600 C the hardness of TiCN decreased more rapidly than TiAlN which 

was a factor in the superior tool life of TiAlN over TiCN in continuous turning of inconel and 

carbon steel [15]. The relative improvement of TiAlN over TiCN was more noticeable at higher 

cutting speeds where the contact temperature is greater. Although experimentally more 

challenging than at room temperature, nano- and micro- scale mechanical and tribological tests 

can be performed at elevated temperature. [11,37,38,42-44] High temperature micro-scratch 

tests have shown that the critical load at 500 C can be larger than at room temperature [11,37]. 

Best and co-workers reported enhanced plastic deformation at 500 C in high frequency impact 

testing of a 5 µm CrN coating with a 5 µm flat punch [44]. Fracture probability in nano-impact 

tests of Ti0.5Al0.5N and Al0.67Ti0.33N coatings decreased at 500C compared to room 

temperature consistent with enhanced plasticity shown by nanoindentation [38]. 

In this current study we have performed nano- and micro-scale mechanical testing at elevated 

temperature on PVD TiAlSiN coatings. TiAlSiN coatings have better mechanical properties 

and thermal stability than TiAlN [21]. TiAlSiN has been reported to have 20 % longer tool life 

in milling hardened steel than TiAlN [25]. Addition of Si induces grain refinement and results 

in a dense microstructure more resistant to oxidation and contact fatigue [32]. These improved 

properties are believed to result from the formation of a nanocomposite TiAlSiN structure with 

cubic TiAlN embedded in an amorphous Si3N4 matrix. In high temperature tribological tests 
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on TiAlSiN wear rate was lower at 600 C than 400 C due to formation of protective tribofilms 

of Al2O3 and SiO2 [27].  Tillmann and Dildrop reported that when sliding against WC-Co the 

coating wear rate was lower at 800 C than 500 C, particularly for higher Si-contents [22]. 

Fuentes [32] reported that when sliding against alumina the protective oxide-based tribo-film 

developed at 200-600 C, with lower wear rates than at room temperature. 

Multilayer nitride coatings have shown enhanced performance in tribological tests and 

machining applications [24, 29-31, 33-36]. In dry turning of Inconel 718 multilayer TiAlSiN 

showed improved performance in comparison to monolayer TiAlSiN [21]. In this current study 

nanoindentation, micro-scratch and micro-impact tests have been performed from 25 to 600 C 

on monolayer TiAlSiN and TiAlN/TiSiN nano-multilayer coatings on cemented carbide. 

Although nano-impact tests have previously been performed at elevated temperatures up to 500 

C, [38] this study is the report of micro-scale impact testing performed at elevated 

temperature. The influence of the coating thickness to probe radius ratio and the temperature 

dependence of the mechanical properties of the coatings and the cemented carbide substrate on 

the behaviour in the micro-impact tests is discussed. 

 

2. Experimental 

2.1 Coating deposition 

An Oerlikon Balzers INNOVENTA Mega coating deposition system with Ti and AlSi targets 

was used to deposit 2 µm monolayer PVD TiAlSiN on ISO P30 cemented carbide (75 wt % 

WC, 7% TiC, 8% TaC+NbC, 10 wt% Co). The deposition was carried out at 500 C in a pure 

nitrogen atmosphere with substrate bias of -80 V and N2 pressure of 2 Pa. Compositional 

analysis of the monolayer by energy dispersive x-ray analysis (EDX) = Ti0.50Al0.07Si0.045N0.38. 
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The same coating system was used with TiAl and TiSi targets and substrate rotation to deposit 

a 2 µm nano-multilayered PVD TiAlSiN composed of approximately 100 alternating TiAlN 

and TiSiN layers on ISO P30 cemented carbide. Compositional analysis of the nano-multilayer 

by EDX = Ti0.48Al0.19Si0.022N0.31. The coatings were polished prior to testing to remove droplets 

and reduce their surface roughness and improve the accuracy of the nanomechanical 

measurements. 

 

2.2 Nanomechanical and micro-scratch characterisation at 25-600 °C 

Nanoindentation and micro-scratch testing was performed with a NanoTest Vantage system 

(Micro Materials Ltd., Wrexham, UK). For the nanoindentation tests at room temperature a 

diamond Berkovich indenter was used to indent to a peak load of 30 mN at 3 mN/s. There was 

a 10 s hold at peak load before unloading at 3.75 mN/s. Thermal drift correction was from a 60 

s hold at 90 % unloading. Hardness (H) and reduced elastic modulus (Er) were determined from 

power-law fitting to the unloading curves. The elastic modulus (E) and Poisson ratio of the 

diamond indenter were 1141 GPa and 0.07 respectively. A coating Poisson’s ratio of 0.25 was 

used to obtain the Young’s modulus from the reduced modulus. A cubic Boron Nitride (cBN) 

Berkovich indenter was used for the high temperature nanoindentation tests at 400 ºC and 600 

ºC which were performed in a purged argon environmental chamber. The elastic modulus and 

Poisson ratio of the cBN indenter were taken as 800 GPa and 0.12 respectively at room 

temperature. Between room temperature and 600 C the Elastic modulus of the indenter 

decreases by less than 3 %. The temperature dependence of the elastic properties of the cBN 

indenter was taken into account when determining the Es values at 400 and 600 C. The samples 

were heated resistively and the temperature measured with a thermocouple placed immediately 

behind an AlN tile in the hot stage to which the sample was attached to with Resbond 908 high 

temperature adhesive. The sample and indenter were separately actively heated to ensure 
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isothermal contact and minimise thermal drift. The loading conditions for the high temperature 

tests were the same as in the room temperature tests.  

 

A 25 µm end radius diamond conical indenter was used for the room temperature micro-scratch 

tests which were performed as 3-scan multi-pass topography-scratch-topography tests. The Ra 

surface roughness determined from the initial pass data was (0.022 ± 0.007) m for the 

monolayer and (0.046 ± 0.016) m for the nano-multilayer. In the ramped scratch pass, after a 

levelling distance of 100 m the load was ramped to a peak load of 5 N at 55 mN/s. The scratch 

length was 2 mm. 3 repeat tests were performed on each sample. The contact load in the pre- 

and post- scratch topographic scans and the initial 100 µm of the ramped scratch was set at 0.3 

mN. The same 25 µm end radius diamond conical indenter was used for the high temperature 

micro-scratch tests at 300 ºC and 600 ºC. Experimental conditions were the same as for the 

room temperature tests with a small modification to reduce the time in contact. To minimise 

the time in contact at elevated temperature the scratch length was reduced to 1.5 mm and the 

loading rate increased to 105 mN/s. 

 

2.3 Micro-impact tests at 25-600 °C 

A NanoTest Vantage was modified with a large electromagnet and indenter adapter arm to 

enable micro-impact tests to be performed. A schematic representation of the micro-impact 

configuration and a photograph showing its implementation in dual-loading head NanoTest 

Vantage system are shown in Figure 1 (a,b). The micro-impact tests on the TiAlSiN coatings 

were performed with a 90 spheroconical diamond indenter. The end radius of the indenter was 

determined as 17 µm by calibration with fused silica. Suitable experimental conditions to assess 

impact resistance of hard PVD coatings on WC-Co substrate were determined for this probe 

[42]. Repeat micro-impact tests were performed at 1, 1.2 and 1.5 N with an accelerating 
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distance of 40 µm. The test duration was 300 s with 1 impact every 4 s, resulting in 75 impacts 

in total. There were 3 repeats at 1 N, and at least 15 repeats at 1.2 and 1.5 N. The distance 

between repeat tests was 200 µm. Three additional tests at 1.5 N were performed with a larger 

accelerating distance of 60 m. 

 

Repetitive elevated temperature micro-impact tests at 1.5 N were performed at 300, 500 and 

600 ºC. The test conditions were similar to those in the room temperature tests, although the 

time in contact was minimised by increasing impact frequency to 1 impact every 2 s and 

reducing the test duration to 150 s. The heating rate was set to 10 C/min. In contrast to the 

elevated temperature nanoindentation tests, the micro-impact tests were performed without 

argon purging. To minimise oxidative degradation the probe was not actively heated. After the 

elevated temperature tests the indenter geometry was checked indirectly by re-testing samples 

that had not been exposed to high temperature under the same experimental conditions, and by 

indentation tests on fused silica. Since the impact probe was not actively heated some thermal 

drift was observed in the high temperature tests but its effect is lessened by the re-zeroing effect 

when the probe position is recorded out of contact as the position 40 µm above the surface 

stays approximately constant throughout the 150 or 300 s tests. Scanning electron microscopy 

(SEM) imaging of the micro-impact craters was performed using a FEI XL30 ESEM at 20 kV 

and a working distance of 6-8 mm with EDX analysis (Oxford instruments and Aztec software). 

 

3. Results 

3.1 Nanoindentation and micro-scratch tests 

The variation in coating mechanical properties with increasing temperature is shown in Table 

1. At room temperature the mechanical properties of both coatings are quite similar. Although 

the nano-multilayer was slightly harder this was accompanied by higher stiffness so the H/E 



9 
  

ratio of both coatings was almost the same. The nano-multilayer had higher resistance to plastic 

deformation, H3/E2. The coatings soften and become slightly lower in elastic modulus between 

25 and 600 C. Since the decrease in elastic modulus was less pronounced than the decrease in 

hardness the H/E ratio and, more significantly the H3/E2 parameter decrease with increasing 

temperature. 

Coating failure in the depth-sensing micro-scratch tests was defined at the point at which there 

is a dramatic loss in the load-carrying capacity of the coating resulting in an abrupt increase in 

the on-load depth. Optical microscopy confirmed the onset of extensive cracking and chipping 

at this point. The critical load at which coating failure occurred in the micro-scratch test was 

found to vary only slightly with temperature (Table 2). The extent of scratch recovery up to 

failure was found to be strongly temperature dependent however, with significant scratch 

recovery at room temperature and minimal recovery in the higher temperature tests. In 

comparison with the brittle failure in room temperature scratch tests it was more difficult to 

assign a clear failure point from the scratch depth data in the high temperature tests due its 

more ductile nature. 

 

3.2 Room temperature micro-impact 

Illustrative plots of the impact depth vs. number of impacts are shown in Figure 1 (c,d). In all 

cases there is an abrupt increase in depth on initial impact due to the impact force being higher 

than the quasi-static load. During the first few impacts the impact depth increases then levels 

out. Thereafter the abrupt changes in probe depth are associated with fracture and material 

removal. The results for 40 m accelerating distance are summarised in Table 3 (a,b). There 

was minimal difference between the coatings in their pre-impact static contact depth or in their 

resistance to a single impact. When there was no chipping of the coating the impact depth 

varied little with continuing impacts after the first few impacts (Fig. 1(c,d)). At 1 N the nano-
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multilayer did not fracture in any of three repeat tests and the monolayer showed minor failure 

in only one of the three repeats (tests without fracture are shown in figure 1). With 40 m 

accelerating distance clear load dependence in the coating fracture on repetitive impact was 

observed over 1-1.5 N. At 1.2 N the nanomultilayer fractured in a smaller number of tests than 

the monolayer. When the accelerating distance was increased to 60 µm both coatings failed 

rapidly at 1.5 N with more extreme damage thereafter in comparison to tests with 40 µm 

accelerating distance. Although the time-to-failure tended to be longer on the nanomultilayer 

the rate of damage thereafter was greater. This was particularly pronounced in the most severe 

tests (at 1.5 N, 60 µm accelerating distance). 

 

SEM of the impact crater on multilayer at 1 N confirmed the absence of chipping at this load 

but faint concentric cracks were visible (fig. 2(a)). BS imaging of a crater on the monolayer at 

1 N showed a partial ring crack (not shown). At higher load dramatic failure was observed 

(Figs 2 (b,c) and 3 (a,b)). BS imaging (e.g. fig. 2(c)) confirmed substrate exposure. EDX of the 

debris within the impact crater in figure 2(b,c) revealed that it was largely composed of the 

cemented carbide:- 1.7wt% Al; 5.8 wt% Ti; 10.1 wt% Co; 82.5 wt% W. The chipped region 

surrounding the impact crater was more extensive on the nanomultilayer. 

 

3.3. High temperature micro-impact 

Elevated temperature impact test results are summarised in Table 4 which records the variation 

in depth after the initial impact (i.e. depth after impact n – depth after initial impact). There 

was no observable change in indenter geometry after the elevated temperature tests. As the test 

temperature increased from 25-600 ºC the increase in impact depth on initial impact (d(1)-d(0), 

depth after first impact minus the static depth) increased by ~300 nm on the monolayer and 

~600 nm on the nanomultilayer. The increase in depth (d(failure)-d(0)) at which coating failure 
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occurred increased with the test temperature for the monolayer but was relatively unchanged 

on the nanomultilayer. The final impact depth (d(final)-d(0)) was higher when more brittle 

fracture occurred. Coating failure at elevated temperature was less pronounced on both 

coatings.  

 

SEM images of typical craters after repetitive impact at 1.5 N at 300 C, 500 C and 600 C 

are shown in Figure 4(a-c) for the monolayer and Figure 5(a-c) for the nanomultilayer. The 

differences in the extent of chipping outside the impact crater between the coatings observed 

at room temperature were also found at 300 C (fig. 4(a), fig. 5 (a)). For both coatings there 

appears to be a change in mechanism between the sub-micron sized WC debris found at room 

temperature and a more ductile deformation mechanism at higher temperature with compacted 

substrate debris with some ring cracking observed within the compacted region. At 500 and 

600 ºC the nanomultilayered coating shows significantly reduced coating fracture with only 

faint ring cracking observed at 600 ºC. After the testing at 600 ºC some discoloration of the 

nano-multilayer coating surface was observed optically but the appearance of the monolayer 

was unchanged. 

Figure 6 (a) shows the depth change after initial impact from typical tests on the monolayer at 

25-600 C. The progression of coating damage is temperature dependent. The onset of failure 

requires less repetitive impacts at 300 and 500 C than at room temperature but progresses 

more gradually at 500-600 C than at lower temperature and the subsequent wear rate is lower. 

The depth change after initial impact in typical tests on the nanomultilayer at 25-600 C is 

shown in Figure 6 (b). There is a marked temperature sensitivity with the nanomultilayered 

coating being more resistant to coating fracture at 500-600 C.  

4. Discussion 
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4.1. Room temperature impact behaviour 

The higher H3/E2 and multilayered structure in the TiAlN/TiSiN nanomultilayer coating 

provide enhanced load carrying capability and resistance to crack initiation. Dissipative 

mechanisms are more limited in materials with high H3/E2 so that once cracks are initiated 

there is less resistance to crack propagation. This manifests itself in a larger chipped area and 

greater final impact depth for the nanomultilayer in the more severe impact tests. The switch 

in relative performance with test severity was also been reported by Zha and co-workers in 

high frequency (20 kHz) impact tests on these coatings with a 50 m end radius diamond 

indenter [29]. Under low impact conditions the multilayer performed better but had worse 

cyclic impact resistance under more severe conditions. The micro-impact and high frequency 

impact tests show some correlation with cutting tests reported in [29]. In turning Ti6Al4V at 

80 m/min the monolayer performed worse at low cutting force (feed rate = 0.1 mm/rev) but at 

higher cutting force (feed rate = 0.2 mm/rev) larger flank wear and spalling on the rake face 

was observed for the multilayer TiAlN/TiSiN. In micro-impact an micro-scratch tests of AlTiN 

and TiAlCrN coatings on WC-Co the coating with highest H3/E2 showed greater chipping 

outside the impact crater or scratch track [42].  

In micro-scale impact tests the ratio between coating thickness h and indenter radius R is 

intermediate between nano-impact and macro-scale impact tests. As has been shown by finite 

element analysis, this influences the deformation mechanism [45]. In nano-impact with sharp 

cube corner probes the results are more dominated by the coating properties – chipping can be 

extensive but significant delamination is not observed on strongly adherent coatings [39]. In 

the micro-impact test this chipping is accompanied by substrate exposure at the edge of the 

impact crater and for WC-Co substrate, fatigue damage of the hard WC. In the micro-impact 

the results are strongly influenced by the coating and the substrate [42]. Figure 7 contrasts the 

behaviour of these TiAlSiN coatings on ISO P30 with a TiAlCrN monolayer on H10A 
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cemented carbide (previously tested in [42]). ISO with 10 wt. % Co has lower hardness and 

stiffness than the 6 wt. % Co H10A. The TiAlSiN coatings experience higher tensile and 

bending stresses due to reduced load support resulting in larger depth at failure and 

subsequently more rapid wear.  

4.2 Elevated temperature behaviour 

The performance of the TiAlSiN coatings in the micro-impact test was dependent on the impact 

load, coating microstructure, coating and substrate mechanical properties, and their 

temperature dependence. The high temperature nanoindentation data show the TiAlSiN 

coatings have excellent high temperature mechanical properties in comparison to other ternary 

and quarternary nitride coatings without Si incorporation. For the multilayer which has smaller 

% Si the hardness at 600 C was 75 % of its room temperature value and for the monolayer 

with greater Si incorporation the hardness was 79 % of its room temperature value at 600 C. 

The sharp probe (Berkovich) and small (~0.1) relative indentation depth (RID) in the high 

temperature nanoindentation tests mean the results are sensitive to coating properties with 

minimal substrate influence. ISO 14577 shows that there is some substrate influence at RID of 

~0.1 but for coatings which are closely modulus matched to the cemented carbide substrate this 

should be almost negligible [46-48]. In the scratch and impact tests the larger applied loads and 

greater indenter radius used mean that the high temperature properties of the substrate also 

become important. As shown Milman and co-workers [49], the high Co fraction in the ISO P30 

cemented carbide results in (i) lower room temperature hardness (ii) more rapid decrease in 

hardness with temperature than on cemented carbide grades such as H10A (a popular choice 

for substrate in previous elevated temperature nano- and micro-mechanical testing). This 

decrease in mechanical properties on P30 at elevated temperature is more important in the 

scratch and impact than in the indentation tests. 
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The TiAlSiN coatings display predominantly brittle behaviour at room temperature. In the high 

temperature micro-scratch tests there is reduced elastic recovery prior to failure due to the 

reduction in substrate hardness. The slight increase in critical load for the monolayer and 

invariant critical load on the multilayer appear to be a consequence of the reduced load support 

due to the decreased mechanical properties of the coating and substrate resulting in increased 

coating bending being offset by the reduced brittleness. As the critical load in the micro-scratch 

test is a function of probe radius any probe wear may have also a small effect. In previous 

micro-scratch tests of TiAlN, AlCrN and AlTiN coatings on H10A cemented carbide the 

critical load increased with temperature for AlCrN and AlTiN and decreased on TiAlN. 

Analytical modelling of the high temperature scratch data suggested that this was due to a 

changing stress distribution at temperature rather than an improvement in adhesion strength 

[11]. 

At higher temperatures there was a change in the dominant fatigue mechanism from fracture-

dominated to more plasticity-dominated behaviour in the micro-impact tests. This transition to 

a milder wear mode occurs by 600 C for the monolayer (fig. 6(a)) and by 500 C for the 

nanomultilayer (fig. 6(b)). It has been suggested that grain refinement induced by Si 

incorporation in TiAlSiN can be responsible for reduction in thermal fatigue [32] but coating 

softening may also play a role. In elevated temperature nano-impact tests on Ti0.5Al0.5N and 

Al0.67Ti0.33N coatings on H10A the fracture probability decreased on both coatings at 500C 

compared to that at room temperature which was consistent with enhanced coating plasticity 

at high temperature in nanoindentation tests [38]. In the micro-impact tests the improvement 

in behaviour at high temperature is a result of reduced coating and substrate brittleness. SEM 

imaging show a transition between fracture of WC grains resulting in sub-micron sized WC 

debris at lower temperature and a more ductile deformation mechanism at higher temperature. 

Goéz and co-workers have suggested that in designing for greater reliability cemented carbide 
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grades should be selected for optimal damage tolerance (i.e. deformation prevailing over 

fracture as the major damage mode) [50]. Analogously, increasing the temperature in the 

current study has a similar effect as moving to a tougher cemented carbide grade to change the 

main deformation mechanism by reducing brittle fracture. 

The experimental conditions employed in this proof-of-concept pilot study could be refined in 

future optimisation of the technique. Unlike the high temperature nanoindentation tests with a 

cubic boron nitride indenter where active heating of indenter and sample was required to avoid 

heat flow and thermal drift, only the sample was actively heated in the micro-impact tests. This 

was a compromise to investigate whether an unheated diamond indenter could be used in these 

tests without environmental control without appreciable thermal drift or tip wear by reducing 

time in contact. With a heated probe oxidative damage of the diamond at 600 C in air would 

have been unavoidable but with the approach taken there was no obvious wear of the indenter 

although it is unlikely probe degradation was completely eliminated. Planned development of 

the high temperature micro-impact test will investigate the use of different hard indenter 

materials, active probe heating and environmental control (e.g. by argon/forming gas purging 

or testing under vacuum).  

5. Conclusions 

The TiAlSiN coatings display predominantly brittle behaviour at room temperature. At lower 

load the TiAlN/TiSiN nanomultilayer displayed enhanced impact resistance but at higher load 

it showed more extensive chipping outside of the impact crater. The switch in relative 

performance of the coatings can be explained by the higher H3/E2 and multilayered structure 

in TiAlN/TiSiN which provide enhanced load carrying capability and resistance to crack 

initiation. 
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The high temperature nanoindentation data show the TiAlSiN coatings have excellent high 

temperature mechanical properties, retaining at least 75 % of their room temperature hardness 

at 600 C. The feasibility of performing elevated temperature micro-impact tests with reduced 

contact time and without probe heating to minimise indenter wear in air has been demonstrated. 

At higher temperatures there was a change in the dominant fatigue mechanism from fracture-

dominated to more plasticity-dominated behaviour in the micro-scratch and micro-impact tests. 

The improvement in behaviour at high temperature in the micro-impact test is due to reduced 

coating and substrate brittleness. 
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Tables 

Table 1 Elevated temperature nanoindentation data 

 

 Temperature/ºC H (GPa) E (GPa) H/E H3/E2 (GPa) 

 25 33.2 ± 2.8 521 ± 8 0.064 0.135 

monolayer 400 29.4 ± 2.5 537 ± 8 0.055 0.088 

 600 26.3 ± 2.0 514 ± 31 0.051 0.069 

 25 36.8 ± 3.1 564 ± 6 0.065 0.157 

nano-multilayer 400 32.2 ± 1.5 560 ± 15 0.058 0.106 

 600 27.6 ± 0.8 539 ± 19 0.051 0.072 

 

Table 2 Elevated temperature micro-scratch data 

 

 Temperature/ºC Lc (N) 

 25 2.1 ± 0.2  

monolayer 300 2.3 ± 0.2  

 600 2.4 ± 0.3  

 25  2.5 ± 0.1 

nano-multilayer 300 2.6 ± 0.5 

 600  2.5 ± 0.1  
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Table 3 (a) Room temperature micro-impact data on Monolayer TiAlSiN 

 Applied Load and accelerating distance 

 1.5 N / 40 m 1.5 N / 40 m 1.5 N / 40 m 1.5 N / 40 m 

Pre-impact depth 

(µm) 

0.4 ± 0.0 0.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 

Depth on first 

impact (µm) 

1.9 ± 0.1 2.2 ± 0.1 2.6 ± 0.1 3.0 ± 0.2 

Failure probability 1/3 16/16 25/25 3/3 

Time to failure (s) 275 ± 42 81 ± 44 70 ± 54 16 ± 8 

Depth at failure 

(µm) 

2.6 2.8 ± 0.1 3.3 ± 0.2 3.4 ± 0.2 

Final depth (µm) 2.6 ± 0.4 4.9 ± 0.6 5.8 ± 0.7 6.8 ± 1.4 
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Table 3 (b) Room temperature micro-impact data on TiAlN/TiSiN multilayer 

 Applied Load and accelerating distance 

 1.5 N / 40 m 1.5 N / 40 m 1.5 N / 40 m 1.5 N / 40 m 

Pre-impact depth 

(µm) 

0.5 ± 0.00 0.7 ± 0.0 0.9 ± 0.1 0.7 ± 0.0 

Depth on first 

impact (µm) 

1.7 ± 0.0 2.2 ± 0.1 2.6 ± 0.2 2.8 ± 0.1 

Failure probability 3/3 7/15 22/23 3/3 

Time to failure (s) >300 212 ± 102 95 ± 73 40 ± 12 

Depth at failure 

(µm) 

- 2.8 ± 0.2 3.4 ± 0.3 3.7 ± 0.2 

Final depth (µm) 2.2 ± 0.0 4.0 ± 1.4 6.0 ± 1.1 8.1 ± 0.6 

Mean time to failure calculated assigning a value of 300 s for tests without failure. 
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Table 4 Temperature dependence of micro-impact behaviour at 1.5 N 

 

  25 ºC 300 ºC 500 ºC 600 ºC 

TiAlSiN 

d(1)-d(0) (µm) 1.8 ± 0.1 2.2 ± 0.1 2.4 ± 0.0 2.4 ± 0.1 

d(fail)-d(0) (µm) 2.5 ± 0.1 2.9 ± 0.2 3.2 ± 0.1 3.2 ± 0.1 

d(final)-d(0) (µm) 5.3 ± 0.6 4.4 ± 0.1 4.7 ± 0.1 4.3 ± 0.4 

TiAlN/TiSiN 

d(1)-d(0) (µm) 1.8 ± 0.2 1.8 ± 0.2 2.2 ± 0.1 2.1 ± 0.1 

d(fail)-d(0) (µm) 2.6 ± 0.2 2.6 ± 0.1 2.7* § 

d(final)-d(0) (µm) 4.8 ± 1.1 4.2 ± 0.5 3.1 ± 0.2 2.7 ± 0.1 

Accelerating distance = 40 m. d(1) = depth after initial impact. d(0) = static indentation 

depth (pre-impact, predominantly elastic). * Brittle failure only in 1 test at 500 ºC. § No 

failures at 600 ºC. 
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Figure captions 

1. (a) Schematic representation of the micro-impact configuration. (b) High-temperature 

micro-impact implementation in dual-loading head NanoTest Vantage system. Illustrative 

impact depth vs. number of impacts data at room temperature for (c) monolayer TiAlSiN (d) 

TiAlN/TiSiN. The accelerating distance was 40 µm unless otherwise stated. 

2. SEM of crater on multilayer after repetitive impact at 25 C at (a) 1 N, SE image (b), 1.5 N 

SE image (c) 1.5 N BS image. 

3. SEM of crater on monolayer after repetitive impact at 25 C at (a) 1.5 N SE image (b) 1.5 

N BS image. 

4. SEM of craters on monolayer after repetitive impact at 1.5 N at (a) 300 C, (b) 500 C, (c) 

600 C. 

5. SEM of craters on multilayer after repetitive impact at 1.5 N at (a) 300 C, (b) 500 C, (c) 

600 C. 

6. Depth change after initial impact at 25-600 C on (a) monolayer and (b) multilayer. 

7. Comparative impact depth data at 1.5 N. 
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