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Abstract 

The current study investigates a new neurobiological model of human hand choice: 

The Posterior Parietal Interhemispheric Competition (PPIC) model. The model 

specifies that neural populations in bilateral posterior intraparietal and superior 

parietal cortex (pIP-SPC) encode actions in hand-specific terms, and compete for 

selection across and within hemispheres. Actions with both hands are encoded 

bilaterally, but the contralateral hand is overrepresented. We use a novel fMRI 

paradigm to test the PPIC model. Participants reach to visible targets while in the 

scanner, and conditions involving free choice of which hand to use (Choice) are 

compared with when hand-use is instructed. Consistent with the PPIC model, 

bilateral pIP-SPC is preferentially responsive for the Choice condition, and for 

actions made with the contralateral hand. In the right pIP-SPC, these effects include 

anterior intraparietal and superior parieto-occipital cortex. Left dorsal premotor 

cortex, and an area in the right lateral occipitotemporal cortex show the same 

response pattern, while the left inferior parietal lobule is preferentially responsive for 

the Choice condition and when using the ipsilateral hand. Behaviourally, hand choice 

is biased by target location – for targets near the left/right edges of the display, the 

hand in ipsilateral hemispace is favoured. Moreover, consistent with a competitive 

process, response times are prolonged for choices to more ambiguous targets, 

where hand choice is relatively unbiased, and fMRI responses in bilateral pIP-SPC 

parallel this pattern. Our data provide support for the PPIC model, and reveal a 

selective network of brain areas involved in free hand choice, including bilateral 

posterior parietal cortex, left-lateralized inferior parietal and dorsal premotor cortices, 

and the right lateral occipitotemporal cortex.  
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1. Introduction 

Deciding which hand to use to perform actions is one of the most fundamental 

choices humans make, and yet the brain mechanisms that mediate hand choice are 

poorly understood. According to traditional accounts of decision-making, the brain 

systems governing choices are separate from those that are responsible for the 

sensory guidance and control of actions (Tversky and Kahneman, 1981; Padoa-

Schioppa and Assad, 2006). Numerous data from multiple domains challenge this 

view, however, at least with respect to those decisions that determine actions, and 

suggest that those brain areas important for the control of actions also contribute to 

action choices (Cisek and Kalaska, 2010; Christopoulos et al., 2015a).   

 Convergent evidence implicates areas within the posterior parietal cortex 

(PPC), and interconnected premotor areas, as critical for the planning and control of 

actions (Kalaska et al., 1997; Wise et al., 1997; Culham and Valyear, 2006). These 

parietofrontal circuits are responsible for transforming sensory information to motor 

parameters for the control of actions (Jeannerod et al., 1995; Rizzolatti and Luppino, 

2001). This information is available in the neural response patterns within these 

areas before movements are initiated, and later within primary motor cortex, 

consistent with their necessary role in action planning and control (Crammond and 

Kalaska, 1996; Umilta et al., 2007; Schaffelhofer and Scherberger, 2016). 

More recently, it has been suggested that these same parietofrontal areas 

causally contribute to action selection. The very same neural populations responsible 

for specifying the sensorimotor parameters necessary for the control of actions 

appear to mediate action choices (Cisek and Kalaska, 2005; Hanks et al., 2006; 

Scherberger and Andersen, 2007; Pesaran et al., 2008; Pastor-Bernier and Cisek, 

2011; Thura and Cisek, 2014; Christopoulos et al., 2015b). These data form the 

bases of the Affordance Competition Hypothesis (Cisek, 2006, 2007; Cisek and 

Kalaska, 2010). According to this model, action choices are made by resolving 

competition between concurrently activated neural populations within parietofrontal 

areas that specify the spatiotemporal parameters of possible actions.  
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Motivated by the Affordance Competition Hypothesis, and on the basis of our 

recent fMRI evidence (Valyear and Frey, 2015), we propose a new systems-level 

model of human hand selection: The Posterior Parietal Interhemispheric Competition 

(PPIC) model (Figure 1). Our recent fMRI data suggest that specific areas within 

bilateral posterior intraparietal and superior parietal cortex (pIP-SPC) represent 

actions in hand-specific coordinates, and are predominantly contralaterally organized 

(Valyear and Frey, 2015). These response properties – hand-specific encoding and 

graded contralateral organization –, together with the population-level neural 

response principles defined by the Affordance Competition Hypothesis (Cisek, 

2006), constitute the essential constraints of the PPIC model.  

Neural populations within pIP-SPC are hypothesized to specify action plans in 

hand-specific coordinates, and compete for selection across and within 

hemispheres. Actions with either hand are represented bilaterally, but within each 

hemisphere a greater proportion of neural populations represents actions with the 

contralateral hand. Those populations encoding action plans with the same hand 

excite one another while those that represent actions with the opposite hand inhibit 

one another. When the activity levels of one population exceed a specific threshold, 

the parameters of the actions encoded – including the parameter ‘hand’ – are 

‘selected’, and competing populations are inhibited. 
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Figure 1. The PPIC model of hand selection. (A) Neural populations within pIP-SPC encode actions in hand-
specific terms, and a greater number of cells encode actions with the contralateral hand. Cells encoding actions 
with the same hand excite one another while those that encode actions with the opposite hand inhibit one 
another. (B) Here we show an example of how activity changes in these areas over time in a case where the right 
hand is selected. During the planning phase the activity of all cell-types increase. The rate of increase depends 
on various factors, including target location. In this example, those cell populations encoding the right hand 
show a steeper rate of increase, and reach suprathreshold-activity-levels first. Once threshold is reached, the 
activity in these cell populations further increases and the spatiotemporal parameters of the actions they encode 
are selected, while opposing cell populations are robustly inhibited. 

Distinct from the Affordance Competition Hypothesis, the PPIC model focuses 

on hand selection, and specifies interhemispheric competition between neural 

populations encoding hand-specific plans. The predominate contralateral 

organization of the underpinning neural architecture is an essential feature of the 

model. This organization drives the proposed interhemispheric competition, and 

imposes unique constraints on the predictions of the model. Areas within pIP-SPC 

should not only preferentially respond during conditions involving hand choice, but 

also for actions made with the contralateral hand.  

Findings from a study by Oliveira et al. (2010) provide compelling evidence for 

the causal involvement of human PPC in hand choice, and suggest an underlying 

competitive process. Participants used either hand to reach to visual targets 

Neural Populations Encoding: 

Right Hand 
Left Hand

+
+++

+
+
+

-

-

+

+

++

+

Inhibition

Excitation

Left 
Hemisphere

Right 
Hemisphere

Left pIP-SPC Right pIP-SPC
- -

+ +

+ +

A.

0 ++
Neural Activity with 
respect to Baseline

Selection Threshold

- -

Selection Threshold

PlanBaseline Action

R
ig

ht
 H

an
d

Le
ft 

H
an

d
Le

ft 
H

an
d

R
ig

ht
 H

an
d

Left    
pIP-SPC

Right  
pIP-SPC

TIME

B.



5 
 

presented in left and right hemispace, and the point in target space where the use of 

either hand was equally probable – the point of subjective equality (PSE) – was 

estimated. Consistent with a competitive process, response times to initiate actions 

were prolonged for reaches to targets near the PSE, and these effects were specific 

to when participants had to choose which hand to use. Further, TMS to the left 

hemisphere PPC increased the likelihood of reaches made with the left hand. 

Conversely, TMS to the right PPC did not influence hand choice. The data were 

interpreted as evidence that hand choice involves resolving competition between 

lateralized action plans localized within the PPC.  

 The current study tests the PPIC model, and the hypothesis that bilateral pIP-

SPC plays an important role in choosing which hand to use to perform actions. 

Participants reach to visual targets while lying in the MRI scanner (Figure 2A). In one 

condition, they are free to choose which hand to use (Choice), while in a second 

condition hand-use is instructed (Instruct). Targets are arranged symmetrically about 

the midline of the display, grouped near the centre (Central) and lateral edges 

(Lateral) of the display.  

The PPIC model makes several specific predictions (Figure 2B/C). First, 

bilateral pIP-SPC should respond preferentially for the Choice versus Instruct 

conditions. Critically, in-scanner videos are used to match subject’s behaviour 

between Choice and Instruct conditions. Differences in activity levels between these 

conditions are not attributed to visual (or visual-attentional) or motor confounds. 

Second, bilateral pIP-SPC should respond preferentially for actions made with the 

contralateral hand – the left hemisphere pIP-SPC should respond more robustly for 

the selection and use of the right hand, and the right hemisphere pIP-SPC should 

respond more robustly for the selection and use of the left hand. Third, the 

anatomical specificity of these effects should correspond with areas previously 

implicated in the transformation of visual information to motor commands for the 

control of the arm for reaching.  
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Figure 2. Methods and predictions. (A) Optical fibres are fitted to a display module and transmit light to 
provide 16 targets for reaching, arranged symmetrically around the midline of the display. Targets are presented 
at left/right Central or Lateral positions within the display. (B) The PPIC model predicts a main effect of Task 
(Choice > Instruct) and a main effect of Hand (Contralateral > Ipsilateral) within bilateral pIP-SPC. Neural 
populations encode hand-specific action plans, and within each hemisphere, the contralateral hand is 
overrepresented. Hand choice is determined by resolving competition between active populations. In this 
example, a Central target is presented and a right-hand response is selected. In the Instruct condition, the 
competitive process is supervened. This results in reduced fMRI activity levels and RTs relative to the Choice 
condition. Critically, Choice and Instruct conditions involve the same actions and visual stimuli. (C) Hand 
choice is biased by target location, as a consequence of differing biomechanical costs. Lateral targets represent a 
high bias, favouring the use of the ipsilateral hand. Stronger bias predicts weaker competition. Central targets 
represent similar biomechanical constraints for the use of either hand; low bias, and thus high competition. RTs 
and fMRI activity levels are expected to reflect this gradient: Greater choice-costs (Choice > Instruct) are 
predicted for Central versus Lateral targets.  

A final set of predictions is tested. Intermanual differences in biomechanical 

and energetic consequences, related to the inertial properties of the arm (Gordon et 

al., 1994), bias both hand (Habagishi et al., 2014; Schweighofer et al., 2015) and 

arm-movement (Sabes and Jordan, 1997; Cos et al., 2011; Dounskaia et al., 2011) 

choices. When reaching to targets in either hemispace, the hand that is on the same 

side of space as the target is favoured, and this bias increases with target laterality 

(Stins et al., 2001; Oliveira et al., 2010; Valyear et al., 2018). As a consequence, 

Lateral targets in our display should favour the use of the hand in ipsilateral 

hemispace, while Central targets should represent more ambiguous choices. This 

gradient leads to specific predictions within the framework of the PPIC model. Lateral 

compared with Central targets are predicted to represent more sharply defined reach 

possibilities, and as a consequence, fewer competing neural populations will be 

activated and suprathreshold levels will be exceeded sooner – i.e. high- versus low-
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levels of hand-choice-bias predict low- versus high-levels of competition (Figure 2C). 

These differences are expected to drive down choice-costs for reaches to Lateral 

versus Central targets. Both response times (RTs) and fMRI activity-levels are 

predicted to reflect this pattern: (Choice-Central > Instruct-Central) > (Choice-Lateral 

> Instruct-Lateral), and these fMRI effects should localize to bilateral pIP-SPC. 

2. Materials and Methods 

2.1 Participants 

24 individuals participated in the study. One participant’s data was excluded as they 

reported increasing levels of anxiety and discomfort during scanning, and 

discontinued testing after four functional runs. The remaining 23 participants (12 

female; mean age = 23.2 ± 3.9 years, age range = 20 to 38) were right-handed 

according to a modified version of the Waterloo Handedness Inventory (Steenhuis 

and Bryden, 1989; scores range from -30 to +30) (mean score = 23.7 ± 6.2, range = 

2 to 30). The experiment took approximately three hours to complete (including pre-

scan training), and participants received financial compensation. An additional eight 

participants completed the pre-scan training (see section 2.4). 

All participants were naïve to the goals of the study, and had normal or corrected-to-

normal vision, with no history of psychiatric illness. One participant reported prior 

clinical diagnoses of mild developmental dyspraxia, with no symptomology in 

adulthood. All participants provided informed consent in accordance with the Bangor 

University School of Psychology Research Ethics Committee. 

2.2 Stimuli and presentation setup 

Using a custom-built apparatus, targets for reaching were presented to subjects 

while lying supine in the MRI scanner (Figure 2A). Optical fibres were fitted to the 

display module of the apparatus (17.5 cm x 6 cm), and used to transmit light to 

provide 16 targets for reaching, viewed via mirrors mounted to the scanner head coil. 

Active fibres were symmetrically configured within the display. This organisation 

ensured that target locations were represented equally across space. Specifically, 8 

targets were positioned to the left and right of midline, and within each hemispace, 
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four targets were positioned near the midline (Central), and four targets were 

positioned near the lateral edges (Lateral) of the display (see Figure 2A). An 

additional 22 inactive fibres were included, pseudo-randomly arranged, and 

perceptually identical to the 16 active fibres. This was done to reduce the likelihood 

that participants would identify and memorize the active target configuration. 

The display was adjusted so that all targets were comfortably reachable with 

either hand with minimal need to move the upper arm or shoulder. Depending on the 

participant’s arm length, the display distance from the eyes was ~95 cm. Lateral 

targets were 7.6 cm (4.6°) and 6.6 cm (4.0°), and Central targets were 1.6 cm (0.97°) 

and 0.6 cm (0.36°) on either side of the display midline (visual angles are based on a 

display-to-eye distance of 95 cm, as calculated for one participant). Figure 3A shows 

target distances from the midline of the display.  

Participants held down response keys with the index finger of either hand in 

the rest position. The horizontal midline of the response pad was centred with the 

horizontal midline of the display module, and secured to the participant’s abdomen 

near their waistline. In the rest position, the participant’s left and right hands were 

3.75 cm lateral to the horizontal midline of the display module. i.e., at rest, central 

targets were medial to either hand, and lateral targets were lateral to the nearest 

(ipsilateral) hand. Supplementary Materials include examples of in-scanner videos of 

participants performing the task. 

The apparatus remained outside the scanner bore with the participant 

localized to the isocenter of the magnetic field. Presentation software (Version 17.2, 

build 10.08.14) was used for stimulus presentation and behavioural response 

collection. An MR-compatible infrared-sensitive camera (MRC Systems GmbH) was 

used to record in-scanner behaviour for offline analyses (see section 2.7.1). 

2.3 Procedure 

At rest, participants fixated a green coloured light-emitting diode (LED) transmitted 

via an optical fibre positioned in the middle and upper part of the display module 

(Figure 2A). Trials began with a 600ms duration audio cue: “Left Hand”, “Right 

Hand”, “Choose”. This was followed by a 200ms delay, and the illumination of a 
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single target. Target illumination lasted for 1200ms. Participants were instructed to 

reach to targets as soon as they were illuminated, and to fixate targets during 

reaching. Actions were minimal-amplitude movements, involving mainly the wrist, 

fingers and thumb, and were approximately 1-3s in duration. Smooth movements, 

made at comfortable speeds were emphasized. Participants have full-vision 

available during movements, and thus have visual feedback of their moving limb. 

Example videos of participants performing the task in the scanner are provided (see 

Supplemental Materials). Trials were separated by 10s intervals, from target 

illumination offset.  

A slow event-related design was used for two main reasons. First, although 

perhaps more robust, a block design would be more susceptible to accumulative 

effects of fMRI-RS (or fMRI-adaptation) due to repeated use of the same hand, and 

in the case of the Instruct condition, repeated implementation of same rule. This 

would bias the Instruct condition to have reduced fMRI activity levels (fMRI-RS), and 

thus make interpretation of our predicted Choice > Instruct effects problematic. 

Second, a slow event-related design can reveal differences in baseline levels of 

activity between conditions that may arise prior to trial onsets, and otherwise 

complicate results interpretation. As such, we were able to rule out the possibility 

that such differences could account for our data (see Figures 5 and 6, event-related 

averaged time-course data).  

Each run comprised 37 trials: 12 Choice, 12 Instruct Left Hand (Instruct-

LHand), 12 Instruct Right Hand (Instruct-RHand), and lasted 7min and 30s (225 

volumes). The first (“dummy”) trial of each run was discarded from subsequent 

analyses, since its trial history could not be controlled. Runs included 6s (3 volumes) 

of rest to begin. Participants were asked to complete up to 8 functional runs, but 

were told that they could discontinue scanning if they became fatigued or 

uncomfortable. The majority of participants (N = 13) completed all 8 runs; 10 

participants completed between 4 to 7 runs (mean = 5.4; mode = 6).  

A custom Matlab (R2013b) script was used to create eight distinct run orders 

where trial history was balanced for each condition within runs. Specifically, 12 

targets were presented per condition per run, balanced across Lateral and Central 
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space, with an equal number of targets presented per hemispace, and the order of 

the presentation of each target position balanced across conditions. The 

presentation of run orders was pseudo-randomized across participants.  

2.4 Pre-scan testing  

Prior to scanning (mean = 5 ± 7 days, range = 1 to 27), participants took part in a 

behavioural training session. Training was performed in a mock scanner designed to 

approximate the same physical constraints as the real MRI scanner but with no 

magnetic field. The same apparatus and materials used in the real MRI scanner 

were used for pre-scan testing (Figure 2A). Participants completed a minimum of 

three, and maximum of four runs. A motion capture system, MoTrak (Psychology 

Software Tools Inc., 2012; version 1.0.3.4), was used to monitor participant head 

position during pre-scan testing. 

The purpose of the pre-scan testing session was twofold. First, participants 

learned how to perform the task while keeping their head still. The problems 

associated with in-scanner head motion were thoroughly explained. Participants 

were told that their hand actions should involve minimal movements of the upper arm 

or shoulder, and that their head should be kept still at all times. Actions were trained 

to be performed smoothly. It is worth emphasizing here that the primary purpose of 

pre-scan training was to verify that participants could keep their head still while 

performing the task. Otherwise, the task was not difficult to learn or perform. For 

these reasons, we were unconcerned about large between-subject differences in 

timing between pre-scan and MRI testing.   

Second, pre-scan testing was used to identify and exclude participants who 

either (1) moved their head too much, or (2) showed little variation in hand choice 

behaviour. Specifically, participants who showed evidence of excessive/abrupt head 

movements during the task, or who demonstrated > 75% use of the same hand 

during the Choice condition did not participate in fMRI testing. We recognize that 

these procedures introduce selection bias, and that this represents a limitation of our 

study. However, in the absence of sufficient variation in hand choice behaviour, we 

would be unable to test our current hypotheses.  
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Five participants (out of 34) were identified as showing > 75% use of the 

same hand during the Choice condition, and thus were excluded from fMRI testing. 

An additional five participants who completed pre-scan behavioural testing were later 

found to have (safety-related) contraindications for MRI testing, and were excluded.  

 2.5 Imaging parameters 

Imaging was performed on a 3-Tesla Philips Achieva MRI scanner with a 

conventional 8-channel birdcage (SENSE) head coil. Functional MRI volumes were 

collected using a T2*-weighted single-shot gradient-echo echo-planar imaging (EPI) 

acquisition sequence: time to repetition (TR) = 2000ms; time to echo (TE) = 30ms; 

flip angle = 77°; matrix size = 64 by 64; field of view (FOV) = 256mm; slice thickness 

= 4mm; in-plane resolution = 4mm by 4mm; acceleration factor (integrated parallel 

acquisition technologies, iPAT) = 2 with parallel acquisition (SENSE). Each volume 

comprises 38 axial-oblique slices (0.1mm gap), spanning from the most superior 

point of cortex ventrally to include the entire cerebellum (i.e. whole-brain coverage). 

A T1-weighted anatomical image was collected using a multiplanar rapidly acquired 

gradient echo (MP-RAGE) pulse sequence: time to repetition (TR) = 1500ms; time to 

echo (TE) = 3.45ms; flip angle = 8°; matrix size = 224 by 224; field of view (FOV) = 

224mm; 175 contiguous transverse slices; slice thickness = 1mm; in-plane resolution 

= 1mm by 1mm.  

2.6 Functional MRI data preprocessing  

Imaging data were preprocessed and analysed using Brain Voyager QX (BVQX) 

version 2.4.2.2070, 64-bit (Brain Innovation, Maastricht, The Netherlands). Each 

functional run was assessed for subject head motion by viewing cineloop animations 

and by examining Brain Voyager motion-detection parameter plots after running 3D 

motion correction algorithms on the untransformed two-dimensional data using 

BVQX trilinear (motion detection) and sinc interpolation (motion correction) options.  

 Functional data were preprocessed with linear trend removal and high-pass 

temporal frequency filtering to remove frequencies below three cycles per run. 

Functional data were aligned to anatomical volumes, and transformed to standard 

stereotaxic space (Talairach and Tournoux, 1988). Data were spatially smoothed for 
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group analyses using a Gaussian kernel of 8mm (2 voxels) (full-width at half-

maximum).  

2.7 Data analysis 

2.7.1 Matched Choice and Instruct conditions 

In-scanner videos were used to match participant’s motor responses between 

Choice and Instruct conditions. Specifically, for each target position presented within 

a given run, the hand used to respond during the Choice condition determined which 

of the two Instruct conditions – LHand/RHand – were defined as ‘matched’, and used 

for subsequent behavioural and fMRI analyses. For example, if target position 1 (see 

Figure 2A) involved a left-hand response during the Choice condition, the 

corresponding Instruct-LHand trial for target position 1 was ‘held’ for analyses – 

defined as ‘matched’ –, while the Instruct-RHand trial for target position 1 from this 

same run was excluded from further analyses. This was an essential feature of our 

design. With this approach, comparisons between Choice and Instruct conditions, for 

both fMRI and RT data, are equated for motor and visual properties.  

Videos were monitored and scored by an experimenter online, and 

independently scored by two additional experimenters, offline. Specifically, each 

observed participant performance and categorized the following errors: (1) Instruct 

trials were initiated with the incorrect hand; (2) movements changed abruptly during 

reaching; (3) no response was made. Errors in performing the task were scored (see 

Supplementary Table 1), and these trials were excluded from RT analyses, and 

assigned a predictor of no-interest for fMRI analyses. Rater 1 scored all video data, 

while Raters 2 and 3 scored video data for the first 10 and 16 participants, 

respectively. We found no scoring differences between Raters, indicating that 

participant errors were unambiguous. For these reasons, it was deemed 

unnecessary to have all data scored by multiple Raters.  

2.7.2 Behavioural data analysis 

Hand choice: Point of subjective equality (PSE). Hand choice was coded online by 

an experimenter, and confirmed offline with video and button-release data. To 
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quantify hand choice behaviour per participant, and at the group-level, target 

locations were reduced from 16 to 8 positions, depending on the lateral distance 

from midline (Figure 3C), and the point in target space where the use of either hand 

was equally likely was defined – the Point of Subjective Equality (PSE) (mean 

number of trials per target per participant = 20.5 trials, ± 0.91 SEM). Specifically, a 

psychometric function (McKee et al., 1985) was computed according to each 

participant’s hand choice behaviour per target location, and the PSE was estimated 

by fitting a general linear model (as described in Valyear et al., 2018). The model 

contains target positions and a constant term, and uses a Logit link function to 

estimate the binomial distribution of hand choice responses (1 = right | 0 = left). 

Model coefficients are evaluated at 1000 linearly spaced points between the 

outermost values of the target array (i.e. ± 7.6 cm), and the value closest to a 0.50 

probability estimate is defined as the PSE.  

Pearson’s r correlation analysis was used to test for a relationship between 

PSE and Waterloo handedness scores. A significant negative relationship was 

hypothesized. Positive Waterloo scores (max = +30) reflect (self-report) right-hand 

preferences, while negative PSE scores reflect right-hand choice preferences. 

Outliers were defined as ± 2.5 standard deviations from the group mean and 

removed from further analysis. Given the directional predictions of this test, we 

considered a one-tailed p < 0.05 as significant. 

Response times. Response times (RTs) were defined as the time from the onset of 

target illumination to the release of (left/right hand) start buttons (i.e. times-to-

movement onset). Data from pre-scan training trials were not included in these 

analyses. 

 We tested the effects of task instruction, hand used, and target location on RT 

with linear mixed-effects implemented using the lme4 package (Bates et al., 2014) 

for R (R Core Team, 2018). Statistical significance was tested for fixed effects by 

fitting the model with restricted maximum likelihood (REML), deriving degrees of 

freedom via Satterthwaite approximation using the lmerTest package (Kuznetsova et 

al., 2017). This approach has shown acceptable levels of Type I error for smaller 
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datasets (<60 items; Luke, 2017). We contrasted levels of significant fixed effects 

with Tukey adjustment using the lsmeans package (Lenth, 2016). 

 We tested two models. Each model included the fixed effects of Task (Choice, 

Instruct) and Hand (LHand, RHand), but differed in how Target Location was 

defined. In the first model, Target Location was defined as Central (targets 5-12) and 

Lateral (targets 1-4 and 13-16) conditions. We refer to this model as RT-Central. 

 The second model was used to test for effects of Target Location defined 

according to individual-level PSE data. Specifically, Target Location was defined per 

individual as those targets nearest to the PSE, versus those in the far “extreme” 

lateral positions (ExLat; targets 1, 4, 13, 16) of the target display, corresponding with 

±7.6 cm distances from the midline of the display (Figure 3A). We refer to this 

second model as RT-PSE. 

 Both models permitted all possible interactions between fixed effects, and 

included a random intercept and slope for all fixed effects per subject and a random 

intercept per run. 

 We also analysed RT data using repeated measures analysis of variance 

(RM-ANOVA), and report these data in Supplementary Materials.   

2.7.3 Functional MRI data analysis 

Analyses were based on a group-level random-effects (RFX) GLM with five 

predictors specified: Choice-LHand, Choice-RHand, Instruct-LHand, Instruct-RHand, 

and a predictor of no-interest (i.e. including the first trial of each run, unmatched 

Instruct trials, and errors). Predictors were modelled as two-volume (four second) 

boxcar functions aligned to the onset of each trial, convolved with the BVQX default 

two-gamma function designed to estimate the spatiotemporal characteristics of the 

Blood-Oxygen-Level Dependent (BOLD) response. Each run was percent-

transformed prior to GLM analysis. 

A group-level inclusion mask was defined, and used to constrain all 

subsequent tests. The mask comprised those voxels that were significantly identified 

by any of the following contrasts: (1) Choice-LHand > rest; (2) Choice-RHand > rest; 
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(3) Instruct-LHand > rest; (4) Instruct-RHand > rest. The resultant statistical 

activation map was thresholded at t(23) = 3.80, p < 0.01 uncorrected, p < 0.05 

cluster-size corrected (see Supplementary Figure S1). The purpose of this method 

was to increase the sensitivity of subsequent statistical tests by reducing the number 

of voxels considered for correction for multiple comparisons to those that show task-

related fMRI activity increases. 

Voxel-wise conjunction contrasts. The PPIC model specifically predicts a main effect 

of Task (Choice > Instruct) and a main effect of Hand (Contralateral > Ipsilateral) 

within bilateral pIP-SPC (Figure 2B). We use the following two conjunction contrasts 

to directly test these predictions: 

(1) (Choice-LHand + Choice-RHand) > (Instruct-LHand + Instruct-RHand) 

AND (Choice-LHand + Instruct-LHand) > (Choice-RHand + Instruct-RHand)  

This conjunction tests for areas showing Choice > Instruct and LHand > RHand, 

predicted to identify the right hemisphere pIP-SPC (R-pIP-SPC). 

 (2) (Choice-LHand + Choice-RHand) > (Instruct-LHand + Instruct-RHand) 

AND (Choice-RHand + Instruct-RHand) > (Choice-LHand + Instruct-LHand)  

This conjunction tests for areas showing Choice > Instruct and RHand > LHand, 

predicted to identify the left hemisphere pIP-SPC (L-pIP-SPC). 

 Resultant activation maps were set to a statistical threshold of t = 3.51 (p < 

0.005, one-tailed), corrected for multiple comparisons using Brain Voyager QX 

cluster-level statistical threshold estimator, found to indicate a minimum cluster size 

of (1) 298 mm³ and (2) 325 mm³ (p < 0.05) for each conjunction contrast defined 

above, respectively.   

Region-of-interest (ROI) analyses. Multiple ROI-based analyses were performed. In 

all cases, mean percent BOLD signal change (%-BSC) values, represented as beta 

weights per condition of interest were extracted from each ROI, and tested. Hand 

specificity tests (Results section 3.2.2) involved extraction of beta weights 

corresponding with unmatched Instruct trials from ROIs identified by voxel-wise 

conjunction contrasts, and comparisons between unmatched-LHand versus 
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unmatched-RHand conditions using paired-samples t-tests, with p < 0.05 taken as 

significant. These data are independent of the data used to define ROIs.  

Task by Target Location ROI-based analyses (Results section 3.2.3) involved 

testing the RM-ANOVA interaction terms according to our a priori directional 

hypothesis: (1) (Choice-Central > Instruct-Central) > (Choice-Lateral > Instruct-

Lateral); (2) (Choice-PSE > Instruct-PSE) > (Choice-ExLat > Instruct-ExLat). Here, 

we considered a one-tailed p < 0.05 as significant, given our predictions. These tests 

are orthogonal to the contrasts used to define ROIs.  

 Finally, we performed additional ROI analyses on the basis of our prior data 

showing fMRI repetition suppression for repeated hand actions within bilateral 

posterior parietal cortex (Valyear and Frey, 2015). Mean %-BSC values from the 

current data set were extracted from the complete set of active voxels identified from 

Valyear and Frey (2015) – comprising the ROIs: L-PPC, and R-PPC (Figure 6). This 

prior investigation involved an entirely different group of participants, and thus, these 

ROIs were defined independently from the current data.  

3. Results 

3.1 Behavioural results 

Video data confirm that the task was performed correctly, and reveal very few errors 

(Supplementary Table 1). Button release data is unavailable for four participants, 

due to technical errors.  

3.1.1 Hand choice 

Participants use both hands to respond to targets during the Choice condition, and 

there is a clear relationship between Hand and Target Position. Expressed as a 

function of quadrants of the target display (Figure 3B) – left-Lateral (targets 1-4), left-

Central (targets 5-8), right-Central (targets 9-12), right-Lateral (targets 13-16) –, the 

group data reveal that the left hand is typically used for targets in the left-Lateral 

quadrant, and the right hand is typically used for targets in the right-Central and 

right-Lateral quadrants, to the right of midline (Figure 3B). Responses to the left-

Central quadrant tend to involve a mixture of left- and right-hand responses. These 
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differences were verified via a RM-ANOVA of arcsine transformed proportions of 

right-hand use (see Supplementary Materials).  

 Subsequent analyses redefine target space as 8 conditions representing 

lateral distances from the midline, and reveal a group mean PSE – where the 

probability of hand choice is balanced between hands – of -1.30 cm, reflecting a 

leftward (right-hand) bias (Figure 3C). The spread of individual-participant-PSE 

values includes -6.23 to 0.65, and for the majority of participants, overlaps with left- 

and right-central quadrants. 

Correlation analyses between PSE and Waterloo handedness scores reveal a 

significant negative relationship (r = -0.40, p < 0.05). These results suggest that the 

leftward shift in PSE reflects the influence of hand preference – as a group, 

individuals are more likely to choose their preferred (right) hand to reach to targets.  
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Figure 3. Behavioural results. (A) Target space defined as lateral distances from the midline of the display. (B) 
Boxplots showing the proportion of right hand use (RHU) per target quadrant. The lines within boxplots 
indicate the medians, the upper and lower edges indicate the third and first quartiles, respectively, and the error 
bars indicate the maximum and minimum data points (excluding suspected outliers). Suspected outliers 
(1.5*interquartile range above the third quartile or below the first quartile) are shown as unfilled circles. (C) 
Group mean proportions of RHU as lateral distances from the midline. Error bars reflect 95% confidence 
intervals (CIs). Individual-level PSEs are superimposed on this plot, indicated as unfilled circles. (D) Group 
(N=19) mean RTs as a function of Task and Hand (left), and group mean Choice – Instruct RT differences 
(right) are shown. Error bars reflect 95% CIs. Individual-level data are shown as unfilled circles. (E/F) Same as 
(D), but showing RTs as a function of Task and Target Location: (E) Central, Lateral; (F) PSE, ExLat. 
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3.1.2 Response times: Linear mixed-effects models 

RT data are based on N = 19 participants.  

The RT-Central model is a significantly better fit than a null model containing only its 

random effects (𝜒2 = 76.0, p < 0.001), and reports a significant influence of Task 

(F(1, 19.9) = 112.9, p < 0.001). RTs are greater for the Choice versus Instruct 

condition (Figure 3D/E/F), consistent with the additional time required to decide 

which hand to use – i.e. significant choice costs.  

Two additional significant results are revealed. First, RTs are affected by an 

interaction between Task and Hand (F(1, 3108) = 17.0, p < 0.001). This reflects 

greater choice costs (Choice > Instruct) for the LHand, although choice costs are 

significant for both hands (Figure 3D). Specifically, compared with the RHand, RTs 

are smaller with the LHand for the Instruct condition, yet larger with the LHand for 

the Choice condition.  

Second, RTs are affected by an interaction between Hand and Target 

Location (F(1, 3104) = 12.1, p < 0.001). This result reflects a non-significant positive 

difference between LHand-Central – LHand-Lateral (p = 0.13) combined with a non-

significant negative difference between RHand-Central – RHand-Lateral (p = 0.88). It 

is difficult to interpret these results, since the pairwise comparisons are both non-

significant. No other significant effects are identified. 

Contrary to our predictions, the interaction between Task and Target Location 

is non-significant (F(1, 3117) = 0.154 p = 0.695) (Figure 3E). These results indicate 

that the choice costs (Choice > Instruct) are similar for reaches to Central and 

Lateral targets. 

We tested a second model – the RT-PSE model – instead defining Target 

Location per individual as those targets nearest to the PSE, versus ExLat (targets 1, 

4, 13, 16; ±7.6 cm from the display midline). This model was also a significantly 

better fit for RTs than a null model omitting the fixed effects (𝜒2 = 52.5, p < 0.001). 

Consistent with the results for RT-Central model, described above, these analyses 
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indicate that RTs are significantly influenced by Task (F(1, 20.8) = 101.2, p < 0.001), 

and by an interaction between Task and Hand (F(1, 1508) = 8.04, p < 0.001). 

The results of the RT-PSE model also reveal a non-significant trend for the 

interaction between Task and Target Location F(1, 1508) = 2.80, p = 0.09) in the 

predicted direction: (Choice-PSE > Instruct-PSE) > (Choice-ExLat > Instruct-ExLat) 

(Figure 3F). Although not passing statistical significance, these results are consistent 

with the PPIC model, and other bounded-accumulation models (Cisek, 2006; Beck et 

al., 2008; Hanks et al., 2015), and are interpreted as evidence for a gradient of high 

(PSE) versus low (ExLat) areas of competition as a function of Target Location. No 

other significant effects are identified.  

3.2 Functional MRI results 

Participants were able to perform the task in the MRI scanner while keeping their 

head still (see Supplementary Figure S2 for complete details). 

3.2.1 Voxel-wise conjunction contrasts 

The PPIC model predicts that bilateral pIP-SPC will respond preferentially to the 

Choice (> Instruct) and Contralateral (> Ipsilateral) conditions. Consistent with these 

predictions, the conjunction contrast Choice > Instruct AND LHand > RHand 

identifies significant activity within the right posterior intraparietal and superior 

parietal cortex (R-pIP-SPC), while the complementary conjunction contrast, Choice > 

Instruct AND RHand > LHand identifies significant activity within the left posterior 

intraparietal and superior parietal cortex (L-pIP-SPC) (Figure 4). Activity within the 

right hemisphere extends along the intraparietal sulcus, and includes distinct foci 

within the anterior intraparietal cortex (R-aIPC) and the superior parieto-occipital 

cortex (R-SPOC), medially, just anterior to the parieto-occipital sulcus. Activity within 

the L-pIP-SPC is comparatively more focal, largely restricted to intraparietal cortex.  
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Figure 4. Functional MRI conjunction contrast results: Voxel-wise maps. Statistical activation maps 
showing significant responses for Choice > Instruct AND LHand > RHand (blue-to-white), and for the 
complementary conjunction contrast, Choice > Instruct AND RHand > LHand (red-to-white). Group data are 
shown on the anatomy of a single subject. Brain areas: left dorsal premotor cortex (L-dPMC); left posterior 
intraparietal and superior parietal cortex (L-pIP-SPC); right posterior intraparietal and superior parietal cortex 
(R-pIP-SPC); right anterior intraparietal cortex (R-aIPC); right superior parieto-occipital cortex (R-SPOC); left 
inferior parietal lobule (L-IPL); right lateral occipitotemporal cortex (R-LOTC).  

The conjunction contrasts identify three additional brain areas (Figure 4). 

First, the contrast Choice > Instruct AND RHand > LHand reveals significant activity 

within the left dorsal premotor cortex (L-dPMC), at the junction of the precentral and 

superior frontal sulci. Second, the complementary conjunction contrast Choice > 

Instruct AND LHand > RHand identifies significant activity in two other areas: right 

lateral occipitotemporal cortex (R-LOTC), overlapping with the posterior middle 
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temporal gyrus, dorsally, and the fusiform cortex, ventrally; left inferior parietal lobule 

(L-IPL), at the intersection of the supramarginal and angular gyri. The L-IPL is the 

only area identified that shows stronger activity for responses made with the 

ipsilateral hand.  

The event-related averaged %-BSC time-courses verify the timing of the 

effects within each area identified by the conjunction contrasts (Figure 5). This step 

is important to rule out possible differences between conditions that may arise prior 

to trial onsets; for example, related to previous trial history.  

3.2.2 ROI results: Task by Target Location 

A priori, we predicted that responses to Central versus Lateral targets would 

represent more ambiguous hand-use choices by virtue of the greater degree of inter-

manual similarity in biomechanical and energetic costs associated with reaching to 

these target locations – relatively low bias, high competition (Figure 2C). This 

difference would drive greater fMRI-activity-level differences between Choice and 

Instruct conditions in bilateral pIP-SPC.  

 Our fMRI data support these predictions. The patterns of %-BSC values 

extracted from four areas: L- and R-pIP-SPC, R-aIPC and R-SPOC are consistent 

with the predicted Task by Target Location interaction – i.e. (Choice-Central > 

Instruct-Lat) > (Choice-Lateral > Instruct-Lat) (Figure 5; Table 1). These effects 

reach statistical significance in R-aIPC, and near significance in areas R-SPOC (p = 

0.06), L-pIP-SPC (p = 0.09) and R-pIP-SPC (p = 0.08). These results dissociate from 

our RT data, described above, where no statistical differences in choice-costs 

(Choice > Instruct) between Central and Lateral Target Locations are identified.  
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Figure 5. Functional MRI conjunction contrast results: ROI analyses. (A-G) Data extracted from areas 
identified via voxel-wise conjunction contrasts, as reported in Figure 4. Per area, time course data illustrate 
event-related averaged percent BOLD signal change (%-BSC) values per condition over time, aligned to the 
onset of the task instruction cue (green shading). The target illumination period is shown in yellow shading. 
Error bars in the time course data indicate SEMs. Scatter plots indicate %-BSC values expressed as difference 
scores between Choice – Instruct conditions as a function of Target Location: Central (green) versus Lateral 
(Lat) (orange); PSE (green) versus Extreme Lateral (ExLat) (orange). Open circles show individual participant 
scores. Participants without RT data are indicated as filled circles. Solid lines indicate group means with 95% 
confidence intervals. Brain area abbreviations are defined in Figure 4 caption.    
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When Target Location is defined per individual as those nearest to the PSE 

versus ExLat positions, similar findings are obtained. Again, fMRI response levels in 

bilateral pIP-SPC, R-aIPC and R-SPOC show the predicted Task by Target Location 

interaction: (Choice-PSE > Instruct-PSE) > (Choice-ExLat > Instruct-ExLat) (Figure 

5; Table 1). This pattern of responses is specific to these brain areas, and is 

consistent with a competitive process underlying hand choice. Choice-costs are 

higher for responses made to targets near the PSE, where there is minimal bias in 

hand choice behaviour, and this is associated with significantly more pronounced 

differences in fMRI response levels between Choice and Instruct conditions. These 

fMRI data parallel our RT data, showing prolonged RTs for reaches to targets near 

the PSE for the Choice but not Instruct conditions (although as reported above, the 

RT data do not reach statistical significance; p = 0.09).   

It is important to recognize that our tests involving the PSE versus ExLat 

conditions were unplanned, and in the case of our fMRI data, may be insufficiently 

powered; our experimental design provides limited numbers of trials per Task per 

Lateral Target Location per run. Low numbers of trials per condition per run is 

problematic for fMRI analyses. Given these limitations, these data should be 

interpreted cautiously. It is also possible, however, that these experimental-design 

limitations contribute to the relatively weak statistical significance of these effects.  

3.2.3 ROI results: Hand specificity  

Our voxel-wise conjunction contrasts identify areas showing both Choice > Instruct 

and Contralateral > Ipsilateral specificity (aside from the L-IPL, which shows stronger 

responses for actions with the ipsilateral hand). However, since hand-use and target 

location are tightly associated – i.e. the majority of left hand reaches are to targets in 

left hemispace, while the majority of right hand reaches are to targets in right 

hemispace –, interpretation of the Contralateral > Ipsilateral results is confounded. 

These effects may reflect specificity for actions/stimuli in contralateral hemispace.   

To test this hypothesis, from each ROI identified by our conjunction contrasts 

we extracted data representing unmatched Instruct trials, and compared unmatched-

LHand versus unmatched-RHand conditions. Critically, these data are independent 
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from those used to define the ROIs. The results reveal significantly greater fMRI 

responses for the use of the Contra- versus Ipsilateral hand, for all areas identified 

(aside from the L-IPL, which shows significantly greater fMRI responses for the use 

of the Ipsilateral – left – hand) (Table 1). Together with the conjunction contrast 

results, our data demonstrate hand specificity in these brain areas, independent of 

the spatial locations of targets in the display.  

Table 1. ROI results for areas defined by the voxel-wise conjunction contrasts.  

 

 
 

Hand Specificity 

Task by Target 
Location: 

Central/Lateral  

Task by Target 
Location: 
PSE/ExLat 

Brain Area 
 (unmatched-Contralateral  
> unmatched-Ipsilateral) 

Interaction Term 
(1, 22) 

Interaction Term 
(1, 22) 

 t p F p F p 
L-dPMC 8.90 <.001 0.53 0.24 0.53 0.24 

L-IPL -3.71 0.001 <.001 0.49 0.05 0.41 
L-pIP-SPC 3.78 0.001 1.84 0.09 2.167 0.08 

R-aIPC 3.44 0.002 4.55 0.02 8.73 0.004 
R-LOTC 4.44 <.001 0.34 0.28 1.41 0.12 

R-pIP-SPC 3.68 0.001 2.17 0.08 2.72 0.06 
R-SPOC 4.28 <.001 2.55 0.06 2.80 0.05 

     
 
  

 

3.2.4 ROI results: Independent tests of the PPIC model.  

Previous fMRI results from our lab (Valyear and Frey, 2015) constrain the anatomical 

specificity of the PPIC model to the posterior intraparietal and superior parietal 

cortex, bilaterally, and motivate two additional functional constraints: (1) hand-

specific encoding, and (2) graded contralateral specificity. In other words, our model 

draws explicitly from these previous data; these same brain areas identified within 

bilateral posterior parietal cortex – labelled here as L- and R-PPC – are predicted to 

show both Choice > Instruct and Contralateral > Ipsilateral responses.  

To test these predictions, we extracted the mean %-BSC values 

corresponding with Choice-LHand, Choice-RHand, Instruct-LHand, Instruct-RHand 

conditions from the complete set of active voxels identified within the L- and R-PPC 

on the basis of our previous study (Valyear and Frey, 2015), and entered these data 
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into a Task by Hand RM-ANOVA. As predicted by the PPIC model, the results reveal 

significantly stronger responses for both the Choice (> Instruct) and the Contralateral 

(> Ipsilateral) conditions within both the L- and R-PPC (Figure 6; Table 2).  

Figure 6. Functional MRI independent ROI results. (A/B) Functionally defined L- and R-PPC ROIs, 
respectively, independently defined on the basis of previous results from Valyear and Frey (2015). Time course 
data per ROI illustrate event-related averaged percent BOLD signal change (%-BSC) values per condition over 
time, aligned to the onset of the task instruction cue (green shading). The target illumination period is shown in 
yellow shading. Error bars in the time course data indicate SEMs. Scatter plots indicate %-BSC values per 
condition, with individual participant data shown as open circles. Solid lines indicate group means with 95% 
confidence intervals. The two leftmost scatter plots show %-BSC data expressed as difference scores between 
Choice – Instruct conditions as a function of Target Location: Central (green) versus Lateral (Lat) (orange); PSE 
(green) versus Extreme Lateral (ExLat) (orange). Participants without RT data are indicated as filled circles. 
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Post-hoc comparisons confirm greater responses for the Choice versus 

Instruct conditions for both Contra- and Ipsilateral conditions, within both L- and R-

PPC (Figure 6). This is an important aspect of our findings, consistent with the PPIC 

model and the hypothesis that action plans for both hands are represented bilaterally 

within pIP-SPC. 

Table 2. ROI results for areas independently defined on the basis of previous fMRI 

data (Valyear and Frey, 2015).  

 

We also tested for effects of Task by Lateral Target Location, according to 

both Central versus Lateral, and PSE versus ExLat conditions, respectively. The 

trends in both ROIs, though non-significant, are in the predicted directions, and in 

particular, reach near statistical significance (p = 0.05) in the R-PPC for the predicted 

(interaction) pattern of (Choice-PSE > Instruct-PSE) > (Choice-ExLat > Instruct-

ExLat) (Figure 6; Table 2). 

4. Discussion 

The current data significantly advance our understanding of human hand choice 

behaviour. Few previous studies have investigated the brain mechanisms involved in 

‘free choice’, and instead involve action selection on the basis of arbitrary rules. This 

is the first brain imaging study to investigate free hand choice in humans. Our 

findings reveal the selective involvement of a network of brain areas within bilateral 

posterior parietal cortex, left-lateralized inferior parietal and dorsal premotor cortices, 

and right lateral occipitotemporal cortex. 

At the outset, we formulate a systems-level model of hand choice, the 

Posterior Parietal Interhemispheric Competition (PPIC) model. The model generates 

ROIs defined by 
Valyear and Frey 

(2015) Hand by Task 

Task by Target 
Location: 

Central/Lateral  

Task by Target 
Location:  
PSE/ExLat  

Brain Area 
ME Task 
(1, 22) 

ME Hand 
(1, 22) 

Interaction Term 
(1, 22) 

Interaction Term 
(1, 22) 

Interaction Term 
(1, 22) 

 F p F p F p F p F p 

LH-PPC 19.31 <.001 25.49 <.001 1.14 0.30 1.10 0.15 1.10 0.15 

RH-PPC 11.32 0.003 126.73 <.001 4.70 0.04 0.60 0.22 2.91 0.05 

           



28 
 

specific predictions, and provides a useful conceptual framework to constrain our 

results interpretations. We first evaluate our data within this framework, and then 

interpret the significance of our results revealing hand-choice selectivity in additional 

brain areas, not predicted by the model.  

The PPIC model 

According to the Affordance Competition Hypothesis (Cisek, 2007), the neural 

mechanisms that specify action possibilities in sensorimotor terms also play an 

important role in selecting among those possibilities. Areas within monkey superior 

parietal (Caminiti et al., 1996; Scherberger et al., 2005) and dorsal premotor (Scott et 

al., 1997; Hoshi and Tanji, 2004) cortices are necessary for the transformation of 

visual information to motor commands for reaching, and critically, the neural 

responses within these areas also reflect reach choices (Cisek and Kalaska, 2005; 

Scherberger and Andersen, 2007; Pesaran et al., 2008; Pastor-Bernier and Cisek, 

2011; Thura and Cisek, 2014). Temporary inactivation of the “parietal reach region” – 

area PRR, located within the medial bank of the intraparietal sulcus – impairs reach 

(but not saccade) selection (Christopoulos et al., 2015b). These data provide 

powerful evidence for the causal involvement of the PPC in reach choices.  

 The PPIC model borrows from the neural population-level response dynamics 

specified by the Affordance Competition Hypothesis, and extends these principles to 

hand-specific encoding and hand selection. Neural populations within bilateral pIP-

SPC encode possible actions in hand-specific terms and compete for selection 

across and within hemispheres. Actions with either hand are represented bilaterally, 

yet within each hemisphere the contralateral hand is overrepresented. 

  Consistent with the PPIC model, our findings reveal the involvement of 

bilateral pIP-SPC in hand choice. Responses within pIP-SPC are significantly greater 

for the Choice versus Instruct condition, when hand use is freely selected. These 

effects are not attributable to motor or visual confounds, including potential 

differences in motor- or visual-response sensitivity to targets presented at different 

spatial locations. Choice and Instruct conditions are carefully matched for responses 



29 
 

to each target location so that the contrast between these conditions is balanced for 

these features. 

These same brain areas demonstrate a pattern of graded contralateral 

response specificity. Responses are strongest for actions made with the contralateral 

hand; although, actions with the ipsilateral hand also yield robust responses. Further, 

differences between Choice and Instruct conditions are not restricted to responses 

made with the contralateral hand. The Choice condition preferentially activates 

bilateral pIP-SPC, even for ipsilateral responses. This pattern is consistent with a 

role for the planning and selection of actions with either hand, as specified by the 

PPIC model.  

 The anatomical specificity of our data is consistent with the PPIC model, and 

the hypothesis that hand selection involves the same brain areas that are important 

for action planning. Bilateral pIP-SPC and R-SPOC showing preferential responses 

for the Choice condition closely overlap with areas implicated in the planning and 

sensorimotor control of the arm for reaching (Astafiev et al., 2003; Connolly et al., 

2003; Medendorp et al., 2005; Prado et al., 2005; Culham and Valyear, 2006; Tosoni 

et al., 2008; Fabbri et al., 2010; Pitzalis et al., 2010; Vesia and Crawford, 2012; 

Andersen et al., 2014; Monaco et al., 2015). Consistent with our data, Beurze et al. 

(2007) demonstrate that during the planning phase of a reaching task, bilateral pIP-

SPC integrates information about the spatial location of targets with the hand that will 

be used for reaching. 

 Finally, our results provide evidence for a competitive process underlying 

hand choice. Responses in bilateral pIP-SPC demonstrate increased levels of 

choice-specificity (Choice > Instruct) for reaches made to targets near the midline 

(Central) compared to the left/right (Lateral) edges of the display. These data are 

consistent with a gradient of increased levels of competition between neural 

populations representing hand-specific reach plans for targets near the midline, 

where inter-manual differences in the biomechanical and energetic costs associated 

with reaching are minimal.  
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 Unexpectedly, however, our behavioural RT data reveal a more complex 

relationship between choice-costs and target location. Although RTs indicate 

significant choice-costs (Choice > Instruct), these costs are similar for reaches to 

Central and Lateral targets. Additional analyses indicate that for most participants 

the area in target space of maximal hand-choice ambiguity is shifted to the left of 

midline. This represents the theoretical point in target space where the use of either 

hand was equally probable – the PSE –, and a significant correlation between 

participant PSE and Waterloo handedness-preference scores suggests that this 

leftward shift reflects the influence of hand preference. Analyses of RT data indicate 

a non-significant (p = 0.09) trend in the predicted direction of greater choice-costs – 

greater Choice > Instruct differences – for reaches to targets near the PSE. 

 Complementary fMRI analyses reveal response patterns within bilateral pIP-

SPC, R-aIPC, and R-SPOC that parallel these RT data – the strength of the Choice 

> Instruct differences in fMRI response levels in these brain areas are more 

pronounced for reaches to targets near the PSE. These particular aspects of our 

results should be interpreted cautiously, however. At this level, we may have too few 

trials per condition to reliably estimate fMRI responses. Notwithstanding these 

limitations, our PSE-level analyses reveal congruent fMRI and RT results that are 

consistent with the PPIC model, and a competitive process underlying hand choice. 

Choice-costs are higher for reaching to parts of target space where there is minimal 

bias in hand choice behaviour. 

 Although speculative, we suggest that our discrepant findings between RT 

and fMRI data regarding the influence of Central versus Lateral target locations 

relate to differences in how biomechanical factors interact with hand preference to 

influence these measures. According to the PPIC model, Lateral versus Central 

target locations represent a narrower range of reach possibilities, and thus will 

activate fewer competing neural populations encoding those possibilities. As a 

consequence, the number of active neural units in competition, the time required for 

the activity of one population to reach suprathreshold levels, and the number of 

neural units that are actively inhibited after threshold is reached are reduced. All 

three of these factors will drive down fMRI response levels, while only the second 
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factor – decreased times to reach threshold – will influence RTs. This can explain 

why, compared with RTs, fMRI data may show pronounced effects of target location.  

According to these factors, however, RTs and fMRI activity-levels should 

nonetheless follow the same direction. Our Central-Lateral data do not. To explain 

this discrepancy, we suggest that hand preference influences hand choice by driving 

changes in the accumulation-to-threshold rates of competing neural units, and 

disproportionately influences RTs compared with fMRI activity levels. For Central 

targets in our display, increased accumulation-to-threshold rates in neural 

populations encoding the preferred (right) hand will reduce decision times and lead 

to the predominate use of the preferred hand. Despite these changes, however, the 

number of active neural units in competition, and the number of neural units that are 

actively inhibited after threshold is reached remain high. These differences, at least 

in principle, could explain why our fMRI data reveal greater Choice > Instruct effects 

for Central versus Lateral target locations while our RT data do not.  

Other data are consistent with the current findings, and support the concept of 

simultaneously active reach plans competing for selection. When reaching to 

multiple potential targets, human behavioural (Gallivan et al., 2016; Gallivan et al., 

2017), and monkey neurophysiological (Cisek and Kalaska, 2005; Scherberger and 

Andersen, 2007; Pastor-Bernier and Cisek, 2011) data suggest that parallel action 

plans are specified in motor (not visual) coordinates, and compete for selection. 

Further, although these studies tend to investigate reach choices involving the same 

effector, recent data suggest that similar “action-based” competitive models can 

explain effector-selection (Christopoulos et al., 2015a; Hamel-Thibault et al., 2018). 

Using a free hand choice paradigm similar to that we use in the current study, trial-

to-trial differences in pre-stimulus measures of cortical excitability over contralateral 

motor areas are shown to predict hand choice for reaching to targets near the PSE 

(Hamel-Thibault et al., 2018). Moreover, temporary inactivation of reach- 

(Christopoulos et al., 2015b) versus saccade-selective (Christopoulos et al., 2018) 

areas in monkey posterior parietal cortex (areas PRR, mentioned above, and the 

lateral intraparietal area, LIP, respectively) selectively impairs reach versus saccade 

choices, respectively, and these data can be explained by computational modelling 
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that specifies competitive interactions between these brain areas (Christopoulos et 

al., 2015a). Conceptually, our PPIC model is consistent with this framework. In the 

PPIC model, parallel competitive interactions take place between brain areas in the 

PPC encoding hand-specific action plans, and mediate hand choice.  

Our findings complement and extend those of Oliveira et al. (2010). Using 

single-pulse TMS, Oliveira et al. (2010) demonstrate a necessary role for the left 

PPC in hand choice. TMS to left PPC during the planning phase of a free-choice 

reaching task is shown to shift the probability of choices in favour of increased use of 

the left hand. Conversely, stimulation to the right PPC had no significant influence on 

hand choice. This asymmetry was unexpected, and the authors offered several 

possible explanations. Our new findings help to disentangle these interpretations. 

First, Oliveira et al. (2010) speculate that perhaps the left- but not the right-

hemisphere PPC represents action plans with both hands, and can therefore 

compensate for the disruptive effects of TMS to right PPC. Our data are inconsistent 

with this account, however. We find that both the L- and R-pIP-SPC respond 

preferentially when hand choice is necessary, and for both contra- and ipsilateral 

responses. If the right hemisphere PPC only represents action plans with the 

contralateral hand, preferential activity for the Choice condition for the ipsilateral 

hand is unexpected. 

 As another possibility, Oliveira et al. (2010) suggest that the critical functional 

area involved in hand choice may be more spatially restricted within the right PPC, 

and thus was not effectively disrupted via their TMS manipulation. Our data are 

inconsistent with this account, also. We find relatively widespread involvement of the 

right hemisphere pIP-SPC in hand choice. If the critical area in right PPC was 

‘missed’ by Oliveira et al. (2010), our data suggest that this was unlikely the 

consequence of spatially more circumscribed involvement of the right PPC in hand 

choice. 

Finally, Oliveira et al. (2010) recognize that the absence of reliable right PPC 

TMS effects may relate to the strong right-hand bias present in their group of right-

handers tested. This may have left little room for increased use of the right hand, 
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following right PPC stimulation. Although our data do not directly address this 

possibility, this account remains tenable and represents an important hypothesis for 

future studies to investigate. 

Visuospatial interpretations 

Our data reveal the involvement of bilateral pIP-SPC in hand selection, and 

demonstrate that these areas show contralateral hand specificity, more robustly 

activated for actions made with the contralateral hand. Given that in our paradigm 

hand choice and space are closely associated, however, it is important to consider 

an account of the contralateral specificity of fMRI responses within bilateral pIP-SPC 

as attributable to visuospatial rather than (hand-specific) motor coding. Specifically, 

since reaches with the left hand are predominately made to targets in left hemispace, 

and vice-versa for right-hand reaches, contralateral specificity within bilateral pIP-

SPC may reflect preferential neural responses for targets in contralateral hemispace, 

rather than the specification of hand-specific action plans.  

Critically however, additional analyses controlling for target space confirm 

significant preferential fMRI responses for actions with the contralateral hand within 

L- and R-pIP-SPC. These data are not attributable to visuospatial coding, and 

instead reflect genuine contralateral hand-specificity. Also, preferential fMRI 

responses for the Choice condition in bilateral pIP-SPC are evident for actions made 

with the ipsilateral hand, a pattern that conflicts with a strictly visuospatial encoding 

account, but that is consistent with the PPIC model.  

Notably, new behavioural data reveal that target space during a free hand 

choice reaching task similar to that used in the current study is represented in both 

gaze- and head-centred reference frames (Bakker et al., 2018). Both gaze- and 

head-orientation are found to modulate hand choice. This raises the possibility that 

as part of the underlying brain mechanisms that mediate hand choice, spatial 

information about the targets of competing action plans is represented in multiple 

reference frames within bilateral PPC. Future work designed to investigate this 

hypothesis will be of value.  
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Additional brain areas  

Alongside bilateral pIP-SPC, our results indicate the involvement of left dorsal 

premotor cortex (L-dPMC), left inferior parietal lobule (L-IPL), and right lateral 

occipitotemporal cortex (R-LOTC) in hand choice. All areas demonstrate significantly 

stronger activity for the Choice versus Instruct conditions. L-dPMC and R-LOTC are 

also more strongly activated for reaching with the contralateral hand, while the L-IPL 

is more strongly activated for reaching with the ipsilateral hand.  

The dPMC is densely interconnected with intraparietal and superior parietal 

areas, and together these areas mediate the planning and online control of reaching 

(Scott et al., 1997; Wise et al., 1997; Vesia et al., 2005). The involvement of dPMC in 

the planning and selection of reaching actions is predicted by the Affordance 

Competition Hypothesis (Cisek, 2007), and supported by various data (reviewed 

above). Graded contralateral specificity within dPMC is also consistent with previous 

data (Medendorp et al., 2005; Beurze et al., 2007). The significance of the left-

lateralization of these results is unclear, although previous findings indicate a 

predominant role for the left hemisphere in action selection (Schluter et al., 2001; 

Rushworth et al., 2003; Koch et al., 2006; Jacobs et al., 2010). 

In the absence of advance predictions about the involvement of the R-LOTC 

and L-IPL in hand choice, we can only speculate as to the significance of these 

results. The importance of the LOTC in high-level visual processing is well 

established (Grill-Spector and Malach, 2004). Our activity in the R-LOTC likely 

includes the Extrastriate Body Area (EBA), a functionally-defined, predominately 

right-lateralized region within LOTC that is preferentially responsive to viewing 

human bodies (versus other object categories) (Downing et al., 2001). Although part 

of the ventral visual pathway (Ungerleider, 1982; Goodale and Milner, 1992), and 

considered essential for body-part visual perception and recognition (Urgesi et al., 

2004), other data suggest a role for the EBA in action planning. The spatial patterns 

of fMRI responses within EBA reliably distinguish between different types of 

upcoming actions performed with the hand (Gallivan et al., 2013), and the EBA is 

active during the performance of reaching actions in the absence of visual feedback 

(Astafiev et al., 2004; Orlov et al., 2010). These previous findings suggest that R-
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LOTC is not only important for high-level visual processing, but also plays a role in 

action planning. Our data extend this hypothesis to suggest that the R-LOTC is also 

important for hand choice. 

The left supramarginal gyrus has long been associated with limb praxis and 

the performance of learned actions (Buxbaum, 2001; Goldenberg, 2009), including a 

specific role for action planning and selection (Buxbaum et al., 2005), while other 

data also implicate this area as important for visuospatial attention, and in particular, 

attentional reorienting (Corbetta et al., 2005). Our findings reveal the involvement of 

the L-IPL in hand choice, and in particular, during free choice actions made with the 

left hand. Although speculative, the preferential engagement of this area for reach-

choices made with the left hand may reflect increased processing demands related 

to the selection and use of the non-preferred hand. Future studies involving free 

hand choice with both left- and right-handed participants will be of value. 

These aspects of our results motivate changes to our proposed model. 

Alongside the involvement of bilateral posterior intraparietal cortex, our data indicate 

that the L-dPMC, L-IPL and R-LOTC are important for deciding which hand to use to 

perform actions. Further understanding how this network interacts to govern hand 

choice, and the potentially distinct functional contributions of these different brain 

areas, is an important goal for future research. 

Concluding remarks 

The brain mechanisms involved in ‘free choice’ have been scarcely studied; most 

previous investigations focus instead on rule-based action selection, where the 

mappings between stimuli and responses are arbitrary (e.g. respond with the left 

hand when a stimulus is a particular colour). Here we identify a network of brain 

areas involved in selecting which hand to use to perform actions on the basis of 

‘natural’ factors – e.g. target location –, similar to the conditions that commonly 

constrain these choices in everyday life. Our data reveal the specific involvement of 

bilateral posterior intraparietal and superior parietal cortex, left dorsal premotor 

cortex, left inferior parietal lobule, and the right lateral occipitotemporal cortex. Our 

findings provide support the PPIC model, and the hypothesis that hand-specific 
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action plans are concurrently activated in bilateral posterior parietal cortex, and 

compete for selection. We suggest that, although incomplete, the PPIC model of 

hand choice is of continuing heuristic value, and warrants further investigation. 
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