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Abstract

In this work, we define G-codes over the infinite ring R∞ as ideals in the group ring

R∞G. We show that the dual of a G-code is again a G-code in this setting. We study

the projections and lifts of G-codes over the finite chain rings and over the formal

power series rings respectively. We extend known results of constructing γ-adic codes

over R∞ to γ-adic G-codes over the same ring. We also study G-codes over principal

ideal rings.
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1 Introduction

One of the most widely studied families of codes is the family of cyclic codes. One reason

for this, is that cyclic codes over a Frobenius ring R have an algebraic description as ideals

in the polynomial ring R[x]/〈xn − 1〉 where n is the length of the code. To classify cyclic

codes, it is simply a matter of finding ideals in this ring via a factorization of xn− 1 over R.

Another very important reason is that cyclic codes are held invariant by the action of the

cyclic shift. This, in turn, means that their automorphism group must contain the cyclic

group of order n as a subgroup. This gives a structure to these codes which is highly useful

in applications both in and out of mathematics.

Cyclic codes were first studied over finite fields and later were studied over Frobenius

rings, especially for chain rings and principal ideal rings. In [1], Calderbank and Sloane

made a more unified approach to studying cyclic codes over the rings Zpe by studying cyclic

codes over over the p-adic numbers. This approach implied results for cyclic codes over Zpe

for all e > 0 by considering these rings as projections of the p-adic ring. This work has been

generalized to study codes over arbitrary chain rings by S.T. Dougherty and Y.H. Park in

[6]. In [4], γ-adic codes are defined over a formal power series ring which are then used to

study codes over finite chain rings. Also, cyclic codes over formal power series rings are

studied in [5].

Recently, G-codes have been defined as codes that are ideals in the group ring RG, where

R is a finite commutative Frobenius ring and G is a finite group of order n. This gives an

alternative view of cyclic codes as ideals in the group ring RCn where Cn is the cyclic group

of order n. Moreover, it generalizes the notion of cyclic codes by considering codes whose

automorphism group contains the arbitrary group G as a subgroup. In [3], parallels between

cyclic codes and G-codes are drawn. For example, it is shown that the dual of a G-code is

also a G-code, as in the case of cyclic codes, namely that the dual of a cyclic codes is also a

cyclic code. Moreover, constructions of these codes are given as well as algebraic properties

of their structure.

In this work, we generalize these ideas to study G-codes in a very broad sense. Namely,

we study G-codes over formal power series rings and use that canonical projection to study

G-codes over finite chain rings. This allows for a construction of infinite families of G-codes

from a single code and helps to determine their minimum weight and structural properties.

2 Preliminaries

We begin by recalling some standard definitions from the theory of rings and the theory of

codes.
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2.1 Codes

We shall give the definitions for codes over rings. For a complete description of algebraic

coding theory in this setting, see [2]. Let R be a commutative ring. Note that we are not

necessarily assuming that the ring is finite. A code of length n over R is a subset of Rn and

a code is linear if it is a submodule of the ambient space Rn. We assume that all finite rings

we use as alphabets are Frobenius, where a Frobenius ring is characterized by the following.

Let R̂ be the character module of the ring R. For a finite ring R the following are equivalent:

• R is a Frobenius ring.

• As a left module, R̂ ∼= RR.

• As a right module, R̂ ∼= RR.

The Hamming weight of a vector is the number of non-zero coordinates in that vector

and the minimum weight of a code is the smallest weight of all non-zero vectors in the code.

We define the standard inner-product on the ambient space, namely

[v,w] =
∑

viwi.

We define the orthogonal with respect to this inner-product as:

C⊥ = {v ∈ Rn | [v,w] = 0,∀w ∈ C}.

The code C⊥ is linear, whether or not C is. If R is a finite Frobenius ring, then we have that

(C⊥)⊥ = C for all linear codes C over R. However, if R is infinite this is not always true,

which prompts the following definition.

Definition 1. A linear code C over an infinite ring R is called basic if C = (C⊥)⊥.

Not all linear codes are basic. For example, consider the code over the p-adic integers

of length 2 given by C = 〈(p, p)〉. Here C⊥ = 〈(1,−1)〉. However, 〈(1,−1)〉⊥ = 〈(1, 1)〉 which

strictly contains the code C. Therefore, this code is not basic.

2.2 Finite Chain Rings and Formal Power Series Rings

We recall the definitions and properties of a finite chain ring R and the formal power series

ring R∞. We refer the reader to [4] and [5] for details and further explanations. In this paper,

we assume that all rings have a multiplicative identity and that all rings are commutative.

A ring is called a chain ring if its ideals are linearly ordered by inclusion. In particular,

this means that any finite chain ring has a unique maximal ideal. Let R be a finite chain

ring. Denote the unique maximal ideal of R by m, and let γ̃ be the generator of the unique
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maximal ideal m. This gives that m = 〈γ̃〉 = Rγ̃, where Rγ̃ = 〈γ̃〉 = {βγ̃ | β ∈ R}. We have

the following chain of ideals:

R = 〈γ̃0〉 ⊇ 〈γ̃1〉 ⊇ · · · ⊇ 〈γ̃i〉 ⊇ · · · . (1)

The chain in (1) can not be infinite, since R is finite. Therefore, there exists i such that

〈γ̃i〉 = {0}. Let e be the minimal number such that 〈γ̃e〉 = {0}. The number e is called the

nilpotency index of γ̃. This gives that for a finite chain ring we have the following:

R = 〈γ̃0〉 ⊇ 〈γ̃1〉 ⊇ · · · ⊇ 〈γ̃e〉. (2)

If the ring R is infinite then the chain in Equation 1 is also infinite. Consider, for example,

the infinite chain in the p-adic integers:

〈1〉 ⊇ 〈p〉 ⊇ 〈p2〉 ⊇ 〈p3〉 · · · . (3)

Let R× denote the multiplicative group of all units in the ring R. Let F = R/m = R/〈γ̃〉
be the residue field with characteristic p, where p is a prime number, then |F| = q = pr for

some integers q and r. We know that |F×| = pr − 1. We now state two well-known lemmas

for which the proofs can be found in [10].

Lemma 2.1. For any 0 6= r ∈ R there is a unique integer i, 0 ≤ i < e such that r = µγ̃i,

with µ a unit. The unit µ is unique modulo γ̃e−i.

Lemma 2.2. Let R be a finite chain ring with maximal ideal m = 〈γ̃〉, where γ̃ is a generator

of m with nilpotency index e. Let V ⊆ R be a set of representatives for the equivalence classes

of R under congruence modulo γ̃. Then

(i) for all r ∈ R there are unique r0, · · · , re−1 ∈ V such that r =
∑e−1

i=0 riγ̃
i;

(ii) |V | = |F|;

(iii) |〈γ̃j〉| = |F|r−j for 0 ≤ j ≤ e− 1.

From Lemma 2.2, we know that any element ã of R can be written uniquely as

ã = a0 + a1γ̃ + · · ·+ ae−1γ̃
e−1,

where the ai can be viewed as elements in the field F.
In the next definitions, which can be found in [4], γ will indicate the generator of the

ideal of a chain ring, not necessarily the maximal ideal.

Definition 2. The ring R∞ is defined as a formal power series ring:

R∞ = F[[γ]] = {
∞∑
l=0

alγ
l|al ∈ F}.
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Let i be an arbitrary positive integer. The rings Ri are defined as follows:

Ri = {a0 + a1γ + · · ·+ ai−1γ
i−1|ai ∈ F},

where γi−1 6= 0, but γi = 0 in Ri. If i is finite or infinite then the operations over Ri are

defined as follows:

i−1∑
l=0

alγ
l +

i−1∑
l=0

blγ
l =

i−1∑
l=0

(al + bl)γ
l (4)

i−1∑
l=0

alγ
l ·

i−1∑
l′=0

bl′γ
l =

i−1∑
s=0

(
∑
l+l′=s

albl′)γ
s. (5)

We note that if i = 1 then R1 = F and if i = e then Re
∼= R.

The following results can be found in [4].

1. The ring Ri is a chain ring with the maximal ideal 〈γ〉 for all i <∞.

2. The multiplicative group R×∞ = {
∑∞

j=0 ajγ
j|a0 6= 0}.

3. The ring R∞ is a principal ideal domain.

We note that the ring R∞ is an infinite ring whereas each Ri is a finite ring.

The fact that the ring R∞ is a principal ideal domain makes the situation quite different

than it is for codes over finite rings Ri. For example, assume i > 1 so that Ri is not a field.

Then the ideal in Ri generated by γ is a non-trivial code C of length 1, where C⊥ = 〈γi−1〉.
Note here that (C⊥)⊥ = C. However, the ideal in R∞ generated by γ is a non-trivial code C
of length 1, and its orthogonal is {0} as the ring is a domain. But, {0}⊥ = R∞. In other

words, while there are non-trivial codes of length 1 corresponding to ideals in the rings,

their orthogonals act quite differently than they do in the finite ring since there are no zero

divisors.

It is well-known that the generator matrix for a code C over a finite chain ring Ri, where

i <∞ is permutation equivalent to a matrix of the following form:

G =



Ik0 A0,1 A0,2 A0,3 A0,e

γIk1 γA1,2 γA1,3 γA1,e

γ2Ik2 γ2A2,3 γ2A2,e

. . . . . .
. . . . . .

γe−1Ike−1 γe−1Ae−1,e


, (6)
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where e is the nilpotency index of γ. This matrix G is called the standard generator matrix

of the code C. In this case, the code C is said to have type

1k0γk1(γ2)k2 . . . (γe−1)ke−1 . (7)

For linear codes over R∞, the situation is a little different. Let C be a finitely generated

linear code over R∞. Then the generator matrix of code C is permutation equivalent to the

following standard form generator matrix (see [4] for more details).

Let C be a finitely generated, nonzero linear code over R∞ of length n, then any generator

matrix of C is permutation equivalent to a matrix of the following form:

G =



γm0Ik0 γm0A0,1 γm0A0,2 γm0A0,3 γm0A0,r

γm1Ik1 γm1A1,2 γm1A1,3 γm1A1,r

γm2Ik2 γm2A2,3 γm2A2,r

. . . . . .
. . . . . .

γmr−1Ikr−1 γmr−1Ar−1,r


, (8)

where 0 ≤ m0 < m1 < · · · < mr−1 for some integer r. The column blocks have sizes

k0, k1, . . . , kr and ki are nonnegative integers adding to n.

Definition 3. A code C with generator matrix of the form given in Equation 8 is said to be

of type

(γm0)k0(γm1)k1 . . . (γmr−1)kr−1 ,

where k = k0 + k1 + · · ·+ kr−1 is called its rank and kr = n− k.

A code C of length n with rank k over R∞ is called a γ-adic [n, k] code. We call k the

dimension of C and denote the dimension by dim C = k.

Let i, j be two integers with i ≤ j, we define a map

Ψj
i : Rj → Ri, (9)

j−1∑
l=0

alγ
l 7→

i−1∑
l=0

alγ
l. (10)

If we replace Rj with R∞ then we obtain a map Ψ∞i . For convenience, we denote it by

Ψi. Since both, Ψj
i and Ψi are projection maps, it is easy to show that Ψj

i and Ψi are ring

homomorphisms. Let a, b be two arbitrary elements in Rj. It is easy to get that

Ψj
i (a+ b) = Ψj

i (a) + Ψj
i (b), Ψj

i (ab) = Ψj
i (a)Ψj

i (b). (11)

If a, b ∈ R∞, we have that

Ψi(a+ b) = Ψi(a) + Ψi(b), Ψi(ab) = Ψi(a)Ψi(b). (12)

6



Note that the map Ψj
i and Ψi can be extended naturally from Rn

j to Rn
i and Rn

∞ to Rn
i .

The construction method above gives a chain of rings where Ri is a finite ring for all

finite i and R∞ is an infinite principal ideal domain. This gives the following diagram:

R F
‖ ‖

R∞ → · · · → Re → Re−1 → · · · → R1

We note that in the above diagram, R is a finite chain ring with maximal ideal m = 〈γ̃〉,
where γ̃ is a generator of m with nilpotency index e.

2.3 G-codes

We begin by defining a circulant matrix, a reverse circulant matrix and a block circulant

matrix before we introduce group rings.

Definition 4. 1. A circulant matrix over a ring R is a square n×n matrix, which takes

the form

circ(a1, a2, . . . , an) =


a1 a2 a3 . . . an
an a1 a2 . . . an−1
an−1 an a1 . . . an−2

...
...

...
. . .

...

a2 a3 a4 . . . a1


where ai ∈ R.

2. A reverse circulant matrix over a ring R is a square n × n matrix, which takes the

form

rcirc(a1, a2, . . . , an) =


a1 a2 a3 . . . an
a2 a3 a4 . . . a1
a3 a4 a5 . . . a2
...

...
...

. . .
...

an a1 a2 . . . an−1


where ai ∈ R.

3. A block circulant matrix over a ring R is a square kn × kn matrix, which takes the

form

CIRC(A1, A2, . . . , An) =


A1 A2 A3 . . . An

An A1 A2 . . . An−1

An−1 An A1 . . . An−2
...

...
...

. . .
...

A2 A3 A4 . . . A1
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where each Ai is a k × k matrix over R.

We shall now give the necessary definitions for group rings. Let G be a finite group of

order n and let R be a ring, then the group ring RG consists of
∑n

i=1 αigi, αi ∈ R, gi ∈ G.
Addition in the group ring is done by coordinate addition, namely

n∑
i=1

αigi +
n∑

i=1

βigi =
n∑

i=1

(αi + βi)gi. (13)

The product of two elements in a group ring is given by

(
n∑

i=1

αigi)(
n∑

j=1

βjgj) =
∑
i,j

αiβjgigj. (14)

It follows that the coefficient of gk in the product is
∑

gigj=gk
αiβj.

The following construction, first given by Hurly in [8], produces codes inRn from elements

in the group ring RG. Let R be a ring and let G = {g1, g2, . . . , gn} be a group of order n.

Let v = αg1g1 + αg2g2 + · · ·+ αgngn ∈ RG. Define the matrix σ(v) ∈Mn(R) to be

σ(v) =


αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
· · · αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

· · · αg−1
2 gn

...
...

...
...

...

αg−1
n g1

αg−1
n g2

αg−1
n g3

· · · αg−1
n gn

 . (15)

We note that the elements g−11 , g−12 , . . . , g−1n are simply the elements of the group G in a

given order. For a given v ∈ RG, the code C(v) is defined as follows:

C(v) = 〈σ(v)〉. (16)

Therefore, the code is formed by taking the row space of σ(v) over the ring R. In [3], it

is shown that such codes are ideals in the group ring RG, and are held invariant by the

action of the elements of G. Such codes are referred to as G-codes. We note that these

codes necessarily have the group G as a subgroup of their automorphism group. Namely,

there may be other automorphism of the code but the code must be held invariant by the

actions of the group G on the coordinates of the code. It is precisely this property that

makes these codes interesting. For example, many classical constructions of codes force the

code to have a certain automorphism group simply by the form of their generator matrix.

Consider how many self-dual codes are generated by matrices of the form (I | M) where M

is a circulant matrix. This construction means that self-dual codes formed in this manner

will have a certain form to its automorphism group, see [3] for a complete description. Then

constructing self-dual codes by the group ring construction can give self-dual codes with

different automorphism groups thus enabling the discovery of self-dual codes that would
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not be found using the classical techniques. Hence, part of the motivation for using this

technique is to discover codes which the usual techniques fail to produce.

In previous work relating group rings and codes, it has always been assumed that the

ring is finite. We shall consider here group rings with the infinite ring R∞. Of course, the

theory of group rings always allowed for the study of infinite rings.

3 G-codes and Ideals in the Group Ring R∞G

We shall extend the results from [3], where it is shown that the G-codes are ideals in RG

and that the dual of a G-code is also a G-code in RG when R was a finite Frobenius ring.

Here, we extend the results to R∞G, where G is an arbitrary finite group. The proofs are

very similar to the ones in [3], with the difference that each nonzero element in R∞ is an

infinite sum, rather than a finite sum. For simplicity, we write each non zero element in R∞
in the form γia where a = a0 + a1γ+ · · ·+ · · · with a0 6= 0 and i ≥ 0, which means that a is

a unit in R∞. We note that if v = γl1ag1g1 + γl2ag2g2 + · · ·+ γlnagngn ∈ R∞G, then the rows

of σ(v) consist precisely of the vectors that correspond to the elements hv in R∞G where h

is any element of the group G. Then we take the row space of the matrix σ(v) over R∞ to

get the corresponding G-code, namely C(v).

Theorem 3.1. Let R∞ be the formal power series ring and G a finite group of order n. Let

v ∈ R∞G and let C(v) be the corresponding code in Rn
∞. Let I(v) be the set of elements of

R∞G such that
∑
γliaigi ∈ I(v) if and only if (γl1a1, γ

l2a2, . . . , γ
lnan) ∈ C(v). Then I(v) is

a left ideal in R∞G.

Proof. The rows of σ(v) consist precisely of the vectors that correspond to the elements hv

in R∞G where h is any element of G. Let a =
∑
γliaigi and b =

∑
γljbjgi be two elements

in I(v), then a+ b =
∑

(γliai + γljbj)gi, which corresponds to the sum of the corresponding

elements in C(v). This implies that I(v) is closed under addition.

Let w1 =
∑
γlibigi ∈ R∞G. Then if w2 corresponds to a vector in C(v), it is of the form∑

(γljαj)hjv. Then w1w2 =
∑
γlibigi

∑
(γljαj)hjv =

∑
γlibiγ

ljαjgihjv which corresponds

to an element in C(v) and gives that the element is in I(v). Therefore I(v) is a left ideal of

R∞G.

It is well known that cyclic codes can be viewed as ideals in the ring R[X]/〈Xn − 1〉,
and that the reciprocal polynomial of the check polynomial h(x), is used to generate the

ideal in R[X]/〈Xn − 1〉 corresponding to the dual code. In [3], the authors apply a similar

approach to show that the dual of a G-code is also a G-code over a commutative Frobenius

ring. They define an element in the group ring RG which is an ideal in that group ring, and

also corresponds to the dual code. We now extend this result to G-codes over R∞.
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Let I be an ideal in a group ring R∞G. Define R(C) = {w | vw = 0, ∀v ∈ I}. It is

immediate that R(I) is an ideal of R∞G.

Let v = γl1ag1g1 + γl2ag2g2 + · · ·+ γlnagngn ∈ R∞G and C(v) be the corresponding code.

Let Ω : R∞G→ Rn
∞ be the canonical map that sends γl1ag1g1 + γl2ag2g2 + · · ·+ γlnagngn to

(γl1ag1 , γ
l2ag2 , · · · , γlnagn). Let I be the ideal Ω−1(C). Let w = (w1, w2, . . . , wn) ∈ C⊥. Then

any row of the matrix σ(v) dot product w should equal zero:

[(γl1ag−1
j g1

, γl2ag−1
j g2

, . . . , γlnag−1
j gn

), (w1, w2, . . . , wn)] = 0, ∀j. (17)

Which gives
n∑

i=1

γliag−1
j gi

wi = 0, ∀j. (18)

Let w = Ω−1(w) =
∑
γkiwgigi and define w ∈ R∞G to be w = γk1bg1g1 + γk2bg2g2 +

· · ·+ γknbgngn, where

γkibgi = γkiwg−1
i
. (19)

Then
n∑

i=1

γliag−1
j gi

wi = 0 =⇒
n∑

i=1

γliag−1
j gi

γkibg−1
i

= 0. (20)

Here, g−1j gig
−1
i = g−1j , thus this is the coefficient of g−1j in the product of w and g−1j v, where

g−1j v is a row of the matrix σ(v). This gives that w ∈ R(I) if and only if w ∈ C⊥.
Let φ : Rn

∞ → R∞G by φ(w) = w, then this map is a bijection between C⊥ and

R(Ω−1(C)) = R(I). Now we have the following result.

Theorem 3.2. Let C = C(v) be a code in R∞G formed from the vector v ∈ R∞G. Then

Ω−1(C⊥) is an ideal of R∞G.

Proof. The composite mapping Ω(φ(C⊥)) is permutation equivalent to C⊥ and φ(C⊥) is an

ideal of R∞G. We know that φ is a bijection between C⊥ and R(Ω−1(C)), and we also know

that Ω−1(C) is an ideal of R∞G as well. This proves that the dual of a G-code is also a

G-code, over the formal power series ring.

In cyclic codes, the coefficients of the reciprocal polynomial are those of the check poly-

nomial but in reverse order. In w above, the elements wg−1
i

correspond to the elements wgi

in w, but in different order, and this order will depend on the choice of the group. Therefore,

we have used the permutation equivalence property in the proof.

4 Projections and Lifts of G-codes

We begin by showing that if v ∈ R∞G then σ(v) is permutation equivalent to the matrix

defined in Equation 8. For simplicity, we write each non-zero element in R∞ in the form γia

where a = a0 + a1γ + · · ·+ · · · with a0 6= 0 and i ≥ 0, which means that a is a unit in R∞.
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Theorem 4.1. Let v = γl1ag1g1 + γl2ag2g2 + · · · + γlnagngn ∈ R∞G, where agi are units in

R∞. Let C = σ(v) be a finitely generated code over R∞. Then

σ(v) =


γl1ag−1

1 g1
γl1ag−1

1 g2
γl1ag−1

1 g3
. . . γl1ag−1

1 gn

γl2ag−1
2 g1

γl2ag−1
2 g2

γl2ag−1
2 g3

. . . γlnag−1
2 gn

...
...

...
...

...

γlnag−1
n g1

γlnag−1
n g2

γlnag−1
n g3

. . . γlnag−1
n gn

 ,

is permutation equivalent to the standard generator given in (8).

Proof. First, we take one non-zero element with form γm0agi , where m0 is the minimal

nonnegative integer. By applying column and row permutations and by dividing a row by

a unit, the element that corresponds to the first row and column of σ(v) can be replaced

by γm0 . The elements in the first column of matrix σ(v) have the form γljagj with lj ≥ m0

and agj a unit, thus, these can be replaced by zero when they are added to the first row

multiplied by −γlj−m0(agj)
−1. Continuing the process using elementary operations, we obtain

the standard generator matrix of the code C given in Equation 8.

Example 1. Let v = γ2+γ2(1+γ)yx+γ2(1+γ+γ2)yx2+γ2yx3 ∈ R∞D8 where 〈x, y〉 ∼= D8.

Then

σ(v) =

(
A B

B A

)
,

where A = circ(γ2, 0, 0, 0), B = rcirc(0, γ2(1+γ), γ2(1+γ+γ2), γ2). Then σ(v) is equivalent

to

G =


γ2 0 0 0 0 γ2(1 + γ) γ2(1 + γ + γ2) γ2

0 γ2 0 0 γ2(1 + γ) γ2(1 + γ + γ2) γ2 0

0 0 γ2 0 γ2(1 + γ + γ2) γ2 0 γ2(1 + γ)

0 0 0 γ2 γ2 0 γ2(1 + γ) γ2(1 + γ + γ2)

 .

Clearly, G = C(v) = 〈σ(v)〉 is the [8, 4, 4] extended Hamming code. Let v1 = γ2+γ2(1+γ)yx+

γ2(1+γ+γ2)yx2 +γ2yx3 ∈ R∞D8, v2 = γ2 +γ2(1+γ)y+γ2(1+γ+γ2)yx+γ2yx2 ∈ R∞D8,

v3 = γ2 +γ2(1 +γ+γ2)y+γ2yx+γ2(1 +γ)yx3 ∈ R∞D8 and v4 = γ2 +γ2y+γ2(1 +γ)yx2 +

γ2(1 + γ + γ2)yx3 ∈ R∞D8 where vi are the group ring elements corresponding to the rows

of G. Let I(v) = {
∑4

i=1 γ
l1aivi|γl1ai ∈ R∞}. Then I(v) is a left ideal of R∞D8.

We now examine the projection of codes with a given type.

Proposition 4.2. Let C be a G-code over R∞ of type

{(γm0)k0 , (γm1)k1 , . . . , (γmr−1)kr−1}

11



with generator matrix σ(v). Then the code generated by Ψi(σ(v)) is a code over Ri of type

{(γm0)k0 , (γm1)k1 , . . . , (γms−1)ks−1} where s is the largest mj that is less than i. Moreover,

the code generated by Ψi(σ(v)) is equal to

{(Ψi(c1),Ψi(c2), . . . ,Ψi(cn)) | (c1, c2, . . . , cn) ∈ C}. (21)

Proof. If mj > i − 1 then Ψi sends γm1M ′, where M ′ is a matrix, to a zero matrix which

gives the first statement.

The code C is formed by taking the row space of σ(v) over the ring R∞, i.e. γl1a1v1 +

γl2a2v2 + · · · + γlnanvn where γliai ∈ R∞ and vj are the rows of σ(v). If w = γljajvj,

then Ψi(w) = Ψi(γ
ljaj)Ψi(vj) by the equation given in (12) where Ψi(vj) applies the map

coordinate-wise. This gives the second statement.

Example 2. Let v =
∑3

j=0 γ
lj+1aj+1x

j + γlj+5aj+5x
jy ∈ R∞(C2 × C4) where (C2 × C4) =

〈x1, x2 | x4 = y2 = 1, xy = yx〉. Then,

σ(v) =

(
A B

B A

)
,

where A = circ(γl1a1, γ
l2a2, γ

l3a3, γ
l4a4), B = circ(γl5a5, γ

l6a6, γ
l7a7, γ

l8a8) and γljaj ∈ R∞.
Let σ(v) be a generator matrix of a (C2 × C4)-code C. We know from Theorem 4.1 that C
is a type {(γm0)k0 , (γm1)k1 , . . . , (γmr−1)kr−1} code, since it is permutation equivalent to the

standard generator matrix. Each row of σ(v) has the elements γl1a1, γ
l2a2, . . . , γ

l8a8 in some

specific order. Now,

Ψi(σ(v)) =

(
A B

B A

)
,

where A = circ(Ψi(γ
l1a1),Ψi(γ

l2a2),Ψi(γ
l3a3),Ψi(γ

l4a4)), B = circ(Ψi(γ
l5a5),Ψi(γ

l6a6),

Ψi(γ
l7a7),Ψi(γ

l8a8)) and Ψi(γ
ljagj) ∈ Ri. It follows that Ψi(σ(v)) is a code over Ri of type

{(γm0)k0 , (γm1)k1 , . . . , (γms−1)ks−1} where s is the largest mj that is less than i.

We note that Ψi may send a non-zero coordinate to 0. This means that the Hamming

weight of a code may decrease by applying Ψi, i.e. the minimum weight of Ψ(C) may be less

than the minimum weight of C. The minimum weight cannot increase with the application

of this map.

Lemma 4.3. If C is a G-code over R∞, then C⊥ has type 1m for some m.

Proof. First we notice that C is a linear code. From the matrix σ(v), and the fact that it

is permutation equivalent to the standard generator matrix in Equation 8, we know that

all the codewords in C⊥ are of the form γlv for some nonnegative integer l. This gives that

[γlv,w] = 0 ∀ w ∈ C⊥, Hence, [γlv,w] = γl
∑n

l=1 vlwl = γl[v,w] = 0, which gives that

[v,w] = 0, since 0 6= γl ∈ R∞ and R∞ is a domain. So if γlv ∈ C⊥ then v ∈ C⊥. Therefore

the code C⊥ has the type 1m for some m.

12



Proposition 4.4. Let C be a G-code over R∞. Then C = (C⊥)⊥ if and only if C has type 1k

for some k.

Proof. First we note that C is linear. Secondly, we note that (C⊥)⊥ ⊆ C. Since C is a linear

code then by Lemma 4.3, the code C⊥ is a linear code with type 1k for some k. This gives

that (C⊥)⊥ has type 1n−(n−k) = 1k.

The above two are extensions of the results from [4]. The following result, which can

also be found in [4], is very useful when it comes to finding the generator matrix of the dual

code C⊥ of C, given that C has a standard generator matrix G as in Equation 8. We extend

this result to G-codes over R∞ but omit the proof as it is exactly the same as in [4].

Theorem 4.5. Let C be a G-code of length n over R∞. If C has a standard generator matrix

G as in equation (8), then we have

(i) the dual code C⊥ of C has a generator matrix

H =
(
B0,r B0,r−1 . . . B0,2 B0,1 Ikr

)
, (22)

where B0,j = −
∑j−1

l=1 B0,lA
T
r−j,r−l − AT

r−j,r for all 1 ≤ j ≤ r;

(ii) rank(C)+rank(C⊥)=n.

Example 3. If we take the generator matrix G of a code C from Example 1, we can see that

G =

γ2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 γ2


0 1 + γ 1 + γ + γ2 1

1 + γ 1 + γ + γ2 1 0

1 + γ + γ2 1 0 1 + γ

1 0 1 + γ 1 + γ + γ2


 ,

which is the standard generator matrix- here,

A0,1 =


0 1 + γ 1 + γ + γ2 1

1 + γ 1 + γ + γ2 1 0

1 + γ + γ2 1 0 1 + γ

1 0 1 + γ 1 + γ + γ2

 .

In this case the generator matrix of the dual code C⊥ of C has the form:

H =
(
B0,1 Ik1

)
.

Now, from Theorem 4.5

B0,1 = −AT
0,1,

13



thus

H =


0 −(1 + γ) −(1 + γ + γ2) −1 1 0 0 0

−(1 + γ) −(1 + γ + γ2) −1 0 0 1 0 0

−(1 + γ + γ2) −1 0 −(1 + γ) 0 0 1 0

−1 0 −(1 + γ) −(1 + γ + γ2) 0 0 0 1

 .

We also have

rank(C) + rank(C⊥) = 4 + 4 = 8 = n.

Proposition 4.6. Let C be a self-orthogonal G-code over R∞. Then the code Ψi(C) is a

self-orthogonal G-code over Ri for all i <∞.

Proof. We first show that Ψi(C) is self-orthogonal. Let v ∈ R∞G and 〈σ(v)〉 = C(v) be the

corresponding self-orthogonal G-code. This implies that [v,w] = 0 for all v,w ∈ 〈σ(v)〉 =

C(v). This gives that

n∑
l=1

vlwl ≡
n∑

l=1

Ψi(vl)Ψi(wl)(mod γi) ≡ Ψi([v,w])(mod γi) ≡ 0 (mod γi).

Hence Ψi(C) is a self-orthogonal code over Ri. To show that Ψi(C) is also a G-code, we notice

that when taking Ψi(C) = Ψi(〈σ(v)〉), it corresponds to Ψi(v) = Ψi(γ
liagi)g1+Ψi(γ

l2ag2)g2+

· · ·+ Ψi(γ
lnagn)gn, then Ψi(C) ∈ RiG. Thus Ψi(C) is also a G-code.

Definition 5. Let i, j be two integers such that 1 ≤ i ≤ j <∞. We say that an [n, k] code

C1 over Ri lifts to an [n, k] code C2 over Rj, denoted by C1 � C2, if C2 has a generator matrix

G2 such that Ψj
i (G2) is a generator matrix of C1. We also denote C1 by Ψj

i (C2). If C is a

[n, k] γ-adic code, then for any i <∞, we call Ψi(C) a projection of C. We denote Ψi(C) by

Ci.

Lemma 4.7. Let C be a G-code over R∞ with type 1k. If σ(v) is a standard form of C, then

for any positive integer, i, Ψi(σ(v)) is a standard form of Ψi(C).

Proof. We know from Theorem 4.1 that σ(v) is permutation equivalent to a standard form

matrix defined in Equation 8. We also have that C has type 1k, hence Ψi(C) has type 1k.

The rest of the proof is the same as in [4].

In the following, to avoid confusion, we let v∞ and v be elements of the group rings

R∞G and RiG respectively. Let v∞ = γl1ag1g1 + γl2ag2g2 + · · · + γlnagngn ∈ R∞G, and

C(v∞) = 〈σ(v∞)〉 be the corresponding G-code. We now define the following map:

σ1 : R∞G→ C(v∞),

(γl1ag1g1 + γl2ag2g2 + · · ·+ γlnagngn) 7→M(R∞G, v∞).
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We define a projection of G-codes from R∞G to RiG.

Let

Ψi : R∞G→ RiG (23)

γia 7→ Ψ(γia). (24)

The projection is a homomorphism which means that if I is an ideal of R∞G, then Ψi(I) is

an ideal of RiG. We have the following commutative diagram:

R∞G σ1−→ C(v∞)

Ψi ↓ ↓ Ψi

RiG
−→σ1 C(v)

.

This gives that Ψiσ1 = σ1Ψi, which gives the following theorem.

Theorem 4.8. If C is a G-code over R∞, then Ψi(C) is a G-code over Ri for all i <∞.

Proof. Let v∞ ∈ R∞G and C(v∞) be the corresponding G-code over R∞. Then σ1(v∞) =

C(v∞) is an ideal of R∞G. By the homomorphism in Equation 23 and the commutative

diagram above, we know that Ψi(σ1(v∞)) = σ1(Ψi(v∞)) is an ideal of the group ring RiG.

This implies that Ψi(C) is a G-code over Ri for all i <∞.

This gives that if we take any element v ∈ R∞G, for a finite group G, and form σ(v),

then we get a family of infinitely many G-code by taking Ψi(C(v)) for all i. In the same way,

if we take any element v ∈ R1G, then we get a family of infinitely many G-code by taking

the lifts of the code C(v). Hence, each G code over a finite chain ring is part of an infinite

family of G-codes.

Theorem 4.9. Let C be a G-code over Ri, then the lift of C, C̃ over Rj, where j > i, is also

a G-code.

Proof. Let v1 = αg1g1 + αg2g2 + · · · + αgngn ∈ RiG and C = 〈σ(v1)〉 be the corresponding

G-code. Let v2 = βg1g1 + βg2g2 + · · · + βgngn ∈ RjG and C̃ = 〈σ(v2)〉 be the corresponding

G-code. We can say that v1 and v2 act as generators of C and C̃ respectively. We can clearly

see that Ψj
i (v2) = Ψj

i (βg1)g1+Ψj
i (βg2)g2+· · ·+Ψj

i (βgn)gn = αg1g1+αg2g2+· · ·+αgngn ∈ RiG,

thus Ψj
i (v2) is a generator matrix of C. This implies that the G-code C(v1) over Ri lifts to a

G-code over Rj, for all j > i.

Example 4. Here we construct an infinite family of a G-code. If we take v∞ = γ2 + γ2(1 +

γ)yx + γ2(1 + γ + γ2)yx2 + γ2yx3 ∈ R∞D8 where 〈x, y〉 ∼= D8, then we saw in Example 1

that C(v∞) = 〈σ(v∞)〉 is the [8, 4, 4] extended Hamming code. If we take Ψ1(C(v∞)) so that
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the elements {γ2, γ2(1 + γ), γ2(1 + γ + γ2)} ∈ R∞ all get mapped to 1 ∈ R1 = F2, we get the

[8, 4, 4] extended binary Hamming code, i.e.,

v∞ = γ2 + γ2(1 + γ)yx+ γ2(1 + γ + γ2)yx2 + γ2yx3 ∈ R∞D8 σ1−→ C(v∞)

Ψ1 ↓ ↓ Ψ1

v = 1 + yx+ yx2 + yx3 ∈ R1D8 = F2D8
−→σ1 C(v)

.

If we now take v = 1 + yx+ yx2 + yx3 ∈ R1D8 = F2D8 then C(v) = 〈σ(v)〉 is equivalent to

the [8, 4, 4] extended binary Hamming code. Next we take v∞ = γ2 +γ2(1+γ)yx+γ2(1+γ+

γ2)yx2 +γ2yx3 ∈ R∞D8 where C(v∞) = 〈σ(v∞)〉 is also the [8, 4, 4] extended Hamming code.

We can then have Ψ1(v∞) = Ψ1(γ
2)1+Ψ1(γ

2(1+γ)yx+Ψ1(γ
2(1+γ+γ2)yx2+Ψ1(γ

2)yx3 =

1+yx+yx2+yx3 ∈ R1D8 = F2D8. Thus, Ψ1(v∞) is a generator matrix of C(v). This implies

that the G-code C(v) over R1 = F2 lifts to a G-code over R∞.

Hence we have constructed an infinite family of G-codes.

The following is an extension of codes over chain rings that are projections of γ-adic

codes (see [4] for details), to G-codes.

By Lemma 4.7 and Theorem 4.8, we know that for an [n, k] G-code C over R∞ of type

1k, Ci = Ψi(C) is an [n, k] G-code of type 1k over Ri. We also have Ci � Ci+1 for all i. Thus if

a G-code C over R∞ of type 1k is given, then we obtain a series of lifts of G-codes as follows:

Ci � C2 � · · · � Ci � . . .

Conversely, let C be an [n, k] G-code over F = Re/〈γ〉 = R1, and let G = G1 be its generator

matrix. It is clear that we can define a series of generator matrices, Gi ∈ Mk×n(Ri) such

that Ψi+1
i (Gi+1) = Gi, where Mk×n(Ri) denotes all the matrices with k rows and n columns

over Ri. This defines a series of lifts Ci of C to Ri for all i. Then this series of lifts determines

a unique code C that Ci = Ci.
Let C be an [n, k] G-code of type 1k, and G,H be a generator and parity-check matrices

of C. Let Gi = Ψi(G) and Hi = Ψi(H). Then Gi and Hi are generator and parity check

matrices of Ci respectively. The following results are well known and can be applied to

G-codes over R∞ since these are also γ-adic codes. Proofs can be found in [4].

Lemma 4.10. Let i < j <∞ be two positive integers, then

(i) γj−iGi ≡ γj−iGj (mod γj);

(ii) γj−iHi ≡ γj−iHj (mod γj).

(iii) γj−1Ci ⊆ Cj;

(iv) v = γiv0 ∈ Cj if and only if v0 ∈ Cj−i;
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(v) Ker(Ψj
i )=γiCj−i.

Lemma 4.10 (v) shows that the Hamming weight enumerator of the kernel Ker(Ψj
i ) is

equal to the Hamming weight enumerator of Cj−i.
In [4], the authors study the weights of codewords in lifts of a code. We state the result

with an extension to G-codes over R∞. We omit the proof since it is the same as in [4] as

G-codes over R∞ are just a special type of γ-adic codes.

Theorem 4.11. Let C be a G-code over R∞. Then the following two results hold.

(i) the minimum Hamming distance dH(Ci) of Ci is equal to d = dH(C1) for all i <∞;

(ii) the minimum Hamming distance d∞ = dH(C) of C is at least d = dH(C1).

In the remainder of this section, we extend the two results from [4] on MDS and MDR

codes over R∞ to the same type of codes which are also G-codes over the same ring.

It is known (see [9]) that for codes C of length n over any alphabet of size m

dH(C) ≤ n− logm(|C|) + 1 (25)

Codes meeting this bound are called MDS (Maximal Distance Separable) codes.

For a code C of length n over an finite Quasi-Frobenius ring R, we have (see [7])

rC = min{l | there exists a monomorphism C → Rl as R−modules}.

If C is linear, then we have (see [7])

dH(C) ≤ n− rC + 1. (26)

Codes meeting this bound are called MDR (Maximal Distance with respect to Rank) codes.

A linear code C over R is called free if C is isomorphic as a module to Rt for some t. This

implies that if C is free then rC = rank(C).

Theorem 4.12. Let C be a G-code over R∞. If C is an MDR or MDS code then C⊥ is an

MDS code.

Proof. We know that C is linear. Assume that C is of length n, rank k, with dH(C) =

n − k + 1. We know from Lemma 4.3 that if C is of rank k then C⊥ is of type 1n−k. Since

R∞ is a domain, any n − k columns of the generator matrix (equivalently a parity check

matrix) of C⊥ are linearly independent giving that the minimum Hamming weight of C⊥ is

n− (n− k) + 1 = k + 1.

Theorem 4.13. Let C be a G-code over Ri, and C̃ be a lift G-code of C over Rj, where j > i.

If C is an MDS code over Ri then the code C̃ is an MDS code over Rj.

Proof. Since C is a linear code, the proof is the same as in [4].
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5 Self-Dual γ-adic G-codes

One of the most significant uses of G-codes so far has been their use in constructing good

self-dual codes. In this section, we extend some results for self-dual γ-adic codes to G-codes

over R∞. We therefore fix the ring R∞ with

R∞ → · · · → Ri → · · · → R2 → R1

and R1 = Fq where q = pr for some prime p and nonnegative integer r. The field Fq is said to

be the underlying field of the rings. We now state two very well known results for self-dual

codes over Fq and self-dual codes over R∞. These can be found in [11] and [4] respectively.

Theorem 5.1. (i) If p = 2 or p ≡ 1 (mod 4), then a self-dual code of length n exists

over Fq if and only if n ≡ 0 (mod 2);

(ii) If p ≡ 3 (mod 4), then a self-dual code of length n exists over Fq if and only if n ≡ 0

(mod 4).

Corollary 5.2. Let C be a self-dual code of length n over R∞. Recall that p is the charac-

teristic of the underlying field F. We have

(i) If p = 2 or p ≡ 1 (mod 4), then n ≡ 0 (mod 2);

(ii) If p ≡ 3 (mod 4), then n ≡ 0 (mod 4).

In [4], the authors also prove that if i is even, then self-dual codes of length n exist over

Ri for all n. This can be easily extended to self-dual G-codes as these are a special type of

self-dual codes over Ri. We now look at two theorems from [4] where one considers self-dual

codes over Ri with a specific type and one considers projections of self-dual codes over R∞.

We extend these to self-dual G-codes over Ri and R∞ respectively.

Theorem 5.3. Let i be odd and C be a G-code over Ri with type 1k0(γ)k1(γ2)k2 . . . (γi−1)ki−1 .

Then C is a self-dual code if and only if C is self-orthogonal and kj = ki−j for all j.

Proof. It is enough to show that σ(v) where v ∈ RiG and G is a finite group, is permutation

equivalent to the matrix (6). The rest of the proof is the same as in [4].

Theorem 5.4. If C is a self-dual G-code of length n over R∞ then Ψi(C) is a self-dual

G-code of length n and type 1k over Ri for all i <∞.

Proof. We first show that Ψi(C) is self-dual. Since C is self-dual, C = C⊥ which gives that

C = C⊥ = (C⊥)⊥. We also know from Proposition 4.4 that the code C has type 1k for some k.

Hence, k = n−k, which implies that k = n
2
. Then Ψi(C) also has type 1k, with k = n

2
giving

the desired size condition. We also know from Proposition 4.6 that Ψi(C) is self-orthogonal.
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Therefore Ψi(C) is a self-dual code. To show that Ψi(C) is also a G-code, we notice that

when taking Ψi(C) = Ψi(〈σ(v)〉), it corresponds to Ψi(v) = Ψi(γ
liagi)g1 + Ψi(γ

l2ag2)g2 +

· · ·+ Ψi(γ
lnagn)gn, then Ψi(C) ∈ RiG. Thus Ψi(C) is also a G-code.

In the remainder of this section, we extend two more results from [4]. The first one

describes a method to construct a self-dual code over F from a self-dual code over Ri. We

extend this to self-dual G-codes.

Theorem 5.5. Let i be odd. A self-dual G-code of length n over Ri induces a self-dual

G-code of length n over Fq.

Proof. The proof is similar to the one in [4] but with two extra things added. First, we

notice that σ(v) where v ∈ RiG which generates the self-dual code C(v), is permutation

equivalent to a standard generator matrix G of the form:

G =



Ik0 A0,1 A0,2 A0,3 A0,i

γIk1 γA1,2 γA1,3 γA1,i

γ2Ik2 γ2A2,3 γ2A2,i

. . . . . .
. . . . . .

γi−1Iki−1
γi−1Ai−1,i


.

Then the code C over Ri is of type 1k0(γ)k1(γ2)k2 . . . (γi−1)ki−1 . Secondly, when the map

Ψi
1(G̃) is used in [4], we notice that in our case the map will correspond to Ψi

1(G̃) = Ψi
1(v) =

Ψi
1(γ

liagi)g1 + Ψi
1(γ

l2ag2)g2 + · · ·+ Ψi
1(γ

lnagn)gn, assuming that G̃ is the generator matrix of

a G-code and v ∈ RiG. Then Ψi
1(G̃) is the generator matrix of a G-code over Fq.

The last result from [4] which we extend to G-codes is the one which considers lifts of

self-dual codes over F to self-dual codes over R∞. The authors prove the result by starting

with a generator matrix of the code C over R1(= F) which has the form G1 = (I | A1),

and then using the induction to show that there exist matrices Gi = (I | Ai) such that

Ψi+1
i (Gi+1) = Gi. To extend this to self-dual G-codes, we can define the matrix G1 by

taking the row space of σ(v) over F and perform row or column permutations to get a

self-dual code of the form (I | A1) where A1 is a matrix over F = R1. A similar approach

can be found in [3], where examples of the [16, 5, 8] Reed-Muller code, the [8, 4, 4] extended

Hamming code or [24, 12, 8] Golay code over F2 are constructed from group rings and σ(v).

Theorem 5.6. Let R = Re be a finite chain ring, F = R/〈γ〉, where |F| = q = pr, 2 6= p is

a prime. Then any self-dual G-code C over F can be lifted to a self-dual G-code over R∞.

Proof. We know by Theorem 4.9 that a G-code over Ri can be lifted to a G-code over Rj,

where j > i. To show that a self-dual G-code over F lifts to a self-dual G-code over R∞,

it is enough to follow the proof in [4], but with the generator matrix G1 being defined as

above.
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6 G-codes over Principal Ideal Rings

Let R1
e1
, R2

e2
, . . . , Rs

es be chain rings, where Rj
ej

has unique maximal ideal 〈γj〉 and the nilpo-

tency index of γj is ej. Let Fj = Rj
ej
/〈γj〉. Let

A = CRT(R1
e1
, . . . , Rj

ej
, . . . , Rs

es).

We know that A is a principal ideal ring. For any 1 ≤ i <∞, let

Aj
i = CRT(R1

e1
, . . . , Rj

i , . . . , R
s
es).

This gives that all the rings Aj
i are principal ideal rings. In particular, Aj

ej
= A. We denote

CRT(R1
e1
. . . , Rj

∞, . . . , R
s
es) by Aj

∞.

For 1 ≤ i <∞, let Cji be a code over Rj
i . Let

Cji = CRT(C1e1 , . . . , C
j
i , . . . , Cses)

be the associated code over Aj
i . Let

Cj∞ = CRT(C1e1 , . . . , C
j
∞, . . . , Cses)

be associated code over Aj
∞. We can now prove the following.

Theorem 6.1. Let Cjej be a G-code over the chain ring Rj
ej
. Then Cj∞ =CRT(C1e1 , . . . , C

j
∞, . . . , Cses)

is a G-code over Aj
∞.

Proof. Let g ∈ G and vi ∈ Cjej . Each row of Cjej is of the form gvi, for all i. Now, if

v = CRT (v1,v2, . . . ,vs), then gv = CRT (gv1, gv2, . . . , gvs) and so gv ∈ Cj∞, giving that

Cj∞ is an ideal in Aj
∞G.

7 Conclusion

In this work, we studied G-codes over the formal power series rings and finite chain rings.

We generalized many known results of codes over these rings to G-codes. We showed that

the dual of a G-code is also a G-code and we studied projections and lifts of G-codes with a

given type in this setting. We also extended known methods of constructing a self-dual code

over F from a self-dual code over Ri and a self-dual code over F to a self-dual code over R∞,

to self-dual G-codes. We lastly considered G-codes over principal ideal rings. Throughout

the paper, we constructed examples in which the codes have generator matrices that consist

of blocks which are either circulant or reverse circulant matrices. We do not know if this is

a general feature for any finite group ring, we therefore suggest that this is studied in the

future work.

20



References

[1] A.R. Calderbank, N.J.A. Sloane, “Modular and p-adic Cyclic Codes”, Des. Codes and

Cryptog., vol. 6, pp. 21–35, 1995.

[2] Dougherty, S.T., “Algebraic Coding Theory Over Finite Commutative Rings”, Springer

Briefs in Mathematics, Springer, 2017.

[3] S.T. Dougherty, J. Gildea, R. Taylor, A. Tylshchak, “Group Rings, G-Codes and

Constructions of Self-Dual and Formally Self-Dual Codes”, Des. Codes and Cryptog.,

vol. 86, no. 9, pp. 2115–2138, 2018.

[4] S.T. Dougherty, H. Liu, Y.H. Park, “Lifted Codes over Finite Chain Rings”, Mathe-

matical Journal of Okayama University, vol. 53, pp. 39–53, 2010.

[5] S.T. Dougherty, H. Liu, “Cyclic Codes over Formal Power Series Rings”, Acta Math-

ematica Scientia, vol. 31, no. 1, pp. 331–343, 2011.

[6] S.T. Dougherty, Y.H. Park, “Codes over the p-adic integers”, Des. Codes and Cryptog.,

vol. 39, no. 1, pp. 65–80, 2006.

[7] Horimoto, H. and Shiromoto, K., “A Singleton bound for linear codes over quasi-

Frobenius rings”, Proceedings of the 13th International Symposium on Applied Alge-

bra, Algebraic Algorithms, and Error-Correcting Codes, pp. 51–52, 1999.

[8] T. Hurley, “Group Rings and Rings of Matrices”, Int. Jour. Pure and Appl. Math, vol.

31 , no. 3, 319-335, 2006.

[9] MacWilliams F. J., Sloane N. J. A., “The Theory of Error-Correcting Codes”. North-

Holland, Amsterdam, 1977.

[10] B. R. McDonald, “Finite Rings with Identity”, New York: Marcel Dekker, Inc, 1974.

[11] Rains E., Sloane N.J.A., “Self-dual codes, in the Handbook of Coding Theory”, Pless

V.S. and Huffman W.C., eds., Elsevier, Amsterdam, pp. 177–294, 1998.

21


