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Abstract
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1 Introduction

The standard form of the generator matrix of any binary self-dual code of length 2n is of
the form (I,|A) where A is an n x n matrix satisfying AAT = —1I,. When searching for
self-dual codes, some special structure is imposed on the matrix A to make the search field
more feasible. Taking A to be a circulant or a block circulant matrix is one of the methods
that has been utilized in the literature. Sometimes, from a special such generator matrix,
an extension can be achieved by modifying the matrix to get a new self-dual code of higher
lengths. While these are generally known as extension methods in the literature, we can also
view them as new construction methods for self-dual codes. One such example of a matrix,

that we will extend in our constructions is defined in [14] as

1 0|z - xn‘l |

(AN

. ; (1)
I, A

YUn Yn

where y; = x;+1 and (I,|A) is the generator matrix of a self-dual code of length 2n, possibly
coming from a special construction method described above.

In this work, we shall extend the above construction, using matrices A that arise from
group rings. Group rings have been used to construct self-dual codes on many occasions. In
2], certain ideals of F9Sy were used to construct the extended binary Golay code. In [16],
an isomorphism from a group ring to a certain subring of the n x n matrices was described.
This was used to construct self-dual codes in [17, 19, 20]. In [5], it is shown that zero divisors
can’t be used to construct the putative [72,36, 16] code. In [11], it is shown that unitary
units can be used to construct self-dual codes under a certain construction, and using such
units, many new extremal binary self-dual codes were obtained. In the same work, groups
of different orders were used to describe many new construction methods for self-dual codes.

In our work, we will extend the structure of the matrix given in (1) with the matrices
that we get from group ring elements to find new methods for constructing self-dual codes.
We will apply the constructions coming from groups of order 2p with p an odd number
(using the cyclic group Cy, and the Dihedral group D,,) over the binary field Fy, F, and
the rings Ry and F4 + ulF4 to obtain many extremal and best known binary self-dual codes
of various lengths: 14, 28, 56, 44, 30, 38, 46, 54, 62, 70 and 78. In particular, we obtain a
new extremal binary self-dual code of length 78. Many of these lengths are not well-known
like the oft-studied lengths of 64, 66 and 68.

The rest of the paper is organized as follows: In section 2, we give some definitionas and
notations that will be used in subsequent sections. In section 3 we give the construction
together with a special case when it produces self-dual codes. In section 4 we give the
computational results. We finish the paper with some concluding remarks and directions for



possible future research.

2 Definitions and Notations

2.1 Codes

In this paper, all rings are assumed to be commutative, finite, Frobenius rings with a mul-
tiplicative identity.

A code over a finite commutative ring R is said to be any subset C' of R". When the
code is a submodule of the ambient space then the code is said to be linear. To the ambient
space, we attach the usual inner-product, specifically [v,w]| = > v;w;. The orthogonal with
respect to this inner-product is defined as C+ = {w | w € R", [v,w] = 0,Vv € C}. Since
the ring is Frobenius we have that for all linear codes over R, |C||C*| = |R|™.

If a code satisfies C = C* then the code C is said to be self-dual. If C' C C* then the
code is said to be self-orthogonal. For binary codes, a self-dual code where all weights are
congruent to 0 (mod 4) is said to be Type II and the code is said to be Type I otherwise.

An upper bound on the minimum Hamming distance of a binary self-dual code finalized
in [21].

Theorem 2.1. ([21]) Let d;(n) and d;;(n) be the minimum distance of a Type I and Type
11 binary code of length n, respectively. Then
n

and
w < { L I
24 = .

Self-dual codes meeting these bounds are called extremal. A best known self-dual code
of a given length is a self-dual code that has the highest possible known minimum distance,
for a length for which the existence of an extremal code is not currently known.

Throughout the paper, we will be constructing extremal or best known binary self-dual
codes of different lengths.

2.2 Group Rings and Special Matrices

We shall use group rings in our construction so we give the standard definition of a group
ring. Let G be a finite group or order n, then the group ring RG consists of > 7" | . gi,
ag € R, 9, €G.

Addition in the group ring is done by coordinate addition, namely

n

Z Qg,9i + Z Bo9i = Z(agi + Bgz‘)gi' (2)
=1 =1

i=1
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The product of two elements in a group ring is given by

(Z %igi> (Z 593-91‘) = Z g, 34, 9i9;- (3)
=1 j=1 i

It follows that the coefficient of g; in the product is > P 7 By, -

We restrict ourselves to finite groups since we are mainly concerned with using these to
construct codes whose lengths will be determined by the order of the group.

The following construction of a matrix was first given for codes over fields by Hurley
in [16] and extended to rings in [5]. Let R be a finite commutative Frobenius ring and let
G ={g1,92,...,9n} be a group of order n. Let v = ay, g1 + g, 02+ - - + g, 9, € RG. Define
the matrix o(v) € M, (R) to be

Oégl—lg1 agflgg Ozgl—1g3 e agflg"
o(v) = 0492_.191 O‘g{.lm O‘g{.lgs o O‘g{.lgn . (4)
Qglor Yilge Ygnles Ygrlon
We note that the elements g; ', g,",...,¢." are the elements of the group G in some

given order.

Lemma 2.2. Ifv =) a,g is unitary unit of RG and =Y, | o, then p* = 1.

Proof. The map * : RG — RG defined by (Z agg> = Z a,g” " is an antiautomorphism
geG geG
of RG of order 2. An element v of V(K@) satisfying vv* = 1 is called unitary. The

homomorphism ¢ : RG — R given by ¢ (Z g, Gi | = Z oy, is called the augmentation
i=1 i=1

mapping of RG. Let v = Y1 | ay,gi, then v* =37 97" and e(v) = e(v*) = >0 a,, =

. Therefore e(vv*) = e(v)e(v*) = p? = 1. O

2.2.1 o(v) for Dy, and Cy,

In what follows, circ(ay,as,...,a,) denotes the m x m criculant matrix whose first row is

given by (ay,as,...,an).

p—1 1
Let G=Cq = (z|2? =1). fa = Z Z a1+i+pjx2i+j € RCy,, then

i=0 j=0

A B
o(a) = <B’ A> )



where A = circ(ay, ..., ay), B = circ(apt1, ..., aq) and B’ = circ(agy, api1, - - -, Gop—1)-

p—1 1
Let G = Do, = (z,ylat =y* =1, 2v=z!). fa= Z Za1+,~+pjxiyj € RD,,, then

i=0 j=0

A B
ola) = BT AT

where A = circ(ay, ..., a,) and B = circ(ayiq, .. ., agpy), and AT represents the transpose of
A.
2.3 Rings

We shall use several alphabets in our constructions, including the binary field Fy, the qua-
ternary field F4 and rings Ry and Fy + ulF,.

2.3.1 The ring family R,

The ring family Rj were defined in [8] and [9]. We briefly give the descriptions of these
rings.
For k > 1, define

Ry, = Foluy, ug, . .. ,uk]/(uf =0, uuj; = uju;). (5)

For k£ = 1, we denote the rings by Fy + ulF5, and when & = 2, we denote them by
Fo+ulFy +vlFy +uvFy, both of which have been considered in coding theory quite extensively.
The rings can also be defined recursively as:

Rk = Rk_l[uk]/(uz = 0, UrU; = Uju;g> = Rk_1 + Uk:Rk—l' (6)

For any subset A C {1,2,...,k} we will fix

Uy = Hul (7)

i€A

with the convention that ug = 1. Then any element of Rj can be represented as

Z CAllA, ca € Fy. (8)
AC{1L,....k}
It is shown in [8] that the ring Ry is a commutative ring with |Ry| = 2%, It is also
shown that
1 if a is a unit
Vo€ Ry o= 9
¢ £a { 0 otherwise. ©)
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We shall now recall the Gray map from Ry to F%k For R; we have the following map:
¢1(a+bu) = (b,a+b). Then let ¢ € Ry, ¢ can be written as ¢ = a + buy_1,a,b € Rx_1. Then

Or(c) = (Pr-1(b), dr—1(a +b)). (10)
The map ¢y, is a distance preserving map and the following is shown in [9].

Theorem 2.3. Let C' be a self-dual code over Ry, then ¢r(Ry) is a binary self-dual code of
length 2Fn.

2.3.2 The ring Fy + ulF,

Let Fy = Fy (w) be the quadratic field extension of Fy, where w? + w + 1 = 0. The ring
F, + ulF, is defined via u?> = 0. Note that Fs + uF4 can be viewed as an extension of
Ry = Fy+ulFy and so we can describe any element of F4 + ulF, in the form wa + wb uniquely,
where a,b € Fy + ulF,.

A linear code C of length n over Fy + uF, is an (F4 + ulF4)-submodule of (Fy + uF,)".
In [10] and [6] the following Gray maps were introduced;

Ve, + (Fa)" = (F2)™
aw + bw — (a,b), a,beF}

PFy+uFy - (]FQ + UFg)n — F%n
a+bu— (bya+b), abeFy.

Those were generalized to the following maps in [18];

wF4+uF4 : (IF4 —+ U,IF4)n — (IFQ —+ UF2)2H
aw + bw — (a,b), a,b e (Fy+ uFy)"

OFstur, - (Fa 4 ulFy)" — F
a+bu— (bya+b), abeF}

These maps preserve orthogonality in the corresponding alphabets. The binary images
OFyuFy © U, +ur, (C) and Yp, o pp,1ur, (C) are equivalent. The Lee weight of an element is
defined to be the Hamming weight of its binary image.

Proposition 2.4. ([18]) Let C be a code over Fy + uFy. If C is self-orthogonal, so are
Ur,+ur, (C) and g, 1ur, (C). C is a Type I (resp. Type II) code over Fy + uFy if and only
if oryur, (C) is a Type I (resp. Type II) Fy-code, if and only if ¥g,ur, (C) is a Type I
(resp. Type II) Fy + uFy-code. Furthermore, the minimum Lee weight of C' is the same as
the minimum Lee weight of Vg, 4ur, (C) and p,ur, (C).

Corollary 2.5. Suppose that C' is a self-dual code over Fy + ulFy of length n and minimum
Lee distance d. Then pp, yr, © U, 1ur, (C) is a binary [4n,2n,d] self-dual code. Moreover,
C' and ©p,ur, © Vr,ur, (C) have the same weight enumerator. If C' is Type I (Type II),

then $o0 s pr,1ur, © Ur,+ur, (C).



3 The Construction

Let v € RG where R is a finite Frobenius ring of characteristic 2 and G is a finite group of
order 2p and p is odd. Define the following matrix:

oy 0 Qg -+ Qglag -+ Qglay -+ Qg Qq --- Q4]
as+1 as+1
: : Iy 0p
0624—1 Oéz—l—l
M(0>: 0634—1 Oég—l—l U(U)
: s 0, I,
_Oé3+1 043+1 ]

Let C, be a code that is generated by the matrix M(c) and pu = Y ;" | a,,. Let A =

(Oél,O) < RZ, A2 = (042,...,042,0637...,063) S RQP, A3 = (Oé4,...,0é4) c R2p and Bl =
as+1 az+1

az+1 a1
az+1 az+1 |- Then7

043'—&-1 a3.+1

AlA{ -+ 14214%1 + AgAg AlB%—’ + AQ + A30’(U>T
BiA + A7 +o(v)A; BiBf +1+o(v)o(v)"

M(o)(M(0))" = (

where
o AJAT + AyAT + A3AT = of + pad + paj + 2pai = of + plas + a3)?,

[} AlB{ + AQ + AgO’(’U)T = (041(062 + 1), .. ,al(Oég + 1),041(0[3 + 1), . ,041(043 + 1)) +
(g, ... 0,3, .. 3) + (g, ... ay)o(v) = (g (e + 1) + ag + pay, ..., ar(ag + 1) +
ag + poy, ar(as + 1) + asz + pay, ..., a1(as + 1) + as + pay) and

e BiBl + I +o(v)o(v)l =1+ 0(v)(o(v)! =1+ a(vv*).

Theorem 3.1. Let R be a finite commutative Frobenius ring of characteristic 2, G be a finite
group of order 2p where p is odd and = 32 a,. If a3 +plag+az)® =0, ar(ag+1) +ag+
poy =0, ar(as+1)+as+pay = 0vv* =1 and (ag, p(as(as+1)+as(az+1)), as+1,az+1)
has free rank 1 then Cy is a self-dual code of length 4p + 2.

Proof. 1f vv* = 1, then I + o(vv*) = 0. Additionally, let a? + p(ag + a3)* = 0, ai(ag + 1) +
ag + pay = 0 and oy (as + 1) + as + pay = 0, Therefore C,, is self-orthogonal. It remains to
show that the M (o) has free rank 2p + 1.



rank(M (o)) = rank

= rank

= rank

= rank

o 0 Qo Qg | o3 a3 | oy y Oy oy
g + 1 Q9 + 1
: : I, 0,
ag+1 as+1 o(v)
s + 1 a3 + 1
: : 0, I,
a3 + 1 a3 + 1
Qaq 0 (6] Q9 | O3 Qg | Oy QY Oy Oy
0 Qo + 1
S I, 0,
0 ap+1 o(v)
0 a3 + 1
P 0, I,
0 as + 1
o 4! Qo Qo | Q3 Qg | Oy Gy Qy Qly
0 0
S I, 0,
0 0 o(v)
0 a3 + 1
: : 0p I,
0 a3 + 1
a1 Y2 | Qo Qg | O3 Qg | Oy Qg Qy Qly
0 O
. I, 0,
0 0 o(v)
0 O
I 0, I,
0 O




where 71 = paz(az + 1), 72 = pas(as + 1) + pas(asz + 1), 43 = as + poy = as + 1 and

Y4 = ag + poy = az + 1. Finally,

rank(M (o)) =

[ [ a1 | as ay | az az | ay ap oy ay
0O O
: I, 0, I, 0
= rank 0 0 o(v) 0 I,
0 0 0 o)’ I,
P 0, I,
'\ o 0
a1 72|73 V3 Va4 Y4 | Oq 0y Oy
0 0
=rank | 0 O I +o(v)o(v") o(v)
0 0
0 0
a1 V2|73 V3| V4 VY4 | Oy oy 0y Qy
0 0
oo 0, 0,
= rank 0 0 o(v)
0 0
o 0, 0,
0 0

a; Yo |ag+1 az+1|az+1 az+1|7; Y5 Vs Vs
0O O

;o 0, 0,

0 0 o(v)

0 0

. 0, 0,

0 0




where 75 = ay + p?ay = ay+ (1)ay = 0 by Lemma 2.2. Therefore C,, is self if (aq, p(as(as +
1)+ as(ag + 1)), a2 + 1,a3 + 1) has free rank 1.
]

The family of rings R}, is particularly well suited for this construction.

Corollary 3.2. Let R = Ry and let G be a finite group of order 2p where p is odd. Let
v € RG be a unitary unit. Then if as + ag is any unit then C, is a self-dual code of length
4p + 2.

Proof. We will show that this case satisfies the hypotheses of Theorem 3.1. If v is a unitary
unit then vo* = 1. If ap + a3 is a unit then (az + a3)? =1 by (9). Then 1+ p(ag + a3)? =
1+ p(1l) =0 and vo* = 1. O

4 Computational Results

In this section, we apply the constructions discussed in the previous section over particular
groups and rings that have been described before. The sizes of the groups and the alphabets
used lead to particular lengths for self-dual codes. In all the subsequent subsections, we
tabulate the extremal binary self-dual codes or the best-known (if the existence of extremal
self-dual codes is not known for that length) self-dual codes of the certain lengths.

4.1 Constructions from Groups of Order 6
We first apply construction Dg over the binary field and Fj.
Table 1: Extremal binary self-dual code of length 14 from Dg.

(a1, g, (g, ) (a1,...,ap) | Aut(C)|
(1,0,1,1)  (0,1,1,1,1,1) 27-32-72

Table 2: Extremal self-dual code of length 28 coming from applying Dg over [,
(a1, g, ag, ) (ay,...,aq) |Aut(C)|
(l,w,w+1,1) (0,0,1,1,w,w+1) 2°-3-7

In [15], the possible weight enumerators for a self-dual Type I [56,28,10] code were

obtained in two forms as:

Wssn = 1+ (308 +4a)y" + (4246 — 8a) y'* + (40852 — 28a) y'* + - -
Weso = 1+ (308 +4a)y'® + (3990 — 8a) y'* + (42900 — 28ar) y'* + - --
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where « is an integer. Applying the constructions over the ring [F, + ulF, we will be able
to get binary self-dual codes of length 56. For brevity of notation, we need a brief notation
for the elements of Fy + ulFy.

0 <> 0000, 1 < 0001, 2 <> 0010, 3 < 0011, 4 <> 0100, 5 <> 0101, 6 <> 0110, 7 <> 0111,
8 <» 1000, 9 <» 1001, A <> 1010, B <+ 1011, C <> 1100, D < 1101, E <> 1110, F' <> 1111.

We use the ordered basis {uw,w,u, 1} to express the elements of Fy + ulFy. For instance,
1 + uw corresponds to 1001, which is represented by the hexadecimal 9.

In the following tables @ = m; denotes that the weight enumerator of the code has

parameter « = m in W;, 1 =1, 2.

Table 3: [56,28,10] codes over Fy + ulF; from Dg where (o, o, g, aq) = (1,6, F, 1).
(ay,...,aq) |Aut(C)| Type (ay,...,aq) |Aut(C)| Type
(A,A,1,1,4,5) 223 a=-32% (AAL3CF) 223 a=-8
(A, A, 1,B,6,D) 2*-3-7 a=-56, (A,831,67  2-3 a=_26
(A,8,3,3.E,D) 2-3 a=-20, (881,1,45 23 a=_8

8.8,1,3,C,F) 22-3  a— 32

Table 4: [56, 28, 10] codes over Fy + ulFy from Dg where |Aut(C)| =2 - 3.

(..., 0y) (ay,...,aq) Type (ay,...,ap) (..., 0y) Type

(1,4,7,1)  (0,0,9,9,C,D) a=-8 (1,4,7,1) (0,83, L4 F) a=—24,
(1,4,7,1)  (0,0,B,1,C,7) a=-18, (1,4,7,1) (0,0,B,3,4,D) a=—12
(1,4,7,1)  (2,0,B,3,C,7) a=-20, (1,4,7,1) (2,0,B,B,6,5) o= —14,
(1,4,7,1)  (24,1,3,6,D) a=-26, (1,479 (A83,3,C.7) a=—6
(1,4,7,9) (8,2,9,3,E,7) a=-3% (1,4,7,9) (8,2,B,3,4,F) a=—30,
(1,4,D,1) (0,8,1,1,E,7) a=-32% (L,4,D,1) (4,0,99FE,5 a=-32
(1,4,D,1) (A,2,B,B,4,.D) a=-26. (1,4D,1) (A A3,3.67 a=—14
(1,4,D,9)  (0,0,9,1,4,5) a=-26, (1,4,D,9) (A0,3,9,4,D) a=—38,
(1,4, F,1) (2,8,9,B,6,F) a=-28 (L4 F1) (A8 11,CF) a=-22
(1,4,F,9) (0,0,9,3,C,F) a=-16, (L,4F9) (0,8,1,B,E,5 a=—28
(1,4,F,9)  (8,2.3,9,4,D) a=-40, (L4F9) (8,23.B,C,7) a=—46

We can also construct self-dual codes of length 56 from applying the construction Dg over

the ring Fy + ulFy + vFy + uvlFy as well. This is a ring of size 16, so in the same way as was

11



done for Fy + ulF4, we can use hexadecimals to shorten the notations. The correspondence

between the binary 4 tuples and the hexadecimals is as follows:

0 <» 0000, 1 <> 0001, 2 <+ 0010, 3 <> 0011, 4 <> 0100, 5 <» 0101, 6 <> 0110, 7 <» 0111,
8 <» 1000, 9 <» 1001, A «<» 1010, B <> 1011, C' < 1100, D <« 1101, E < 1110, F < 1111.
The ordered basis {uv,v,u,1} is used to express elements of Fy + uFy + vFy + uvFy For
instance, 1 + u + v is represented as 0111 which corresponds to hexadecimal 7.

Table 5: [56,28,10] codes over Fy + ulFy + vFy + wvFy from Dg where (aq, s, a3, ay) =

(1,6, B,1).

(ay,...,aq) |Aut(C)| Type (a1,...,a5)  |Aut(C)| Type
(4,1,9,1,7,B) 2.3 a=-28 (45D,1,F3) 2.3 a=-52
(4,1,9.1,B.7) 22-3  a=-4y (45D,9.7,3) 223 a=—4
(4,5,D,9,3,7) 22.3 a=—-16o (4,7,F, 1,3, F) 22.3 a = —28

(4,7,F,9,F,B) 22.3 o= —40,

Table 6: [56,28,10] codes over Fy + ulFy + vFy + wvFy from Dg where (aq, s, a3, ay) =
(1,2,5,1).

(ay,...,a5)  |Aut(C)| Type (a1,...,a5)  |Aut(C)| Type
(6,1,9,1,B,5) 22-3 a=—14; (6,1,9,1,D,3) 22.3 o =—26
(0,1,9,5,3, F) 22.3 a=-18; (0,1,9,5,7,B) 22.3 o= —42
(0,1,9,7,D,3) 22.3 a = —30;

Table 7: [56,28,10] codes over Fy 4+ ulFy + vFy + wvFy from Dg where (aq, g, a3, ) =
(1,2,7,1).
(a1,...,a) |Aut(C)| Type (a1,...,ap) | Aut(C)] Type
(C,7,F,9,7,B) 22.3 a=-38 (C,7,F,9,B,7) 22.3.-13 a=-38

12



4.2 Constructions from Groups of Order 10

Table 8: Extremal binary self-dual code of length 22 from Dqj.
(041, g, (3, Oé4) ((11, ceey a,lo) |Aut(C)|
(1,0,1,1)  (0,0,0,1,1,0,1,0,1,1) 28-3%.5.7-11

In [7], the possible weight enumerators for a self-dual Type I [44, 22, 8] code were obtained
in two forms as:

Wit =1+ (44 + 48)y® + (976 — 88)y'® + - - - where 10 < 8 < 122 and

Wio =14 (44 +48)y® + (1232 — 88)y** + - - - where 10 < 3 < 154.

Table 9: Extremal self-dual code of length 44 over F4 from Dq.

(a1, g, (g, ) (ay,...,ap) | Aut(C)| Type

(Lw,w+1,1) (0,0,0,1,1, 1, w,w,w+ 1,w+1) 24.5 Waso (6 = 14)
(Lw,w+1,1) (0,0,0,w,w+1,0,w,w+ 1, w,w+ 1) 2-5 Waso (8 =4)
(Lw,w—+1,1) (0,0,0,w,w+1,1,1,w,1,w+1) 2.5 Wi (8=4)
(l,w,w+1,1) (0,0,1,1,1,0, w,w,w + 1,w + 1) 23.5 Wiso (B = 34)
(L,w,w+1,1) (0,0,1,1,1,1,1,1,w, + 1) 23,5 Wus (B = 34)
(L,w,w+1,1) (0,0,1,w,w+1,0,1,1,w+ 1,w) 5 Wiso (8 =14)
(Lw,w+1,1) (0,0,1,w,w+1,0,1,w,1,w+1) 5 Wi (B=09)
(Lw,w+1,1) (0,0, 1, w,w+ 1,1, w,w,w,w) 2-5 Waso (B =4)
(Lw,w+1,1) (0,0,w,1,w,0,1,1,w+1,w—+1) 22.5 Wyao (B =4)
(Lw,w+1,1) (0,0, w, 1w, 1,w,w,w,w+ 1) 2-5 Wy (B8 =4)
(1,w,w+1,1) 0,0,w,L,w+1,1,1,1,1,1) 216.32. 52 Wy, (8 = T74)
(Lw,w+1,1) (0,0,1,w,w,1,0,w,w,w+ 1,w) 2-5 Wyo (B =14)
(Lw,w+1,1) O,www+lw+l,l,ww+lww+l) 2.5 Wyo (B =4)
(1l,w,w+1,1) (L, ww+1,,ww+1lww+1) 22.5 Wiso (B =14)
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Table 10: Extremal self-dual code of length 44 over Fy + ulFy from C'g.

(o, g, (g, vy (ay,...,aq) |Aut(C))| Type
(1,u,1,1) (u,u,u,1,1,1,1,0,u + 1,0) 22.5 Wasa (B =32)
(1,u,1,1) (w,u,u, 1, 1, u + 1,u+1,0,u + 1,0) 215,34 . 52. 72 Wi (8 =122)
(1u,1,1) (1,0,u,1,1,1,1,0,1,0) 215 Wiss (B = 10)
(Lu,1,1) (0,0,u,1,1,u+ Lu+1,0,1,0) 2.5 Wiz (5 = 30)
(1,u,1,1) (0,u,0,1, L, u+1,u+1,u,u+1,u) 23.5 Wt (B =12)
(1,u,1,1) (0,0,0,1,1,1,1,u,1,u) 916 . 32 . 52 Wass (8 = 90)

(1L,u,u+1,1) (1,0,u,1,1,1,1,0,1,0) 215 Wiio (8 = 14)

(1, u,u+1,1) (u,0,u,1,1,u+1,u+1,0,1,0) 23.5 Wi (B = 34)

(Lwut1,1) (0,0,0,1,1,1,1,u,1, ) 216 .32 52 Wiz (8 = 74)

(1,0,u+1,1) (u,0,u,1,1,1,1,0,1,0) 24.5 Wiso (B =14)

(1,0,u+1,1)  (w0,u1,1,ut Lut1,0,1,0) 2.5 Wass (5 = 34)

(1,0,u+1,1) (0,0,0,1,1,1,1,u,1,u) 2163152 72 112 Wy, (B = 154)

4.3 Constructions from Groups of Order 14

Table 11: Extremal binary self-dual code of length 30 from D1y.
(o, (g, (g, (ry) (a1,...,a14) | Aut (C)|
(1,0,1,1) (0,0,0,0,0,0,1,0,0,1,0,1,1,1) 2'1.3-7
(1,0,1,1) (0,0,0,0,0,1,1,0,0,1,0,0,1,1) 28.7
(1,0,1,1) (0,0,0,1,0,1,1,0,1,1,1,1,1,1) 27-3%.5.7

Table 12: Extremal binary self-dual code of length 30 from C'4.
(061,042,(1/3,054) (CL17...,CL14) |Aut(C’)|
(1,0,1,1) (0,0,0,0,0,1,1,0,1,1,0,0,1,0) 28. 7

Table 13: Extremal binary self-dual code of length 60 over F4 from D1y.
(o, g, (g, (g (ay,...,a14) |Aut(C)| Type
(lw,w+1,1) (0,0,1,w,1,w,1,0,1,w+1,0,w,w+ 1,w+ 1) 22.7 Weo1 (5 =0)
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4.4 Constructions from Groups of Order 18

Table 14: Extremal binary self-dual code of length 38 from D;5.
(a1, g, ag, ) (ay,...,a1s) |Aut(C)]
(1,0,1,1) (0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,1) 2. 32

(1,0,1,1) (0,0,0,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1) 2-3%-19

4.5 Constructions from Groups of Order 22

Table 15: [46,22, 8] codes from Da,.

(o, g, (g, vy (ay,...,a) |Aut(C)|
(1,0,1,1) _ (0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,1, 1, 1) 211
(1,0,1,1) _ (0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,1,0,1,0,1, 1) 211
(1,0,1,1)  (0,0,0,0,0,1,0,0,1,1,1,0,0,0,1,0,0,1,1,0,1,1) 11
(1,0,1,1)  (0,0,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 25 .3%.52.72.112. 232

Table 16: [46,22, 8] codes from Clas.

(v, g, (i, Cuy) (ay,...,a9) | Aut(C)|
(1,0,1,1) (0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,0,1,1,0,0,0, 1) 211
(1,0,1,1) (0,0,0,0,0,0,1,0,1,1,1,0,0,1,1,0,1,1,0, 1,0, 0) 211
(1,0,1,1) (0,0,0,0,1,0,1,1,1,1,1,0,1,1,0,1,1,1,1,0,1,0) 211
(1,0,1,1) (0,0,0,1,0,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0, 1) 211
(1,0,1,1)  (0,0,0,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 25.3%.52.7%.112.23?

4.6 Constructions from Groups of Order 26

From [3], it is known that the weight enumerator of a [54,27,10] self-dual code can be of
the follwing form:

Wsgr = 1+ (351 — 88)y™ + (5031 + 248)y™* + ...

Wiao = 1+ (351 — 88)y'” + (5543 + 248)y™* + . ..

15



In the following tables, we consturct inequivalent self-dual codes of parameters [54, 27, 10]

from Dsg and Cayg.

Table 17: Inequivalent [54,27,10] codes from Dag.

(o, g, (i, Cuy) (ay,...,a) |Aut(C')] Type
(1,0,1,1) (0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,1,1,0, 1) 2-13 Wsan (8 =0)
(1,0,1,1) (0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1,0,1,1,1) 2-13 Wsan (8 =0)
(1,0,1,1) (0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0,1, 1) 13 W51 (B =0)
(1,0,1,1) (0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,1,1,0,0,1) 2-3-13 Wsy (5 =0)
(1,0,1,1) (0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,1,1,1,1) 13 W51 (B =0)
(1,0,1,1) (0,0,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,1,1,1,1) 2.3*.13 Wsa1 (B=0)
(1,0,1,1) (0,0,0,0,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0,1,1,0,1,1,1,1) 2-3-13 W41 (6=0)

Table 18: Inequivalent [54,27,10] codes from Co.

(o, g, (i, Cry) (ay,...,a) | Aut (C)| Type
(1,0,1,1) (0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,1,0) 2-13 Wsaq (8 =0)
(1,0,1,1) (0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,1,1,1,0) 2-3-13 Ws4y (8 =0)
(1,0,1,1) (0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,1,0,1,0,0,1,1,1,1,1,1) 2-13 Wsa1 (86=0)
(1,0,1,1) (0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1,0,1,0) 2-13 Wsa1 (B =0)
(1,0,1,1) (0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,0,0,1,0,1,1,1,1,0, 1,0) 2-13 Wssq (B =0)
(1,0,1,1) (0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,1,1,1,0,1) 2-13 Wsa1 (8 =0)
(1,0,1,1) (0,0,0,0,0,1,0,0,1,1,1,0,1,1,0,1,1,1,0,0,1,0,1,1,0,1) 2-13 Wssq (B =0)
(1,0,1,1) (0,0,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,1,0,0,0) 2-13 Wssq (B =0)
(1,0,1,1) (0,0,0,0,0,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,0) 2-13 W41 (6=0)
(1,0,1,1) (0,0,0,1,0,0,1,1,0,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,0) 2-3-13 W41 (6=0)

4.7 Constructions from Groups of Order 30

There are two possibilities for the weight enumerators of extremal singly-even [62,31,12],
codes ([3]):

Weap =
Weao =

1+ 2308y*2 + 23767y"* + - -
1+ (1860 + 3283) y'* + (28055 — 1603) y** +--- ,: 0 < 3 < 93.

only codes with weight enumerator for 8 = 0,2,9, 10, 15,16 in Wga 2 known to exist.
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(ay,...,as3) | Aut (C')] Type
(0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,1,1)  2-3-5  Wseo (8 = 10)
(0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0,0,1,0,1,1,0,0,1,1,0,1) 2-3-5  Wseo (8 = 10)
(0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,1, 1) 22.3.5  Wegao (6=0)
(0,0,0,0,0,0,1,0,0,1,0,1,1,1,1,0,0,1,1,1,1,0,0,1,1,1,1,1,1,1) 2-3-5 W22 (6=0)
(0,0,0,0,0,1,0,0,1,0,0,1,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,0,1,1)  2-3-5  Wseo (8 = 10)
(0,0,0,0,0,1,1,0,0,1,0,1,1,1,1,0,0,1,1,0,1,1,1,0,1,1,0,1, 1, 1) 3-5 Wea2 (6 =10)
(0,0,0,0,0,1,1,0,1,1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,1,1,1,1,1,1) 2-3-5 Wea2(8 = 0)
(0,0,0,0,0,1,1,1,0,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1) 2-3-5 ng,g(ﬁ: )
(0,0,0,0,1,1,0,0,1,1,1,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,1) 2-3-5 W62’2(ﬁ:0)

4.8 Constructions from Groups of Order 34

The weight enumerator of a self-dual [70, 35, 12], code is in one of the following forms ([14]):

Wia = 1428+ (11730 — 23 — 1287) y** + (150535 — 223 + 8967) y'® + - - -
Wia = 1428+ (9682 —28)y" + (173063 — 228) y'* + - - -

The code with weight enumerator for v = 1, 3 = 416 is constructed in [14]. Together with
the results from [4] and [13], the existence of codes with weight enumerators v = 0 in Wy,
is known for many [ values. In the following tables we tabulate the [70,35,12] self-dual
codes from D34 and C3y4 together with their [ values and automorphism groups. Note that
the automorphism groups all have an element of order 17 in them. Naturally, these have the
same parameters as the ones obtained in [13]. However, here we have given an alternative

construction to those codes.
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Table 20: [70, 35, 12] codes from D34 where (o, as, ag, aq) = (1,0, 1, 1).

(a1, .., as) [Aut(C)| Wroa (v =0)

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0,0,1,1,0,1,0,1,1,0,1,0,1, 1 217 £ =102

0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1, 1 217 B =136

0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,1,0,1,1,0,1, 1 17 B =170

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,1,0,0,1,1, 1 17 B =204

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0,1,0,1,1,0,1,1,0,1,0, 1, 1 17 B =238

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,1,1,0,1,0,1,0,1,1,0,0,1, 1 17 B =272

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1, 1 17 B =340

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,1,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,1,1, 1 17 B =374

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0,0,1,0,1,1,0,1,1, 1 17 B =408

0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,0,0,1,0,1,1, 1 17 B =442

0,0,0,0,0,0,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,1 217 B =476

( )
( )
( )
( )
( )
( )
0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,1,1,1,1) 17 3 = 306
( )
( )
( )
( )
( )
( )

0,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,1,1,1, 1 17 B =510

Table 21: Extremal [70, 35, 12] codes from C34 where (aq, ag, ag, ay) = (1,0,1,1).

(ay,...,a34) |Aut(C)| Wroa (v =0)
(0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,1,1,0) 2-17 £ =102
(0,0,0,0,0,0,0,1,0,1,1,0,1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0,1,1,1,1, 1) 217 £ =136
(0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,1,0,0,0,1,1,0,0,0,1, 1) 2-17 b =238
(0,0,0,0,0,0,1,0,0,1,1,1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,1,0, 1,1, 1) 217 b =272
(0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,0, 1,0, 1) 2-17 £ =306
(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,1,0,1,1,1,0,1,0,0, 1, 1) 2-17 b =374
(0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,1,1, 1) 2-17 b = 442

4.9 Constructions from Groups of Order 38

The possible weight enumerators for self-dual codes of parameters [78,39, 14] are given as
follows ([7]):

—1
M%J:1+CW%+8m¢*+me+ﬁma—zwwm+“wogag335§2&
Wiga = 1+ (3750 + 8a)y™ + (71460 — 240)y™® + ..., —486 < o < —135.
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For many of these parameters, the existence of a code with that weight enumerator is not
known. Together with the ones that were recently found in [1, 22, 23], the existence of codes
which have Wrg; with @ = 0 and 8 = 0, =13, —19—-26, —38, =39, —52, —65, =78, =104, —117
and which have o = —135 in Wrg 9.

In the following table we construct [78,39, 14] self-dual codes from Dss. The one with

B = —b7 is a new code.

Table 22: Extremal 78,39, 14] codes from Dsg where (aq, as, a3, a4) = (1,0,1,1) and a; =

a2:a3:a4:0.

(CL5, e ,CL34) |Aut(C’)| W78,1 (Oé == 0)

1,1,1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,1,1,1)  2-19 B=0

1,1,1,1,0,1,0,1,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,0,1,1,1,1,0,1,1,1,1,1 19 B=0

1,1,1,1,0,0,1,0,1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0,0,1, 1 19 g =-38

( )
( )
(1,1,1,1,0,1,0,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,1,1) 19 B=-19
( )
( )

1,1,1,1,0,0,1,1,1,0,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,1, 1 19 B = =57

5 Conclusion

We have integrated a modified bordered construction with the matrices corresponding to a
group ring element in RC5, and RD,, where R is a commutative Frobenius ring of charac-
teristic 2 and as a result we have been able to obtain many extremal binary self-dual codes.
The structure of the groups has allowed us to look at such lengths as 62, 70, 78, etc. that are
different than the oft-studied lengths of 64, 66 and 68. In addition to giving an alternative
construction to many extremal or best-known self-dual codes we were able to obtain a new
code of length 78, with a = 0, 8 = —57 in Wrs ;. The results we have obtained demonstrate
the relevance of our constructions and may lead to more such results when considered over
different rings and groups.
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