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Abstract: The existing analytical solutions of dam-break flow do not consider simultaneously the 13 

effects of wet downstream bottom and bed slope on the dam-break wave propagation. In this study, a 14 

new analytical solution for the shallow-water equations (SWE) is developed to remove this limitation 15 

to simulate the wave caused by an instantaneous dam-break. The approach adopts the method of 16 

characteristics and has been applied to simulate the dam-break flows with different downstream 17 

water depths and slopes. The analytical solutions have been compared with predictions by the lattice 18 

Boltzmann method and the agreement is good. Although the proposed analytical solution treats an 19 

idealized case, it is nonetheless suitable for assessing the robustness and accuracy of numerical 20 

models based on the SWE without the frictional slope. 21 

Keywords: Analytical solution; Dam-break; Rarefaction wave; Shock wave; Slope; Wet bed. 22 

Introduction 23 

Analytical studies of dam-break flows date back to over 120 years ago. Well-known analytical 24 

solutions for the dam-break flood waves in a horizontal channel include Ritter (1892) and Stoker 25 

(1957).  Ritter (1892) derived an analytical solution for instantaneous dam-break flows on a 26 
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frictionless and dry bed. For wet bed conditions downstream of the dam, a shock wave develops in 27 

the downstream region. To investigate the effect of the initial downstream water depth on the 28 

dam-break wave, Stoker (1957) proposed a theoretical solution which included three interrelated 29 

equations and three unknown variables. For the dam-break problem on a sloping bed, some exact and 30 

approximate analytical solutions exist (Dressler 1958; Hunt 1983; Fernandez-Feria 2006; Ancey et al. 31 

2008; Chanson 2009). However, none of these considers simultaneously the effects of both the wet 32 

bed condition and the bottom slope on the dam-break flow. 33 

In the present study, a new analytical solution of the shallow-water equations is proposed for an 34 

infinite volume of an ideal (frictionless) fluid released instantaneously from upstream of a dam with 35 

initial wet horizontal and sloping channel. The omission of the friction is based on the following 36 

considerations: (1) the frictional slope is a nonlinear term that hinders one from solving the 37 

Saint-Venant equations (SVE) analytically (Chanson 2009); (2) a frictionless fluid is often 38 

considered in the development of the analytical solutions for dam-break problems (Ritter 1892; 39 

Stoker 1957; Wu et al. 1999; Fernandez-Feria 2006; Ancey et al. 2008; Chen et al. 2011; Wang et al. 40 

2017; Cozzolino et al. 2017); (3) dam-break flow can be considered as frictionless flow for relatively 41 

high flow velocity and little flow separation from solid boundaries (Batchelor 2000; Guo et al. 1998; 42 

Guo 2005), and (4) although a truly frictionless flow does not occur in nature, the frictionless case 43 

constitutes an unambiguous end-member as well as a clear target case for testing numerical models 44 

(Ancey et al. 2008). A typical example is that Zoppou and Roberts (2003) conducted an examination 45 

of the performance of twenty explicit numerical schemes used to solve the shallow water wave 46 

equations for simulating the dam-break problem by comparing the results from these schemes with 47 

analytical solutions and expected more analytical solutions to be developed for testing the numerical 48 

schemes. The proposed analytical solution is developed using the method of characteristics. Its 49 

performance will be examined by comparing with the numerical simulations based on the Lattice 50 

Boltzmann Method (LBM). 51 
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During the past two decades, the LBM has become a successful alternative numerical method 52 

for computational fluid dynamics. As a microscopic method, the LBM has been developed and used 53 

to successfully solve the shallow water equations (Zhou 2004; Peng et al. 2011a, b). 54 

General models for dam-break wave 55 

Figure 1 sketches the problem investigated in which xM and xN, respectively, denote the positions of 56 

the front and tail for the rarefaction wave; and xR represents the location of the shock wave-front. The 57 

dam releases immediately the water at both sides initially stationary (i.e., uu = ud = 0) with two 58 

different water depths (i.e., hu > hd > 0) (Fig.1). After dam collapses, the flow can be divided into 59 

four zones: Zone 1 is the undisturbed far upstream; Zone 2 is a rarefaction wave; Zone 3 is a constant 60 

state where water is not at rest; and Zone 4 is the quiet downstream that is terminated on the 61 

upstream side by the shock wave. The water depths and flow velocities in Zones 2 and 3 are denoted 62 

as h and u as well as hc and uc respectively. ξ is the shock wave-front celerity. 63 

Governing equation for rarefaction wave 64 

The propagation of a dam-break wave is governed by the SVE (Chow 1959). For an infinitely long 65 

prismatic channel of mild constant slope, the SVE can be written if the effect of wall friction is 66 

neglected as follows: 67 

0
h h A u

u
t x B x

  
+ + =

  
                              (1a) 68 

o

u u h
u g gS

t x x

  
+ + =

  
                              (1b) 69 

Here h = the flow depth, x = the distance along flow direction, t = the time, g = gravity acceleration, 70 

u = the average flow velocity, B = the water surface width, A = the area of cross-section, and So = the 71 

bottom slope. 72 

Applying the characteristic method to the system of partial differential equations (1a)–(1b), a 73 

characteristic system of equations results as: 74 
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Along the forward characteristics: 77 

0 0
d d

uh h

u o

B B
u g h u g h gS t

A A

   
+ − + =      

   
                        (3) 78 

where subscript u = the undisturbed upstream reach, i.e., Zone 1. hu and uu = the initial water depth 79 

and flow velocity respectively in the undisturbed upstream reservoir. 80 

As the upstream reach is undisturbed, uu =0. Substituting it into Eq. (3) yields: 81 

0 0
d d

uh h

o

B B
u g h g h gS t

A A
= − +                         (4) 82 

Substituting Eq. (4) into Eq. (2b) yields: 83 

0 0

1 d
d d

d

uh h

o

B A B x
h h gS t

A B A tg

 
+ = − −  

 
                         (5) 84 

Eq. (5) is the transformed SVE and applies for the prismatic channel of arbitrary shape. 85 

Governing equation for shock wave 86 

The motion of the shock wave is described by the conservation equations for mass and momentum 87 

as: 88 

( ) ( )c c d dA u A u − = −                                  (6) 89 

( ) ( ) ( )c dd d d c c c c dA u u A u u g A h A h − − − = −                         (7) 90 

where subscripts c and d = the reaches upstream and downstream of the shock respectively; h  = the 91 

centroid water depth for the cross section; and ξ is defined as: 92 

d

d

Rx

t
 =                                            (8) 93 
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In this study, the downstream flow is at rest, i.e., ud = 0. Therefore Eqs. (6)–(7) simplify to: 94 

c c

c d

A u

A A
 =

−
                                     (9) 95 

( )( )
1/2

c dc d c d

c

c d

A h A h A A
u g

A A

 − −
 =
 
 

                             (10) 96 

The hydraulic characteristics, i.e., flow depth and velocity, are unique in the plane N–N 97 

connecting Zones 2 and 3. Applying Eq. (4) to this boundary condition yields the flow velocity in 98 

Zone 3: 99 

0 0
d d

u ch h

c o

B B
u g h g h gS t

A A
= − +                           (11) 100 

Substituting Eq. (10) into Eq. (11) yields: 101 

( )( )
1/2

0 0
d d

u c
c dh h c d c d

o

c d

A h A h A AB B
h h gS t

A A A A

 − −
 − + =
 
 

                 (12) 102 

Eq. (12) is the integral form of the momentum equation for the shock wave and applies for a 103 

channel of arbitrary shape. 104 

Dam-break wave in wet rectangular channel 105 

Analytical solution for rarefaction wave 106 

For a rectangular channel, the cross-sectional area is the product of the flow depth and the water 107 

surface width. Applying this condition for the rarefaction wave, Eq. (5) simplifies to: 108 

0 0

1 1 1 d
d d

d

uh h

o

x
h h h gS t

th h g

 
+ = − −  

 
                           (13) 109 

Integrating Eq. (13) yields the dimensionless flow depth: 110 

2

* 1 1 d
2

9 d
o

u u

h x
h gS t

h tgh

  
= = − −  

   

                                 (14) 111 

Let 112 
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1 d

d
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u

x
X gS t

tgh

 
= − 

 
                                   (15) 113 

1

1 d

d
u

x
X

tgh
=                                        (16) 114 

2 o

u

g
X S t

h
=                                        (17) 115 

where X1 = a dimensionless distance and X2 = a dimensionless variable to account for the effect of 116 

bed slope. Eq. (15) can then be rewritten as: 117 

1 2X X X= −                                        (18) 118 

From Eqs. (14) and (15), one gets:  119 

( )
2* 1

2
9

h X= −                                       (19) 120 

Substituting Eq. (19) into Eq. (2b) yields the dimensionless velocity: 121 

( )*

1 2

1
2 1

3
u

u
u X X

gh
= = + +                                 (20) 122 

For consistency, the flow discharge is normalized as: 123 

u u u u u

Q Bhu

A gh B h gh
=                                   (21) 124 

The top widths in Zones 1 and 2 are equal, i.e., B = Bu, thus the dimensionless discharge is: 125 

( ) ( )
2* * *

1 2

1
2 2 1

27uu u u

Q h u
Q h u X X X

hA gh gh
= =  =  = − + +                   (22) 126 

Analytical solution for shock wave 127 

For a rectangular channel, the centroid depth for the cross section is half of the flow depth. 128 

Applying this condition for the shock wave, Eq. (12) simplifies to: 129 

( )( )
1/2

2 2

0 0

1 1
d d

2

u ch h c d c d

o

c d

h h h h
h h gS t

h hh h

 − −
 − + =
  

                        (23) 130 
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Integrating Eq. (23) yields: 131 

( ) ( ) ( )( ) ( ) ( ) ( )
3

3 2 3
* * * * * * * 2 2 * *2

2
9 8 2 8 8 0c d c o d c d d o o c d

u u u

g g
h h h S t h h h h S t gS t h h

h h h

   
− + + − + + + + =      

   
132 

                               (24) 133 

where * /c c uh h h=  and * /d d uh h h=  = the dimensionless flow depths upstream and downstream of 134 

the shock wave respectively. Combining Eq. (17) with Eq. (24) yields the following equation:  135 

( ) ( ) ( ) ( )( ) ( )( )( ) ( )
3

3 2 3
* * * * * * * 2 * *2

2 2 29 8 2 8 8 2 0c d c d c d d c dh h h X h h h h X X h h− + + − + + + + =       (25) 136 

The hydraulic characteristics in Zone 2 are identical as those in Zone 3 at the junction, i.e., N–N. 137 

Therefore, applying Eq. (20) for the flow in junction yields the dimensionless velocity: 138 

( )*

1 2

1
2 1

3

c
c N N

u

u
u X X

gh
= = + +                                 (26) 139 

where X1N and X2N = dimensionless variables referring to the junction N–N, defined as: 140 

1

d1

d

N
N

u

x
X

tgh
=                                   (27) 141 

2 0N

u

g
X S t

h
=                                      (28) 142 

Appling Eq. (19) for the flow at the junction yields 143 

( )
2* 1

2
9

c Nh X= −                                    (29) 144 

where XN = a dimensionless variable referring to the junction N–N and can be expressed as: 145 

1 2N N NX X X= −                                    (30) 146 

Substituting Eqs. (29)-(30) into Eq. (26) yields: 147 

( )* *

2 2 1c N cu X h= + −                                (31) 148 

Equation (26) or (31) can be used to calculate the dimensionless velocity. Similarly, the 149 

dimensionless discharge is obtained by combining Eqs. (29) and (31): 150 
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( )* * *

2 2 1c c c
c c N c

uu u u

Q h u
Q h X h

hA gh gh

 = =  = + −
  

                         (32) 151 

Substituting Eq. (31) into Eq. (9) yields the dimensionless wave-front celerity:  152 

( )*

2
* *

* *

2 1N c

c

c du

X h
h

h hgh




+ −
= = 

−
                          (33) 153 

Dam-break wave in slope and frictionless channel 154 

To verify the accuracy of the proposed analytical solution, numerical simulations by the LBM are 155 

carried out correspondingly. 156 

Lattice Boltzmann model for shallow water equations 157 

In this study, the most common Lattice Boltzmann Model (D2Q9) is adopted and the lattice 158 

Boltzmann equation for 2D shallow water equations reads (Zhou 2004): 159 

 ( ) ( ) ( )
1

, , , ( , )eqf e t t t f t f t f t tF     

 +  + − = − − + x x x x             (34) 160 

where f and eqf = the distribution functions,  = the single relaxation time, e = the particle 161 

velocity, F = force term as defined by Peng et al. (2011a, b). 162 

The fluid kinematic viscosity is defined as: 163 

( )
2

= 2 1
6

e t
 


−                              (35)                                                   164 

The local equilibrium distribution function eqf in Eq. (34) is defined as:  165 

2

2 2

2

2 2 4 2

2

2 2 4 2

5 2
, 0

6 3

= , 1,3,5,7
6 3 2 6

, 2,4,6,8
24 12 8 24

i i

eq

i i i j i j i i

i i i j i j i i

gh h
h u u

e e

gh h h h
f e u e e u u u u

e e e e

gh h h h
e u e e u u u u

e e e e

   

  








− − =




+ + − =



+ + − =


     (36) 166 

The macroscopic water depth and velocity can be obtained from the following equations: 167 

  h f


=                                   (37) 168 
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   1
i iu e f

h
 



=                                (38) 169 

More details on LBM for shallow water equations can be found in Zhou (2004) and Peng et al. 170 

(2011a, b). 171 

Comparison with simulations by LBM 172 

Three smooth, rectangular flumes are 60 m long, 1m wide, and 1.2 m high with bottom slopes of 0.1, 173 

0.3, and 0.5% respectively are used in experiments. A virtual dam located 30 m away from the 174 

downstream flume end is adopted to simulate an instantaneous dam failure. Three wet-bed conditions 175 

are tested: hd = 0.12, 0.24 and 0.36 m, corresponding to *

dh = 0.2, 0.4 and 0.6. Due to length 176 

limitation, only the simulated results for the case with *

dh  = 0.2 are shown in Figs. 2 as the results of 177 

other two cases are similar. 178 

Figure 2 compares the water surface profiles predicted by the proposed analytical method and 179 

LBM for t =0.5, 1.5 and 3.0 s. Generally the water surface profile by the proposed analytical method 180 

agrees well with the prediction by LBM. In Zone 2, the water depth simulated by LBM is slightly 181 

smaller than the analytical solution. Both the front and the tail of the rarefaction wave captured from 182 

LBM propagate faster that those from the analytical model, resulting in an extension of rarefaction 183 

fans. In Zone 3, the water surface profiles predicted by LBM are under the analytical results. 184 

Compared with the numerical results, the evolution position of the shock wave in the analytical 185 

solution lags slightly and the difference between the analytical and LBM solution is smaller than 186 

10% for all of three slopes during the first ten seconds. This difference may be due to the finite 187 

difference method adopted by the LBM model. 188 

The discharges along the flume predicted by the proposed analytical method versus LBM are 189 

also shown in Fig. 2. It can be seen that the discharge increases as bottom slope of the flume 190 

increases. With the increase of downstream water depth, the flow discharge in Zone 3 generally 191 

decreases. The analytical solution captures the motion characteristics well. Based on the comparisons 192 
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between analytical solutions and numerical results, it is clear that the analytical and simulated results 193 

agree well in both Zone 1 and Zone 2, while the numerical results are slightly higher than the 194 

analytical solutions in both Zone 3 and Zone 4, and the difference between them tends to increase 195 

with time. Especially in Zone 4, the analytical model assumes that the water body is not affected by 196 

the shock wave. Therefore, the water is stationary, and the corresponding discharge is zero. When the 197 

downstream water depth is small (e.g.
*

dh = 0.2), the analytical solution of discharge in Zone 3 agrees 198 

well with the numerical results. That demonstrates that the proposed analytical method can be 199 

applied to accurately predict the flood wave propagation generated by dam-break along a sloping and 200 

initially wet downstream bed. 201 

Conclusions 202 

In the present study, a new analytical solution, based on the method of characteristics, has been 203 

developed for the shallow-water equations (SWE) which can be used to validate numerical models 204 

based on the one-dimensional SWE as long as the term of the frictional slope is neglected. The 205 

analytical solution accurately predicts the effects of bottom slope and initial downstream water depth 206 

on the propagation of a flood wave generated by the dam-break, which is difficult to be achieved by 207 

previously analytical solutions. The propagation of the dam-break flood waves on sloping and wet 208 

beds predicted by the analytical model was compared with the numerical simulations based on the 209 

LBM. A satisfactory agreement between the analytical and numerical solutions is found in both 210 

Zones 1 and 2, while mild distinction exists in both Zones 3 and 4. 211 
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Notation 219 

The following symbols are used in this paper: 220 

A = cross-sectional area; 221 

B = water surface width; 222 

e = particle velocity; 223 

 f = distribution function of particle; 224 

F=force term; 225 

g = gravity acceleration; 226 

h = flow depth; 227 

h = centroid water depth; 228 

Q = flow discharge; 229 

So = bottom slope; 230 

t = time 231 

t = time space 232 

 = single relaxation time 233 

u = average flow velocity; 234 

 = fluid kinematic viscosity 235 

X = X1–X2; 236 

X1 = dimensionless distance; 237 

X2 = dimensionless variable accounting for bed slope effect; 238 

x = distance along flow direction originated from dam site;  239 

ξ = shock wave-front celerity. 240 

Superscripts 241 

eq = equilibrium ; 242 
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* = dimensionless quantity. 243 

Subscripts 244 

 = direction of lattice; 245 

c = reach upstream of the shock; 246 

d = reach downstream of the shock; 247 

i= direction of velocity or force; 248 

j= direction of velocity or force; 249 

M = position of rarefaction wave front; 250 

N = position of rarefaction wave tail; 251 

R = location of shock wave-front; and 252 

u = undisturbed upstream reach. 253 
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