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Summary 17 

• A crucial step in the transition from outcrossing to self-fertilization is the loss of 18 

genetic self-incompatibility (SI). In the Brassicaceae, SI involves interaction of female 19 

and male specificity components, encoded by the genes SRK and SCR at the self-20 

incompatibility locus (S-locus). Theory predicts that S-linked mutations, and 21 

especially dominant mutations in SCR, are likely to contribute to loss of SI. However, 22 

few studies have investigated the contribution of dominant mutations to loss of SI in 23 

wild plant species. 24 
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• Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer 25 

species Capsella orientalis, by combining genetic mapping, long-read sequencing of 26 

complete S-haplotypes, gene expression analyses, and controlled crosses.  27 

• We show that loss of SI in C. orientalis occurred less than 2.6 Mya and maps as a 28 

dominant trait to the S-locus. We identify a fixed frameshift deletion in the male 29 

specificity gene SCR and confirm loss of male SI specificity. We further identify an S-30 

linked small RNA that is predicted to cause dominance of self-compatibility.  31 

• Our results agree with predictions on the contribution of dominant S-linked mutations 32 

to loss of SI, and thus provide new insights into the molecular basis of mating system 33 

transitions.  34 

 35 

Keywords: Capsella, dominance modifier, long-read sequencing, parallel evolution, plant 36 

mating system shift, self-compatibility, S-locus, small RNA  37 
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Introduction 38 

The shift from outcrossing to self-fertilization is one of the most common evolutionary 39 

transitions in flowering plants (Darwin, 1876; Wright et al., 2013). This transition is favored 40 

when the benefits of reproductive assurance (Darwin, 1876; Pannell & Barrett, 1998; Eckert 41 

et al., 2006) and the transmission advantage of selfing (Fisher, 1941) outweigh the cost of 42 

inbreeding depression (Charlesworth, 2006).  43 

The transition to self-fertilization often involves breakdown of self-incompatibility 44 

(SI). SI systems allow plants to recognize and reject self pollen through the action of male and 45 

female specificity components and modifier loci (Takayama & Isogai, 2005). In the 46 

Brassicaceae, SI is controlled by two tightly linked genes at the S-locus, the S-locus receptor 47 

kinase gene SRK and SCR, which encode the female and male SI specificity determinants, 48 

respectively (de Nettancourt, 2001). SRK is a transmembrane serine-threonine receptor kinase 49 

located on the stigma surface (Stein et al., 1991; 1996). SCR is a small cysteine-rich protein 50 

that is deposited on the pollen coat and acts as a ligand to the SRK receptor (Schopfer et al., 51 

1999; Takayama et al., 2001). Direct interaction between SRK and SCR from the same S-52 

haplotype results in inhibition of pollen germination (Takasaki et al., 2000; Takayama et al., 53 

2001; Ma et al., 2016) through a signaling cascade involving several proteins (Nasrallah & 54 

Nasrallah 2014). This SI response prevents close inbreeding and promotes outcrossing. At the 55 

S-locus, recombination is suppressed and rare allele advantage maintains alleles with different 56 

specificities (Wright, 1939; Castric & Vekemans, 2004; Vekemans et al., 2014). SI 57 

populations often harbor dozens of highly diverged S-haplotypes as a result of negative 58 

frequency-dependent selection (Mable et al., 2003; Guo et al., 2009). In the sporophytic 59 

Brassicaceae SI system, expression of a single S-specificity provides greater compatibility 60 

with other individuals (Schoen & Busch, 2009). Therefore, S-haplotypes often form a 61 

dominance hierarchy that determines which specificity is expressed in S-heterozygotes 62 
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(Durand et al., 2014). At the pollen level, dominance is governed by dominance modifiers in 63 

the form of sRNAs expressed by dominant alleles. These sRNAs target sequence motifs 64 

specific to recessive alleles of SCR, resulting in transcriptional silencing (Tarutani et al., 65 

2010; Durand et al., 2014). 66 

Despite the advantages of outcrossing, SI has been lost repeatedly in many different 67 

lineages. There is a strong theoretical and empirical interest in the role of parallel molecular 68 

changes for repeated shifts to self-compatibility (SC) (Vekemans et al., 2014; Shimizu & 69 

Tsuchimatsu, 2015). While the numerous genes that act as unlinked modifiers of SI 70 

potentially constitute a larger mutational target than the S-locus itself, theory predicts that 71 

mutations that result in degeneration of components of the S-locus should have an advantage 72 

(Porcher & Lande, 2005). Theory further predicts that the probability of spread of mutations 73 

disrupting SI depends on whether they affect male or female SI function, or both functions 74 

jointly (Charlesworth & Charlesworth, 1979). In particular, mutations that disrupt male 75 

specificity should have an advantage over those mutations that disrupt female specificity, 76 

because male specificity mutations can spread faster through both pollen and seeds 77 

(Uyenoyama et al., 2001; Tsuchimatsu & Shimizu, 2013). Finally, dominant advantageous 78 

mutations should have a higher fixation probability in outcrossers, as expected from 79 

Haldane’s sieve (Haldane 1927). However, dominant S-alleles typically have low population 80 

frequencies (Llaurens et al., 2008), resulting in a lower probability that SC mutations occur on 81 

dominant than on recessive alleles. While degeneration of male specificity has contributed to 82 

loss of SI in a few Brassicaceae species (Tsuchimatsu et al., 2010; 2012; Shimizu & 83 

Tsuchimatsu, 2015) Chantha et al., 2013), more examples are needed. So far, few empirical 84 

studies of wild species have examined the contribution of dominant S-haplotypes to the loss 85 

of SI (but see Nasrallah et al. 2007). To understand the role of parallel molecular changes for 86 

recurrent loss of SI, identification of causal mutations is required. This has been a challenging 87 
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task, due to the difficulty of sequencing the up to 110 kb long, highly polymorphic and 88 

repetitive S-locus. However, thanks to the advent of long-read sequencing, contiguous S-89 

haplotypes can now be assembled with low error rates (Bachmann et al., 2018).  90 

The crucifer genus Capsella is an emerging model for genomic studies of plant mating 91 

system evolution. In Capsella, SI is the ancestral state, as there is trans-specific shared S-92 

locus polymorphism between the outcrossing SI species Capsella grandiflora and outcrossing 93 

SI Arabidopsis species (Guo et al., 2009). Nevertheless, SC has evolved repeatedly in 94 

Capsella, resulting in two self-compatible and highly selfing diploid species, Capsella rubella 95 

and Capsella orientalis, as well as the selfing allotetraploid Capsella bursa-pastoris, which 96 

formed by hybridization between C. orientalis and C. grandiflora accompanied by genome 97 

duplication (Douglas et al., 2015). These species also differ greatly in their geographical 98 

distributions, with C. bursa-pastoris having a nearly worldwide distribution, whereas C. 99 

rubella is mainly found in Central and Southern Europe, and C. orientalis has a distribution 100 

ranging from Eastern Europe to Central Asia (Hurka et al., 2012). Finally, the SI outcrosser 101 

C. grandiflora mainly occurs in northwestern Greece and Albania, and in northern Italy 102 

(Hurka et al., 2012).  103 

In C. rubella, the transition to selfing has been intensely studied (Foxe et al., 2009; 104 

Guo et al., 2009; Slotte et al., 2013; Brandvain et al., 2013) and involved the fixation of a 105 

relatively dominant S-haplotype (Nasrallah et al., 2007; Guo et al., 2009; Paetsch et al. 2010) 106 

most likely within the past 100-170 ky (Slotte et al., 2013; Koenig et al., 2019). Knowledge 107 

on the mode, timing and demographics of the transition to selfing in C. rubella has provided 108 

an evolutionary context for the study of genomic (Gos et al., 2012; Slotte et al., 2013; 109 

Brandvain et al., 2013; Koenig et al., 2019), regulatory (Steige et al. 2015) and phenotypic 110 

(Slotte et al., 2012; Sicard et al., 2016) consequences of selfing. In contrast, we know little 111 

about the genetic basis and timing of loss of SI and transition to selfing in C. orientalis. Such 112 
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information is important for proper interpretation of genomic studies of the effects of selfing 113 

and can provide insights into the role of parallel molecular changes for convergent loss of SI. 114 

Here, we combined genetic mapping, long-read sequencing of S-haplotypes, 115 

controlled crosses, population genomic and expression analyses to investigate the loss of SI in 116 

C. orientalis, with the specific aims to: 1) test whether loss of SI maps to the S-locus, 2) 117 

identify candidate causal mutations for the loss of SI, 3) investigate the role of sRNA-based 118 

dominance modifiers, and 4) estimate the timing of loss of SI in C. orientalis.   119 

 120 

Materials and Methods 121 

Plant material and growth conditions 122 

We surface-sterilized seeds of Capsella orientalis Klokov, Capsella bursa-pastoris (L.) 123 

Medik. and Capsella grandiflora (Fauché & Chaub.) Boiss. (S1 Table, Supporting 124 

Information), plated them on ½ MS medium (Murashige and Skoog basal salt mixture, 125 

Sigma-Aldrich Co. MI, USA) and stratified seeds at 2-4°C in the dark for two weeks. Plates 126 

were then moved to controlled climate chambers (16 h light at 20ºC / 8 h dark at 18 ºC, 70 % 127 

maximum humidity, 122 uE light intensity). After one week, seedlings were transplanted to 128 

soil in pots. For genotyping and whole-genome resequencing, leaf samples for DNA 129 

extractions were collected from >3 week old plants and dried in silica gel. For bacterial 130 

artificial chromosome (BAC) library construction, leaf samples were collected after 48 h dark 131 

treatment and were immediately flash-frozen in liquid N2. For RNA extractions, mixed-stage 132 

floral buds and leaf samples were collected in the middle of the light period and immediately 133 

flash-frozen in liquid N2. 134 

 135 

Genetic mapping of loss of SI in C. orientalis 136 
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To test whether loss of SI mapped to the S-locus, we generated an interspecific C. orientalis × 137 

C. grandiflora F2 mapping population which segregated for SI/SC by crossing C. orientalis 138 

accession Co2008-1 as seed parent to C. grandiflora accession Cg88.15 as pollen donor (S1 139 

Table, Supporting Information). Because C. orientalis × C. grandiflora F1 seeds were aborted 140 

prior to full development, generating viable F1 seeds required embryo rescue (Methods S1, 141 

Supporting Information). F1 individuals were SC, and we collected F2 seeds from one 142 

autonomously self-pollinated F1 individual. Our mapping population consisted of a total of 143 

350 F2 individuals. We extracted DNA from all F2 individuals using a Qiagen DNeasy kit 144 

(Qiagen, Venlo, The Netherlands) and genotyped them at 998 SNPs at SciLifelab Stockholm 145 

(Methods S1, Supporting Information).  146 

We scored SI/SC in a total of 321 F2 individuals. SI/SC was scored as presence or 147 

absence of silique formation on mature individuals. In addition, we assessed the success of 3-148 

6 manual self-pollinations for 204 F2 individuals. In the case of a discrepancy between seed 149 

set after manual self-pollination and silique formation after autonomous self-pollination, we 150 

used the scoring based on manual self-pollination. To validate that the SI phenotype was due 151 

to pollen tube growth arrest and the lack of seed development following self-pollination was 152 

not due to e.g. inbreeding depression or later-acting genetic incompatibilities, we assessed 153 

pollen tube growth in the pistil after manual self-pollination in a subset of 10 F2 individuals 154 

scored as SI (Methods S1, Supporting Information). 155 

We generated a linkage map and mapped quantitative trait loci (QTL) for SI/SC status 156 

in R/Qtl (Broman et al., 2003). The final linkage map had 549 SNPs after removal of SNPs 157 

with segregation distortion or redundant genotype information. We mapped QTL for SI/SC, 158 

encoded as a binary trait, using interval mapping and the Haley & Knott regression method 159 

(Haley & Knott, 1992) in intervals of 1 cM, based on 304 F2 individuals for which we had 160 

both phenotype and genotype data. A 1% genome-wide significance threshold was obtained 161 
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by 1000 permutations and we estimated credible intervals of significant QTL as 1.5-LOD 162 

drop intervals. We estimated the additive allelic effect and dominance deviation using the 163 

R/Qtl effectscan function. 164 

 165 

Sequencing, assembly and annotation of the S-locus in Capsella 166 

To identify putative causal genetic changes responsible for loss of SI in C. orientalis, we 167 

conducted targeted sequencing and assembly of S-haplotypes by long-read sequencing of 168 

BAC clones containing the S-locus, as in Bachmann et al. (2018) (Methods S1, Supporting 169 

Information). We conducted targeted long-read sequencing and assembly of S-haplotypes of 170 

two SC C. orientalis accessions, four SC C. bursa-pastoris accessions and two SI C. 171 

grandiflora accessions. The two C. grandiflora S-haplotypes presented here were chosen 172 

from a larger set of 15 S-haplotypes to represent the C. grandiflora S-haplotype segregating in 173 

our F2 population as well as a C. grandiflora S-haplotype from the same haplogroup as the S-174 

haplotype of C. orientalis (see "Phylogenetic analyses of S-locus sequences" below; S1 Table, 175 

Supporting Information). In total, we here present eight full-length S-locus haplotypes 176 

obtained by targeted long-read sequencing (S1 Table and S2 Table, Supporting Information). 177 

As far as possible, we use the same accession designations as in previous studies. All 178 

accession information is listed in S1 Table, Supporting Information. 179 

BAC clones were sequenced to high coverage (150-400x) using PacBio SMRT 180 

sequencing (S2 Table, Supporting Information). Short-read sequencing data for all BACs 181 

were generated on an Illumina MiSeq (>380 x; S2 Table, Supporting Information) and used 182 

for indel error correction as in Bachmann et al. (2018). All sequencing was done at the 183 

SciLifeLab National Genomics Infrastructure in Uppsala, Sweden. Sequences were assembled 184 

in HGAP3.0 (Chin et al., 2013), except for the S-haplotype of Cg88.15, for which Canu v.1.7 185 

(Koren et al., 2017) was used. 186 
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We annotated our S-locus assemblies as in Bachmann et al. (2018). Briefly, we used 187 

Augustus v3.2.3 (Stanke et al., 2004) and RepeatMasker v4.0.7; 188 

http://www.repeatmasker.org), run via Maker v2.31.9 (Holt & Yandell, 2011) with 189 

Arabidopsis thaliana as a model prediction species and using protein homology data for SRK, 190 

U-box and ARK3 from Arabidopsis lyrata and Arabidopsis halleri. Due to high levels of 191 

sequence diversity at the key S-locus genes SRK and SCR, they were difficult to annotate 192 

automatically. Sequence similarity to known SRK exon 1 sequences was used to accept 193 

candidate loci as SRK, while we used similarity to ARK3 as a rejection criterion. To annotate 194 

SCR, we used a window-based approach to screen for the characteristic pattern of cysteine 195 

residues after translation of the DNA sequence in all three frames (Bachmann et al., 2018). 196 

Using this approach, we identified a region highly similar to A. halleri SCR in S-locus 197 

haplotype S12 (GenBank accession number KJ772374.1) in our C. orientalis S-locus BAC 198 

sequences.  199 

 200 

Phylogenetic analyses of S-locus sequences 201 

To examine the phylogenetic placement of the S-haplotypes sequenced here, we used a 202 

dataset of Brassicaceae SRK exon 1 and ARK3 sequences downloaded from Genbank as 203 

described in Bachmann et al. (2018) and generated an alignment of SRK exon 1 sequences 204 

using the MAFFT v7.245 & E-INS-I algorithm (Katoh et al., 2002), with manual curation in 205 

SeaView v4.6 (Gouy et al., 2010). We generated a maximum likelihood phylogenetic tree 206 

from the SRK alignment with RaXMl v8.2.3. In this phylogeny, the C. grandiflora S-207 

haplotype from accession Cg2-2 clustered with the S-haplotypes of C. orientalis and the C. 208 

orientalis-derived subgenome of C. bursa-pastoris (i.e. the C. bursa-pastoris B subgenome). 209 

Due to the high sequence similarity (93.4% protein sequence identity at SRK) of the Cg2-2 C. 210 

grandiflora S-haplotype to A. halleri S12 (GenBank accession number KJ772374.1) we 211 
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hereafter term this S-haplotype CgS12. We assessed sequence conservation across the entire 212 

~100 kbp S-locus by aligning S-locus sequences using LASTZ v1.03.54 (Harris, 2007) and 213 

calculating pairwise sequence conservation in 250 bp sliding windows.  214 

 215 

Candidate mutations for the loss of SI in C. orientalis 216 

To identify candidate causal mutations for the loss of SI in C. orientalis, we analyzed 217 

sequence alignments of the two key S-locus genes SRK and SCR, as well as the S-linked U-218 

box gene, which may act as a modifier of the SI response (Liu et al., 2007). Specifically, we 219 

searched for major-effect variants resulting in frameshifts, premature stop codons or non-220 

consensus splice sites, present in sequences from the SC C. orientalis and/or in the SC C. 221 

bursa-pastoris B subgenome, which is derived from C. orientalis (Douglas et al., 2015), but 222 

not in sequences from the same haplogroup found in the SI species C. grandiflora and A. 223 

halleri. For SRK we identified nonsynonymous changes in hypervariable regions important 224 

for SRK specificity (Nishio & Kusaba 2000; Kusaba et al. 1997), based on a protein sequence 225 

alignment of Capsella SRK with Brassica rapa SRK9 which represents a different 226 

haplogroup, but whose protein structure and interaction with SCR has been resolved recently 227 

(Ma et al., 2016).  228 

 229 

Bioinformatic processing of RNAseq data and expression of S-locus genes in C. orientalis 230 

 RNAseq data were trimmed with Trimmomatic v.0.36 (Bolger et al. 2014) and reads mapped 231 

using STAR v.2.2.1 (Dobin et al., 2013). For small RNA sequencing, we mapped reads of 232 

length 18-27 nt using STAR v.2.2.1. Expression was quantified as RPKM (number of reads 233 

per kb per million mapped reads; Mortazavi et al., 2008).  234 

To assess whether SRK, SCR and U-box were expressed in C. orientalis flower buds, 235 

we generated RNAseq data from mixed-stage flower buds of two C. orientalis accessions (S1 236 
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Table, Supporting Information) as previously described (Steige et al., 2017). For comparison, 237 

we also generated RNAseq data from leaf samples from the same individuals. Trimmed reads 238 

were mapped to a modified v1.0 reference C. rubella assembly (Slotte et al., 2013), where the 239 

S-locus region (scaffold_7 7523601:7562919) was masked and our S-locus assembly from C. 240 

orientalis Co1719/11 was added. We conducted qualitative RT-PCR with specific primers to 241 

SCR in C. orientalis and C. grandiflora CgS12, to assess the expression of SCR in flower 242 

buds of both C. orientalis accessions, as well as in three C. grandiflora individuals harboring 243 

CgS12 (Methods S1, Supporting Information). 244 

 245 

Assessing the functionality of C. orientalis SCR by interspecific crosses 246 

We performed controlled crosses to verify that C. grandiflora CgS12 conferred SI, and to 247 

assess the functionality of SCR in C. orientalis. To verify functional SI in C. grandiflora 248 

carrying CgS12, we performed a total of 24 manual self-pollinations of four C. grandiflora 249 

individuals carrying the CgS12 S-haplotype. While the identity of the other S-haplotype in 250 

these individuals is unknown and we were unable to identify it using PCR-based screening, 251 

we verified expression of CgSCR12, indicating that the other S-allele is not dominant over 252 

CgS12 at the pollen level. We assessed the success of manual self-pollination of C. orientalis 253 

by performing 6-12 manual self-pollinations of each of three accessions (Table S1, 254 

Supporting Information). To assess whether C. orientalis SCR is functional, we crossed C. 255 

grandiflora harboring CgS12 as a seed parent to C. orientalis as a pollen donor. We 256 

performed a total of 144 crosses of this type, with three different C. orientalis accessions as 257 

pollen donors and six different CgS12-carrying C. grandiflora individuals as seed parents 258 

(Table S1, Supporting Information). If C. orientalis SCR is functional, and provided that 259 

CgS12 SRK is expressed, then we expect this cross to be incompatible, whereas if C. 260 

orientalis SCR is nonfunctional, the cross should be compatible. The reciprocal cross of the 261 
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same individuals was also carried out with the same accessions (total 104 crosses of this 262 

type), to test whether female SI specificity is functional in C. orientalis. Finally, we 263 

performed 12 crosses of C. grandiflora harboring other S-haplotypes to C. grandiflora 264 

harboring CgS12, and 12 to C. orientalis. These crosses are expected to be successful.  265 

We observed pollen tube growth in the pistil 12 hours after pollination. Pistils were 266 

fixed in EtOH: acetic acid 9:1 for > 2 hours, softened in 1N NaOH 60°C for 20 minutes and 267 

stained with 0.01% decolorised aniline blue in 2% solution of K3P04 for 2 hours. Pollen tubes 268 

were visualised by mounting pistils on a microscope slide which was examined under an 269 

epifluorescence microscope (Zeiss Axiovert 200M). We compared the number of pollen tubes 270 

among different types of crosses using a Kruskal-Wallis test. 271 

 272 

The role of small RNA-based dominance modifiers for dominance of SC 273 

To test whether dominant expression of SC could be mediated by small RNA-based 274 

dominance modifiers, we conducted additional sequence and expression analyses, using a 275 

strategy similar to that of Nasrallah et al. (2007). We identified a region in our C. orientalis S-276 

haplotypes with high sequence similarity (91.3%) to the A. halleri S12 small RNA precursor 277 

Ah12mirS3 identified previously (Durand et al., 2014). We generated small RNA and RNA 278 

sequencing data from flower buds of 19 F2s, representing all three S-locus genotypes in our 279 

F2 mapping population (12 heterozygotes, 4 and 3 individuals homozygous for the C. 280 

orientalis or the C. grandiflora S-haplotype, respectively). We quantified expression of 281 

sRNAs in the Ah12mirS3-like sRNA precursor region (hereafter termed ComirS3 sRNAs) and 282 

tested whether ComirS3 sRNAs were expressed specifically in F2s with a C. orientalis S-283 

allele.  284 

To test whether C. grandiflora SCR was repressed in F2s heterozygous at the S-locus 285 

we quantified the expression of C. orientalis and C. grandiflora SCR in our F2s. We mapped 286 
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F2 RNAseq reads from flower buds to a modified C. rubella reference containing both the 287 

Co1719/11 S-haplotype and the C. grandiflora Cg88.15 S-haplotype segregating in our F2 288 

population, and quantified the expression of C. orientalis and C. grandiflora SCR in all three 289 

genotypes, respectively. 290 

To identify targets of ComirS3 small RNAs we took all 18-27 nt ComirS3 sRNAs and 291 

searched for small RNA targets within 1 kb of SCR of the C. grandiflora Cg88.15 S-292 

haplotype. Small RNA targets were identified using a Smith & Waterman algorithm (Smith & 293 

Waterman, 1981) with scoring matrix: match=01, mismatch=-1, gap=-2, G:U wobble=-0.5 as 294 

previously described (Durand et al., 2014). 295 

 296 

Timing of loss of SI in C. orientalis 297 

To assess whether major-effect mutations at the S-locus were fixed in C. orientalis, we 298 

analyzed whole-genome resequencing data from additional C. orientalis accessions, in total 299 

covering 30 accessions from 18 populations and including publicly available C. orientalis 300 

genome resequencing data (Douglas et al., 2015; Huang et al., 2018; Koenig et al., 2019) 301 

(Table S1, Supporting Information). We mapped trimmed data to a C. rubella reference 302 

modified to include the C. orientalis haplotype of accession Co1719/11 using BWA-MEM 303 

(Li, 2013) and used GATK 3.8 (McKenna et al., 2010; DePristo et al., 2011; Van der Auwera 304 

et al., 2013) Unified Genotyper with the option --output_mode 305 

EMIT_ALL_CONFIDENT_SITES to call all sites. We filtered sites following GATK 306 

recommended hard filtering with the following parameters; QD < 2.0 || FS > 60.0 || MQ < 307 

40.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0. We required a minimum read depth 308 

of 15 and a maximum of 200. Finally, we scored the presence or absence of major-effect 309 

mutations at the S-locus in our samples. Because C. orientalis is highly homozygous, SC, and 310 

has low levels of polymorphism genome-wide (Douglas et al., 2015), this approach is 311 
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expected to work well, as long as a C. orientalis S-haplotype is included in the reference 312 

genome.  313 

We used a strategy similar to that in Guo et al. (2009) to estimate a lower and upper 314 

bound of the timing of the loss of SI in C. orientalis. We obtained a lower bound for the 315 

timing of the loss of SI by estimating the time to the most recent common ancestor (TMRCA) 316 

based on full-length C. orientalis and C. bursa-pastoris B S-locus sequences. Genome-wide 317 

haplotype sharing between C. orientalis and the C. bursa-pastoris B subgenome suggests that 318 

the ancestor of C. orientalis that contributed to formation of C. bursa-pastoris was self-319 

compatible (Douglas et al., 2015) and including C. bursa-pastoris B sequences can thus 320 

increase the precision of our estimates. To obtain an upper bound for the timing of the loss of 321 

SI we estimated the TMRCA for C. orientalis, C. bursa-pastoris B and C. grandiflora CgS12.  322 

For analyses of the timing of loss of SI, our final alignment contained 37 S-locus 323 

sequences including the C. grandiflora ancestral S-haplotype (CgS12), 4 C. bursa-pastoris 324 

subgenome B S-haplotypes and S-haplotype data for 32 C. orientalis individuals (Supporting 325 

Information). Sequences were aligned using block alignment using Muscle v.3.8.31 (Edgar 326 

2004) as implemented in AliView v.1.20 (Larsson 2014). The total length of the S-locus 327 

alignment was 33,485 bp, 22,689 bp had indels in at least one sequence, 9,835 sites were 328 

invariant and 876 sites were polymorphic. The alignment was partitioned into coding and 329 

non-coding regions and sites with indels and missing data were pruned in further analysis. 330 

We estimated the timing of the splits between C. grandiflora, C. bursa-pastoris and C. 331 

orientalis using a strict molecular clock in a Bayesian framework in BEAST2 (Bouckaert et 332 

al. 2014). We used a fixed clock rate assuming a mutation rate of 7x10-9 substitutions per site 333 

per generation (Ossowski et al., 2010) and a generation time of one year. We ran both a model 334 

with exponential changes in population size and a model with a constant population size, and 335 

compared models using Akaike’s information criterion through Markov chain Monte Carlo, 336 
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AICM (Baele et al. 2012) (Methods S1, Supporting Information). We ran two chains of 10 337 

millions generations sampled every 1000 generations and checked convergence by visual 338 

inspection of the log-likelihood profile and assuring an effective sample size (ESS) value 339 

above 200. The posterior distribution of trees was used to build a maximum clade credibility 340 

tree and estimate node age and 95% confidence interval using TreeAnnotator (Drummond et 341 

al. 2012).  342 

 343 

Results  344 

SC maps to the S-locus as a dominant trait 345 

We first asked whether loss of SI in C. orientalis maps to the canonical Brassicaceae S-locus. 346 

We therefore generated an F2 mapping population by crossing SC C. orientalis to a SI C. 347 

grandiflora accession. Interspecific F1 individuals were SC, indicating that SC is dominant. 348 

Our F2 mapping population segregated for SC, and we detected a single, significant 349 

(P<0.001) quantitative trait locus (QTL) for this trait, based on 304 F2 individuals genotyped 350 

at 549 markers (Fig. 1a; Fig. S1, Supporting Information). The credible interval for this QTL 351 

includes the S-locus on chromosome 7 (Fig. 1a), and SC was dominant over SI (Fig. 1b). SC 352 

in C. orientalis thus maps as a dominant trait to a region encompassing the S-locus. 353 

 354 

Sequencing the S-haplotype of C. orientalis and a highly similar but functional S-355 

haplotype from C. grandiflora 356 

We next sought to identify candidate causal loss-of-function mutations at the C. orientalis S-357 

locus. For this purpose, we assembled full-length S-haplotype sequences of two C. orientalis 358 

accessions based on long-read sequencing of BACs (Tables S1-S2, Supporting Information). 359 

To facilitate identification of candidate mutations for the loss of SI, it is beneficial to be able 360 

to contrast functional and non-functional S-haplotypes that belong to the same S-haplogroup 361 



 16 

and ancestrally shared the same SI specificity. Here, we identified and sequenced a functional 362 

C. grandiflora S-haplotype (for details, see Materials and Methods), which had 98.3% protein 363 

sequence identity at SRK to that of C. orientalis (Fig. 2a-c, Table S3, Supporting 364 

Information). According to criteria used in outcrossing Arabidopsis species (Castric et al., 365 

2008; Chantha et al., 2013), this C. grandiflora haplotype is expected to represent the same SI 366 

specificity as that of C. orientalis. This C. grandiflora S-haplotype is also similar (93.4% 367 

protein sequence identity at SRK) to the functional Arabidopsis halleri S12 haplotype (Durand 368 

et al., 2014) (Fig. 2a-b, Fig. S2, Supporting Information), and we therefore designate it 369 

CgS12. Sequence similarity between CgS12 and C. orientalis is not limited to SRK, as other 370 

S-linked genes showed the same phylogenetic topology as those for SRK (Fig. 2b), and there 371 

were peaks of sequence conservation between CgS12 and C. orientalis in both genic and 372 

intergenic parts of the S-locus (Fig. 2c). We verified that C. grandiflora individuals with 373 

CgS12 expressed CgSCR12 and were SI by scoring pollen tube germination after controlled 374 

self-pollination (Fig. 3a, Table S4, Fig. S3-S5, Supporting Information).  375 

 376 

A frameshift deletion in the male specificity gene SCR is fixed in C. orientalis 377 

By comparing S-haplotype sequences from C. orientalis (SC) to C. grandiflora CgS12 and A. 378 

halleri S12 (both SI), we identified a single-base frameshift deletion in the SCR coding 379 

sequence of C. orientalis (Fig. 2d). This frameshift is predicted to result in loss of 5 out of 8 380 

conserved cysteine residues essential to the function of SCR (Fig. 2e), likely resulting in loss 381 

of male specificity. To assess whether the deletion was fixed in C. orientalis, as we would 382 

expect for mutations that spread early during the transition to selfing, we analyzed whole-383 

genome resequencing data from additional C. orientalis accessions (S1 Table, Supporting 384 

Information). We found that the SCR frameshift deletion was fixed across 32 samples of C. 385 

orientalis from 18 populations, consistent with expectations if the deletion was fixed in 386 



 17 

association with the loss of SI. The same deletion was found in SCR of the C. bursa-pastoris 387 

B subgenome, which is derived from C. orientalis (Fig. 2d, Fig. 2e). This suggests that C. 388 

orientalis was self-compatible when it contributed to the origin of the allotetraploid C. bursa-389 

pastoris. 390 

In contrast to SCR, we observed no major loss-of-function mutations in C. orientalis 391 

SRK or at the S-linked U-box gene, which may modify the female SI response (Liu et al., 392 

2007). There were two nonsynonymous substitutions in C. orientalis SRK that were likely 393 

located within hypervariable regions of SRK (Fig. S6, Supporting Information). However, 394 

without resolving the detailed protein structure of the CgS12 SRK/SCR complex the exact 395 

consequences of these nonsynonymous changes cannot be determined. Finally, SRK, U-box 396 

and the truncated version of SCR are all expressed in flower buds of C. orientalis (Table S4, 397 

Fig. S5, Supporting Information) and we currently cannot rule out that more subtle changes to 398 

their sequence or expression affect their function. 399 

 400 

Assessment of SI specificity  401 

To assess whether male SI specificity is degenerated in C. orientalis, as we expect if SCR is 402 

nonfunctional, we crossed C. orientalis to C. grandiflora individuals harboring CgS12, which 403 

likely ancestrally shared the same SI specificity (Fig. 2). As expected if the frameshift 404 

deletion impaired the function of SCR, pollen from C. orientalis successfully germinated on 405 

the stigma of C. grandiflora individuals harboring CgS12 (Fig. 3, Fig. S3-S4, Supporting 406 

Information). However, we also found evidence for degeneration of female specificity in C. 407 

orientalis, as pollen from C. grandiflora harboring CgS12 germinated on the C. orientalis 408 

stigma (Fig. 3; Fig. S3-S4, Supporting Information). Similar results were obtained for crosses 409 

with C. orientalis accessions from three different populations (Fig. S4, Supporting 410 

Information). 411 



 18 

 412 

A conserved S-linked sRNA is associated with dominant expression of C. orientalis SCR 413 

Under most circumstances, loss of function mutations are predicted to be recessive, as a single 414 

copy of a functional allele is often sufficient to result in a complete phenotype (Kacser & 415 

Burns, 1981). Here, SC is associated with a frameshift deletion at SCR, yet it is dominant in 416 

our F2s. Hence, we investigated whether the small RNA-based mechanism that governs 417 

dominance hierarchies among S-alleles in Arabidopsis (Durand et al., 2014) could also 418 

explain dominance of SC in our case. Specifically, if the C. orientalis S-haplotype encodes a 419 

trans-acting sRNA that represses expression of C. grandiflora SCR in S-locus heterozygotes, 420 

SC could be dominant even if it is due to a loss of function mutation in C. orientalis SCR.  421 

In A. halleri, the S12 haplotype belongs to the second most dominant class of S-alleles 422 

and harbors an S-linked sRNA-based dominance modifier termed Ah12mirS3 (Durand et al., 423 

2014). In C. orientalis, we found the corresponding mirS3 sRNA precursor region to be 424 

conserved (91.3% sequence identity) (Fig. 4a, Fig. S2, Supporting Information). The region 425 

harboring the mirS3 sRNA precursor was also conserved between C. grandiflora CgS12 and 426 

C. orientalis (Fig. 2c). To assess whether expression of C. orientalis Ah12mirS3-like sRNA 427 

(ComirS3) was associated with repression of the C. grandiflora SCR allele passed on in our 428 

cross through the F1 plant, we sequenced and assembled the C. grandiflora S-haplotype 429 

segregating in our F2 population, and analyzed SCR and sRNA expression in flower buds of 430 

19 F2s representing all three possible S-locus genotypes. We detected expression of ComirS3 431 

sRNAs (Fig. 4a) in F2s harboring the C. orientalis S-haplotype, but not in C. grandiflora S-432 

homozygotes (Fig. 4b). The most abundant ComirS3 sRNA was highly similar to the 433 

Ah12mirS3 sRNA and had a predicted target within the intron of C. grandiflora SCR allele 434 

(Fig. 4c). The sRNA-target affinity was similar to that of functional Arabidopsis dominance 435 

modifiers (Durand et al., 2014; Burghraeve et al., 2018). As expected if ComirS3 sRNAs 436 
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silence C. grandiflora SCR, C. grandiflora SCR was specifically downregulated in S-locus 437 

heterozygotes (Fig. 4d). Our F2 S-locus heterozygotes thus only express the truncated C. 438 

orientalis SCR at detectable levels. These results are consistent with S-linked sRNAs 439 

conferring dominance of the SC C. orientalis S-haplotype through transcriptional silencing of 440 

recessive SCR alleles. 441 

 442 

Timing of loss of SI in C. orientalis 443 

The timing of loss of SI can be estimated based on polymorphism accumulated at the S-locus 444 

after loss of SI (Guo et al., 2009). We analyzed 37 full-length S-locus sequences and 445 

estimated an upper bound for the timing of loss of SI in C. orientalis as the time to the most 446 

recent common ancestor (TMRCA) of C. orientalis, C. bursa-pastoris B and C. grandiflora 447 

CgS12 S-haplotypes. Based on these analyses, we infer an upper bound of the timing loss of 448 

SI in C. orientalis at 2.6 Mya (2.2-2.9 Mya, 95% CI) and a lower bound at 70 kya (50-100 449 

kya, 95% CI) (Fig. 5, Table S5, Supporting Information) under an exponential population size 450 

change model. Very similar estimates were obtained under a constant population size model 451 

and after subsampling the C. orientalis accessions to obtain a scattered sample (S5 Table, 452 

Supporting Information). Our timing estimates thus appear to be robust to sampling strategy 453 

and assumptions regarding population size changes.  454 

 455 

Discussion 456 

Here, we show that loss of SI in C. orientalis maps as a dominant trait to the S-locus. This 457 

result is consistent with the theoretical prediction that S-linked mutations should often 458 

contribute to the loss of SI (Porcher & Lande, 2005). We identify candidate mutations for the 459 

loss of SI, including a frameshift deletion in the male specificity gene SCR. Our finding that 460 

SC is dominant agrees with Haldane's prediction that dominant alleles enjoy a higher fixation 461 
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probability in outcrossers (Haldane 1927). Finally, we identify an sRNA that could be 462 

responsible for dominance of SC and that is conserved between Capsella and Arabidopsis 463 

halleri. 464 

Theory predicts that mutations that disrupt male SI specificity should be more strongly 465 

selected for during the transition to selfing than those that disrupt female SI specificity 466 

(Uyenoyama et al., 2001; Busch & Schoen, 2008; Tsuchimatsu & Shimizu, 2013). Indeed, 467 

mutations that disrupt male SI specificity should have an advantage both when spreading 468 

through seeds and pollen, because they avoid recognition and rejection when they spread 469 

through outcross pollen (Uyenoyama et al., 2001; Busch & Schoen, 2008; Tsuchimatsu & 470 

Shimizu, 2013). In contrast, mutations that disrupt female specificity only have an advantage 471 

over those that disrupt male specificity when there is pollen limitation of seed set, i.e. reduced 472 

reproductive success due to inadequate quantity or quality of pollen (Uyenoyama et al., 2001; 473 

Busch & Schoen, 2008; Tsuchimatsu & Shimizu, 2013). The C. orientalis SCR deletion is 474 

expected to lead to the loss of 5 of 8 conserved cysteine residues in the SCR protein, which 475 

could cause loss of male SI specificity. The SCR deletion was fixed in a broad sample of C. 476 

orientalis, as we would expect if it arose early during the transition to selfing. It was also 477 

found in the allopolyploid C. bursa-pastoris, suggesting that the shift to SC in C. orientalis 478 

predated the origin of C. bursa-pastoris. Through crosses between C. orientalis and C. 479 

grandiflora individuals harboring highly similar S-haplotypes, we confirmed that male SI 480 

specificity was lost in C. orientalis, as the pollen of C. orientalis germinated on the stigma of 481 

individuals harboring the highly similar but functional CgS12 haplotype. However, we cannot 482 

strictly rule out a contribution of S-linked mutations that disrupt female SI specificity to the 483 

loss of SI in C. orientalis, as our controlled crosses indicated that female SI specificity was 484 

also impaired in C. orientalis. We identified two fixed nonsynonymous substitutions in likely 485 

functionally important regions of SRK that might have contributed to the breakdown of 486 
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female SI specificity in C. orientalis. However, without further work it is difficult to predict 487 

the functional consequences of these nonsynonymous substitutions. One scenario that would 488 

be consistent with our crossing results is one where the C. grandiflora CgS12 S-haplotype 489 

represents a different SI specificity than that of C. orientalis. Due to the very high sequence 490 

similarity between these S-haplotypes, we consider this unlikely. Instead, we believe that our 491 

crossing results illustrate a general challenge for studies that aim to identify causal changes 492 

for the loss of SI. Indeed, after SI has been lost, additional mutations that impair the function 493 

of S-locus genes can accumulate without cost, unless there are pleiotropic constraints. 494 

Ancestral reconstruction would be the only way to tease apart the role of these individual 495 

mutations to the breakdown of SI (Tsuchimatsu et al., 2010). 496 

Information on the timing of loss of SI is currently available for less than a handful of 497 

Brassicaceae systems (e.g. Guo et al. 2009; Busch et al. 2011; Tsuchimatsu et al., 2012). 498 

Accurately estimating bounds for the timing of loss of SI is challenging, as it requires 499 

identifying and sequencing shared S-haplotypes in closely related SI and SC species. Here, we 500 

identify shared S-haplotypes in the SI C. grandiflora and the SC C. orientalis. We estimate 501 

that the loss of SI in C. orientalis occurred between 2.6 Mya and 70 kya, based on TMRCA 502 

analyses of full-length S-haplotypes. While our estimates cover a broad range of times, we 503 

argue that the most likely estimate of the timing of loss of SI is probably closer to the upper 504 

bound, 2.6 Mya. For instance, in comparison to the recently derived selfer C. rubella, C. 505 

orientalis has strongly reduced genome-wide polymorphism levels (Douglas et al., 2015; 506 

Koenig et al. 2019), shows increased reproductive isolation through endosperm development 507 

defects in crosses to C. grandiflora (Lafon-Placette et al., 2018), and possibly exhibits a lower 508 

genomic content of transposable elements (Ågren et al., 2014). An older origin of selfing in 509 

C. orientalis than in C. rubella would be compatible with these findings, as selfing is 510 

expected to result in reduced polymorphism genome-wide and affect TE content (Wright et 511 
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al., 2013). While the shift to SC was clearly independent in C. orientalis and C. rubella, 512 

which harbor different S-haplotypes (Fig. 2a), both transitions involved fixation of a single S-513 

haplotype (Guo et al., 2009; Slotte et al., 2012). These scenarios contrast with the situation in 514 

A. thaliana, where multiple S-haplogroups are still segregating (Durvasula et al., 2017; 515 

Tsuchimatsu et al., 2017). Our study thus contributes to an improved understanding of the 516 

timing and mode of loss of SI in a system that is widely used for genomic studies. 517 

Population geneticists have long predicted that dominant beneficial mutations should 518 

have a higher fixation probability than recessive ones (Haldane, 1927), a phenomenon termed 519 

"Haldane's sieve". Our finding that SC is dominant over SI is consistent with this prediction, 520 

and agrees with results for several other wild Brassicaceae species (e.g. L. alabamica; Busch 521 

et al., 2011, A. kamchatica; Tsuchimatsu et al., 2012, C. rubella; Nasrallah et al., 2007; Slotte 522 

et al., 2012). However, not all transitions involve dominant S-haplotypes, and for instance in 523 

A. lyrata, a transition involving a recessive loss of SI has recently been documented (Mable et 524 

al., 2017). Our results further suggest that a small RNA-based mechanism could explain 525 

dominance of SC. If this is the case, dominance of the SC phenotype will depend on the exact 526 

combination of S-alleles and their position in the dominance hierarchy. Interestingly, in both 527 

C. orientalis and C. rubella, SC is linked to relatively dominant S-haplotypes. Taken together, 528 

these findings suggest that dominant SC mutations on average have an advantage over 529 

recessive mutations, at least early during the transition to selfing. Thus, the lower population 530 

frequencies or higher S-linked load (Llaurens et al., 2009) of dominant S-alleles do not 531 

prevent mutations in such alleles from contributing to recurrent loss of SI.  532 
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Figure Legends 785 

 786 

Figure 1. Self-compatibility is dominant and maps to the S-locus.  787 

a. Logarithm of odds (LOD) profile resulting from interval mapping of self-compatibility in 788 

an interspecific Capsella orientalis × Capsella grandiflora F2 population. The dotted and 789 

dashed lines indicates the 1% vs. 5% genome-wide permutation-based significance threshold. 790 

The red vertical line shows the location of the canonical Brassicaceae S-locus. The 1.5-LOD 791 

confidence interval ranges from position 6,241,223 to 8,742,368, whereas the S-locus is 792 

located between positions 7,523,602 and 7,562,919 on chromosome 7. b. Estimated 793 

quantitative trait locus (QTL) additive effect (red line) and dominance deviation (blue line) 794 

across chromosome 7. Light shaded regions indicate standard errors.  795 

 796 

Figure 2. Sequence comparison of full-length S-haplotype sequences results in 797 

identification of a frameshift deletion in Capsella orientalis SCR.  798 

a. Phylogram of SRK sequences, showing the diversity of S-alleles among Brassicaceae and 799 

the close similarity of SRK in the Arabidopsis halleri S12-haplotype to the clade containing 800 

Capsella grandiflora CgS12, Capsella orientalis and Capsella bursa-pastoris (B subgenome) 801 

sequences (marked by a brace). 802 

b. Maximum likelihood gene trees for three S-locus genes: SRK, SCR and U-BOX showing 803 

the relationship between A. halleri S12, C. grandiflora CgS12, two C. orientalis and C. bursa-804 

pastoris (B subgenome) accessions.  805 

c. Plot showing the percentage of sequence similarity (sequence conservation) between C. 806 

grandiflora CgS12 and C.orientalis 1979/09 S-haplotypes. Gene positions are indicated by 807 

grey bars. 808 
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d. Alignment of SCR sequences from A. halleri S12, C. grandiflora CgS12, C. orientalis and 809 

C. bursa-pastoris (B subgenome) S-haplotypes. A frameshift deletion in the coding sequence 810 

(marked by a red arrow) is found in C. orientalis but not in the two SI species A. halleri and 811 

C. grandiflora.  812 

e. Predicted SCR amino acid sequences for A. halleri S12, C. grandiflora CgS12, C. orientalis 813 

and C. bursa-pastoris (B subgenome). The predicted protein sequence of C. orientalis lacks 814 

five conserved cysteine residues (indicated by black arrows and orange boxes). The position 815 

of the frameshift deletion is marked by a red arrow. 816 

 817 

Figure 3. Success of controlled crosses based on pollen tube germination assays. Arrows 818 

point to pollen tubes growing through the style. Scale bars, 200 µm. 819 

a. Self-pollination of Capsella grandiflora carrying CgS12 allele results in no pollen tube 820 

growth (incompatible reaction), demonstrating functional self-incompatibility.  821 

b. Pollination of C. grandiflora carrying CgS12 with pollen from an individual carrying 822 

different S-haplotypes results in pollen tube growth (compatible reaction).  823 

c. Pollination of C. grandiflora carrying CgS12 with pollen from Capsella orientalis results in 824 

pollen tube growth (compatible reaction), demonstrating that C. orientalis SCR is not 825 

functional.  826 

d. Pollination of C. orientalis with pollen from a C. grandiflora carrying CgS12 results in 827 

pollen tube growth (compatible reaction).  828 

 829 

Figure 4. A conserved, S-linked Capsella orientalis sRNA is associated with repression of 830 

Capsella grandiflora SCR in S-locus heterozygotes. 831 

a. Read depth of C. orientalis expresses S-linked small RNAs (sRNAs) homologous to 832 

Arabidopsis halleri S12 Ah12mirS3 in flower buds. The grey box indicates the length of the 833 
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sRNA precursor region and the location of Ah12mirS3 24 bp sRNA with highest expression 834 

in A. halleri S12 is indicated in red. 835 

b. Expression (reads per kilobase of transcript per million mapped reads, RPKM) of 18-27 nt 836 

sRNAs in the Ah12mirS3-like RNA precursor region in flower buds differs between Capsella 837 

orientalis × Capsella grandiflora F2s with different S-locus genotypes (Kruskal-Wallis 838 

χ2=7.830, P=0.012): “Cg/Cg” and “Co/Co” are homozygous for the C. grandiflora or C. 839 

orientalis S-allele respectively,  wheras “Co/Cg” are heterozygous. Only homozygotes or 840 

heterozygotes for the C. orientalis S-allele express sRNAs in the Ah12mirS3-like RNA 841 

precursor region (Dunn's test P<0.01 for both comparisons Cg/Cg vs. Co/Cg and Cg/Cg vs. 842 

Co/Co).  843 

c. mirS3 24-nt small RNA sequences of A. halleri S12 (Ah12mirS3) and C. orientalis 844 

(ComirS3) and the predicted target in C. grandiflora Cg88.15 SCR, located 665 bp from exon 845 

1 and 183 bp from exon 2.  846 

d. Relative expression (RPKM) of C. grandiflora SCR (blue) and C. orientalis SCR 847 

(turquoise) in flower buds of F2 individuals with different S-locus genotypes: “Cg/Cg” and 848 

“Co/Co” are homozygous for the C. grandiflora or C. orientalis S-allele respectively,  wheras 849 

“Co/Cg” are heterozygous. C. grandiflora SCR is repressed in C. grandiflora/C. orientalis 850 

heterozygotes (Kruskal-Wallis χ2(2) = 9.9383, P < 0.01, Dunn´s test Z(2) = 2.25, P = 0.012 851 

for Co/Cg vs Cg/Cg). Values for C. grandiflora are relative to the median RPKM of C. 852 

grandiflora homozygotes, whereas those for C. orientalis SCR are relative to the median 853 

RPKM of C. orientalis homozygotes.  854 

 855 

Figure 5. The timing of loss of self-incompatibility in Capsella orientalis 856 

Phylogenetic tree showing relationships among S-haplotypes and estimates of the timing of 857 

the loss of self-incompatibility (SI) in C. orientalis based on analyses in BEAST2. Green bars 858 
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at nodes indicate 95% credible intervals of the time to the most recent common ancestor 859 

(TMRCA). The TMRCA of C. grandiflora CgS12 and C. orientalis + C. bursa-pastoris B 860 

represents an upper bound for the timing of loss of SI in C. orientalis. Because C. orientalis 861 

was self-compatible when it contributed to the origin of C. bursa-pastoris, the TMRCA of C. 862 

orientalis and C. bursa-pastoris B represents a lower bound on the timing of loss of SI.  863 
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