
PHYSICAL REVIEW RESEARCH 1, 032024(R) (2019)
Rapid Communications

Distributed quantum metrology with a single squeezed-vacuum source
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We propose an interferometric scheme for the estimation of a linear combination with non-negative weights
of an arbitrary number M > 1 of unknown phase delays, distributed across an M-channel linear optical network,
with Heisenberg-limited sensitivity. This is achieved without the need of any sources of photon-number or
entangled states, photon-number-resolving detectors, or auxiliary interferometric channels. Indeed, the proposed
protocol remarkably relies upon a single squeezed-state source, an antisqueezing operation at the interferometer
output, and on-off photodetectors.
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Introduction and motivations. Quantum metrology aims at
harnessing inherently quantum features such as entanglement,
multiphoton interference, and squeezing, to develop novel
quantum enhanced technologies for sensing and imaging be-
yond any classical capabilities [1–8]. More recently, a great
deal of attention has been devoted to distributed quantum
metrology, particularly on the problem of measuring a linear
combination of several unknown phase shifts distributed over
a linear optical network [9–14]. More explicitly, we will
be interested in measuring a linear combination of M > 1
unknown distributed phases. This problem is of interest in a
variety of settings: from the mapping of inhomogeneous mag-
netic fields [15–19], phase imaging [20–25], and quantum-
enhanced nanoscale nuclear magnetic resonance imaging
[9,26,27], to applications in precision clocks [28], geodesy,
and geophysics [29–31].

A novel scheme was recently proposed to tackle distributed
quantum metrology with Heisenberg-limited sensitivity [32].
However, its main limitation is the fact that it relies on two
Fock states with a large number of photons as probes in
order to achieve Heisenberg-limited sensitivity. Schemes to
make high-photon-number Fock states do not currently exist.
Furthermore, it requires a number of auxiliary interferomet-
ric channels up to the number M of unknown distributed
phases, and photon-number-resolving detectors. Therefore,
devising measurement schemes which can exhibit supersen-
sitivity while making use of probe states which are simple to
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produce in the laboratory with current technology is a matter
of great interest.

We overcome these limitations by introducing an interfero-
metric scheme (Fig. 1) which employs only a single squeezed
source and on-off photodetectors. Indeed, squeezed states of
light are a natural candidate for Heisenberg-limited probing
[33–35], on account of their experimental availability with a
high mean photon number and their nonclassical character.
While such states have been largely used to yield super-
sensitivity in the estimation of a single unknown parameter,
their quantum metrological advantage in the case of multiple
distributed parameters has not yet been fully explored [13,14].
Here, we demonstrate how a simple M-channel linear optical
interferometer with only a single squeezed-vacuum source
and on-off photodetectors can achieve Heisenberg-limited
sensitivity in distributed quantum metrology with M unknown
phase delays. Remarkably, such a scheme can be implemented
experimentally with present quantum optical technologies.

The optical interferometer. We describe here in details an
interferometric setup (Fig. 1) able to estimate the combination

ϕ =
M∑

j=1

w jϕ j, (1)

of M unknown phases ϕ j ( j = 1, . . . , M) for any given set of
non-negative weights {w j}M

j=1 [36]. Without loss of generality
we will assume in the following the normalization

∑
j w j =1,

so that the w j’s are probability weights. The general situation
will differ just by an immaterial factor.

The probe light at the input of our interferometer is pre-
pared in the squeezed-vacuum state

|�in〉 = Ŝ1(z)|�〉, (2)

where |�〉 = |0〉1 · · · |0〉M is the vacuum state, Ŝ1(z) =
e

1
2 (z∗â2

1−zâ†2
1 ) is the squeezing operator, â1 is the photonic

annihilation operator of the first mode, and z is the squeezing
parameter. The squeezing parameter z fixes the mean number
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FIG. 1. Interferometric setup with only a single squeezed-
vacuum source for the Heisenberg-limited estimation of the linear
combination of unknown phases ϕi, with i = 1, . . . , M, as in Eq. (1).
The linear optical networks represented by Û , Û † are set up in
such a way as to satisfy Eq. (5). The operators Ŝ(z), Ŝ†(z) represent
squeezing and antisqueezing operations, respectively.

of input photons 〈N̂〉 = 〈�in|N̂ |�in〉, with N̂ = ∑
j â†

j â j , by

the relation 〈N̂〉 = N̄ , where

N̄ = sinh2(|z|). (3)

The probe travels through the first linear optical trans-
formation, described by the unitary operator Û through the
equation

Û †âiÛ =
M∑

j=1

Ui j â j, (4)

where U is an M × M unitary matrix associated with the
transition amplitudes from the channel j to the channel i, with
i, j = 1, . . . , M. We set these amplitudes to

U j1 = √
w j, (5)

where j = 1, . . . , M and the wi’s are the weights of Eq. (1).
This can always be achieved with an appropriate combination
of beam splitters [37]. More importantly, this step enables the
estimation of ϕ by making the output measurement explicitly
dependent on it [see Eq. (12) later on], as well as creating
useful entanglement [32], distributed across all channels con-
taining the phase delays ϕ1, . . . , ϕM .

After the linear optical transformation Û the probe under-
goes phase shifts ϕ1, . . . , ϕM through the respective channels,
and finally evolves through the inverse linear optical transfor-
mation Û †. Reversing the linear optical transformation will
allow us to effectively project the output state onto the input
state (see below). Thus, given the generator of the phase shifts,

Ĝ =
M∑

j=1

ϕ j â†
j â j, (6)

the state at the output of our interferometer is

|�out〉 = Û †e−iĜÛ |�in〉. (7)

Heisenberg-limited estimation. We now demonstrate
Heisenberg-limited sensitivity [in Eq. (16)] by means of the
observable

Ô = |�in〉〈�in|, (8)

associated with the projection of the output state over the
input state, i.e., to the probability that the probe leaves the
interferometer with its state unaltered. Since the expectation
value of Ô is

〈Ô〉out = 〈�out|Ô|�out〉
= |〈�in|Û †e−iĜÛ |�in〉|2
= |〈�|Ŝ†

1 (z)|�out〉|2, (9)

the measurement of Ô is equivalent to projecting onto the vac-
uum |�〉 after the action of an antisqueezing operation on the
first channel, described by Ŝ†

1 (z). This can be experimentally
achieved, for instance, by retroreflecting the down-converted
photons onto the crystal generating the original squeezed light
[38–42], and then using on-off photodetectors.

Since 〈Ô〉out = |〈�in|�out〉|2 is the probability of the out-
put state to coincide with the input state, if the phases
are small, the total interferometric operator should be close
to the identity, and therefore 〈Ô〉out should be close to
one. More precisely, since −|ϕ|maxN̂ � Ĝ � |ϕ|maxN̂ , with
|ϕ|max = maxi |ϕi|, and the interferometer preserves the total
number of photons, if

|ϕ|max
〈
N̂

〉 � 1, (10)

we can perform an expansion of 〈Ô〉out in powers of Ĝ.
By using the notation 〈Ĝm〉U for the expectation value

of the operator Ĝm with m = 1, 2 taken at the state |�U 〉 =
Û |�in〉, and �G2

U = 〈Ĝ2〉U − 〈Ĝ〉2
U , for the variance of Ĝ, we

obtain

〈Ô〉out = |〈e−iĜ〉U |2 � ∣∣〈1 − iĜ − 1
2 Ĝ2

〉
U

∣∣2

� 1 − �G2
U , (11)

up to fourth-order terms (see the first section of the Supple-
mental Material [43]).

By using Eq. (6) and the canonical commutation relations
(see the second section of the Supplemental Material [43]), we
obtain that the exact expression for the variance of Ĝ depends
on ϕ in Eq. (1), and on ϕ2 = ∑

j w jϕ
2
j as

�G2
U = ϕ2(〈N̂2〉 − 〈N̂〉2) + (ϕ2 − ϕ2)〈N̂〉, (12)

where 〈N̂2〉 = 〈�in|N̂2|�in〉. The variance of Ĝ is made of
a contribution from number fluctuations and a contribution
from the fluctuations of the phases ϕ j with respect to the
weights w j .

This result is valid for any (not necessarily Gaussian) M-
boson state |�in〉 with all modes but the first in the vacuum. In
our case, since the first mode is in a squeezed-vacuum state,
its photon-number statistics is super-Poissonian [44], with the
mean photon number 〈N̂〉 = N̄ given by (3) and a variance

〈N̂2〉 − 〈N̂〉2 = 2N̄ (N̄ + 1), (13)

which scales as N̄2. This scaling is unlike a coherent state
which has a Poissonian photon-number statistics with vari-
ance equal to the mean 〈N̂〉. As we will see, this is an essential
ingredient for obtaining a Heisenberg-limited sensitivity.

For large N̄ one gets �G2
U � 2N̄2ϕ2, from which the

expectation value of our observable (11) reads

〈Ô〉out � 1 − 2N̄2ϕ2, (14)
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FIG. 2. Estimation of the linear combination two unknown
phases ϕ1, ϕ2 with weights w1, w2. The interferometric scheme in
Fig. 1 reduces to a Mach-Zehnder interferometer, with unbalanced
beam splitters with R/T = w1/w2, where R is the reflectivity and T
is the transmittivity.

and differs from 1 by a small quantity, as expected. Indeed,
we are in the regime of large N̄ and small ϕ, such that |ϕ|N̄ �
|ϕ|maxN̄ is small, in accordance with Eq. (10).

The sensitivity in the estimation of ϕ is obtained by the
error propagation formula [7]

δϕ2 = 〈Ô2〉out − 〈Ô〉2
out(

d
dq 〈Ô〉out

)2 . (15)

By using the fact that Ô = Ô2 is a projection, and by virtue of
Eq. (14), we easily get

δϕ2 � 1

8N̄2
, (16)

i.e., the sensitivity scales at the Heisenberg limit.
Example. Let us consider the M = 2 case, i.e., we wish to

estimate

ϕ = w1ϕ1 + w2ϕ2, (17)

in a two-mode interferometer, for assigned weights w1,

w2 � 0, w1 + w2 = 1. One possible choice for U which sat-
isfies Eq. (5) is

U =
(√

w1
√

w2√
w2 −√

w1

)
. (18)

This is just the matrix describing a beam splitter of reflectivity
R = w1 and transmittivity T = w2, therefore the interfero-
metric setup is simply that of a Mach-Zehnder interferometer
(see Fig. 2). Remarkably, here both phases ϕ1 and ϕ2 are
unknown, differently from previous proposals where only one
parameter is unknown [1,45].

Even more interestingly, the scheme in Fig. 2 is sensitive
to the sum, rather than the difference, of the phases ϕ1 and
ϕ2 with positive weights w1 and w2, respectively. To see how
this is possible, let us set w1 = w2 = 1/2 for simplicity, and
let us consider the optical unitary transformation describing
the balanced Mach-Zehnder,

ÛMZ = e
i
2 (ϕ1−ϕ2 )Ĵy e− i

2 (ϕ1+ϕ2 )N̂ , (19)

where Ĵy = − i
2 (â†

1â2 − â1â†
2) [2]. As we can see, the output

state |�out〉 = ÛMZ|�in〉 does depend, in general, on both ϕ1

and ϕ2, however, the information on the sum of the phases can

be “washed out” by the choice of the measurement protocol.
Indeed, if |�in〉 is an eigenstate of the number operator N̂ ,
|�out〉 depends only on the relative phase ϕ1 − ϕ2, because
the second exponential in Eq. (19) gives rise to a global
complex phase, and the information on ϕ = (ϕ1 + ϕ2)/2 is
completely lost. Furthermore, if one measures an observable
Ô which commutes with N̂ , then 〈Ô〉out, as well as all the
higher moments 〈Ôk〉out [2], will again depend on ϕ1 − ϕ2

only, since Û †
MZ Ô ÛMZ = e− i

2 (ϕ1−ϕ2 )Ĵy Ô e
i
2 (ϕ1−ϕ2 )Ĵy .

Discussion. We have shown how squeezed light can be
used to estimate an arbitrary superposition of phases with non-
negative weights. Our protocol can overcome the limitations
of Ref. [32], most notably we can achieve the Heisenberg
limit with a single squeezed state rather than two Fock states.
Futhermore, our protocol does not necessitate the use of aux-
iliary channels nor photon-number-resolving detectors. The
interferometric setup is easily realizable for any set of weights
by using only beam splitters and phase shifters [37]. The
initially separable input state acquires entanglement across
the various channels where the phase shifts are distributed
owing to the linear optical network. The squeezed source
can be produced in a number of ways, including sponta-
neous parametric down-conversion and four-wave mixing.
Antisqueezing has already been achieved with high efficiency
[38–42] by retroreflecting the down-converted photons and
the pump back onto the crystal. We would like to mention
that it is also possible to have, instead of the antisqueezer
Ŝ†(z) = Ŝ(−z), an output squeezer Ŝ(z′) where |z′| 	= |z|, but
z and z′ have opposite complex phases. Analysis of this sort
of interferometer protocol is beyond the scope of this Rapid
Communication. Remarkably, given the parameter of the first
squeezer, increasing the parameter of the second one can
compensate for detection losses [33]. A final comment is
in order. We have shown that by a simply implementable
setup, with a single-mode squeezed state and on-off detectors,
one can attain Heisenberg-limited sensitivity δϕ ∝ 1/N̄ in
the presence of an arbitrary number of unknown phases. A
detailed analysis of the quantum Fisher information matrix
and of the quantum Cramér-Rao bound—that will be deferred
to a more technical publication in order not to obscure the
main point of the work—can reveal what is the optimal pref-
actor and whether it is attained already by our simple setup.
In conclusion, our protocol can achieve Heisenberg-limited
sensitivity for distributed quantum metrology while being
well within the realm of current quantum optical technologies.
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