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Abstract

Multi-view and ensemble clustering methods have been receiving considerable attention in exploiting multiple fea-
tures of data. However, both of these methods have their own set of limitations. Specifically, the performance of
multi-view clustering may degrade due to the conflict between heterogeneous features, while ensemble clustering re-
lies heavily on the quality of basic clusterings since it discovers the final clustering partition without considering the
original feature structures of the source data. In this study, we propose a novel clustering scheme called synergetic
information bottleneck (SIB) for joint multi-view and ensemble clustering. First, the proposed SIB utilizes multiple
original features to characterize data information from different views while exploiting the basic clusterings to relieve
the conflict of heterogeneous features. Second, the SIB generally formulates the problem of joint multi-view and
ensemble clustering as a function of mutual information maximization, in which the relatedness between the original
features and auxiliary basic clusterings is maximally preserved with respect to the final clustering partition. Finally, to
optimize the objective function of SIB, a novel “draw-and-merge” optimization method is proposed. In addition, we
prove that this novel optimization method can ensure that the objective function of SIB converges to a stable optimal
in a finite number of iterations. Extensive experiments conducted on several practical tasks demonstrate that the SIB
outperforms the state-of-the-art multi-view and ensemble clustering methods.
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1. Introduction

In various applications, data records are usually represented by various feature descriptors [1]. For instance, a
piece of news can be translated into multiple languages; objects in images can be characterized by shape, colour and
texture features; and human actions in videos can usually be clarified using oriented gradient, optical flow and motion
boundary features. Each singular feature can describe the data information from a certain viewpoint. However, the5

use of a singular feature does not lead to consistently satisfactory performance on all practical tasks due to the biases
of each feature. Therefore, it has become popular to develop learning algorithms to automatically integrate multiple
features.

In recent times, multi-view clustering (MVC) and ensemble clustering (EC) have been receiving considerable
attention in exploiting multiple features of data. Both methods intend to improve the quality of the final clustering10

partition by integrating the multiple features of the same input data. Specifically, MVC methods [2, 3, 4, 5, 6, 7, 8]
aim to group the data into different categories based on the relevant information from multiple features, wherein each
feature can be regarded as one “view” to observe an data object. It is noteworthy that the multi-view in this study
indicates multiple features rather than multiple modalities. To avoid ambiguity, we define the terms multi-view as
follows:15

Definition 1. Suppose there exists a data collection X and its multiple features F1, F2, · · · , FN . We define the term
multi-view to pertain to F1, F2, · · · , FN since these features can describe N different aspects of the data characteris-
tics.
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Figure 1: An illustration of the SIB method. Given an unlabelled data collection {x1, · · · , xm}, SIB learns the pattern categories {t1, · · · , tM} from
multiple feature variables Y1, . . . ,Yk while considering various auxiliary clustering {C1, · · · ,Ch}. The complementary information between multiple
feature variables and basic clusterings can be preserved via the information bottleneck. (Best viewed in colour)

The existing MVC approaches can be divided into two categories, namely, function-based and subspace-based
methods. The function-based methods [3, 4, 5, 7, 8] make use of certain global objective functions to optimize the20

cluster structure shared by multiple views. In contrast, subspace-based methods [2, 6] first project multi-view data
into a common lower dimensional subspace and later exploit certain clustering techniques to discover the optimal
data partition based on the common subspace. However, both types of MVC methods directly take multiple features
of the raw data as input views. It is difficult to bridge the distributional gap among multiple heterogeneous features
by simply combining them. For instance, scale invariant feature transform (SIFT), three patch local binary patterns25

(TPLBP) and colour attention (CA) features are heterogeneous to each other [9, 10], since they describe shape, texture
and colour characteristics of images. In addition, the feature representations of data are often described using high-
dimensional vectors, and the problem of the dimensionality curse needs to be overcome when dealing with multiple
features simultaneously.

Ensemble clustering (EC) [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], also known as consensus clustering, intends30

to combine multiple basic clusterings into a potentially better and more robust clustering partition, where each set
of basic clusterings can be generated using one type of feature representation. EC methods integrate multiple basic
clusterings into a consensus one without accessing the raw data features. Thus, this approach inevitably has the ability
of leveraging complementary information from heterogeneous features [18]. In general, EC methods can be roughly
divided into two categories, i.e., those with implicit objectives and explicit objectives. The first category involves35

directly adopting some heuristics to determine approximate solutions, such as the graph model [11, 12] and the co-
association matrix [13, 17]. The other category involves employing a utility function to measure the similarity among
basic partitions and the consensus one, e.g., non-negative matrix factorization [14] and k-means-like algorithm [18].
However, ensemble clustering yields the final clustering according to only the known partitions, while ignoring the
original feature structures of the data. In other words, the quality of the final partition relies heavily on the basic40

clusterings, which means that the performance of the ensemble clustering is always sensitive to the basic clusterings.
In this study, we propose a novel clustering scheme called the synergetic information bottleneck (SIB) for joint

multi-view and ensemble clustering. SIB aims to find the final clustering partition by considering multiple original
features and auxiliary basic clusterings simultaneously. The original features characterize the data information from
different views, while the basic clusterings clarify the data information from heterogeneous features. Specifically,45

SIB generally formulates the considered problem as a function of mutual information maximization. In this objective
function, the information filtered from the original features and auxiliary basic clusterings is maximally preserved
through a “bottleneck” with respect to the final clustering partition (see Fig. 1). Additionally, to optimize the objective
function of the SIB algorithm, a novel draw-and-merge optimization method is proposed, which ensures the conver-
gence of the objective function of the SIB. The results of performed experiments demonstrate the effectiveness of the50

SIB algorithm when applied to the tasks of publication and multilingual corpus analysis, object category discovery in
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images and unsupervised human action categorization in videos. The main contributions of this study correspond to
the following four aspects:

• A novel clustering scheme called the synergetic information bottleneck (SIB) is proposed, which can cope with
the overreliance of ensemble clustering on basic clusterings and mitigate the conflict between heterogeneous55

features in multi-view clustering.

• An extensional measurement based on mutual information is proposed to capture the relatedness between mul-
tiple original feature variables and auxiliary basic clusterings, which is a general approach and can be beneficial
to many other related fields, such as cross-domain adaptation, transfer learning, multi-task learning and alterna-
tive cluster analysis.60

• In the SIB, to realize the optimization of mutual information maximization, a novel sequential “draw-and-
merge” solution is proposed to update the data partition. Further, we prove that this novel optimization method
can ensure that the objective function of the SIB converges to a stable optimal in a finite number of iterations.

• The results of experiments performed involving several challenging tasks, including publication and multilin-
gual corpus analysis, object category discovery in images and unsupervised human action categorization in65

videos, demonstrate that the proposed SIB achieves better results than the existing state-of-the-art clustering
methods.

The remainder of this paper is organized as follows. In Section 2, the related work is introduced. In Section 3, we
elaborate the formulation of the SIB in detail. The optimization procedure is described in Section 4. The experimental
settings and comparison results pertaining to several practical tasks are reported and analysed in Section 5. Finally,70

Section 6 presents the conclusions of the study.

2. Related Work

2.1. Multi-view Clustering
We briefly introduce the related multi-view clustering methods [22] in terms of integrating information from

multiple views. The early approaches involved integrating multiple information from different views by constructing75

a similarity matrix among them. For instance, Cai et al. [9] constructed a graph Laplacian matrix to integrate different
models by treating each view as one model. Wang et al. [5] proposed that a universal feature embedding of all
views should be generated, with the unary embedding cost and pairwise disagreement cost minimized using minimax
optimization. Furthermore, co-training is an interesting approach for realizing multi-view clustering. Kumar et al. [3,
4] extended co-training and co-regularization to a multi-view clustering scenario, which could search for clusterings80

that are consistent across views. Another type of MVC method is the subspace-based approach, which assumes
that the input views are generated from a latent view and attempt to obtain a latent subspace shared by multiple
views. For example, Chaudhuri et al. [2] utilized the canonical correlation analysis (CCA) to project the data in each
view to a lower-dimensional subspace. Cao et al. [6] extended subspace clustering into the multi-view domain and
utilized the Hilbert-Schmidt independence criterion (HSIC) as a diversity term to explore the complementarity of85

multi-view representations. Some other multi-view clustering approaches, such as minimax optimization [5], belief
propagation [7] and kernel spectral clustering [8], also obtained promising results. However, the performance of MVC
has always been limited by the conflict between heterogeneous features.

2.2. Ensemble Clustering
In the past decades, a variety of ensemble clustering methods have been proposed. Strehl et al. [11] developed90

three graph-based algorithms, which solved the cluster ensemble by defining a mutual information-based objective
function that enabled automatic selection of the best solution. Following this approach, Fern et al. [12] developed
a bipartite graph to improve the clustering quality. Another class of ensemble clustering is based on the similarity
matrix. For instance, Fred et al. [13] explored the concept of evidence accumulation clustering, which summarized
the information of basic clusterings into a co-association matrix. Zhou et al. [19] constructed a connective matrix of95

any two instances belonging to the same class in which the Kullback-Leibler divergence was utilized as the consensus
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measurement. It is worth mentioning that tremendous research efforts have been devoted to constructing global
objective functions for ensemble clustering. For example, Wu et al. [18] established a general framework of k-means-
based ensemble clustering in which the utility function was derived from a continuously differentiable convex function.
In addition, other interesting researches exist for ensemble clustering, such as the link-based cluster ensemble [15] and100

Bayesian ensemble [16]. However, all the ensemble clustering methods mentioned above generate the final clustering
according to only the known partitions without considering the original feature structures of the data, which makes
the performance of the ensemble clustering sensitive to the basic clusterings.

Recently, several studies have focused on solving MVC by employing an ensemble clustering approach [23,
24, 25, 26] in which first the basic clusterings for each view are generated individually by multi-view clustering105

algorithms, and next, a consensus partition among all the basic clusterings is built by ensemble clustering algorithms.
Thus, these ensemble clustering approaches for solving MVC are also limited to the quality of basic clusterings. In
this study, rather than utilizing ensemble clustering to solve multi-view data analysis, we focus on performing MVC
and EC simultaneously under the constraint of the information bottleneck framework in this study, which maximally
preserves the information filtered from the original features and auxiliary basic clusterings through a “bottleneck”110

with respect to the final clustering partition.

2.3. Information Bottleneck
The information bottleneck (IB) [27] is an unsupervised model independent data organization technique. To make

this paper more self-contained, we summarize it from the perspective of its multivariate extension. Given a set of
random variables X = {X1, · · · , Xn}, the multivariate IB [28] aims to find a set of partitions T = {T1, · · · ,Tk} by115

searching for the distribution q(T|X), where X is compressed to T as much as possible. The multivariate IB method
utilizes two Bayesian networks with graph Gin and Gout to denote the systems of clusters and what information should
be maintained. The graph Gin is defined over X∪T, and it defines a distribution q(X,T) = q(T|X)p(X), which specifies
the compression relationships between X and T. The other graph Gout is also defined over X ∪ T, and it specifies the
relevant information that T is expected to be able to preserve. The multivariate IB utilizes multi-in f ormation to120

calculate the information between multiple variables in these two networks. The multi-information of X is defined as
follows:

I(X) = DKL[p(X1, · · · , Xn)||p(X1), · · · , p(Xn)], (1)

where DKL is the Kullback-Leibler divergence [29]. The multivariate IB is suggested to minimize the function

Lmin(q(T|X)) = IGin (X,T) − β · IGout (X,T), (2)

where IG is the multi-information concerning a Bayesian network structure G over X ∼ p(X), which is defined as
follows:125

IG(X) =
∑

i

I(Xi; PaG
Xi

), (3)

where PaG
Xi

is the set of parents of Xi, and I(Xi,PaG
Xi

) is the mutual information between Xi and its parents PaG
Xi

.
The relationship between data compression and information preservation in the original IB is shown in Fig. 2. We

can obtain IGin = I(X; T ) + I(X; Y) and IGout = I(T ; X) + I(T ; Y). IB has demonstrated its superiority in many multi-
variate problems such as multi-view learning [1], multi-feature analysis [30] and multi-task learning [31]. Recently,
IB theory has been applied to the ensemble clustering method [32]. However, [32] focused only on the ensemble set-130

ting, while the proposed SIB adopts a new objective function and optimization method for the task of joint multi-view
and ensemble clustering. In addition, several researchers have attempted [33, 34, 35] to deal with multiple variables
by using the IB method. Since the IB originates from the rate-distortion theory, it is natural to treat multiple variables
as different information sources for the input of the IB method. To the best of our knowledge, the present study is the
first work to integrate multi-view and ensemble clustering together under the constraint of the IB principle.135

3. Synergetic Information Bottleneck for Joint Multi-view and Ensemble Clustering

In this section, we elaborate on the proposed synergetic information bottleneck (SIB) method. First, we define the
problem of joint multi-view and ensemble clustering via the SIB method. Next, the objective function of the SIB is
presented in detail.
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Figure 2: Information bottleneck method. (a) The Bayesian network Gin expresses the compression from X to T , while Y characterizes the
relevant information concerning X. (b) The Bayesian network Gout specifies the systems of clusters T and the information terms corresponding to
the feature variable Y that should be maintained.

3.1. Problem Formulation140

Let X = {x1, x2, . . . , xm} denote an unlabeled data set that can be partitioned into different categories or clusters,
where m is the number of data elements. For the data representation, various types of feature descriptors are available
to depict different aspects of the source data, such as multiple translations in multilingual corpus; local shape, colour,
texture information in images; and oriented gradient, optical flow, and motion boundary features in videos. We use
discrete random variables F1, . . . , Fk+h (k, h ≥ 1) to denote k + h types of features. First, the k + h feature variables145

are divided into two parts. One part with k original feature variables Y1, . . . ,Yk is utilized to characterize the data
information from different views, while the remaining h feature variables are adopted to generate multiple basic
clusterings C1, . . . ,Ch of the source data. In particular, the i-th original feature variable Yi takes values from one
feature source Yi = {yi

1, y
i
2, . . . , y

i
d} (1 ≤ i ≤ k), which characterizes the source data X from the i-th view. The j-th

clustering C j (1 ≤ i ≤ h) is the clustering (cluster assignment) constructed using the j-th features of the remaining h150

feature variables. Thus, the goal of the SIB method is to learn an assignment q(T |X) from X to its cluster partition T
by considering the multiple original features Y1, . . . ,Yk and auxiliary basic clusterings C1, . . . ,Ch simultaneously.

3.2. Objective Function of SIB

In this section, we define the objective function of the proposed SIB, which can learn the cluster structures hidden
in source data by performing multi-view and ensemble clustering simultaneously. The SIB treats the clustering proce-155

dure as a process of data compression. Given the original feature variables Y1, . . . ,Yk and basic clusterings C1, . . . ,Ch,
SIB aims to compress the source random variable X to its compressed representation T as much as possible, while the
compressed variable T ought to maximally preserve the relevant information with the original feature variables and
auxiliary basic clusterings. Here, we utilize two Bayesian networks Gin and Gout to denote the systems of clusters and
the relevant information that should be preserved. As shown in Fig. 3, the SIB model consists of two graphs: Gin data160

compression and Gout information preservation. In the first graph, the source data collection X is required to be com-
pressed into its compressed variable T . In the second graph, the compressed variable T ought to maximally preserve
the information concerning the multiple original feature variables and basic clusterings. The amount of information
in data compression and information preservation can be defined as follows:

IGin = I(T ; X)

IGout =

k∑
i=1

I(T ; Yi) +

h∑
j=1

I(T ; C j).
(4)

According to function (2) of the multivariate IB, the SIB algorithm can be generally formulated as follows:165

Lmin[q(T |X)] = IGin − β · IGout =

I(X; T ) − β · [
k∑

i=1

I(T ; Yi) +

h∑
j=1

I(T ; C j)],
(5)
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Figure 3: Synergetic Information Bottleneck method. (a) The Bayasian network Gin shows the compression from source variable X to its com-
pressed representation T . Y1, . . . ,Yk denotes the multiple relevant feature variables. C1, . . . ,Ch are multiple auxiliary basic clusterings constructed
by the remaining h original features. (b) The Baysian network Gout implies that the compressed variable T should preserve the information with
respect to original feature variables Y1, . . . ,Yk and auxiliary basic clusterings C1, . . . ,Ch.

where I(X; T ) is the mutual information measuring the compactness of X to its compressed representation T . The
notion

∑k
i=1 I(T ; Yi) measures the amount of information that variable T maintains about the original features, while∑h

j=1 I(T ; C j) measures the information concerning the basic clusterings C1, . . . ,Ch that is contained in variable T .
β strikes a balance between the compression in Gin and the relevant information preservation in Gout. For the con-
venience of optimization, we divide both sides of Equation (5) by −β and obtain the following objective function170

Lmax[q(T |X)] = IGout − β−1 · IGin =

k∑
i=1

I(T ; Yi) +

h∑
j=1

I(T ; C j) − β−1 · I(X; T ).
(6)

It can be observed that the remaining task of the SIB is to maximize the objective function (6). To ensure the
convergence of this function, we present a sequential information-theoretic solution, which always performs better
than agglomerative methods do. In this study, we consider the hard clustering manner, which means the value of
q(T |X) is either 0 or 1.175

4. Optimization Method

In this section, we propose a novel draw-and-merge optimization method to solve the objective function of the
SIB. First, the draw-and-merge procedure, which ensures that the SIB algorithm converges into an optimal solution, is
presented. Next, the relatedness measurement between the original feature variables and the existing basic clusterings
is given. Finally, the algorithm and its relevant analyses, such as convergence and complexity, are introduced.180

4.1. Draw-and-Merge Procedure

To solve the problem of maximizing objective function (6), we propose a sequential information-theoretic op-
timization, which is essentially the “draw-and-merge” procedure. The draw-and-merge method first stochastically
partitions the source variable X into u clusters. At the following iterative step, each x ∈ X is drawn from its original
category told and treated as a new cluster {x}. Thus, the number of clusters becomes u + 1. The singleton cluster {x}185

should be merged into tnew to realize the information loss minimization. In other words, the sequential information-
theoretic optimization method must increase the value of function (6) of the SIB algorithm.

In the draw-and-merge procedure, we attempt to merge the singleton cluster {x} into an optimal cluster tnew at each
step. For clarity, let Lbe f and La f t respectively denote the value of function (6) before and after the single x is drawn
from its original category. Let Lnew be the value of function (6) after the single x is merged into a certain cluster190

tnew. In the merge step, selecting an optimal cluster tnew means choosing the minimum value change between La f t and
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Lnew. Here, the value change of the objective function (6) in one draw-and-merge procedure is called “merger cost”,
i.e., dL = La f t − Lnew, which is defined as follows according to function (6):

dL = La f t − Lnew

=

k∑
i=1

[I(T a f t; Yi) − I(T new; Yi)] +

h∑
j=1

[I(T a f t; C j) − I(T new; C j)] − β−1 · [I(T a f t; X) − I(T new; X)]

=

k∑
i=1

∆Ii
view +

h∑
j=1

∆I j
clustering − β

−1 · ∆Icom

(7)

To maximize the value of objective function (6), we merge {x} into tnew such that tnew = arg min dL. Next, we
define the following proposition:195

Proposition 1. Let {x} be a singleton cluster, t be the cluster that {x} will be merged into and tnew be the new cluster
after the merging , i.e., {{x}, t} ⇒ tnew; we have

p(tnew) = p(x) + p(t)

p(Yi|tnew) =
p(x)

p(tnew)
p(Yi|x) +

p(t)
p(tnew)

p(Yi|t),
(8)

where 1 ≤ i ≤ k.

Now, let ∆Iview be the value change in objective function (6) caused by the I(Yi; T ) term. Suppose {x} is merged
into the cluster t to generate a new cluster t̃, i.e. {{x}, t} ⇒ t̃,

∆Ii
view = I(T a f t; Yi) − I(T new; Yi)

= p(t)
∑

y

p(yi|t) log
p(yi|t)
p(yi)

+ p(x)
∑

yi

p(yi|x) log
p(yi|x)
p(yi)

− p(̃t)
∑

yi

p(yi|tnew) log
p(yi|tnew)

p(yi)
.

Using Proposition 1, the value change ∆Ii
view can be derived as follows:

∆Ii
view = p(t)

∑
yi

p(yi|t) log
p(yi|t)
p(yi)

+

p(x)
∑

y

p(yi|x) log
p(yi|x)
p(yi)

−
∑

yi

p(t)p(yi|t) log
p(yi|tnew)

p(yi)
−

∑
yi

p(x)p(yi|x) log
p(yi|tnew)

p(yi)

= p(t)
∑

yi

p(yi|t) log
p(yi|t)

p(yi|tnew)
+

p(x)
∑

yi

p(yi|x) log
p(yi|x)

p(yi|tnew)

= p(t)DKL[p(yi|t)||p(yi|tnew)]
+ p(x)DKL[p(yi|x)||p(yi|tnew)]
= [p(t) + p(x)]JS∏[p(yi|t), p(yi|x)],

where JS∏ is the Jensen-S hannon (JS ) divergence [29] used to measure the similarity between two probability
distributions,

∏
= {

p(x)
p(x)+p(t) ,

p(t)
p(x)+p(t) }. We can consider that ∆Ii

view ≥ 0 since JS∏ ≥ 0.200
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Algorithm 1 SIB Algorithm
1: Input: Joint distributions p(X,Y1), · · · , p(X,Yk); basic clusterings C1, . . . ,Ch; balance parameters β; number of

clusters u.
2: Output: Final clustering partition T of X.
3: Initialize: Divide X into M clusters stochastically;
4: repeat
5: for all x ∈ X do
6: Draw: Draw x from its original category t(x) and treat it as a singleton cluster {x};
7: Merger cost calculation:

For singleton cluster {x}, compute the merger costs dL according to Equation (7);
8: Merge: Merge the single x into an optimal cluster tnew such that tnew = arg mint∈T dL;
9: end for

10: until Convergence

Similarly, we can obtain the value change ∆Icom in objective function (6) caused by the I(X; T ) term as follows:

∆Icom = I(T a f t; X) − I(T new; X) =

[p(x) + p(t)]JS Π[p(x), p(x|t)].
(9)

In this study, we employ mutual information to measure the relatedness between feature variables and basic clus-
terings. Let Ci be the i-th existing basic clustering. The value change caused by I(T ; C j) in function (6) can be
calculated as follows:

∆I j
clustering = I(T a f t; C j) − I(T new; C j). (10)

In the next section, we explain the detailed measurement of the relatedness between the multiple feature variables205

and various auxiliary basic clusterings.

4.2. Relatedness Measurement
In the SIB framework, we intend to find the hidden cluster structure that remains in the source data by incorporating

multiple feature variables and various complementary clusterings. Therefore, the relatedness measurement between
the feature variables and basic clusterings is one key issue in SIB. The mutual information is an effective measurement210

to quantify how much “information” is contained in a variable about another one, and its effectiveness has been
verified in various tasks, such as dual spectral clustering [36] and non-redundant clustering [37]. However, due to
the heterogeneous structure of the feature variables and basic clusterings, the mutual information cannot be applied
directly. We next describe the extensional calculation in detail.

In SIB, k + h discrete random variables F1, . . . , Fk+h are available to represent k + h types of features of the source215

data. We divide the k + h discrete random variables into two parts: One part with k variables is treated as feature
variables Y1, . . . ,Yk; next, the remaining h features are utilized to construct multiple basic clusterings C1, . . . ,Ch of
the source data. In the SIB framework, the draw-and-merge optimization is proposed to learn an optimal representation
T from both the original feature variables and basic clusterings, which is an iterative procedure. In the SIB iteration
involving feature variables, we use T mid = {tmid

1 , tmid
2 , · · · , tmid

u } to represent the temporary partition, where u is the220

number of clusters. Similarly, let Cl be one partition of multiple auxiliary clusterings C1, . . . ,Ch, taking values from
Cl = {cl

1, c
l
2, · · · , c

l
u}. To measure the relationship between the feature variable and auxiliary clustering, first, the

co-occurrence matrix of the feature variables and auxiliary clusterings should be constructed.
As mentioned earlier, there are m data elements in the unlabelled data collection X, which take values from

{x1, x2, . . . , xm}. Let mi be the number of data points that are allocated into cluster tmid
i , let m j be the number of data225

points that are allocated into cluster cl
j, and let mi j be the number of data points that are allocated into clusters tmid

i and
cl

j at the same time. The joint co-occurrence distribution of cluster T mid and Cl can be computed as follows:
p(tmid

i ) = mi/m,

p(cl
j) = m j/m,

p(tmid
i , cl

j) = mi j/m.

(11)
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Figure 4: Co-occurrence matrix and corresponding mutual information between feature variables and auxiliary clusterings.

Given multiple feature variables and complementary basic clusterings, we can calculate their mutual information
as follows:

I(T mid; Cl) =
∑

tmid
i ∈T

mid

∑
cl

j∈C
l

p(tmid
i , cl

j) log
p(tmid

i , cl
j)

p(tmid
i )p(cl

j)
. (12)

In Fig. 4, we present an example to demonstrate the effectiveness of the variable measurement. As shown in230

Fig. 4 (a), the mutual information between the feature variable and clustering variable is relatively high, because the
partition according to the feature variable is the same as that for the complementary clustering. With an increase in the
difference between feature variable and auxiliary clustering, the mutual information gradually declines. Thus, mutual
information can effectively measure the difference between feature variables and basic clusterings. The pseudo-code
of the SIB can be described, as shown in Algorithm 1.235

4.3. Theoretical Analysis

In this section, we first prove that the objective function of SIB can converge to a stable solution in a finite number
of iterations and later derive the computation costs of the SIB.

Theorem 1. In the SIB framework, let L(x, tbe f ) be the value of the SIB objective function before x is drawn from its
original cluster tbe f , and let L(x, tnew) denote the value of the SIB objective function after the singleton cluster {x} is240

merged into cluster tnew. The following expression can be obtained:

L(x, tnew) ≥ L(x, tbe f ). (13)

Proof. Let L(x, tmid) be the value of the SIB objective function after x is drawn from some clusters tbe f . In the draw-
and-merge procedure, x must be merged into a certain cluster tnew such that tnew = arg min dL({x}, tnew), where dL
pertains to the information loss. If tbe f = tnew, it is implied that x is merged into the original cluster tbe f , and thus,
L(x, tnew) = L(x, tbe f ). If tbe f , tnew,245 L(x, tbe f ) = L(x, tmid) − dL({x}, tbe f ),

L(x, tnew) = L(x, tmid) − dL({x}, tnew).
(14)

Note that in each merge procedure, the singleton cluster {x} is merged into tnew such that tnew = arg min dL({x}, tnew),
and thus, dL({x}, tnew) < dL({x}, tbe f ). We obtain L(x, tnew) ≥ L(x, tbe f ).

Corollary 1. The objective function of the SIB algorithm can converge to a stable solution.

Proof. According to Theorem 1, L(x, tnew) ≥ L(x, tbe f ), which means that all draw-and-merge procedures do not
decrease the value of function (6). The general idea of the convergence proof is to show that the objective function (6)250
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of the SIB to be upper-bounded. Assuming that the source data X has a clustering partition C and original feature Y ,
we obtain the following equation:

Lmax =

k∑
i=1

I(T ; Yi) +

h∑
j=1

I(T ; C j) − β−1 · I(X; T )

≈ k · I(T ; Y) + h · I(T ; C) − β−1I(X; T )

= −
1
β

[I(X; T ) − kβI(T ; Y)] + h · I(T ; C)

(15)

For a given k and β, the term I(T ; X) − kβI(T ; Y) is equivalent to the objective function of the original IB, i.e.,
I(X; T ) − β · I(T ; Y), which has been proven to be lower-bounded in [38]. Dividing the equation by −β, the first term
− 1
β
[I(T ; X) − kβI(T ; Y)] can be seen to be upper-bounded. Assuming that Ctruth is a ground-truth partition of the255

source data, we can obtain h · I(T ; C) ≤ h · I(T ; Ctruth), i.e., the second term h · I(T ; C) is also upper-bounded. Thus,
the objective function of the SIB algorithm can converge to a stable solution in a finite number of iterations.

Next, we analyse the time complexity of the SIB. At step 3, the source data X are partitioned into different clusters
with random initialization, thus, this step takes linear time O(|X|), where |X| is the number of data points in X. In
the main loop the complexity of the drawing data point x at step 6 is also O(|X|). The computation of the merge260

cost in step 7 takes time O(u|X|(|Y1| + · · · + |Yk |)), where u is the number of clusters. The calculation of the mutual
information between tnew and multiple clusterings C1, . . . ,Ch takes time O(1). Thus, the time complexity of the SIB
is O(u|X|(|Y1| + · · · + |Yk |)).

5. Experiments

In this section, we present the experimental results pertaining to the application of the SIB method for three prac-265

tical tasks, i.e., publication and multilingual corpus analysis, object category discovery in images and unsupervised
human action categorization in videos. Specifically, first the clustering effectiveness and quality of SIB are demon-
strated, and later, the impact of several major factors on the performance of SIB is investigated.

5.1. Experimental Settings
5.1.1. Datasets and Features270

The datasets used in our experiments were extracted from three domains, that is, documents, images and videos.
These datasets have diverse feature types, as presented in Table 1.

Two link-based document datasets namely, CiteSeer1, Cora2, and one multilingual data corpus, namely, Reuters3,
where used in the experiments. CiteSeer and Cora consist of scientific publications classified into different classes.
Each publication is described by content (title and abstract) and citation. For CiteSeer, the title and abstract of the275

paper are described by a 3703-dimensional 0/1-valued word vector, and the citing relationships between publications
are represented by a 3309-dimensional vector. For Cora, the dimensions of the content and citations are 1433 and
5429, respectively. The documents in the multilingual corpus Reuters are initially in English (EN), and the FR,
GR, IT, and SP views corresponds to the words of their translations in French, German, Italian and Spanish. The
multilingual documents were selected randomly, and 2000 words were selected with the k-medoids algorithm.280

Three image datasets4, from the web (Amazon), digital SLR camera (Dslr) and web camera (Webcam), were
employed to demonstrate the performance of the SIB when applied to object category discovery. We adopted the
following four descriptors: Dense-SIFT5, speeded up robust features (SURF) [39], three patch local binary patterns
(TPLBP) [40] and Colour Attention (Colour) [41] to represent the image collections. The popular bag-of-feature

1https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
2https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
3http://membres-lig.imag.fr/grimal/data.html
4http://www.eecs.berkeley.edu/mfritz/domainadaptation/
5http://www.vlfeat.org/overview/dsift.html
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Table 1: Statistics of the evaluated datasets

Datasets #Instances #Classes #Features #Dimensions
CiteSeer 3312 6 2 3307, 3309

Cora 2708 7 2 1433, 5429
Reuters 1200 6 5 2000
Amazon 2813 31 4 1000

Dslr 489 31 4 1000
Webcam 795 31 4 1000

UCF Sports 150 10 4 1000
UCF 50 6676 50 4 1000
HMDB 6849 51 4 1000

(BoF) model [42] was utilized to transform the images into the co-occurrence vector of visual words. The vocabulary285

size in BoF was set to 1000, as reported in existing literature.
To evaluate the effectiveness of the proposed SIB algorithm for the task of unsupervised human action catego-

rization in videos, the experiments were performed on three benchmark video datasets, namely, UCF Sports6 [43],
UCF507 [44] and HMDB8 [45]. For the multiple representations, we adopt the following four descriptors: space-
time interest points (STIP) [46], histogram of optical flow (HOF), histogram of oriented gradient (HOG) [47] and290

3-dimensional SIFT descriptor (3DSIFT) [48]. In addition, the popular BoF model was utilized to transform the
videos into a co-occurrence vector of the key visual words. The vocabulary size in BoF was set to 1000 as in the
literature.

5.1.2. Baselines
We compare the proposed SIB algorithm with the following representative clustering algorithms: (1) Original295

information bottleneck (IB); (2) traditional clustering algorithms: k-means, pLSA [49], LDA [50] and NCuts [51];
(3) multi-view clustering algorithms: the co-regularized multi-view spectral clustering (CRSC) [4], co-training multi-
view spectral clustering (CTSC)9 [3], robust multi-view spectral clustering (RMSC) [52], multi-feature information
bottleneck (MfIB) [30] and multi-view kernel spectral clustering (MVKSC)10 [8]; and (4) ensemble clustering al-
gorithms: cluster-based similarity partitioning algorithm (CSPA) [11], meta-clustering algorithm (MCLA)11 [11],300

Bayesian cluster ensemble (BCE) [16], consensus information bottleneck (CIB) [32], multi-view kernel k-means
clustering ensemble (MKCE) [25] and multi-view spectral clustering ensemble (MSCE)12 [25]. For the task of object
category discovery in images, we also compared the SIB with three state-of-the-art image clustering algorithms, i.e.,
local discriminant models and global integration (LDMGI)13 [53], clustering-by-composition (CC)14 [54] and ensem-
ble projection (EP)15 [55]. For the task of unsupervised human action categorization, three promising action clustering305

methods were further adopted as baselines, including dual assignment k-means (DAKM)16 [36], multivariate video
information bottleneck (MvIB) [56] and consensus information bottleneck (CIB) [32]. All the source code of the
comparisons were provided by their original authors.

6http://crcv.ucf.edu/data/UCF Sports Action.php
7http://crcv.ucf.edu/data/UCF50.php
8http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
9http://users.umiacs.umd.edu/ abhishek/papers.html

10https://www.esat.kuleuven.be/stadius/ADB/software.php
11http://strehl.com/soft.html
12http://users.iit.demokritos.gr/ gtzortzi/#pubsoft
13http://www.escience.cn/people/fpnie/papers.html
14http://www.wisdom.weizmann.ac.il/ alonf/code.html
15http://www.vision.ee.ethz.ch/ daid/
16http://smjdv.com/
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Table 2: Comparison of the AC (%) of SIB with those of IB and typical clustering methods when applied to publication and multilingual corpus
analysis

Datasets IB IB IB
k-means pLSA LDA NCuts SIBContent Cition EN FR GR IT SP Con

CiteSeer 55.0 25.5 – – – – – 53.7 47.9 45.0 29.4 44.0 63.7(↑)
Cora 48.9 40.0 – – – – – 50.9 32.8 34.5 22.2 41.2 57.8(↑)

Reuters – – 50.3 52.7 52.8 53.1 50.8 55.7 22.5 41.7 53.5 43.0 75.4(↑)
Average 52.0 32.8 50.3 52.7 52.8 53.1 50.8 53.4 34.4 40.4 35.0 42.7 65.6(↑)

Table 3: Comparison of the AC (%) of SIB with those of multi-view and ensemble clustering methods when applied to publication and multilingual
corpus analysis

Datasets Multi-view clustering Ensemble clustering SIBCTSC CRSC RMSC MfIB MVKSC CSPA HGPA MCLA BCE CIB MKCE MSCE
CiteSeer 57.6 41.6 53.2 50.2 41.3 59.0 33.7 59.3 56.7 60.6 51.62 58.20 63.7(↑)

Cora 51.1 30.6 53.7 55.8 40.0 52.5 41.7 51.9 52.3 55.9 44.38 55.19 57.8(↑)
Reuters 69.0 67.2 63.2 66.0 64.8 40.6 46.7 63.5 51.3 70.6 58.33 61.83 75.4(↑)
Average 59.2 46.5 56.7 57.3 48.7 50.7 40.7 58.2 53.4 62.4 51.44 58.41 65.6(↑)

5.1.3. Evaluation Criteria
In this study, we used the normalized mutual information (NMI) [11] and clustering accuracy (AC) [57] to evaluate310

the clustering results. The NMI suggested in [11] is defined as follows:

NMI =
I(L,T )

√
H(L)H(T )

, (16)

where L denotes the known labels and T represents the clustering results of learning algorithms; I(L,T ) is the mutual
information between L and T ; and H(L) and H(T ) denote the entropies of L and T , respectively.

The clustering accuracy (AC) is defined as

AC =

∑m
i=1 δ(li,map(ti))

m
, (17)

where li is the truth label of data element xi, ti is the predicted label of xi, and m is the total number of the data315

instances. The function map(ti) maps each predicted label ti to its truth label provided by the source data. The
function δ(x, y) = 1 when x = y, and δ(x, y) = 0 otherwise.

5.2. Publication and Multilingual Corpus Analysis
This section describes the application of the SIB to the task of publication and multilingual corpus analysis. All the

results are the mean values of AC and NMI over 10 runs. For the two link-based publication datasets, the SIB adopts320

the content text as the feature variable, while the citation is used to generate the basic clusterings. For the multilingual
data, we selected three languages (EN, FR, and GR) as feature variables, while the remaining two languages were
naturally utilized to construct the basic clusterings.

5.2.1. Comparison with Original IB
We compared the performance of the SIB with the original IB for the the task of publication and multilingual325

corpus analysis. From Table 2, the following observations can be made. First, the single feature is not sufficiently
discriminative for different document datasets. In the case of the multilingual dataset, the IB algorithm performs
differently for different translations, e.g., the AC value of the IB method when applied to the original language (EN)
is 50.3%, while better results are obtained when it is performed on the IT translation (53.1%).
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Figure 5: Comparison of the NMI (%) of SIB with those of multi-view and ensemble clustering methods when applied to publication and multilin-
gual corpus.

Table 4: Comparison of the AC (%) of SIB with those of original IB and four other typical clustering methods when applied to object category
discovery in images.

Datasets IB IB
k-means pLSA LDA NCuts SIBDense-SIFT SURF TPLBP Colour Con

Amazon 27.3 27.7 24.5 12.0 18.1 13.3 17.7 19.9 19.7 32.9(↑)
Dslr 43.5 43.6 18.4 34.2 44.9 32.4 33.1 31.7 31.1 50.4(↑)

Webcam 41.3 42.4 35.7 28.0 44.8 30.5 34.3 30.3 31.4 49.7(↑)
Average 37.4 37.9 26.2 24.7 35.9 25.4 28.4 27.3 27.4 44.3(↑)

Second, when concatenating multiple features together, the original IB algorithm does not consistently demon-330

strate improved performances. As shown in the Con column in Table 2, the performances of the original IB algorithm
when applied to the Cora and Reuters data indicate a slight improvement (2.0% and 2.6%, respectively) compared
with the best AC value of the IB algorithm on the individual feature. However, for the CiteSeer data, the AC values
of the IB on the combined features decrease 1.3%. Thus, by simply concatenating multiple features together, the IB
method does not demonstrate consistent improved performance .335

The superiority of the SIB against the original IB is also demonstrated in Table 2. Owing to the consideration of
multiple original features and auxiliary basic clusterings simultaneously, the performances of the SIB algorithm are
clearly better than those of the IB on all three document datasets. In particular, in comparison with the best AC values
of the original IB on all single features, the SIB algorithm demonstrates improvement of 8.7% and 8.9% when applied
to the two link-based publication datasets, while a significant improvement (22.3%) is attained on the multilingual340

document dataset.
Finally, we conducted experiments to compare the SIB with k-means, pLSA, LDA and NCuts algorithms, and

the mean AC value of the SIB algorithm on the three document datasets exhibited considerable great improvements

Table 5: Comparison of the AC (%) of SIB with those of multi-view and ensemble clustering methods when applied to object category discovery
in images.

Datasets Multi-view clustering Ensemble clustering SIBCTSC CRSC RMSC MfIB MVKSC CSPA HGPA MCLA BCE CIB MKCE MSCE
Amazon 25.9 21.3 15.6 29.6 23.3 25.2 14.2 22.9 23.4 30.1 23.22 29.24 32.9(↑)

Dslr 41.7 35.4 36.1 46.9 38.9 47.8 44.7 46.0 42.4 47.8 45.04 44.32 50.4(↑)
Webcam 38.5 36.3 28.7 47.4 34.8 40.8 33.6 37.5 37.8 48.2 44.41 46.93 49.7(↑)
Average 35.4 31.0 26.8 41.3 32.3 37.9 30.8 35.4 34.5 42.0 37.56 40.16 44.3(↑)
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Figure 6: Confusion matrix of SIB on the Dslr and Webcam datasets.
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Figure 7: Comparison of the NMI (%) of SIB with those of multi-view and ensemble clustering methods when applied to object category discovery
in images.

(31.2%, 25.2%, 30.6% and 22.9%, respectively) against all considered algorithms, mainly because the proposed
SIB algorithm can effectively exploit the complementary effect of the multiple feature variables and auxiliary basic345

clusterings.

5.2.2. Comparisons with Multi-view and Ensemble Clustering
This part describes the comparison of the proposed SIB algorithm with the multi-view and ensemble clustering

approaches in the context of the task of publication and multilingual corpus analysis. To obtain the basic clusterings
of the other ensemble clustering approaches, the original IB was performed 15 times for each feature representation,350

and the diversity of multiple clusterings was ensured by performing different initializations.
From Table 3, we can observe that the SIB demonstrates better performances than those of the other multi-view

and ensemble clustering approaches on the three document datasets. The same observation in terms of NMI can be
noted from Fig. 5. Thus, is can be concluded that the proposed SIB algorithm can effectively cope with multiple
feature variables and auxiliary basic clusterings. This is mainly because the proposed SIB algorithm can alleviate the355

overreliance of ensemble clustering methods on existing partitions and mitigate the conflict between heterogeneous
features in multi-view clustering.
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Table 6: Comparison of the AC (%) of SIB with those of other state-of-the-art image clustering methods.
Datasets EP LDMGI CC SIB
Amazon 24.8 23.6 30.4 32.9(↑)

Dslr 36.2 37.5 47.3 50.4(↑)
Webcam 32.5 41.5 47.8 49.7(↑)
Average 31.2 34.2 41.8 44.3(↑)
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Figure 8: Comparison of the NMI (%) of SIB with those of other state-of-the-art image clustering methods.

5.3. Object Category Discovery in Images

This section describes the application of the SIB to the task of object category discovery in images. In particular,
we selected the Dense-SIFT and SURF as the original feature variables; the remaining two features were utilized to360

construct the auxiliary basic clusterings. Thus, this task involves two original feature variables and two auxiliary basic
clusterings.

5.3.1. Experimental Results and Analysis
Table 4 presents the results of the SIB with the IB and other typical clustering methods. From this table, we can

observe that (1) the performances of the IB algorithm on the SURF feature are consistently better than those pertaining365

to the other three features, which demonstrates that the SURF is a discriminative representation of the images. (2) An
improper combination of multiple features tends to deteriorate the clustering performance. For instance, although the
AC value of the IB when considering the concatenated features improves slightly on the Dslr and Webcam datasets
(1.3% and 2.4%, respectively) in comparison with the best value of the IB on a single feature, there is a sharp drop
(9.6%) pertaining to the Amazon data. (3) Compared with the typical clustering methods, the average AC values of the370

SIB method applied to the three image datasets exhibit considerable improvements (18.9%, 15.9%, 17.0% and 16.9%,
respectively). This phenomenon demonstrates the effectiveness of the SIB on the task of object category discovery
in images. To further demonstrate the superiority of the SIB, we visualized the confusion matrices of the SIB for the
Dslr and Webcam, as shown in Fig. 6. This figure shows that the learned object categories are relatively pure, and
each of them can be highly correlated with the true cluster label.375

Table 7: Comparison of the AC (%) of SIB with those of the original IB and the other four typical clustering methods when applied to unsupervised
human action categorization in videos.

Datasets IB IB
k-means pLSA LDA NCuts SIBHOG HOF STIP 3DSIFT Con

UCF Sports 38.7 53.8 50.4 37.1 53.7 40.3 46.3 51.7 47.1 59.6(↑)
UCF 50 33.1 34.0 31.2 33.3 33.9 29.0 30.3 29.6 31.7 40.2(↑)
HMDB 19.0 22.3 21.8 28.1 26.3 21.4 22.4 23.3 23.2 29.8(↑)
Average 30.3 36.7 34.5 32.8 38.0 30.2 33.0 34.9 34.0 43.2(↑)
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Table 8: Comparison of the AC (%) of SIB with those of the multi-view and ensemble clustering methods when applied to unsupervised human
action categorization.

Datasets Multi-view clustering Ensemble clustering SIBCTSC CRSC RMSC MfIB MVKSC CSPA HGPA MCLA BCE CIB MKCE MSCE
UCF Sports 53.6 46.3 49.2 54.0 46.2 49.2 56.8 53.0 51.5 56.9 40.65 51.96 59.6(↑)

UCF 50 35.0 31.5 32.6 36.2 35.8 32.0 26.2 32.9 30.1 36.8 31.82 36.21 40.2(↑)
HMDB 24.5 25.8 22.2 26.5 25.3 27.0 20.6 22.3 20.8 27.2 15.81 28.37 29.8(↑)
Average 37.7 34.5 34.7 38.9 35.8 36.1 34.5 36.0 34.1 40.3 29.43 38.85 43.2(↑)
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Figure 9: Comparison of the NMI (%) of SIB with those of the multi-view and ensemble clustering methods when applied to unsupervised human
action categorization in videos.

Table 5 and Fig. 7 shows the comparison results of the SIB with other multi-view and ensemble clustering methods
when applied to the task of object category discovery in images. From this table, we can observe that (1) the multi-
view and ensemble clustering methods demonstrate improved clustering performances compared with those of the
single-view clustering algorithms (in Table 4). (2) The AC values of the SIB algorithm are consistently considerably
better than those of the other multi-view and ensemble clustering approaches. We can conclude that the proposed SIB380

algorithm can effectively deal with multiple feature variables and auxiliary basic clusterings when applied to the task
of object category discovery in images.

5.3.2. Comparison with State-of-the-art Image Clustering Methods
To enable a comparison of the SIB algorithm with other state-of-the-art image clustering methods, we adopted

local discriminant models and global integration (LDMGI) [53], clustering-by-composition (CC) [54] and ensemble385

projection (EP) [55] as baselines. LDMGI learns a new Laplacian matrix by using both the manifold structure and
local discriminant information, which makes it more robust for data clustering. CC is based on the composition of an
image from large non-trivial pieces of other images in which similar images can be easily composed from each other.
EP learns a new feature representation by capturing the information of each image and the relatedness across images.
As shown in Table 6 and Fig. 8 the SIB method demonstrates improvements on all the data sets compared with the390

other three state-of-the-art image clustering methods. The average AC values of the SIB on the three image data sets
demonstrate an improvement of 13.1%, 10.1%, and 2.5%, respectively.

5.4. Unsupervised Human Action Categorization

We applied the SIB to the task of human action categorization in an unsupervised setting. Specifically, we selected
Dense-SIFT and SURF as the original feature variables, and the remaining two features were utilized to construct the395

auxiliary basic clusterings. Thus, this task involved two original feature variables and two auxiliary basic clusterings.
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Table 9: Comparison of the AC (%) of SIB with those of other state-of-the-art action clustering methods.

Datasets DAKM MvIB CIB SIB
UCF Sports 53.9 55.3 56.9 59.6(↑)

UCF 50 34.5 36.1 36.8 40.2(↑)
HMDB 26.3 27.5 27.2 29.8(↑)
Average 38.2 39.6 40.3 43.2(↑)
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Figure 10: Comparison of the NMI (%) of SIB with those of other state-of-the-art action clustering methods.

5.4.1. Experimental Results and Analysis
Table 7 presents the experimental results of the SIB compared with the original IB and other typical clustering

methods. From this table, the following observations can be made: (1) The original IB algorithm performs differently
on HOG, HOF, STIP and 3DSIFT features. For instance, the IB algorithm gets the best result when using the 3DSIFT400

feature (28.1%) on HMDB dataset, while the best AC is obtained when considering the HOF feature (53.8%) on
the UCF Sports dataset. This phenomenon also verifies that a single feature is not sufficiently discriminative for
the action categorization in different video datasets. (2) When concatenating multiple features together, the original
IB algorithm does not demonstrate improved performances consistently on the video datasets. For instance, the
performance declines on the HMDB dataset (1.8%) compared with the best result of the IB on a single feature. (3) The405

SIB method demonstrates considerable improvements (13.2%, 10.2%, 8.3% and 9.2%, respectively) in terms of the
average results compared with those of k-means, pLSA, LDA and NCuts algorithms. It is clear that the performances
of the SIB are consistently better than those of the original IB and other typical clustering methods.

Table 8 and Fig. 9 show the AC and NMI results of the SIB algorithm compared with other multi-view and
ensemble clustering approaches. The following observations can be made considering these results: (1) the multi-410

view and ensemble methods demonstrate certain clustering performance improvements over the single-view clustering
algorithms (see Table 7); and (2) the AC values of the SIB are higher than those of the other multi-view and ensemble
clustering approaches. The NMI values shown in Fig. 9 corroborate this observation, which again reflects that the
proposed SIB algorithm can effectively deal with multiple feature variables and auxiliary basic clusterings when
applied to unsupervised human action categorization in videos.415

5.4.2. Comparison with Action Clustering Methods
In this section, three state-of-the-art action clustering methods, namely, the dual assignment k-means (DAK-

M) [36], multivariate video information bottleneck (MvIB) [56] and the preliminary version of this work named con-
sensus information bottleneck (CIB) [32], are employed to verify the effectiveness of the SIB method when applied
to the task of unsupervised human action categorization.420

5.5. Parameter Analysis
Table 9 lists the AC value of the SIB compared with those of the action clustering methods. The table indicates

that the proposed SIB algorithm performs better than the other action clustering algorithms on the three video datasets.
Specifically, the average results of SIB on UCF Sports, UCF 50 and HMDB indicate improvements (5.0%, 3.6% and
2.9%, respectively) compared with DAKM, MvIB and CIB. Fig. 10 shows the comparison of the NMI results of the425
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Figure 11: Performances of SIB with various β

SIB with those of other action clustering methods. The same observation in terms of the AC value can be seen from
the figure. Thus, it can be concluded that the proposed SIB method can effectively deal with the task of unsupervised
human action categorization in videos as well.

The proposed SIB generally formulates the problem of joint multi-view and ensemble clustering as a function of
the mutual information maximization. In this objective function, the information filtered from the original features430

and auxiliary basic clusterings is maximally preserved through a “bottleneck” with respect to the final clustering
partition, while the source data are compressed into its clustering partition as much as possible. As we can see from
function (6), SIB utilizes β to strike the balance between the data compression and relevant information preservation.
This section describes the analysis of the impact of trade-off parameter β on the performance of SIB on all datasets
considered in this study. In particular, we vary the values of β from the value set {0.1, 1, 10, 20, 40, 80, 160, 320, 640,435

1280, 2560}. From Fig. 11, we can make the following observations: First, when β → 0, SIB performs poorly since
it considers only the compression of the source data X to its clustering partition T . When the value of β is increased,
the performance of the SIB is considerably better better because it strikes a balance between the data compression and
information preservation. This fact also explains why many IB applications set β as ∞ [27, 31]. In this study, we set
the β as 80 on all the data sets.440

5.6. Convergence Analysis

As mentioned in the section on theoretical analysis, the SIB algorithm can converge in a few iterations. This
section describes the empirical testing of the convergence of the SIB. As we can see from Fig. 12, every repetition
increases the values of objective function 6 and 30 iterations are sufficient for convergence.
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Figure 12: The iterations of SIB

6. Conclusion445

In this work, we performed simultaneous multi-view and ensemble clustering jointly by extending the information
bottleneck theory into a novel synergetic information bottleneck (SIB) method. The SIB determines the final data par-
tition by considering the original features and auxiliary base clusterings simultaneously, in which the original features
characterize data information from different views, while the base clusterings reveal the data information from hetero-
geneous features. Specifically, SIB generally formulates the problem of joint multi-view and ensemble clustering as450

a function of mutual information maximization. In this function, the information between original features and basic
auxiliary clusterings is preserved simultaneously in terms of the final clustering partition. In addition, to solve the
optimization of SIB objective function, a sequential draw-and-merge optimization solution is presented to update the
data partition. The experiments pertaining to the task of publication and multilingual corpus analysis, object category
discovery in images and unsupervised human action categorization have confirmed the effectiveness of the proposed455

SIB algorithm.
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