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Key Messages 

Women can now serve in Ground Close Combat (GCC) roles, where they may be required to 
operate alongside men in hot environments. 

The average female soldier may be at a thermoregulatory disadvantage in many hot 
environments compared to the average male soldier. 

Much of the thermoregulatory difference between males and females is due to fitness and 
anthropometric differences rather than sex, per se. 

It is possible that some of these differences may be lessened with appropriate gender free 
physical employment standards. 

Much of the extant literature lacks ecological validity and there are notable gaps in our 
understanding of a number of key topics in this area. 
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Abstract 

Women can now serve in Ground Close Combat (GCC) roles, where they may be required to 

operate alongside men in hot environments. However, relative to the average male soldier, 

female soldiers are less aerobically fit, with a smaller surface area (AD), lower mass (m) with 

higher body fat, and a larger AD/m ratio. This increases cardiovascular strain, reduces heat 

exchange with the environment, and causes a greater body temperature increase for a given 

heat storage, although a large AD/m ratio can be advantageous. Physical employment standards 

for GCC roles might lessen the magnitude of fitness and anthropometric differences, yet even 

when studies control for these factors, women sweat less than men at high work rates. 

Therefore, the average female in a GCC role is likely to be at a degree of disadvantage in many 

hot environments and particularly during intense physical activity in hot-arid conditions, 

although heat acclimation may mitigate some of this effect. Any thermoregulatory 

disadvantage may be exacerbated during the mid-luteal phase of the menstrual cycle, although 

the data are equivocal. Likewise, sex differences in behavioural thermoregulation and cognition 

in the heat are not well understood. Interestingly, there is often lower reported heat-illness 

incidence in women, although the extent to which this is influenced by behavioural factors or 

historic differences in role allocation is unclear. Indeed, much of the extant literature lacks 

ecological validity and more work is required to fully understand sex differences to exercise 

heat-stress in a GCC context. 
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1. Introduction 
 Following the publication of the 2016 Interim report on the health risks to women in ground 

close combat (GCC) roles the exclusion of women from GCC roles was lifted.1 As a 

consequence, women can now serve alongside men in these defence positions. At present, 

women make up around 9% of the British Army.2 It has been estimated that, in future, 

approximately 20 women per year will join the Royal Armoured Corps and 10 women per year 

will join the Infantry;3 both of these units were previously affected by the exclusion. 

 

It has been acknowledged that GCC roles can require intense physical activity.3 Moreover, 

given the variety of theatres in which the British Army operates it is likely that soldiers of both 

sexes will be exposed to hot conditions during GCC roles. It is, therefore, important to 

understand the extent to which biological sex impacts upon an individual’s ability to operate 

effectively and safely in these environments. Indeed, the 2014 Women in ground close combat 

review identified the need for further research to be conducted to better understand the 

physiological implications of the inclusion of women in GCC roles.3 Accordingly, this paper 

presents a brief overview of the current understanding of sex differences in the response to heat 

exposure, with a particular emphasis on exercise heat-stress in the context of the military 

environment.  

 

2. Physical Characteristics 

Within the general population women are typically shorter and lighter, with a smaller surface 

area than men and a higher body fat percentage. On average, the maximum rate of oxygen 

uptake (VO2max) of women is less than men, in absolute terms (L∙min-1) and also expressed 

relative to bodyweight (mL∙kg-1∙min-1),4 which is more relevant during load-bearing exercise. 

These population-wide anthropometric data are in keeping with data from British Military 

cohorts.5 Nevertheless, recent data indicates that only 4.5% of female army recruits met the 

physical standards required to start Infantry training3 and it is possible that women who pass 

current and future gender-free physical employment standards to undertake GCC roles may be 

fitter, with a lower fat mass than the average women or military recruits.5 This might result in 

a reduction in the magnitude of differences in fitness and some anthropometric factors between 

males and females in GCC roles, although it is likely that they may remain less fit and have a 

higher fat mass, on average, than the majority of their male counterparts in the same roles. 

These differences are important because they can influence thermoregulation in the heat.6 7  
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2.1 Anthropometry  

Body mass serves as an internal ‘heat sink’. Assuming a given body composition, the change 

in deep-body temperature (TC) for a given heat storage is inversely related to body mass,7 and 

individuals with a greater body mass typically have a smaller increase in deep body temperature 

(TC) during a standard heat stress.6 The ‘heat sink’ is also influenced by body composition. The 

heat specific capacity of adipose tissue is less than ‘lean’ tissue (2.51 vs. 3.65 J∙g-1∙C-1) and 

individuals with higher body fat will have a greater increase in TC for a given body mass and 

change in heat content.7 Although the amount of variance in TC explained by body-fat may be 

limited,8 together these factors likely represent a disadvantage for female soldiers, who are 

typically lighter with a greater percentage body fat than males. However, body mass also 

influences metabolic heat production (MHP) during load-bearing exercise at a fixed speed, 

being lower in lighter individuals than heavier individuals.9 This may benefit the average 

female soldier by reducing their heat loss requirements during this type of exercise.   

 

Body surface area (AD) determines the area available for heat exchange with the environment. 

When other factors are equal (e.g. skin temperature [Tsk] and wettedness, environmental 

conditions) heat transfer will be greatest in those with a high AD and the absolute heat-transfer 

potential is greatest in individuals with the highest AD.7 However, in environments where the 

ambient temperature exceeds Tsk a large AD would enable a higher rate of dry heat-gain from 

the environment, although high wet heat-loss rates might still be possible if the vapour pressure 

gradient to the environment is favourable. Thus, whether the lower AD that is typical in females 

is a disadvantage, or an advantage, will depend on whether the operational environment favours 

heat loss, or heat gain. 

 

Body surface area to mass (AD/m) ratio is also important. For a given increase in body mass, 

there is a relatively smaller increase in AD. Consequently, the AD/m ratio is typically bigger for 

small body sizes i.e. females, than large body sizes, i.e. males. Thus, compared to males, 

females typically have a greater AD available for heat exchange relative to their ‘heat sink’. 

Moreover, because MHP is typically lower for smaller people during load bearing exercise at 

a given speed,9 when compared to the average male soldier, the average female soldier may 

also have a greater AD relative to their heat production.10 However, as discussed subsequently, 

the extent to which these factors are advantageous, or disadvantageous, may depend on the 



6 
 

ambient conditions.10 11 The AD/m ratio also influences the thermoeffector pathways for heat-

loss, as discussed subsequently (section 3.2).12  

 

2.2. Aerobic fitness  

The combination of thermal stress and exercise stress presents a significant challenge to the 

cardiovascular system, where a finite cardiac output must meet the dual demands of delivering 

blood to the working muscle to supply oxygen and to the skin for heat dissipation. If all other 

factors are equal, a given absolute external work rate will elicit a relatively greater 

cardiovascular strain in an individual with a low VO2max, compared to someone with a higher 

VO2max. Blood volume also tends to be smaller in those with low aerobic fitness.13 Therefore, 

in individuals with a low VO2max, the cardiovascular strain associated with thermoregulation is 

greater because increases in skin blood flow represent a relatively larger shift to the peripheral 

circulation; this may place the average female soldier at a thermoregulatory disadvantage.14 

Aerobic fitness may also influence sweating and evaporative heat loss, which is lower in those 

with low aerobic fitness. However, this may only be relevant at high work rates (MHP=500 W) 

and when VO2max differs to a greater extent (>20 ml.kg.-1min-1) than is typical between the 

average male and female soldier.15 

 

Designing studies to compare the thermoregulatory responses of groups who typically differ 

for VO2max, such as male and female soldiers, is challenging. Often the same relative exercise 

intensity (%VO2max) is studied.16 17 18 However, MHP and the associated heat-loss requirements 

will be less in the group with the lower VO2max.19 20 To avoid this confounding effect, some 

have compared groups of men and women who are matched for relative VO2max.21 However, 

this can still result in a lower MHP and reduced heat-loss requirement in women, if they have 

a lower body mass.20 Others have matched groups for both relative VO2max and absolute VO2max 

i.e. matched for aerobic fitness and body mass.12 Although this might be appropriate from a 

mechanistic perspective, matching independent-groups for characteristics that may naturally 

differ within the military population in question limits the practical relevance of these findings.  

 

In a GCC context anthropometric and fitness differences might be less than in the wider 

military population and individuals are likely to be expected to perform certain tasks at a 

specific minimum rate, irrespective of sex. Thus, study designs comparing thermoregulatory 

responses of male and female soldiers with fitness (and anthropometric) characteristics 

representative of the GCC population, performing key physical tasks at a defined rate, may 
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have the best ecological validity. Although these studies have not been conducted, a number 

of studies examining sex differences in thermoregulation in the heat have employed walking 

at a given treadmill speed.10 22 However, because of the influence of body mass on MHP during 

weight-bearing exercise the heat-loss requirement will likely be lower in (lighter) women. This 

would necessitate a reduced thermoeffector response, but would not necessarily reflect a ‘true’ 

sex difference, per se.20 These important distinctions in study design must be acknowledged 

when interpreting studies examining sex differences in thermoregulation (see section 3.2).   

 

3 Thermoregulation 
3.1 Behavioural 

Behavioural thermoregulation is characterised by behaviours which correct deviations from a 

‘neutral’ body temperature to try and maintain ‘thermal pleasure’.23 Behavioural 

thermoregulation is underpinned by thermo-sensation, mediated by the transient receptor 

potential family of ion channels. These stimulate small-diameter afferent fibers project to 

lamina I or to the medullary nucleus of the solitary tract, with the output neurons of these 

regions conveying afferent information to the hypothalamus and brainstem to generate a 

conscious change in thermal perception.24 Perception consists of a discriminative component 

(i.e. sensation), primarily determined by Tsk, and an affective (i.e. (dis)comfort) component, 

influenced by TC and Tsk. At rest in the heat thermal (dis)comfort appears to drive behavioral 

thermoregulation, whereas during exercise the rating of perceived exertion (RPE) may be more 

relevant. However, when TC is not noticeably elevated, thermal sensation and comfort influence 

RPE, whereas sensations related to cardiovascular strain may become more prominent when 

TC is elevated.24 

 

The literature examining sex differences in behavioural thermoregulation in humans is 

limited. In thermoneutral environments, women are more sensitive to warm stimuli than 

men,25 and perceive a given thermal stimulus to be hotter.26 It might be anticipated that this 

would lead female soldiers to initiate behavioural thermoregulatory responses earlier than male 

soldiers, however, the upper temperature-limit of the thermal comfort zone does not differ 

between sexes.27 At present it is clear that further research is required to gain an adequate 

understanding of any sex differences in behavioral thermoregulation, as well as the relevance, 

if any,  to soldiers operating in GCC roles. 
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3.2 Autonomic  

Cutaneous vasomotion and sudomotion are the autonomically controlled mechanisms for 

heat-loss. Autonomic thermoeffector activity is mainly determined by afferent information 

relating to TC and Tsk i.e. weighted mean body temperature (Tb).28 Vasomotion represents the 

initial autonomic thermoregulatory mechanism, whereby cutaneous vasodilatation increases 

skin blood-flow, facilitating convective heat transfer to the skin. Sweat evaporation is the 

predominant heat-loss mechanism during exercise in hot environments and when ambient 

temperature exceeds Tsk. In hot-arid environments the limits of thermal compensability are 

determined by sweating capacity, but in saturated environments sweating is ineffective due to 

an insufficient water vapour pressure gradient between the skin and the environment to enable 

evaporation. 

 

At rest, sweating onset occurs at a higher ambient,29 or mean Tb,30 31 32 in women than in men. 

Sweating sensitivity may also be lower in women.32 Together this causes a lower sweat rate in 

women during resting heat exposure.30 Conversely, women may have a greater skin blood flow 

during passive heating.32 Together these data support the assertion that women are more reliant 

on cutaneous vasodilation and less reliant on sweating than men.30 However, these passive-

heating studies did not control for anthropometric factors. Although this design consideration 

may be of little practical relevance in a GCC context, the extent to which the differences in 

these studies are due to sex per-se is unclear. Indeed, irrespective of sex, smaller individuals 

are more suited to passive heat-loss due to their greater AD/m ratio. This enables them to rely 

more on vasomotor changes to regulate body temperature, such that it may be efficient for the 

sudomotor threshold to occur at a higher Tb.12  

 

Many studies examining sex differences in thermoregulation during exercise have examined a 

standardised relative work rate (%VO2max). These typically show women to have a lower 

sweating rate compared to men. 16 17 18 21 33 Lower sweating has also been reported during 

treadmill walking at a given speed in the heat.10 22  34 35 In contrast, the increase in Tre was either 

greater in women than men,21 33 or similar,16 17 18 at a given relative work rate, whereas during 

treadmill walking the increase was either less in women,22 35 not different between sexes,34 or 

higher in women than men in a hot-arid environment, and lower in women than men in a hot–

humid environment.10 
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However, as highlighted in Section 2.2, these approaches to standardising work rate can be 

confound the isolation of sex differences. For example, Schwiening et al.19 demonstrated that 

the sex differences in sweating reported by Ichinose-Kuwahara et al.18 could simply be 

explained by differences in MHP, whereas Gagnon and Kenny36 demonstrated that evaporative 

heat-loss was strongly associated with MHP (r2=0.82), irrespective of sex. Similarly, the 

differential effects of environment on increases in Tre reported by Shaprio et al.10 may have 

been influenced by anthropometry. During load bearing exercise in hot-humid conditions, 

smaller individuals, with a high AD/m ratio, produce and store less heat than larger 

indiviudals:11 this could favour smaller, i.e. female, soldiers. However, the beneficial effect of 

a high AD/m ratio is less pronounced under conditions where a greater water vapour pressure 

gradient exists between the skin and environment and higher sweat rates may be advantageous. 

Although these are important methodological considerations, they may be of reduced practical 

relevance in a military context where these anthropometric factors and fitness might differ 

between the typical male and female soldier. Therefore, some anthropometric characteristics 

of the average female soldier could be advantageous in hot-humid conditions, although this 

effect may be lessened within GCC cohorts because of the possibility of less distinct 

anthropometric and fitness differences between males and females serving in these roles. 

 

Recent studies have controlled for some of these confounding methodological and 

physiological factors in order to isolate the effects of sex on thermoregulation. Gagnon and 

Kenny36 demonstrated that, compared to men, women who were matched for body mass and 

AD demonstrated a reduced evaporative heat-loss during exercise in a hot-arid environment 

(35°C; 12 %rh) at a fixed MHP (500 W). In a subsequent study, Gagnon and Kenny37 examined 

MHP rates of 200, 250 and 300 W·m-2 of body surface area; a fixed MHP during non-weight-

bearing exercise (i.e. cycling) negates the influence of differences in body mass, whilst 

adjusting MHP per unit AD negates differences in the AD available for heat exchange.  Only at 

the highest work rate was the evaporative heat-loss less in women than men, due to a lower 

sweat output per gland. This reduced sweating sensitivity in women is consistent with studies 

using pharmacological approaches to stimulate sweating in groups of men and women,38 and 

given the controls employed, suggests that, at higher work rates, a ‘true’ sex difference in 

sudomotor function exists.  

 

Nevertheless, some of these recent studies have been criticised for investigating a narrow 

anthropometric range that is not representative of the population12 and as such the utility of 
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these findings may be limited within a military context. Notley et al.12 examined the 

thermoeffector responses during light (MHP=135 W∙m-2) and moderate (MHP=200 W∙m-2) 

exercise in the heat (28°C; 36 %rh) in a sample of men and women spanning a wide and 

overlapping anthropometric range. Using hierarchical multiple linear regression, they 

demonstrated that, after controlling for body fat, VO2max and mean Tb, the AD/m ratio explained 

10-48% of the variance in thermoeffector response; small individuals with a higher AD/m ratio 

were more reliant on cutaneous vasomotion whereas larger individuals were more reliant on 

evaporation of sweat . Furthermore, once the AD/m ratio had been accounted for, sex explained 

≤5% of variance in thermoeffector response. Thus, in a sample that are anthropometrically 

representative of the wider population range, thermoeffector function appears more dependent 

on fitness and anthropometry than sex. However, this study only investigated low and moderate 

work rates and so direct comparison cannot be made with the lower sweating that has been 

reported in women at higher work rates.37 

 

In summary, women who are representative of the wider military population may be more 

reliant on cutaneous vasomotion to regulate body temperature, and less reliant on sweating, 

compared to men. However, this may be mainly due to anthropometric and fitness differences 

rather than a ‘true’ sex difference, and these effects could be less pronounced among males and 

female in GCC roles if anthropometric and fitness differences are less distinct. When studies 

control for relevant anthropometric factors and fitness, thermoregulatory differences between 

men and women are diminished, although women may still sweat less than men at higher work 

rates.   

 

4 Hormonal influences 
4.1 Effect of menstrual cycle 

The influence of sex hormone changes over the menstrual cycle on thermoregulation is 

summarised in a recent review.39 Briefly, TC fluctuates over the course of the menstrual cycle. 

Oestrogens act on temperature regulating structures within the hypothalamus, increasing the 

activity of warm sensitive neurons40 and lowering the temperature thresholds for sweating and 

cutaneous vasodilatation.32 41 Thus, in eumenorrhoeic women, TC is at its lowest during the late-

follicular phase, coincident with the peak in oestrogen concentration. In the mid-luteal phase 

progesterone concentration is at its highest, which increases the thresholds for cutaneous 

vasodilatation and sweating, elevating TC by ~0.5°C.32 41 42 Nevertheless, recent evidence 
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employing a whole body direct calorimetry approach suggests that menstrual cycle phase does 

not appear to affect the rates of whole body heat loss or heat storage across a range of exercise 

intensities. However, it is important to note that the changes in body heat content during the 

mid-luteal phase trial occurred in the context of on an elevated initial resting TC compared to 

the trials conducted during the early and late follicular phases.43 Some studies suggest that there 

are alterations in thermo-sensation over the menstrual cycle,44 45 but any influence on 

behavioural thermoregulation is poorly understood. 

 

Fluctuations in TC may be attenuated in trained women, possibly due to their smaller changes 

in sex hormone concentration during the menstrual cycle,46 and thus it might be hypothesised 

that the physical training undertaken by women in GCC roles may lessen the degree of 

fluctuation in TC typically seen over the menstrual cycle. However, there is limited research 

comparing the thermoregulatory responses of amenorrheal and eumenorrheal women to 

exercise heat-stress. On the basis of data obtained from a single pair of monozygotic twins (one 

eumenorrheal and one amenorrheal) Frye et al.47 concluded that there were no 

thermoregulatory differences during exercise heat-stress. Clearly more research is needed, 

particularly given the reported prevalence of amenorrhea and dysmenorrhea among military 

women48 and the observation that intense military training may increase the prevalence of 

menstrual irregularity.49 Indeed, data from post-menopausal women suggests that their lower 

oestrogen levels are associated with an elevated TC, which can be reduced through the effects 

of exogenous oestrogen therapy lowering the temperature threshold for the heat-loss effector 

mechanisms.50  

 

4.2 Hormonal contraceptives 

Hormonal contraceptives commonly consist of combined (oestrogens and progestin), or 

progestin-only formulations. Studies examining the effects of oral hormonal contraceptives on 

thermoregulation have often used a within-participant design, comparing the placebo or no-pill 

phase (quasi-follicular) to the contraceptive phase (quasi-luteal). During the contraceptive 

phase there is an increase in the temperature thresholds for cutaneous vasodilatation and 

sweating and an elevated TC.51 52 53 However, the wide variations in oral contraceptive 

formulation and delivery (e.g. mono, biphasic or triphasic) result in variability in the hormones 

administered, which may influence their thermoregulatory effects.  
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Using a between-groups design, Armstrong et al.54 examined the effect of different 

contraceptive hormones (oral contraceptive [estradiol-progestin] vs. injection [depot 

medroxyprogesterone acetate] vs. no contraceptive) on thermoregulation, before and after 8-

weeks of heat acclimation and physical training. There were no between-groups differences in 

thermoregulation before the intervention, whereas after the intervention there were some small 

differences in thermoregulation, but the authors concluded they were small and did nor impart 

superior physical fitness or heat acclimation in any group. However, thermoregulatory 

assessments were only conducted during the follicular or quasi-follicular phase and it is unclear 

whether the same would be evident at other phases of the menstrual cycle.  

 

5 Performance  
5.1 Physical  

A number of studies show women to have a lower tolerance,21 28 55 56 or performance level,57 

than men during exercise in the heat, yet others report no sex differences in terms of tolerance,17 

or performance decline,58 with increasing temperature. Some suggest women have a superior 

tolerance to heat.22 However, as described in Section 2, these conclusions can be influenced by 

environmental conditions as well as the way in which the study controls factors such as MHP, 

aerobic fitness and anthropometry. 

 

For example, Wyndham et al.28 demonstrated that 8% of unacclimated women and 50% of 

unacclimated men could complete 4 hrs stepping at 1560 ft lb∙min-1 in hot-humid (24°C; 89 

%rh) conditions. However, it is unclear if groups were matched for fitness and the women were 

lighter, resulting in a smaller thermal ‘sink’. Lower tolerance times were also shown for women 

than men during treadmill walking at 25-30 %VO2max in a hot-arid environment (48°C; 14 

%rh); although groups were matched for relative VO2max and AD, the women were significantly 

lighter.21 Similarly, McLellan55 demonstrated shorter tolerance times for women than men 

during intermittent walking in uncompensable conditions, whereas Dill et al.57 demonstrated 

that men could complete 30-60 minute walks at a faster pace in ‘desert heat’ than women.  

 

In contrast, Horstman and Christensen17 demonstrated no sex difference in the tolerance to 

cycling at 40 %VO2max in hot-arid conditions (45°C; 14 %rh) although estimations of MHP 

suggest that this may have been lower in the women than men. Likewise, Avellini et al.22 

reported that the tolerance of women during the pre-ovulatory stage of the menstrual cycle was 
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superior to that of men during treadmill walking (5.6 km.h-1; 2% gradient) at 36°C, 65 %rh. 

Although the women had a lower VO2max (relative and absolute) and higher body fat 

percentage, the groups were not statistically different for mass, AD, or AD/m ratio. However, 

the women were, on average, ~7 kg lighter with a larger AD/m ratio (+14.7 cm2·kg-1), which 

could be advantageous in humid conditions.10 Furthermore, there were no sex differences in 

tolerance during the post-ovulatory phase. Others have also suggested that heat tolerance 

changes across the menstrual cycle, being reduced in the mid-luteal phase relative to the 

follicular phase,22 42 52 although some studies have shown no differences.21 59 

 

Given the varying experimental controls in the aforementioned studies it is unclear to what 

extent the reported differences were attributable to fitness, anthropometry, or sex. Kazman et 

al.56 compared 55 men and 20 women during treadmill walking (5 km∙h-1; 2% grade) for up to 

120 minutes at 40°C and 40 %rh. Heat intolerance was defined as attaining a heart rate >150 

beats.minute-1 or TC >38.5°C. Using hierarchical regression analysis, it was reported that 

women were 3.7 times more likely to be classified as heat intolerant than men. However, heat 

intolerant participants also had lower relative and absolute VO2max and higher body fat 

percentage. Importantly, when these variables were entered into the regression equation sex 

became non-significant as a predictor of tolerance, indicating that the ‘sex differences’ were 

largely due to fitness and anthropometry rather than sex, per se. 

 

Heat acclimation may influence sex differences in physical performance in the heat. Wyndham 

et al.28 and Avellini et al.22 reported that the thermoregulatory responses of men and women 

during exercise in humid-heat were more similar post-acclimation, with all participants 

subsequently able to complete the exercise tasks (4 hrs stepping and 3 hrs treadmill walking, 

respectively). However, differences in sweating rate, which in each case was lower in women 

pre-acclimation, remained,28 or increased.22 Moreover, in the study of Wyndham et al.28 the 

pre-acclimation thermoregulatory strain was higher in women, but in Avellini et al.22 the 

converse was true, whereas completion of the exercise tests does not enable evaluation of the 

limits of tolerance. Frye and Kamon21 also reported that thermoregulatory function, including 

sweating, was more similar between sexes during exercise in a hot–arid environment post-

acclimation, with all participants now able to complete a 3-hr treadmill walk. Finally, Horstman 

& Christensen17 reported that the sweat rate and sensitivity of women increased with heat 

acclimation whereas men’s remained unchanged. Women also demonstrated a greater 

reduction in Tre and heart rate, and although exercise tolerance was no different between men 
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and women pre-acclimation, post-acclimation the women had a significantly longer tolerance 

time. More recent data also supports the possibility of sex differences in the pattern of heat 

acclimation, with women demonstrating a more rapid sudomotor adaption than men, but taking 

longer to achieve thermal and cardiovascular stability.60   

 

Overall, the data examining sex differences in physical performance in the heat, before and 

after acclimation, are somewhat equivocal and it is difficult to draw firm conclusions. Many of 

these studies are underpowered and the findings heavily influenced by the variations in 

experimental design. The relevance of some studies within a military, or GCC, context is 

limited. In keeping with the thermoregulatory research, some more recent data suggests that 

the average women may be more intolerant to hot-dry environments than the average man, but 

these ‘sex differences’ are primarily due to the effects fitness and anthropometry rather than 

sex, per se. As such, they could be diminished in a GCC cohort, but further research is required 

to verify this hypothesis. 

 

5.2 Cognitive  

Numerous studies have shown that heat stress negatively effects cognitive tasks, including 

those with particular relevance for military roles, such as vigilance,61 working and visual 

memory,62 63 executive tasks,64 and task planning.65 However, others (e.g. Amos et al.66) have 

shown no effect of heat stress on aspects of cognitive performance. The broad consensus from 

recent reviews appears to be that simple cognitive tasks may be less vulnerable to heat stress 

than more complex tasks.67 68 

 

There is limited research examining sex differences in cognitive performance in the heat. Wyon 

et al.69 demonstrated that performance of some cognitive tasks (e.g. sentence comprehension, 

recognition memory) declined in both sexes beyond an ambient temperature of ~27°C. 

However, in a multiplication task, the female participants maintained performance beyond 

28°C, whereas the performance of males declined. It was suggested that this was due to a higher 

thermal discomfort in the men, although this is at odds with research suggesting that there is 

no sex-effect on thermal comfort.27 It has also been speculated that the influence of heat stress 

on cognition might be related to the initial skill level;67 men may have better visuo-spatial and 

mathematical abilities than women,70 whereas women may have superior verbal skills.71 

Gaoua67 also highlights sex differences in neurotransmitters which could influence arousal, and 

potentially affect cognitive performance. However, these assertions are largely speculative and 
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further research, utilising cognitive tasks that have relevance within the military context, is 

needed to understand the influence of sex on cognitive performance in the heat. 

 

6 Heat illness 
Heat illness encompasses a spectrum of conditions ranging from light-headedness through to 

heat stroke and death. Between 2006 and 2010, 25.5 men and 12.7 women per 100,000 

population, per year, presented to USA Emergency Departments with heat illness not requiring 

admission.72 Similarly, the incidence of heat-related illnesses requiring Emergency Department 

visitations in Florida is higher in men than women during summer months, with a crude rate 

ratio of 5.91 per 100,000 worker years and 2.77 per 100,000 person years for work, and non-

work heat-related illnesses, respectively.73 The Centers for Disease Control and Prevention 

USA74 reported 2,271 male and 1,135 female deaths from extreme heat exposure between 1999 

and 2003, with a death rate of 0.8 per million population in men and 0.3 per million population 

in women during an extreme heat event in 2012.75 In Adelaide, South-Australia, 36 male and 

18 female deaths were reported during a 2009 heat-wave,76 whereas between 2006 and 2010, 

0.024 men and 0.006 women per 100,000 population, per year, died in Emergency Departments 

in the USA from heat-related illness.72 Among military populations, heat stroke rates are higher 

in men than in women soldiers, although the rates of other heat illness were higher in women 

than men.77 

 

The reasons for the reported sex differences in heat illness rates are not clear, and possibly 

contrary to that which might be expected based upon the thermoregulatory differences between 

men and women described in section 3.2. Heat stroke has an inflammatory component 

occurring in the context of an elevated TC,78 but recent research suggests that sex has no effect 

on intestinal epithelial injury and permeability, and minimal effect on the systemic cytokine 

response to exertional heat stress.79 Alternatively, incidence analyses may not take into account 

differences in the type of activity that have historically been undertaken by men and women, 

which might demand different rates of MHP, or levels of heat exposure. There may also be 

relevant behavioural differences; women demonstrate more circumspect attitude towards the 

health effects of high heat and more precautionary behaviours than men.80 However, for 

individuals operating in GCC roles the opportunity to undertake sex-specific physical activities 

and exercise sex-dependent precautionary behaviours will be limited, and thus the relevance of 

these data in a GCC context is unclear. 
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7 Summary 
The factors underpinning population level sex differences in males and females in response to 

exercise heat-stress are summarised in table 1. ‘True’ sex differences in thermoregulation 

between men and women are relatively limited, and appear confined to lower sweat rates at 

higher work rates. Nevertheless, relative to male soldiers, female soldiers are, on average, less 

aerobically fit, lighter, with a smaller AD and a higher AD/m ratio and percentage body fat. 

These differences may increase the cardiovascular strain of a given task, reduce the rate of heat 

exchange with the environment, increase reliance on vasomotor changes to regulate body 

temperature, and lessen the size of the thermal ‘heat sink’.  Moreover, women may be at a 

greater thermoregulatory disadvantage during the mid-luteal phase of the menstrual cycle, 

although some recent data challenges this assertion. However, during load-bearing exercise, 

lighter individuals have a lower MHP. Overall, these factors mean that, relative to men, women 

who are representative of the wider military population might be at a thermoregulatory 

disadvantage in many hot environments, particularly at higher work rates in hot-arid 

conditions, but this may be lessened in conditions favouring a high AD/m ratio, where higher 

sweat rates are of little benefit (hot-humid). 

 

The purported thermoregulatory differences between men and women are consistent with some 

studies examining sex differences in physical performance in the heat, although there are 

inconsistencies between studies. Any sex differences may be secondary to the influences of 

fitness and anthropometric factors and might be lessened with heat acclimation. Heat illness 

incidence data appear at odds with the apparent thermoregulatory differences between men and 

women i.e. lower heat illness and/or heat stroke incidence in women than men. However, some 

analyses may not adequately account for sex differences in activity profiles and exposure risk. 

 

Finally, it is important to acknowledge that women who pass current and future gender-free 

physical employment standards to undertake GCC roles may be fitter, with a lower fat mass 

than the average female soldier. If they are more similar to their male counterparts then the 

thermoregulatory and performance differences attributed primarily to fitness and some 

anthropometric factors may be diminished. Likewise the opportunities for sex differences in 

activity profiles and exposure risk for those operating GCC roles are likely to be limited, which 

may limit the relevance of much of the extant heat-illness incidence data. In many areas the 
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literature is of poor quality and does not examine individual’s representative of those operating 

in military roles, undertaking relevant tasks at an appropriate pace, in representative 

environmental conditions, whilst wearing appropriate operational equipment. In some areas, 

e.g. behavioural thermoregulation and cognition, further work is urgently required to 

adequately understand sex differences in the heat that are relevant within a GCC context 
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10 Tables 
Table 1: Summary of factors underpinning population level sex differences in males and 
females in response to exercise heat-stress.  
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Factor Difference Significance 
Anthropometric   
 Mass Lower in females than males Low body mass reduces the size of the ‘heat sink’, resulting in a bigger body temperature increase for a given heat 

storage. Those with a low body mass have lower metabolic heat production during load bearing exercise. 
 

Body composition  Higher percent body fat in 
females than males 

The heat specific capacity of adipose tissue is less than ‘lean’ tissue. Individuals with higher body fat percentage 
will have a greater increase in body temperature for a given change in heat content.  
 

Body surface area Lower in females than males Heat-transfer potential with environment is lower with a small body surface area. May be disadvantageous in 
conditions favouring heat loss or beneficial in conditions favouring heat gain from the environment  
 

Body surface area: 
mass (AD/m) ratio  

Higher in females than 
males 

High AD/m ratio affords a large surface are for heat exchange relative to metabolic heat production which may result 
in lower heat production and less heat storage in some hot environments.  May affect heat loss mechanisms (see 
vasomotion, below). 
 

Fitness   
 VO2max Lower in females than males  At a given absolute work rate competition between muscle and skin for blood flow is greater in those with a low 

VO2max, this increases the cardiovascular component of thermoregulation. Sweating is lower at high work rates in 
those with a low VO2max. 
 

Thermoregulatory   
Behavioural                             
thermoregulation 

Females may be more 
sensitive to heat than males 

Some limited evidence to support greater female sensitivity to heat, but does not appear to affect upper limit of 
thermal comfort. Effect on behavioural thermoregulation (if any) is unclear. 
 

Vasomotion May be more important in 
females than males 

A high AD/m ratio may increase the reliance on vasomotion for heat loss. 
 
 

Sudomotion Possibly lower in females 
than males at high work 
rates 

Sweating rates may be lower in females than males during exercise at high work rates, even when key 
anthropometric differences are controlled for.  
 

Hormonal   
Female sex 
hormones 

N/A Deep body temperature is highest (+0.5°C) in the mid-luteal and lowest in late follicular phase of the menstrual 
cycle due to changes in concentration of oestrogen and progesterone. Some evidence that this may not adversely 
affect heat loss or storage during exercise. 


