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24 ABSTRACT

25 The structure of plant communities is often influenced by facilitative interactions 

26 where ‘facilitated’ plants gain a benefit from growing associated with ‘nurse’ plants. 

27 Facilitation has been mostly studied from the facilitated plant’s perspective, and 

28 bidirectional effects between nurse and facilitated plants have received less attention. 

29 We hypothesized that reciprocal benefits in plant-plant interactions may emerge when 

30 interactions are considered along the life-span of the plants involved. Over one spring, 

31 we selected five species with similar life-form and growth strategy, and using a full 

32 factorial design, we compared different fitness components along the plants’ life-span 

33 (seedling establishment, juvenile growth and reproductive investment in adult plants). 

34 We compared: a) plants growing in solitary stands and associated with other plants in 

35 vegetation patches; and b) plants that originally functioned as nurse plant (the largest 

36 plant of the vegetation patch) and as facilitated (not the largest plant of the vegetation 

37 patch). Plants growing in vegetation patches displayed higher seedling establishment 

38 and juvenile growth compared to solitary conspecific plants. At a later developmental 

39 stage, nurse plants in vegetation patches experienced higher reproductive investment 

40 (measured as flower production relative to plant size) compared to solitary plants. In 

41 contrast, the originally facilitated plants showed similar reproductive investment 

42 compared to their solitary pair of similar size. Facilitation might be a complex 

43 interaction in which reciprocal benefits for both facilitated and nurse plants can be 

44 detected when interactions are considered along the plants’ life-span. Our results 

45 suggest that mutual benefits in plant-plant interactions could be important to sustain 

46 diversity in plant communities, but they appeared overlooked and deserve further 

47 attention. 



48 Keywords: Facilitative interactions, gypsum, long-term interactions, nurse plants’ 
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50

51

52 INTRODUCTION

53 Community assembly processes strongly influence the relative abundance of species 

54 in communities and the spatial distribution of biodiversity (HilleRisLambers et al. 

55 2012, Mittelbach and Schemske 2015). Plant facilitative interactions occur if at least 

56 one of the interacting species gains some benefit (facilitated) from growing in 

57 association with other (nurse) species, and no harm is caused to either (Callaway 

58 2007). During the period of establishment, plants commonly benefit by growing 

59 associated with a nurse plant, but this positive interaction can shift to competitive 

60 once the facilitated plant reaches maturity (Miriti 2006, Schiffers and Tielbӧrger 

61 2006, Armas and Pugnaire 2009). A less explored component of facilitation is 

62 whether changes in the shared environment caused by adult facilitated plants benefit 

63 the original nurse plant (i.e. the plant that arrived first to the shared environment). In 

64 stressful environments with limited resources, this could result in positive feedbacks 

65 between plants, although these might be detectable at different developmental or 

66 demographic stages for the nurse and the facilitated plants. Unfortunately, the 

67 dynamics of positive feedbacks along the entire life-span and different demographic 

68 stages of plants remains largely unexplored. 

69

70 Plant-plant facilitative interactions are commonly assessed from the perspective of 

71 benefits gained by the facilitated species (Callaway 2007). The analysis of costs and 

72 benefits for both facilitated and nurse plants allowed identification of shifts from 



73 facilitation to competition associated with plant growth (Valiente-Banuet et al. 1991, 

74 Armas and Pugnaire 2009). However, recent studies demonstrated that the benefits of 

75 plant-plant interactions can be mutual (Sortibrán et al. 2014, Tirado et al. 2015), 

76 which could be explained if the interacting plants shift their role, e.g. if the 

77 beneficiary species becomes benefactor as it grows and becomes an adult plant. For 

78 example, during an early life stage, seedling establishment and growth of juvenile 

79 plants increases if plants grow under the stress-ameliorated micro-environment 

80 provided by the nurse plant (Pugnaire et al. 1996, Gómez-Aparicio et al. 2004, 

81 Callaway 2007, Castillo et al. 2010); as plants become adults, they modify the micro-

82 environment (Navarro-Cano et al. 2015), which in turns benefits those plants that 

83 share it. Adult plants can provide fungal mutualisms, increase nutrient turn over by 

84 altering soil microbiota, and accumulate nutrients, all of which benefit other plants 

85 (Montesinos-Navarro et al. 2012, 2016, Rodríguez-Echeverría et al. 2013, Lozano et 

86 al. 2014, Navarro-Cano et al. 2014, Sortibrán et al. 2014), including the original nurse 

87 plant. Therefore, as adult plant, the originally facilitated plant can enrich the micro-

88 environment shared with the nurse plant. The nurse plant might overall gain larger net 

89 benefits compared to the adult facilitated plant, since larger plants are more efficient 

90 at capturing resources (Goldberg and Landa 1991, Keddy et al. 2002, Vogt et al. 

91 2009). Nurse and adult facilitated plants might compete for resources during specific 

92 periods, but in the long term, the association between plants is likely to remain if the 

93 net effects are positive for both nurse and facilitated plant, and overcome the potential 

94 costs (Valiente-Banuet and Verdú 2007). Shifting roles from beneficiary to benefactor 

95 and vice versa might strengthen species coexistence, ultimately increasing 

96 biodiversity at the level of local communities. 

97



98 In this study, we focus on a Mediterranean plant community growing on 

99 resource-poor gypsum soils to investigate whether mutual benefits for the nurse 

100 and the facilitated plants may emerge throughout the lifespan of plants. We 

101 compare the performance measures between isolated and aggregated plant 

102 species at different developmental stages (i.e., juveniles and adult plants) and 

103 expect that both the facilitated and the original nurse plant species can benefit 

104 from the interaction, the former at an early developmental stage and the later as 

105 an adult (Fig. 1). Overall, our approach contributes to a better understanding of 

106 the temporal dynamics of plant facilitative interactions, and provides insights 

107 into mutual benefits between nurse and facilitated plants, otherwise overlooked 

108 in the plant-plant facilitation literature.

109

110 MATERIALS AND METHODS

111

112 Study site 

113 The study was conducted in spring-summer 2016 in a semi-arid plant community in 

114 the SE of Spain, 2.21 km NE of Petrer in the province of Alicante (38°29'52.36"N, 

115 0°44'37.62"W), in an area of 4708 m² with a 30% of vegetation cover (Delalandre and 

116 Montesinos-Navarro 2018). The average annual temperature and precipitation of the 

117 region is 22.5˚C and 381 ml respectively (Cueva 1994). The study site is an outcrop 

118 of gypsum soil surrounded by clay and loam. Gypsum soils are physically unstable 

119 due to lack of plasticity, cohesion, and aggregation (Romão and Escudero 2005), 

120 properties that prevent root penetration of the surface crust after seed germination and 

121 limit establishment of plant juveniles (Meyer 1986). Gypsum soils generally lack 

122 important plant nutrients such as phosphorus, nitrate and potassium (Meyer 1986). 



123 Altogether these physical and chemical properties make gypsum soils stressful 

124 environments for plants.

125  The most common plant species in the study site were chamaephytes, including 

126 Teucrium libanitis Schreber, Thymus vulgaris, Th. moroderi, Fumana ericoides, 

127 Helianthemum squamatum (Jacq.) Dum. Cours., H. syriacum L., Helichrysum 

128 stoechas, Herniaria fruticosa, and Sedum sediforme. Shrubs such as Cistus clusii, 

129 Ononis tridentata and Rosmarinus officinalis were scattered and uncommon. We 

130 focused the study on the most abundant species, namely T. libanitis, Th. moroderi, H. 

131 squamatum, H. syriacum and He. Stoechas, because they are all dwarf shrubs with 

132 similar size and similar traits related to growth strategies (trait values compiled from 

133 BROT data base, presented in Table 1; Paula et al. 2009, Tavcsanouglu and Pausas 

134 2018). Therefore, differences among these species are likely to emerge in relation to 

135 temporal differences in plant establishment, especially in gypsum soils, where 

136 secondary growth shows large inter-site and small interspecific differences (Olano et 

137 al. 2011).

138

139 Sampling design 

140 Over one spring, we studied five species with similar life-form so that their size could 

141 be used as proxy of the sequence order of plant establishment in vegetation patches. 

142 We compared performance traits relevant to different life stages between plants that 

143 appeared growing in association with other species (i.e. in vegetation patches where 

144 canopies overlapped) and solitary, in order to estimate the net benefits (or costs) of 

145 growing in vegetation patches. For seedlings and juvenile plants, we quantified the 

146 frequency of establishment and growth of juveniles respectively. In adult plants, we 

147 determined whether net flower production (relative to plant height) varied with the 



148 role that the species played in the interaction (nurse or facilitated) (Fig. 1).  Therefore, 

149 we quantified the net benefit in pairs of species where the associated individual was 

150 the largest in the vegetation patch (assumed to be the original nurse plant), and in 

151 pairs where it was not the largest (although frequency of establishment and juvenile 

152 growth might have been facilitated by the nurse plant at an earlier life stage). We 

153 focused on key demographic parameters that influence population dynamics, namely 

154 survival, growth and reproduction (Caswell 2001), and selected plant performance 

155 components that inform about these parameters. We used plant height as proxy of 

156 either growth and/or survival, and flower production as a proxy of reproduction. 

157 Then, we followed a widely used approach to quantify the intensity of plant-plant 

158 interactions, which consists of comparing plant performance between treatments 

159 differing in the presence (e.g. associated) or absence (e.g. solitary) of neighbors 

160 (Goldberg et al. 1999, Holzapfel and Mahall 1999, Pugnaire and Luque 2001, 

161 Cavieres et al. 2008, Schӧb et al. 2014b, García-Cervigón et al. 2016, Pueyo et al. 

162 2016, Llambí et al. 2017). We applied this general approach for the following fitness 

163 components along the plants’ life-span.

164

165 Frequency of juvenile recruitment

166 Recruitment and spatial distribution of juvenile plants (e.g. early life development 

167 stage) was studied by sampling 111 plots of 1.5 m ×1.5 m randomly distributed across 

168 the study site. We quantified the number of juvenile plants growing in vegetation 

169 patches with other plants, and growing solitarily. We considered juvenile plants those 

170 with soft stems and without signs of stem lignification, and vegetation patches as 

171 groups of plants with overlapping canopies. We calculated the percentage of the total 

172 area covered by plants by measuring the maximum and minimum diameter of the 



173 patch per plot, and approximated the patch area to an ellipse. We used binomial tests 

174 to compare the observed number of juveniles in the two conditions (i.e. growing in 

175 association with other plants in patches and solitarily), with those expected based on 

176 the proportion of area covered by plants, using the “binom.test” function implemented 

177 in R version 3.2.3  (R Core Team 2015). The p-values were corrected for multiple 

178 testing through the false discovery rate (FDR) method, using the “p.adjust” function. 

179

180 Juvenile growth

181 In an area of 30 m2, we compared height of juvenile plants growing in patches and 

182 isolated to test if performance increased in vegetation patches. Plant height was used 

183 as proxy of performance, driven either by an increase in growth rates and/or improved 

184 survival. We used a general linear mixed model and included height as dependent 

185 variable, growing condition (e.g. in association with other plants and in solitary 

186 stands) as fixed effect, and species identity as random effect. The analysis was 

187 conducted using the “lme4” package (Bates et al. 2015), the significance of the fixed 

188 effect was assessed using “lmerTest” package (Kuznetsova et al. 2017), and the mean 

189 estimate of the levels was retrieved using “effects” package (Fox and others 2003), all 

190 implemented in R version 3.2.1 (R Core Team 2015).

191

192 Flower production of adult plants 

193 We measured plant height and flower production in 200 adult individuals. We 

194 selected plants distributed in a paired design (hereafter set) so that two plants of the 

195 same species appeared growing in each condition, i.e. in vegetation patches and in 

196 solitary stands within 1 m distance from each other. In half of the sets, the plant 

197 growing in association was the largest of the vegetation patch (assumed to be 



198 originally the nurse plant), whereas in the other half the adult plant was not the largest 

199 (assumed to be the originally facilitated plant as seedling) (Fig. 1). For T. libanitis and 

200 Th. moroderi we counted the number of inflorescence rather than number of flowers 

201 because flowers of these species are too small to obtain accurate counts in the field. 

202 We targeted five species and selected 20 sets per species (40 plants per species), 

203 accumulating a total of 100 sets (sets included paired-individuals, one from the 

204 vegetation patch and one from solitary stands, of a similar size; 200 plants in total). In 

205 some cases, sets of different species shared the same vegetation patch, and this was 

206 incorporated in the analyses (see below). 

207 Because plant size and/or age (both likely correlated with height) affects flower 

208 production, we conducted a linear regression for each species to predict flower 

209 production based on plant height. We extracted the residuals and used them as 

210 measure of corrected flower production to remove plant size effects on the response 

211 variable. Within each set, we estimated the difference between the corrected flower 

212 production of plants growing in association and its solitary paired-plant. We used this 

213 measure as proxy of benefits gained (if positive) and costs (if negative) of growing 

214 associated with other plants in a vegetation patch. Two conspecific plants within each 

215 set could slightly differ in height, but using the residuals of flower production 

216 regressed against plant height ensured that detectable differences between plants in 

217 association and its solitary paired-plant were independent of height. We used a 

218 general linear mixed model to test if differences in corrected flower production could 

219 be explained by the fixed factor “role”. “Role” indicated whether the associated plant 

220 was assigned as originally nurse or facilitated plant (largest and not the largest plant 

221 of the patch respectively). In the analysis, plant species and vegetation patch were 

222 included as random factors. All statistical analyses were performed using the package 



223 “lme4” (Bates et al. 2015), the significance of the fixed effects was assessed using 

224 “lmerTest” package (Kuznetsova et al. 2017), and the mean estimates and standard 

225 error of the two levels of the fixed factor (largest and non-largest plant) were obtained 

226 using “effects” package (Fox and others 2003), both implemented in R version 3.3.1 

227 (R Core Team 2015).

228

229 RESULTS

230

231 Juvenile recruitment 

232 In the 250 m2 area sampled, plants covered only 15% of the area surveyed, but the 

233 estimated probability of finding juveniles in vegetation patches was threefold of 

234 solitary juveniles for all plant species (0.52-0.59, Table 2). The binomial test showed 

235 that the proportion of juveniles growing associated with vegetation patches was 

236 significantly larger than expected by chance (Table 2). 

237

238 Juvenile growth 

239 Height was recorded in 314 juvenile plants in 30 m2 (154 of H. syriacum, 82 of H. 

240 squamatum, 28 of Th. moroderi, 21 of T. libanitis and 19 of He. stoechas). The height 

241 of juvenile plants was significantly explained by growing condition, whether the 

242 plants appeared growing associated vs. in solitary stands (F-value = 6.071, 309, p-value 

243 = 0.01), with an average height (mean ± SE) of 2.88 ± 0.42 cm in vegetation patches 

244 and 2.23 ± 0.40 in solitary stands (Fig. 2). These differences represent an increase of 

245 29% in height for juvenile plants in vegetation patches.

246

247 Flower production 



248 We detected differences in corrected flower production in relation to the role assigned 

249 to plants. Nurse plants (i.e. the largest individuals in vegetation patches) showed 

250 significantly higher benefits than facilitated conspecifics (not the largest) (N=100, p-

251 value= 0.003; Fig. 3). Specifically, differences in corrected flower production 

252 between the largest plant in the patch and its paired-solitary conspecific was positive 

253 and statistically significant (72.38 ± 25.22; p-value = 0.02). In contrast, when the 

254 associated plant was not the largest of the patch, flower production was similar 

255 between the plant in the vegetation patch and the paired-solitary conspecific (-11.02 ± 

256 25.22; p-value = 0.67). 

257

258 DISCUSSION

259 From its foundation, coexistence theory emphasized competitive interactions to 

260 predict species composition in communities (Chesson 2000). More recently, 

261 facilitation has been incorporated to this framework (Bulleri et al. 2016) under the 

262 view of being an unidirectional process with benefits for only one plant involved in 

263 the association (Callaway 2007). The integration of a bidirectional and temporal 

264 perspective to plant-plant interactions has provided evidence of shifts from facilitation 

265 to competition, as facilitated plants became adults (Armas and Pugnaire 2009). 

266 However, it remains untested whether adult facilitated plants could change their role 

267 and become benefactors, providing benefits to other plants, including the original 

268 nurse plant.  Our study suggests that facilitation is maybe a complex process 

269 maintained throughout the life cycle of the plants involved in the interaction. Here we 

270 propose that as facilitated plants grow and become adults, both plants involved in the 

271 interaction could benefit from being associated with each other. It is therefore 

272 important to investigate the potential benefits gained at different developmental stages 



273 by identifying meaningful performance measures relevant to those life stages (e.g. 

274 survival and growth in juvenile vs. flower production as proxy of reproductive 

275 investment in adults). Previous research on plant-plant facilitation quantified changes 

276 in the magnitude and sign of interactions along the ontogeny of facilitated plant 

277 (Armas and Pugnaire 2005) and the effect of neighbours on its population dynamics 

278 (Miriti et al. 2001, Butterfield et al. 2010). However, to our knowledge, the proposed 

279 conceptual frame of mutual benefits for facilitated and nurse species along their life 

280 span has not been integrated in previous studies, and therefore the potential (delayed) 

281 benefits for nurse plants may have been overseen. 

282 We investigated plant-plant interactions by testing whether plants growing in 

283 vegetation patches gained benefits compared to those growing in solitary stands. Our 

284 analysis revealed that more juveniles recruited associated to other plants in vegetation 

285 patches compared to solitary, while at a later developmental stage, the original nurse 

286 plant showed an increased flower production compared to solitary conspecifics of 

287 similar size. In similar systems, vegetation patches provide a microenvironment richer 

288 in nutrients and with greater diversity of microbiota compared to bare ground 

289 (Navarro-Cano et al. 2014). Further research is required to assess whether an 

290 improvement of soil properties (e.g. moisture, fertility, enriched microbiota, among 

291 others) could be the underlying mechanism of facilitation. 

292 From a theoretical perspective, while experimental manipulations (i.e. plant removal, 

293 addition of nutrients) seem appropriate to evaluate mechanisms for plant facilitation, 

294 it might not be feasible to conduct them in unique edaphic islands with endemic plant 

295 species (Escudero et al. 2015). In addition, manipulations do not necessarily 

296 guarantee the removal of all the effects induced by the association. Hence, non-

297 experimental approaches like ours might be appropriate to study plant-plant 



298 interactions. Nevertheless, in non-experimental approaches other biotic or abiotic 

299 factors could have influenced the performance measurements. Micro-environmental 

300 features of the landscape might affect soil nutrient content or water availability, 

301 conditioning the growth and reproduction of plants stablishing in different microsites 

302 (Lundhold 2009, Stover and Henry 2018). The relatively small area (0.5 Ha) and low 

303 slope of the study site selected should have minimized this potential micro-

304 environmental variation. In addition, the paired experimental design to compare 

305 flower production between associated and solitary plants, where each pair is no more 

306 than one meter apart, should also account for potential micro-environmental variation 

307 present within our study site. In the case of early-stages performance measurements 

308 other factors such as a seed-trap effect might have influenced recruitment of juveniles 

309 in vegetation patches. However, it is unlikely that juvenile growth in vegetation 

310 patches could be attributed to seed-trap effects. Hence, other benefits, such as higher 

311 moisture or nutrient availability influenced by the presence of other plants, might be 

312 present in these environments. We identified some large individuals growing solitary, 

313 maybe reflecting a limited seed dispersal and colonization of all suitable micro-

314 environments, as well as variability in the plant-plant interactions outcomes as a 

315 balance between competition and facilitation.

316

317 Facilitative priority effects occur when the establishment of a species modifies the 

318 biotic or abiotic environment in ways that favour the establishment of subsequently 

319 arriving species (Fukami et al. 2005). The time of arrival of different species can in 

320 turn affect performance of later arriving species, which is often reflected in the 

321 community structure (von Gillhaussen et al. 2014). Although the stage-dependent 

322 responses to plant-plant interactions studied are not equivalent to documenting 



323 temporal dynamics, our results describe a pattern that might support the presence of 

324 different effects of facilitative interactions based on the arrival time of the species 

325 involved. In our study, this is supported by the fact that the same species showed 

326 different responses to growing associated vs. solitary, depending on whether they 

327 were the largest plant in the vegetation patch. Although larger size relative to other 

328 plant species in the vegetation patch may not necessarily imply an earlier arrival time, 

329 this might be likely considering that the plant species selected share similar traits 

330 related to growth strategies. 

331 Plants that establish first can influence recruitment, growth or reproductive success of 

332 subsequently arriving species (Fukami 2015), and the mechanisms commonly 

333 invoked include niche pre-emption (e.g. a reduction of available niche for plants with 

334 similar requirements), or niche modification (i.e. soil legacies) (Weiner 1990, Grman 

335 and Suding 2010, Cuddington 2011, van der Putten et al. 2013, Helsen et al. 2016). 

336 Different mechanisms of soil modification can give rise to beneficial effects, for 

337 example, by increasing nutrient availability or soil mutualisms (Burkle and Belote 

338 2015), but this modification might depend on the size of the established plants. Our 

339 study suggests that adult plants, particularly when they are the largest of the 

340 vegetation patch, could benefit from the association with other plants. We measured 

341 this by comparing flower production between vegetation patches and solitary 

342 condition. Flower production and associated reproductive traits are often sensitive to 

343 nutrient availability particularly in stressful environments (Muñoz et al. 2005, Burkle 

344 and Irwin 2009). It is possible that plants established in a vegetation patch modify soil 

345 properties improving the microenvironment and resource availability of the patch 

346 (Navarro-Cano et al. 2014). While this can benefit all plants in the patch, the original 

347 nurse plant (i.e. the largest in the patch), which probably presents a more developed 



348 root system than other adult plants, may be more efficient at acquiring resources, and 

349 thus more likely to gain greater benefits than relatively smaller plants (Violle et al. 

350 2009, Wang et al. 2010). Nevertheless, further research will help improving a 

351 mechanistic understanding of these interesting patterns. 

352

353 Reciprocal benefits in plant facilitative interactions have received little attention, but 

354 the interest is increasingly growing (Pugnaire et al. 1996, Holzapfel and Mahall 1999, 

355 Sortibrán et al. 2014, Tirado et al. 2015). Plants interact on a multidimensional scale, 

356 exerting positive and negative effects on their partners depending on the fitness 

357 component considered (i.e. germination, seed production, flower density, fruit set) 

358 (Maestre et al. 2003, Schӧb et al. 2014a). However, plant traits vary across the life-

359 span, implying that the benefits of harbouring complementary suites of traits might 

360 only be detectable when facilitative interactions are considered along the entire life-

361 span of plants (Montesinos-Navarro et al. 2019). At earlier developmental stages, 

362 seedlings or juvenile plants might be unable to substantially modify the soil 

363 conditions in which they grow (Sortibrán et al. 2014), but their capacity increases 

364 along the ontogeny of the plant (Navarro-Cano et al. 2015). In contrast, adult plants 

365 can reduce insolation, enhance nutrient cycling through litter leaching, alter microbial 

366 communities, and enhance the performance and reproductive success of neighbour 

367 plants (Vetaas 1992, Pugnaire et al. 1996, Montesinos-Navarro et al. 2012, Navarro-

368 Cano et al. 2014, Rodríguez-Echeverría et al. 2016). Future research should 

369 incorporate a wider and functional perspective of other reproductive estimates, such 

370 as fruit and seed production and quality, or probability of pollen delivery and arrival, 

371 all of which positively correlate with larger floral displays (Karron and Mitchell 

372 2011). Measuring performance at different life stages allows identifying benefits that 



373 might be delayed and emerge only when plant-plant interactions are considered along 

374 the life-span of the species involved. 

375

376 In conclusion, this study provides a novel view of the stage-dependent benefits that 

377 both nurse and facilitated plants can gain from facilitative interactions. Mutual 

378 benefits in facilitative interactions might promote long-term co-existence in plant 

379 communities, particularly in stressful environments, and create positive feedbacks in 

380 plant-plant interactions. Nevertheless, more research is required to provide a 

381 functional perspective and discover the underlying mechanisms that create positive 

382 feedbacks between plants, and how these structure plant diversity at the community 

383 level.
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653 Table 1. Trait values related to plant growth for the five focal species of our study 

654 compiled from BROT data base (Paula et al. 2009, Tavcsanouglu and Pausas 2018): 

655 Helianthemum squamatum (H. squamatum), Helianthemum syriacum (H. syriacum), 

656 Helichrysum stoechas (He. stoechas), Teucrium libanitis (T. libanitis), Thymus 

657 moroderi (Th. moroderi). The similarity in trait values (number of individuals (N), 

658 mean and standard deviation (sd)) across the plant species selected in the study, 

659 supports that they have similar growth strategies. All data comes from specimens 

660 collected in Eastern Spain.

661

Species traits N mean sd
Height (m)
H. squamatum 2 0.26 0.20
H. syriacum 5 0.46 0.24
He. stoechas 4 0.48 0.14
T. libanitis 1 0.12 -
Th. moroderi 1 0.10 -
Leaf area (mm2)
H. squamatum 1 69.54 -
H. syriacum 2 44.80 14.42
He. stoechas 3 39.66 32.73
T. libanitis 1 23.44 -
Th. moroderi 1 4.50 -
Leaf Nitrogen content (mg/g)
H. squamatum 1 13.39 -
H. syriacum 1 12.74 -
He. stoechas 3 12.82 0.79
Root depth (m)
H. squamatum 2 0.44 0.30
H. syriacum 2 0.39 0.39
He. stoechas 2 0.33 0.27
T. libanitis 1 0.17 -
Th. moroderi 1 0.13 -
Specific leaf area (mm2/mg)
H. squamatum 1 4.56 -
H. syriacum 3 4.84 1.47
He. stoechas 3 10.15 2.04
T. libanitis 1 3.41
Th. moroderi 1 6.30 -



663 Table 2. Binomial tests assessing differences in the establishment of juveniles in 

664 vegetation patches and bare ground for the five focal species. The expected proportion 

665 of juveniles growing associated with other plants was 0.15, based on the percentage of 

666 cover of plants in the 30m2 plot area sampled. For each species, the total number of 

667 juveniles observed (Total N. juveniles), the number of juveniles growing associated 

668 with other plants (N. juv. associated), the estimated probability of growing associated 

669 based on the binomial test (Estim. prob.), and the adjusted p-value corrected for 

670 multiple testing using the false discovery rate method (Adj. p-value) is included. For 

671 all species, the proportion of juveniles growing associated with other plants is 

672 significantly greater than expected by chance.

673

Species Total N. 

juveniles

N. juv.

associated

Estim. Prob. Adj. p-value

T. libanitis 203 120 0.591 <0.001

H. squamatum 539 321 0.596 <0.001

H. syriacim 201 106 0.527 <0.001

T. moroderi 22 13 0.591 <0.001

H. stoechas 23 12 0.522 <0.001

674

675

676



677 FIGURE LEGENDS

678

679 Figure 1. Experimental design. Fitness components for seedling/juveniles and adults 

680 were compared between conspecific plants growing associated with other plants and 

681 solitary (in brackets). In the field, two different situations were selected, vegetation 

682 patches where the focal species was the largest in the patch (i.e. originally acted as the 

683 nurse) and where it was an adult but not the largest of the patch (i.e. originally 

684 facilitated as a seedling). In the case of seedlings fitness components, the seedling 

685 cannot be the largest plant in the patch, and thus this situation is biologically 

686 unavailable. We expect that both the originally facilitated and nurse species will 

687 benefit (blue) from growing associated compared to solitary, the former at an early 

688 developmental stage, increasing its frequency of establishment and growth of 

689 juveniles, and the later at a later developmental stage, increasing flower production.

690

691 Figure 2. Juveniles size when growing in association with other plants or isolated. 

692 Estimated means and standard errors of the height of juveniles (in cm) for plants 

693 growing in vegetation patches and solitary.  

694

695 Figure 3. Benefits of growing in association with other plants in vegetation patches 

696 based on the role of the plant (largest plant of the patch assumed to function originally 

697 as nurse, and not the largest plant assumed to be originally facilitated as a seedling, 

698 see Methods). Estimated means and standard errors of flower production are 

699 presented, based on the residuals of the relationship between flower production and 

700 height. Benefits were calculated as the difference in flower production between paired 

701 individuals growing associated with vegetation patches and solitary. 
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