
Malicious Loop Detection Using Support Vector Machine

Zirak Allaf
School of Computing

University of Portsmouth
Portsmouth, UK

Email: zirak.allaf@port.ac.uk

Mo Adda
School of Computing

University of Portsmouth
Portsmouth, UK

Email: mo.adda@port.ac.uk

Alexander Gegov
School of Computing

University of Portsmouth
Portsmouth, UK

Email:alexander.gegov@port.ac.uk

Abstract—Existing Side-channel attack techniques, such as
meltdown attacks, show that attackers can exploit the
microarchitecture and OS vulnerabilities to achieve their goals. In
this paper, we present the development of our real-time system for
detecting side-channel attacks. Unlike previous works, our
proposed detection system does not rely on synchronisation
between the attackers and victims. Instead, it uses processors’
performance indicators to capture malicious Flush+Reload
activities with an accuracy of up to 99%. Moreover, the detection
activities can be achieved with minimum time delay in both native
and cloud systems with a low overhead performance
approximately less than 1% in the host system.

1. Introduction

In Cloud computing environments, data protection becomes
a great challenging factor. Although crypto-algorithms have
emerged as promising approaches to protect data,
hardware and software vulnerabilities attract hackers to
target cryptographic components and steal their private
keys through side channel attacks. The side channel attack is
the action of stealing sensitive information by exploiting
vulnerabilities in hardware/software. The main attack
characteristics can be identified firstly by relying on
hardware contentions - cache misses to observe victim’
activities, secondly by performing operations on the system
without privileges, and finally by monitoring the processors’
cycles [1] and the power consumption [2] as metrics to
measure latency.

Flush+Reload [3], Prime+Prob [4] are the two common
attack techniques in performing side-channel
attacks.Flush+Reload technique observes the victim by
monitoring specific cache line(s) in cache memory by
measuring the access time, if the cache memory buffers data
from main memory in the specified cache line(s), the access
time is faster, which indicates that the victim has recently
accessed the data. Whereas Prime+Prob monitors the
victim’s activities by filling the cache memory and waiting for
the victim to evict the attacker’s data, in this case, the
attacker can easily determine the evicted cache line, which
is replaced by the victim’s data. In this paper, we focus on

Flush+Reloadattacks, which relies on hardware contention
vulnerabilities. Hardware contentions occurred when
multiple threads operating on the same data in the cache
memory and thus the attacker utilised to break the memory
isolation in real-time across concurrent programs. Recent
studies showed the successful attacks occurred in security
settings - hardware settings [5] and disabling OS features like
page sharing[6] and KASLR [7], securing software
implementation constant programming [8], hardware
implementation for sensitive data SGX [9], and compiler
optimisation [10].In this paper, the Support Vector Machine
algorithm is proposed which can leverage hardware features
to analyse process activities at the processor core to detect
malicious processes which perform side-channel attacks in
the user space. The detection system is capable of capturing
malicious activities from side channel attacks against cache
memories, which may hold sensitive data such as secret
keys. The proposed detection system utilises a profiling
technique, which captures processor core level activities and
feeds it to the machine learning algorithms to build a
classification model. The detection system does not require
any synchronisation between the victim and attacker
programs to detect side channel attacks in the system. There
are several factors negatively affecting the synchronisation
approaches, few maybe be named as heavy workloads
leverage [11]. The rest of this paper is organised as follows.
Section 2presents a brief review of the related work. In
section 3, the necessary background is presented. Section 4
elaborates on the proposed detection system. Section 5
demonstrates the simulation results with detailed analysis.
Finally, a summary of the work is given in section 6.

2. Related Works

Side channel attacks have been studied in the laboratory
and in real systems over the past twenty years. They have
been practised against on-board resources such as CPU
computational units, cache and main memories. The
majority of these attacks have been concerned with cloud
systems, with an emphasis on IaaS (Infrastructure as a
Service), in which the physical resources of the same
machine are logically isolated across VMs. As the cloud

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/231898717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

grows in popularity, cloud providers become concerned with
some attacks that threaten their privacy and resources.

Recent studies have shown that Operating Systems are
vulnerable to side channel attacks. CPU designers as well as
software companies have responded with more robust
hardware designs and data fetching mechanisms in order to
alleviate the attacks on sensitive data.

Earlier research has demonstrated the achievement of
high resolution [3] and very fast [14] side channel attacks
through a Flush+Reload attack, which has the potential to
exploit the systems’ page sharing characteristics. The
content is a shared library of the same applications on the
machine, such as an AES shared library in relation to SSL
implementation in Linux. In the early stages of the cloud, the
cloud providers aimed to reclaim the maximum possible
amount of memory by utilising shared pages. However, the
disclosure of the page sharing vulnerability has caused
software industries and cloud providers to disable the page
sharing feature, which was previously the systems’ default
setting. To mitigate side channel attacks against page
sharing, the papers [20], [21] proposed the kernel space
solution CACHEBAR to provide concrete protection to shared
pages across VMs in PaaS. The drawback of this proposal is
the OS modifications and the performance impairment,
particularly in cloud systems.

A number of studies carried out over the past ten years
have examined many hardware-based vulnerabilities that
have permitted side channel attacks. Most often, the
hardware resource targeted by the attackers are CPU
caches. Microprocessor designers have made physical
changes to reduce the impact of such attacks. A study by
Percival [22] into L1 cache data leakage attacks suggested
that microprocessor manufacturers should disable cache
sharing between threads and the core to prevent any data
from being evicted from the cache lines. However, by
disabling cache sharing across concurrent programs, this
leads to significant degradation in system performance.

In general, when the side channel attack uses hardware
resources such as CPU cache memory, it relies on memory
contentions in the repetitive manner, which leads to
unintentional contentions. This can be easily detected by
utilising a synchronisation approach. The attack processes
can be detected by relying on the data collected by the
victim [23]. In this context, Allaf el at. [19] studied a
comparative approaches of multiple machine learning
algorithms, using SPEC CPU2006 with int and fp applications,
in order to stress the CPU cache memory. It was noticed that
heavy workloads have a negative effect on the detection
accuracy of the three machine learning algorithms applied
DT, PCAANN and KNN. All algorithms performed well when
no workload was running. However, with int applications,
such as gcc and bzips, the accuracy degrades and it got even
worse with fp applications.

3. Background

3.1. Multi-core Platforms

The mainstream microprocessors support a large
number of inter-connected cores with complex memory
systems within the CPU die. Each processor core has private
cache L1 and L2 with one inclusive Last Level Cache (LLC) or
L3 cache across the processor cores. Any communication
between processor cores and other sources in the machine
must travers through processor cache memories. Thus, the
high frequent hardware contentions occur in all cache levels,
particularly in LLC. The main sources that each processor
core needs is the main memory. Microprocessor industries
have provided flexibility in using CPUs by modifying the
hardware settings. For instance, OS can run under process or
thread mode. In process mode, two processes cannot share
private caches, whereas in thread mode threads can share
private L1 and L2 cache.

3.2. Real-time Scheduling

Scheduling is one of the core OS services to support and
mange hardware resources across running programs. The
main goal of the scheduler is to minimise power
consumption [24], which is used by the resources, and offer
the optimal performance by minimum stalls [25] to provide
the optimal dynamic adoption Dynamic voltage and
frequency scaling (DVFS)1 [26]. Thus, OS designers and
researchers intend to propose optimal scheduling
algorithms to aid bottlenecks and reduce power
consumption in order to utilise highest possible speed that a
CPU can offer. The focus in scheduling studies is how to
virtualise and share resources across processes. On the
other hand, side channel attacks come into account to
distort the beauty of schedulers by misusing the shared
resources [27], [28].

3.3. Malicious Loop Phase Modelling

The main part of a Flush+Reload attack program body is
a malicious loop (ML), which monitors secret elements from
AES look-up table when the victim’s processes access them.
ML flushes out the memory addresses in which the look-
up table is stored by utilising Clflush instruction; and then
access them continuously until the attacker retrieves the
whole secret key. Each ML iteration consumes the hardware
resources mainly L1, L2 and LLC caches and generating
hardware events such as cache miss and hit. Any clflush
instruction causes an equal number of cache misses at each
cache level, when the next access is achieved. This leads to
the to generate an organised set of chach misses per cache
layer.

1. is the adjustment process of power and speed settings on various
processors in computing device

3.4. Threat Model

The mechanism of the Flush+Reload exploits hardware
and OS vulnerabilities by utilising intentional hardware
contentions with a victim’s processes. The attacker and
victim can synchronise in shared environments in which
hardware resources, such as CPU caches, are fairly shared
across running applications. The attacker and victim on this
case run an AES algorithm to encrypt plain texts. The AES
algorithm is taken from the crypto.so-shared library in the
OpenSSL package and it is installed in the host OS Ubuntu
14.04. The attacker is a malicious program in the host, which
analyses the hardware cache contentions to deduce the AES
secret keys.

4. Detection System

Detection system is responsible for detecting side
channel attacks, namely Flush+Reload. The model utilises
supervised machine learning algorithms to classify the attack
activities which are achieved by the attacker program in user
space. The detection model continuously observes program
execution attributes on active processor cores from any ML
activities through communication channels and collect data
samples. The samples, which are collected from the ML jobs,
are aggregated by mean functions. Then the data is feed to
the classifier to extract the attacks pattern. The classifier
triggers an alarm to indicate the presence of side channel
attack in the host system.

4.1. Experiment Setup

The experiments were carried out on a HP Proliant DL360
G7 with Intel Xeon X5650 2.66GHz processor and 16 GB of
RAM, running Ubuntu 14.04 operating system.
The SPEC CPU2006 benchmark has been used for testing
purposes.

4.2. Data Collection

In this study, the main data collection source is HPCs
which is available in modern CPUs. In a typical Intel
microprocessor, HPCs support monitoring of hundreds of
CPU-related events. These events characterise program
execution behaviours. However, these events are not
equally beneficial to address a specific problem. For
instance, some of the events might visualise the
Flush+Reload execution attributes, such as L1, L2 and LLC
misses, which are more sensible.

As HPCs do not require kernel module to be accessed, a
kernel module is implemented to capture L1, L2 and LLC
misses per each processor core and send them to the
preprocessing procedure to apply average function with

aggregation to find the groups belonging to the ML tasks.
Finally, the aggregated data is fed to the SVM algorithm to
build an efficient classifier and extract Flush+Reload
activities among other workloads. SEPC CPU2006
benchmark suits has been used to stress the CPU while the
data collection is performed in order to test the classifier’s
performance with noisy data sets.

5. Feature Selection
This section describes how to choose program execution

attributes to detect the Flush+Reload attack activities in Real
Time Systems (RTS) by utilising HPCs. Selecting the most
relevant events to ML has an efficient affect in detecting and
identifying the attack activities.

In this study, feature selection plays the key role in
detecting side channel attack by profiling processor cores in
RTS, in which program execution attributes are captured
during their assignment to the processor cores, because no
information is provided about processes, which are assigned
to the processor cores such as PID. Proper features, which
represent the execution attributes, support classification
algorithms to extract Flush+Reload attack activities with high
accuracy. Thus, it is crucial to select features, which make
the distinction between attack programs and other
workloads in the system. In previous work [29], [30], the
feature selection relies on the facts relevant to the
synchronisation between victim and attacker programs and
features are selected based on the data dependency
indicating the corelation between victim and attacker
programs. In this paper, the feature selection does not rely
on synchronisation and data dependencies; instead, it
focuses on the unintentional memory contentions by the
attacker program.

This study focuses on the ML Flush+Reload program,
which is the core part of the program that efficiently
explores the vulnerabilities. The main task of each iteration
in ML is composed of clflush instruction followed by mov
instruction. The clflush instruction removes the data from
the hierarchical caches (L1, L2 and LLC) at a specific memory
address, whereas the mov instruction accesses the flushed
memory addresses from main memory. The access to the
flushed memory addresses requires N misses for each cache
level. We assume the N misses - L1, L2 and LLC - occur while
the jobs of ML is assigned to one of the active processor core.
Consequently, a very strong co-relation among L1, L2 and
LLC caches can be noticed. This is the key intuition in the
proposed framework to detect and identify the attacker at
the core level observations.

However, clflush instruction itself might be used by the
operating system when the memory management unit is
required. This makes it possible for the noise to incur in the
observations. Furthermore, noise may also interfere with
observations if clflush instruction is used in user space by
another program causing clflush instructions that were not

initiated by the attack program to be visible in the
observations. Despite of the occurrence of the noise, it is
possible to identify the malicious loop with great accuracy
because of one of its particular characteristics. It has a
repetition of not less than 25000 iterations being the
minimum number of operations required to retrieve every
bit making up the whole key in native systems.

Figure 1. L1 and L3 cache misses distribution of the attacker’s program in
host system

Reflecting on the activities, it is assumed that the access
needs N misses for each cache level without any hits. So, N
misses and zero hit will occur at each cache level when the
ML is assigned to the processor core. Consequently, a very
strong relation among L1, L2 and LLC caches can be noticed.
The series of equal number of cache misses makes the
distinction between Flush+Reload program and other
workloads in the system. This is the key intuition in
selecting the most relevant events to Flush+Reload
program. The Table 1 represents the use of four
programmable events. The distribution of L2 and LLC cache
misses of the attack in the host system is shown in Figure 1,
where the area beneath the red line shows the LLC misses
distribution and the area under the green line is L2 cache
misses distribution. They are almost congruent with each
other, showing that they are issuing almost the same cache
miss rates.

PMCs Annotation Events E1 LLC Misses
 E2 L2 RQSTS.ALL CODE RD

Programmable
 E3 L2 RQSTS.DEMAND DATA RD HIT
 E4 L2 RQSTS.ALL DEMAND DATA RD
 E5 Inst Retired.Any
 Fixed E6 CPU CLK UNHALTED.CORE
 E7 CPU CLK UNHALTED.REF TSC

TABLE 1. RELEVANT EVENTS TO SIDE CHANNEL ATTACK

As shown in Figure 1, LLC is still constant when the
attack program runs with SPEC workloads, but there is a
slight change in L2 cache misses. The workload variation is
shown in Figure 1, where the area inside the red line is the

original cache misses, and the area inside the green line
represents noise filtered out by E2 event. 5.1.
Methodology

5.2. Support Vector Machine

Support Vector Machine (SVM) is an instance based
algorithm, which was introduced by Boser et al. [31] for
classification purposes. SVM also can be used for regression
problems [32]. The SVM algorithm has numerous
application in various fields such as medical imaging, and
image processing, financial analysis and web applications.
The focus in this paper is on the binary classification
problem. SVM attempt to separate two classes by
discovering an optimal decision boundary called
hyperplane. The point inside the boundaries are called
support vectors. The SVM algorithm takes training data-set
S = (x1,y1),...,(xn,yn), where x ∈ X and y Y in binary
classification x ∈ Rn and y ∈ 1,1. The hyperplane separates
data points from S can be defined by:

 yi = f(xi,α) for 1 ≤ i ≤ n (1)

where α are parameters of the function f and n is the number
of instances in S. The function f is expressed by

 f(x,{w,b}) = sign(w ∗ x + b) (2)

The hyperplane should be maximised between the

instances of two classes by . However, in the noisy data-
sets, outliers are introduced to the data-sets. As we
mentioned that clflush instruction might be utilised by the
OS introducing noise to the data-sets. As the result, the
classifier misclassify the outliers and the performance of the
classifier decreases. Therefore, polynomial function is
utilised to solve the problem by introducing a slack variable
ξ to identify the outliers. This is defined by the following
expression:

yi(w ∗ xi + b) ≥ 1 − ξi for ξi ≥ 0 and 1 ≤ i ≤ n (3)

The new hyperplane can be defined by the following
equation:

 (4)

where C is the soft margin parameter which has the impact
on the classifier’s performance.

5.3. Model Evaluations

After building the SVM classifier, we need to make sure
that the model is efficiently applied in the unseen dataset.

Therefore, there are a number of metrics that can be used
to assess the model. In this study, only the SVM algorithm
has been used for classification problems. As the binary
classification is used to classify normal and attack activities
in the system, we will describe the metrics that have been
utilised in this thesis. The evaluation metrics for classification
models rely on confusion matrix, which contains information
about the predicted classes produced by the classifier
models and the actual classes from the original data-sets as
shown in Table 2. When True Positive (TP) is the case where
the classifier correctly recognises the positive samples in the
data-set. False Positive (FP) in

TABLE 2. CONFUSION MATRIX

Positive (P)

Negative (N)

this case, the classifier miss-classifies the positive classes as
negative. True Negative (TN) represents the total number of
the negative classes detected by the classifier correctly.
False Negative (FN) when the classifier miss-classifies the
Negative samples as Positive. Based on the confusion matrix,
we can derive the following metrics, which are used to
analyse the performance of the SVM classifier.

1) Recall/Sensitivity (True positive Rate) corresponds
to the proportion of normal activities that are
positive samples.

 (5)

2) Specificity (False Positive Rate) corresponds to the
FN samples which are incorrectly classified as
positive.

 (6)

5.4. Experimental Design

The experimental procedure can be summarised in to
two phases. In the first phase, the data-sets are collected
from the kernel module, which are collected in the host
system. The aggregation and mean functions are applied to
the data sets; 10 different runs of six-fold cross validation
(CV) were executed. In CV, each new data set is constructed

from different data points for both training and testing; all
data points contribute in the learners’ building stage. For
each iteration of CV, 70% of the original data sets were used
for training and the rest were for testing.

In the second phase, SVM algorithm has been used. With
each CV iteration, the new training data set is fed to the SVM
algorithm to build a classifier and then the new testing data
set is used to evaluate the classifier.

5.5. Experimental Results and Analysis

In this section, the results of the experiments are shown
for SVM algorithm and visualised by (ROC) Area, under

Figure 2. ROC-AUC for SVM in native system

curve (AUC) ROC-AUC. The figures depict the classifiers
performance in discriminating between two process
activities, which are normal, and attack.

In ROC-AUC figures, the classifiers outputs is represented
as ROC curves, which represent the sensitivity (recall) and
specificity calculations at incremental thresholds between
zero and one across 6 folds when the same dataset is
randomly shuffled, resulting in each fold having a different
spread of the data. The Y axis plots the classifier output’s
True Positives Rates (recall) and the X axis plots False Positive
Rates (specificity). Each fold is an individual ROC and is the
light blue line. It represents detection quality. The solid blue
line is the calculated mean. The ideal representation is when
the ROC curves has x = 0 and y = 1. This indicate that the
classifiers classify normal and attack classes in unseen
samples with 100

Figure 2 shows the ROC metric that evaluates the SVM
classifier’s ability to detect the ML activities among normal
workloads, SPEC CPU 2006 benchmark applications, in the
host system. Success in observing program execution
attributes and classifying processes as malicious or benign as
a measure of the risk of existing side channel attack in the
system is shown as estimated by the AUC of ROC. The model
identifies ML with very high accuracy (AUC=0.99 for an

Prediction
Positive (P) Negative (N)

TP FP

TN FN

average of 10 folds, with a zero confidence interval). The
noise incurred by L1 and L2 cache memories arises from the
additional clflush instruction. However, the outliers are
eliminated by the use of polynomial functions to predefine
the hyperplane as defined by the Equation 4. In this
equation, the slack variable ξ is able to identify the execution
of clflush instruction by the host OS. Furthermore, the
average function with aggregation contributes in increasing
the performance of the classifier; in this case, less outliers
will be introduced to the data sets.

5.6. Performance

In these experiments, the SPEC CPU2006 benchmark was
running for about 10 hours with the detection model.
The detection model was running continuously in user
space. The results showed that the detection model has a
very low impact on the performance of the host system;
even in the worst case, the performance overhead has less
than 0.03 effect on the system operation.

6. Conclusion

This paper has proposed a new system detection of side-
channel attacks using the bagging technique. The paper also
puts forward a new profiling technique to capture the
program execution attributes at the core level. Thus the
attacker cannot escape from the profiling in both native and
cloud systems. The ROC curve is used to evaluate the
efficiency of the proposed classifier for the detection of side
channel attacks. The classifier detects side-channel attacks
in both native and cloud systems with performance of up to
99\% under SPEC CPU2006 workloads. However, the
proposed method cannot detect techniques such as
Prime+Probe due to the behaviour of the malicious loop
inside the program. The future work will be considering the
design of a model that will include detection of other side-
channel attacks such as Prime+Probe.

References

[1] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual

International Cryptology Conference. Springer, 1999, pp. 388–397.
[3] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise,

l3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 719–732.

[4] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of aes,” in Topics in Cryptology–CT-RSA
2006. Springer, 2006, pp. 1–20.

[5] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: A fast
and stealthy cache attack,” arXiv preprint arXiv:1511.04594, 2015.

[6] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-
channel attacks are practical,” in Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 2015, pp. 605–622.

[7] O. Aciic¸mez, “Yet another microarchitectural attack:: exploiting
icache,” in Proceedings of the 2007 ACM workshop on Computer
security architecture. ACM, 2007, pp. 11–18.

[8] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 305–316.

[9] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
“An exploration of l2 cache covert channels in virtualized
environments,” in Proceedings of the 3rd ACM workshop on Cloud
computing security workshop. ACM, 2011, pp. 29–40.

[10] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2016, pp. 300–
321.

[11] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of
power analysis attacks on smartcards.” Smartcard, vol. 99, pp. 151–
161, 1999.

[12] S. Weiser, R. Spreitzer, and L. Bodner, “Single trace attack against rsa
key generation in intel sgx ssl,” in Proceedings of the 2018 on Asia
Conference on Computer and Communications Security. ACM, 2018,
pp. 575–586.

[13] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: system-level
protection against cache-based side channel attacks in the cloud,” in
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12), 2012, pp. 189–204.

[14] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S $ a: A shared cache attack
that works across cores and defies vm sandboxing–and its application
to aes,” in 2015 IEEE Symposium on Security and Privacy. IEEE, 2015,
pp. 591–604.

[15] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard,
“Kaslr is dead: long live kaslr,” in International Symposium on
Engineering Secure Software and Systems. Springer, 2017, pp. 161–
176.

[16] T. Pornin, “Bearssl: A smaller ssl/tls library,” 2016. [Online].
Available: https://bearssl.org/

[17] F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, S. Capkun,¨ and A.-
R. Sadeghi, “Software grand exposure: Sgx cache attacks are
practical,” arXiv preprint arXiv:1702.07521, 2017.

[18] J. V. Cleemput, B. Coppens, and B. De Sutter, “Compiler mitigations
for time attacks on modern x86 processors,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 8, no. 4, p. 23, 2012.

[19] Z. Allaf, M. Adda, and A. Gegov, “A comparison study on flush+ reload
and prime+ probe attacks on aes using machine learning approaches,”
in UK Workshop on Computational Intelligence. Springer, 2017, pp.
203–213.

[20] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: crosscores
cache covert channel,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer,
2015, pp. 46–64.

[21] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” arXiv preprint arXiv:1603.05615,
2016.

[22] C. Percival, “Cache missing for fun and profit,” 2005.
[23] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “Spydetector: An approach

for detecting side-channel attacks at runtime,” International Journal
of Information Security, pp. 1–30, 2018.

[24] Z. Zhang and J. M. Chang, “A cool scheduler for multi-core systems
exploiting program phases,” IEEE Transactions on Computers, vol. 63,
no. 5, pp. 1061–1073, 2014.

[25] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and exploiting program phases,” IEEE micro, vol. 23, no.
6, pp. 84–93, 2003.

[26] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani, J.
Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej et al., “An overview of
energy efficiency techniques in cluster computing systems,” Cluster
Computing, vol. 16, no. 1, pp. 3–15, 2013.

[27] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P.
Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[28] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S.
Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[29] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time sidechannel
attack detection system in clouds,” in International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
118–140.

[30] M. Payer, “Hexpads: a platform to detect “stealth” attacks,” in
International Symposium on Engineering Secure Software and
Systems.
Springer, 2016, pp. 138–154.

[31] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual
workshop on Computational learning theory. ACM, 1992, pp. 144–
152.

[32] V. Cherkassky and Y. Ma, “Practical selection of svm parameters and
noise estimation for svm regression,” Neural networks, vol. 17, no. 1,
pp. 113–126, 2004.

	1. Introduction
	2. Related Works
	3. Background
	3.1. Multi-core Platforms
	3.2. Real-time Scheduling
	3.3. Malicious Loop Phase Modelling
	3.4. Threat Model

	4. Detection System
	4.1. Experiment Setup
	4.2. Data Collection

	5. Feature Selection
	5.2. Support Vector Machine
	5.3. Model Evaluations
	5.4. Experimental Design
	5.5. Experimental Results and Analysis
	5.6. Performance

	6. Conclusion
	References

