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Abstract—Existing Side-channel attack techniques, such as 
meltdown attacks, show that attackers can exploit the 
microarchitecture and OS vulnerabilities to achieve their goals. In 
this paper, we present the development of our real-time system for 
detecting side-channel attacks. Unlike previous works, our 
proposed detection system does not rely on synchronisation 
between the attackers and victims. Instead, it uses processors’ 
performance indicators to capture malicious Flush+Reload 
activities with an accuracy of up to 99%. Moreover, the detection 
activities can be achieved with minimum time delay in both native 
and cloud systems with a low overhead performance 
approximately less than 1% in the host system. 

1. Introduction 

In Cloud computing environments, data protection becomes 
a great challenging factor. Although crypto-algorithms have 
emerged as promising approaches to protect data, 
hardware and software vulnerabilities attract hackers to 
target cryptographic components and steal their private 
keys through side channel attacks. The side channel attack is 
the action of stealing sensitive information by exploiting 
vulnerabilities in hardware/software. The main attack 
characteristics can be identified firstly by relying on 
hardware contentions - cache misses to observe victim’ 
activities, secondly by performing operations on the system 
without privileges, and finally by monitoring the processors’ 
cycles [1] and the power consumption [2] as metrics to 
measure latency. 

 
Flush+Reload [3], Prime+Prob [4] are the two common 
attack techniques in performing side-channel 
attacks.Flush+Reload technique observes the victim by 
monitoring specific cache line(s) in cache memory by 
measuring the access time, if the cache memory buffers data 
from main memory in the specified cache line(s), the access 
time is faster, which indicates that the victim has recently 
accessed the data. Whereas Prime+Prob monitors the 
victim’s activities by filling the cache memory and waiting for 
the victim to evict the attacker’s data, in this case, the 
attacker can easily determine the evicted cache line, which 
is replaced by the victim’s data. In this paper, we focus on 

Flush+Reloadattacks, which relies on hardware contention 
vulnerabilities. Hardware contentions occurred when 
multiple threads operating on the same data in the cache 
memory and thus the attacker utilised to break the memory 
isolation in real-time across concurrent programs. Recent 
studies showed the successful attacks occurred in security 
settings - hardware settings [5] and disabling OS features like 
page sharing[6] and KASLR [7], securing software 
implementation constant programming [8], hardware 
implementation for sensitive data SGX [9], and compiler 
optimisation [10].In this paper, the Support Vector Machine 
algorithm is proposed which can leverage hardware features 
to analyse process activities at the processor core to detect 
malicious processes which perform side-channel attacks in 
the user space. The detection system is capable of capturing 
malicious activities from side channel attacks against cache 
memories, which may hold sensitive data such as secret 
keys. The proposed detection system utilises a profiling 
technique, which captures processor core level activities and 
feeds it to the machine learning algorithms to build a 
classification model. The detection system does not require 
any synchronisation between the victim and attacker 
programs to detect side channel attacks in the system. There 
are several factors negatively affecting the synchronisation 
approaches, few maybe be named as heavy workloads 
leverage [11]. The rest of this paper is organised as follows. 
Section 2presents a brief review of the related work. In 
section 3, the necessary background is presented. Section 4 
elaborates on the proposed detection system. Section 5 
demonstrates the simulation results with detailed analysis. 
Finally, a summary of the work is given in section 6. 
 
2. Related Works 

Side channel attacks have been studied in the laboratory 
and in real systems over the past twenty years. They have 
been practised against on-board resources such as CPU 
computational units, cache and main memories. The 
majority of these attacks have been concerned with cloud 
systems, with an emphasis on IaaS (Infrastructure as a 
Service), in which the physical resources of the same 
machine are logically isolated across VMs. As the cloud 
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grows in popularity, cloud providers become concerned with 
some attacks that threaten their privacy and resources. 

Recent studies have shown that Operating Systems are 
vulnerable to side channel attacks. CPU designers as well as 
software companies have responded with more robust 
hardware designs and data fetching mechanisms in order to 
alleviate the attacks on sensitive data. 

Earlier research has demonstrated the achievement of 
high resolution [3] and very fast [14] side channel attacks 
through a Flush+Reload attack, which has the potential to 
exploit the systems’ page sharing characteristics. The 
content is a shared library of the same applications on the 
machine, such as an AES shared library in relation to SSL 
implementation in Linux. In the early stages of the cloud, the 
cloud providers aimed to reclaim the maximum possible 
amount of memory by utilising shared pages. However, the 
disclosure of the page sharing vulnerability has caused 
software industries and cloud providers to disable the page 
sharing feature, which was previously the systems’ default 
setting. To mitigate side channel attacks against page 
sharing, the papers [20], [21] proposed the kernel space 
solution CACHEBAR to provide concrete protection to shared 
pages across VMs in PaaS. The drawback of this proposal is 
the OS modifications and the performance impairment, 
particularly in cloud systems. 

A number of studies carried out over the past ten years 
have examined many hardware-based vulnerabilities that 
have permitted side channel attacks. Most often, the 
hardware resource targeted by the attackers are CPU 
caches. Microprocessor designers have made physical 
changes to reduce the impact of such attacks. A study by 
Percival [22] into L1 cache data leakage attacks suggested 
that microprocessor manufacturers should disable cache 
sharing between threads and the core to prevent any data 
from being evicted from the cache lines. However, by 
disabling cache sharing across concurrent programs, this 
leads to significant degradation in system performance. 

In general, when the side channel attack uses hardware 
resources such as CPU cache memory, it relies on memory 
contentions in the repetitive manner, which leads to 
unintentional contentions. This can be easily detected by 
utilising a synchronisation approach. The attack processes 
can be detected by relying on the data collected by the 
victim [23]. In this context, Allaf el at. [19] studied a 
comparative approaches of multiple machine learning 
algorithms, using SPEC CPU2006 with int and fp applications, 
in order to stress the CPU cache memory. It was noticed that 
heavy workloads have a negative effect on the detection 
accuracy of the three machine learning algorithms applied 
DT, PCAANN and KNN. All algorithms performed well when 
no workload was running. However, with int applications, 
such as gcc and bzips, the accuracy degrades and it got even 
worse with fp applications. 

3. Background 

3.1. Multi-core Platforms 

The mainstream microprocessors support a large 
number of inter-connected cores with complex memory 
systems within the CPU die. Each processor core has private 
cache L1 and L2 with one inclusive Last Level Cache (LLC) or 
L3 cache across the processor cores. Any communication 
between processor cores and other sources in the machine 
must travers through processor cache memories. Thus, the 
high frequent hardware contentions occur in all cache levels, 
particularly in LLC. The main sources that each processor 
core needs is the main memory. Microprocessor industries 
have provided flexibility in using CPUs by modifying the 
hardware settings. For instance, OS can run under process or 
thread mode. In process mode, two processes cannot share 
private caches, whereas in thread mode threads can share 
private L1 and L2 cache. 

3.2. Real-time Scheduling 

Scheduling is one of the core OS services to support and 
mange hardware resources across running programs. The 
main goal of the scheduler is to minimise power 
consumption [24], which is used by the resources, and offer 
the optimal performance by minimum stalls [25] to provide 
the optimal dynamic adoption Dynamic voltage and 
frequency scaling (DVFS)1 [26]. Thus, OS designers and 
researchers intend to propose optimal scheduling 
algorithms to aid bottlenecks and reduce power 
consumption in order to utilise highest possible speed that a 
CPU can offer. The focus in scheduling studies is how to 
virtualise and share resources across processes. On the 
other hand, side channel attacks come into account to 
distort the beauty of schedulers by misusing the shared 
resources [27], [28]. 

3.3. Malicious Loop Phase Modelling 

The main part of a Flush+Reload attack program body is 
a malicious loop (ML), which monitors secret elements from 
AES look-up table when the victim’s processes access them. 
ML  flushes  out  the  memory  addresses  in  which  the  look-
up  table  is  stored  by  utilising Clflush instruction;  and then 
access them continuously until the attacker retrieves the 
whole secret key. Each ML iteration consumes the hardware 
resources  mainly  L1,  L2  and  LLC  caches  and  generating 
hardware events such as cache miss and hit. Any clflush 
instruction causes an equal number of cache misses at each 
cache level, when the next access is achieved. This leads to 
the to generate an organised set of chach misses per cache 
layer. 

 



1. is the adjustment process of power and speed settings on various 
processors in computing device 

3.4. Threat Model 

The mechanism of the Flush+Reload exploits hardware 
and OS vulnerabilities by utilising intentional hardware 
contentions with a victim’s processes. The attacker and 
victim can synchronise in shared environments in which 
hardware resources, such as CPU caches, are fairly shared 
across running applications. The attacker and victim on this 
case run an AES algorithm to encrypt plain texts. The AES 
algorithm is taken from the crypto.so-shared library in the 
OpenSSL package and it is installed in the host OS Ubuntu 
14.04. The attacker is a malicious program in the host, which 
analyses the hardware cache contentions to deduce the AES 
secret keys. 

4. Detection System 

Detection system is responsible for detecting side 
channel attacks, namely Flush+Reload. The model utilises 
supervised machine learning algorithms to classify the attack 
activities which are achieved by the attacker program in user 
space. The detection model continuously observes program 
execution attributes on active processor cores from any ML 
activities through communication channels and collect data 
samples. The samples, which are collected from the ML jobs, 
are aggregated by mean functions. Then the data is feed to 
the classifier to extract the attacks pattern. The classifier 
triggers an alarm to indicate the presence of side channel 
attack in the host system. 

4.1. Experiment Setup 

The experiments were carried out on a HP Proliant DL360 
G7 with Intel Xeon X5650 2.66GHz processor and 16 GB of 
RAM, running Ubuntu 14.04 operating system. 
The SPEC CPU2006 benchmark has been used for testing 
purposes. 

4.2. Data Collection 

In this study, the main data collection source is HPCs 
which is available in modern CPUs. In a typical Intel 
microprocessor, HPCs support monitoring of hundreds of 
CPU-related events. These events characterise program 
execution behaviours. However, these events are not 
equally beneficial to address a specific problem. For 
instance, some of the events might visualise the 
Flush+Reload execution attributes, such as L1, L2 and LLC 
misses, which are more sensible. 

As HPCs do not require kernel module to be accessed, a 
kernel module is implemented to capture L1, L2 and LLC 
misses per each processor core and send them to the 
preprocessing procedure to apply average function with 

aggregation to find the groups belonging to the ML tasks. 
Finally, the aggregated data is fed to the SVM algorithm to 
build an efficient classifier and extract Flush+Reload 
activities among other workloads. SEPC CPU2006 
benchmark suits has been used to stress the CPU while the 
data collection is performed in order to test the classifier’s 
performance with noisy data sets. 

5. Feature Selection 
This section describes how to choose program execution 

attributes to detect the Flush+Reload attack activities in Real 
Time Systems (RTS) by utilising HPCs. Selecting the most 
relevant events to ML has an efficient affect in detecting and 
identifying the attack activities. 

In this study, feature selection plays the key role in 
detecting side channel attack by profiling processor cores in 
RTS, in which program execution attributes are captured 
during their assignment to the processor cores, because no 
information is provided about processes, which are assigned 
to the processor cores such as PID. Proper features, which 
represent the execution attributes, support classification 
algorithms to extract Flush+Reload attack activities with high 
accuracy. Thus, it is crucial to select features, which make 
the distinction between attack programs and other 
workloads in the system. In previous work [29], [30], the 
feature selection relies on the facts relevant to the 
synchronisation between victim and attacker programs and 
features are selected based on the data dependency 
indicating the corelation between victim and attacker 
programs. In this paper, the feature selection does not rely 
on synchronisation and data dependencies; instead, it 
focuses on the unintentional memory contentions by the 
attacker program. 

This study focuses on the ML Flush+Reload program, 
which is the core part of the program that efficiently 
explores the vulnerabilities. The main task of each iteration 
in ML is composed of clflush instruction followed by mov 
instruction. The clflush instruction removes the data from 
the hierarchical caches (L1, L2 and LLC) at a specific memory 
address, whereas the mov instruction accesses the flushed 
memory addresses from main memory. The access to the 
flushed memory addresses requires N misses for each cache 
level. We assume the N misses - L1, L2 and LLC - occur while 
the jobs of ML is assigned to one of the active processor core. 
Consequently, a very strong co-relation among L1, L2 and 
LLC caches can be noticed. This is the key intuition in the 
proposed framework to detect and identify the attacker at 
the core level observations. 

However, clflush instruction itself might be used by the 
operating system when the memory management unit is 
required. This makes it possible for the noise to incur in the 
observations. Furthermore, noise may also interfere with 
observations if clflush instruction is used in user space by 
another program causing clflush instructions that were not 



initiated by the attack program to be visible in the 
observations. Despite of the occurrence of the noise, it is 
possible to identify the malicious loop with great accuracy 
because of one of its particular characteristics. It has a 
repetition of not less than 25000 iterations being the 
minimum number of operations required to retrieve every 
bit making up the whole key in native systems. 

 

Figure 1. L1 and L3 cache misses distribution of the attacker’s program in 
host system 

Reflecting on the activities, it is assumed that the access 
needs N misses for each cache level without any hits. So, N 
misses and zero hit will occur at each cache level when the 
ML is assigned to the processor core. Consequently, a very 
strong relation among L1, L2 and LLC caches can be noticed. 
The series of equal number of cache misses makes the 
distinction between Flush+Reload program and other 
workloads in the system. This is the key intuition in 
selecting the most relevant events to Flush+Reload 
program. The Table 1 represents the use of four 
programmable events. The distribution of L2 and LLC cache 
misses of the attack in the host system is shown in Figure 1, 
where the area beneath the red line shows the LLC misses 
distribution and the area under the green line is L2 cache 
misses distribution. They are almost congruent with each 
other, showing that they are issuing almost the same cache 
miss rates. 

PMCs Annotation Events E1 LLC Misses 
 E2 L2 RQSTS.ALL CODE RD 

Programmable 
 E3 L2 RQSTS.DEMAND DATA RD HIT 
 E4 L2 RQSTS.ALL DEMAND DATA RD 
 E5 Inst Retired.Any 
 Fixed E6 CPU CLK UNHALTED.CORE 
 E7 CPU CLK UNHALTED.REF TSC 

TABLE 1. RELEVANT EVENTS TO SIDE CHANNEL ATTACK 

As shown in Figure 1, LLC is still constant when the 
attack program runs with SPEC workloads, but there is a 
slight change in L2 cache misses. The workload variation is 
shown in Figure 1, where the area inside the red line is the 

original cache misses, and the area inside the green line 
represents noise filtered out by E2 event. 5.1. 
Methodology 

5.2. Support Vector Machine 

Support Vector Machine (SVM) is an instance based 
algorithm, which was introduced by Boser et al. [31] for 
classification purposes. SVM also can be used for regression 
problems [32]. The SVM algorithm has numerous 
application in various fields such as medical imaging, and 
image processing, financial analysis and web applications. 
The focus in this paper is on the binary classification 
problem. SVM attempt to separate two classes by 
discovering an optimal decision boundary called 
hyperplane. The point inside the boundaries are called 
support vectors. The SVM algorithm takes training data-set 
S = (x1,y1),...,(xn,yn), where x ∈ X and y Y in binary 
classification x ∈ Rn and y ∈ 1,1. The hyperplane separates 
data points from S can be defined by: 

 yi = f(xi,α) for 1 ≤ i ≤ n (1) 

where α are parameters of the function f and n is the number 
of instances in S. The function f is expressed by 

 f(x,{w,b}) = sign(w ∗ x + b) (2) 

The hyperplane should be maximised between the 

instances of two classes by . However, in the noisy data-
sets, outliers are introduced to the data-sets. As we 
mentioned that clflush instruction might be utilised by the 
OS introducing noise to the data-sets. As the result, the 
classifier misclassify the outliers and the performance of the 
classifier decreases. Therefore, polynomial function is 
utilised to solve the problem by introducing a slack variable 
ξ to identify the outliers. This is defined by the following 
expression: 

yi(w ∗ xi + b) ≥ 1 − ξi for ξi ≥ 0 and 1 ≤ i ≤ n (3) 

The new hyperplane can be defined by the following 
equation: 

  (4) 

where C is the soft margin parameter which has the impact 
on the classifier’s performance. 

5.3. Model Evaluations 

After building the SVM classifier, we need to make sure 
that the model is efficiently applied in the unseen dataset. 



Therefore, there are a number of metrics that can be used 
to assess the model. In this study, only the SVM algorithm 
has been used for classification problems. As the binary 
classification is used to classify normal and attack activities 
in the system, we will describe the metrics that have been 
utilised in this thesis. The evaluation metrics for classification 
models rely on confusion matrix, which contains information 
about the predicted classes produced by the classifier 
models and the actual classes from the original data-sets as 
shown in Table 2. When True Positive (TP) is the case where 
the classifier correctly recognises the positive samples in the 
data-set. False Positive (FP) in 

TABLE 2. CONFUSION MATRIX 

Positive (P) 

Negative (N) 

this case, the classifier miss-classifies the positive classes as 
negative. True Negative (TN) represents the total number of 
the negative classes detected by the classifier correctly. 
False Negative (FN) when the classifier miss-classifies the 
Negative samples as Positive. Based on the confusion matrix, 
we can derive the following metrics, which are used to 
analyse the performance of the SVM classifier. 

1) Recall/Sensitivity (True positive Rate) corresponds 
to the proportion of normal activities that are 
positive samples. 

  (5) 

2) Specificity (False Positive Rate) corresponds to the 
FN samples which are incorrectly classified as 
positive. 

  (6) 

5.4. Experimental Design 

The experimental procedure can be summarised in to 
two phases. In the first phase, the data-sets are collected 
from the kernel module, which are collected in the host 
system. The aggregation and mean functions are applied to 
the data sets; 10 different runs of six-fold cross validation 
(CV) were executed. In CV, each new data set is constructed 

from different data points for both training and testing; all 
data points contribute in the learners’ building stage. For 
each iteration of CV, 70% of the original data sets were used 
for training and the rest were for testing. 

In the second phase, SVM algorithm has been used. With 
each CV iteration, the new training data set is fed to the SVM 
algorithm to build a classifier and then the new testing data 
set is used to evaluate the classifier. 

5.5. Experimental Results and Analysis 

In this section, the results of the experiments are shown 
for SVM algorithm and visualised by (ROC) Area, under 

 

Figure 2. ROC-AUC for SVM in native system 

curve (AUC) ROC-AUC. The figures depict the classifiers 
performance in discriminating between two process 
activities, which are normal, and attack. 

In ROC-AUC figures, the classifiers outputs is represented 
as ROC curves, which represent the sensitivity (recall) and 
specificity calculations at incremental thresholds between 
zero and one across 6 folds when the same dataset is 
randomly shuffled, resulting in each fold having a different 
spread of the data. The Y axis plots the classifier output’s 
True Positives Rates (recall) and the X axis plots False Positive 
Rates (specificity). Each fold is an individual ROC and is the 
light blue line. It represents detection quality. The solid blue 
line is the calculated mean. The ideal representation is when 
the ROC curves has x = 0 and y = 1. This indicate that the 
classifiers classify normal and attack classes in unseen 
samples with 100 

Figure 2 shows the ROC metric that evaluates the SVM 
classifier’s ability to detect the ML activities among normal 
workloads, SPEC CPU 2006 benchmark applications, in the 
host system. Success in observing program execution 
attributes and classifying processes as malicious or benign as 
a measure of the risk of existing side channel attack in the 
system is shown as estimated by the AUC of ROC. The model 
identifies ML with very high accuracy (AUC=0.99 for an 

Prediction 
Positive (P) Negative (N) 

TP FP 

TN FN 



average of 10 folds, with a zero confidence interval). The 
noise incurred by L1 and L2 cache memories arises from the 
additional clflush instruction. However, the outliers are 
eliminated by the use of polynomial functions to predefine 
the hyperplane as defined by the Equation 4. In this 
equation, the slack variable ξ is able to identify the execution 
of clflush instruction by the host OS. Furthermore, the 
average function with aggregation contributes in increasing 
the performance of the classifier; in this case, less outliers 
will be introduced to the data sets. 

5.6. Performance 

In these experiments, the SPEC CPU2006 benchmark was 
running for about 10 hours with the detection model. 
The detection model was running continuously in user 
space. The results showed that the detection model has a 
very low impact on the performance of the host system; 
even in the worst case, the performance overhead has less 
than 0.03 effect on the system operation. 

6. Conclusion 

This paper has proposed a new system detection of side-
channel attacks using the bagging technique. The paper also 
puts forward a new profiling technique to capture the 
program execution attributes at the core level. Thus the 
attacker cannot escape from the profiling in both native and 
cloud systems. The ROC curve is used to evaluate the 
efficiency of the proposed classifier for the detection of side 
channel attacks. The classifier detects side-channel attacks 
in both native and cloud systems with performance of up to 
99\% under SPEC CPU2006 workloads. However, the 
proposed method cannot detect techniques such as 
Prime+Probe due to the behaviour of the malicious loop 
inside the program. The future work will be considering the 
design of a model that will include detection of other side-
channel attacks such as Prime+Probe. 
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