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Abstract 

The paper introduces new domain-independent methods for improving reliability and 
reducing risk based on algebraic inequalities and chain-rule segmentation. 

Two major advantages of algebraic inequalities for reducing risk have been demonstrated: 
(i) ranking risky prospects in the absence of any knowledge related to the individual building 
parts and (ii) reducing the variability of a risk-critical critical output parameter. The paper 
demonstrates a highly counter-intuitive result derived by using inequalities: if no information 
about the component reliability characterising the individual suppliers is available, 
purchasing components from a single supplier or from the smallest possible number of 
suppliers maximises the probability of a high-reliability assembly. 

The paper also demonstrates the benefits from combining domain-independent methods 
and domain-specific knowledge for achieving risk reduction in several unrelated domains: 
decision-making, manufacturing, strength of components and kinematic analysis of complex 
mechanisms. In this respect, the paper introduces the chain rule segmentation method and 
applies it to reduce the risk of computational errors in kinematic analysis of complex 
mechanisms. The paper also demonstrates that combining the domain-independent method of 
segmentation and domain-specific knowledge in stress analysis leads to a significant reduction 
of the internal stresses and reduction of the risk of overstress failure. 
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1. Introduction 

 

For many decades, the focus of the risk research has been exclusively on identifying risks, risk 

assessment and risk management rather than general methods for reliability improvement and 

risk reduction. While a great deal of agreement exists about the necessary common steps of 

risk assessment (Aven, 2016) and they can be considered to be domain-independent, there is 

insufficient research on general methods for reducing risk that work in various unrelated 

domains.  

There is a strong perception that effective risk reduction can be delivered solely by using 

methods offered by the specific domains, without resorting to a general risk reduction 
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methodology. As a result, in textbooks on mechanical engineering and design of machine 

components, for example, (Budynas and Nisbett 2015; Childs, 2014; Thompson, 1999; 

French, 1999; Samuel and Weir, 1999; Collins, 2003; Norton, 2006; Pahl and Beitz, 2007), 

there is no reference to general methods for improving reliability and reducing the risk of 

failure of mechanical components.  

Even in standard reliability textbooks (e.g. Lewis,1996; Ebeling, 1997; O'Connor 2002; 

Dhillon 2017; Modarres et al, 2017) there is a surprising lack of discussion related to domain-

independent methods for improving reliability and reducing risk. The discussion is limited to 

few popular domain-independent methods for risk reduction such as: implementing 

redundancy, derating, eliminating a common cause, reducing variability, robust design, 

simplification and condition monitoring. 

 Recently, a number of new domain-independent methods and principles for improving 

reliability and reducing risk have been presented in (Todinov, 2019). The objective of the 

present paper is to extend the work on new domain-independent methods for risk reduction.  

This has been done by introducing new domain-independent methods for improving 

reliability and reducing risk based on algebraic inequalities and chain-rule segmentation.  

Strength of components and kinematic analysis of complex mechanisms are mature and 

well-developed fields (Hearn 1985; Budynas, 1999; Gere and Timoshenko, 1999; Budynas 

and Nisbett 2015; Collins 2003; Norton, 2006; Uicker et al, 2017; Dicker et al, 2003; Sandor 

and Erdman, 1984). Despite this, to the best of our knowledge, nowhere in standard textbooks 

related to these fields, have the ideas of segmenting external loads and chain rule 

segmentation been used to reduce risk. In this respect, the paper demonstrates the benefits 

from combining domain-independent methods and domain-specific knowledge for achieving 

risk reduction in mature areas such as strength of components and kinematic analysis of 

complex mechanisms. 

By using inequalities, the paper also demonstrates the significant benefits from combining 

domain-independent methods and domain-specific knowledge for risk reduction in decision-

making and manufacturing. In these specific domains, the paper demonstrates the big 

potential of non-trivial algebraic inequalities in ranking risky prospects in complete absence 

of knowledge related to key parameters. There are a number of useful non-trivial algebraic 

inequalities such as the Arithmetic mean – Geometric mean (AM-GM) inequality, Cauchy-

Schwartz inequality, the rearrangement inequality, the Chebyshev’s inequality, Jensen’s 

inequality, Muirhead's inequality, etc. Non-trivial algebraic inequalities have been discussed 

extensively in (Steele, 2004; Cloud et al. 1998; Engel 1998; Hardy et al., 1999; Kazarinoff, 
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1961; Pachpatte 2005). In probability theory, well-known non-trivial inequalities are the 

Tchebyshev’s inequality, Markov’s inequality, Boole’s inequality, Bonferroni inequalities 

and Jensen’s inequality. Some of these inequalities have been used in physics (Rastegin, 

2012) and reliability theory (Ebeling, 1997) for obtaining lower and upper bound on the 

system reliability by using minimal cut sets and minimal path sets. 

Despite the existence of a well-developed theory of non-trivial algebraic inequalities, there 

is a clear lack of discussion related to their application to reducing risk. In engineering 

design, the application is mainly confined to trivial inequalities. Design variables are required 

to satisfy various trivial design inequalities in order to guarantee that a number of failure 

modes will be eliminated and the design will perform its required functions (Samuel and 

Weir, 1999). Trivial inequality constraints have, for example, been introduced in (Ning-Cong 

et al., 2013) for describing the dependency of interval variables into a non-probabilistic 

model. Trivial inequalities, obtained by solving with respect to one of the variables have been 

used for specifying the upper bound of the lineal density of Poisson-distributed flaws to 

guarantee a probability of clustering below a maximum acceptable level (Todinov 2005).  

Why are inequalities important for reliability improvement and risk reduction?  

While the equalities express a state of equivalence, equilibrium and absence of transition, 

inequalities express ranking for the compared alternatives. In addition, inequalities do not 

normally require any knowledge related to the values of the controlling variables. 

Suppose that two different system configurations are built by using the same set of n 

components with performance characterisics (e.g. reliabilities)  1 2, ,..., nx x x  that are unknown. 

Let the performance of the first configuration be given by the function 1( ,..., )nf x x  while the 

performance of the second configuration be given by 1( ,..., )ng x x . If an equality of the type 

1 1( ,..., ) ( ,..., )n nf x x g x x  

could be proved, this would mean that the performance (e.g. reliability) of the first 

configuration is superior to the performance of the second configuration. Then the first 

system configuration can be selected and the risk of failure reduced in the absence of any 

knowledge related to the reliabilities of the parts building the systems. The possibility of 

making a correct ranking of two competing systems/processes under a complete absence of 

knowledge about the reliabilities of their building parts, constitutes a formidable advantage of 

algebraic inequalities. This advantage was demonstrated in Todinov (2019), where 

inequalities, proved by a direct algebraic manipulation, have been used for ranking the 

reliabilities of systems in the case where the reliabilities of their components are unknown. 

https://journals.sagepub.com/author/Xiao%2C+Ning-Cong
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This advantage will also be demonstrated in this paper with the application of the Muirhead's 

inequality for ranking risky prospects. 

The next major advantage of the non-trivial algebraic inequalities as a domain-

independent method for reducing risk can be found in their capacity to produce sharp bounds 

related to uncertainty associated with reliability-critical design parameters (e.g. material 

properties, dimensions, loads). In many cases, the actual values of the reliability-critical 

parameters are unknown or are associated with large variability. If a bound can be determined 

related to existing epistemic or aleatoric uncertainty, the design could be complied with this 

worst possible bound and a number of failure modes could be avoided.  

Such a case is present for mechanical properties from multiple sources where the 

proportions with which the sources are present in the common pool of properties are 

unknown. Determining a sharp upper bound for the variation of properties helps to improve 

the robustness of the design. Consequently, inequalities producing such sharp bounds could 

yield reliability improvement and risk reduction.  

Another major advantage of algebraic inequalities is that they work well in limiting the 

uncertainty associated with the variation of a critical output parameter and this application will 

be demonstrated in the manuscript. 

 

 

2. Using the Muirhead's inequality for improving reliability and reducing risk 

 

Consider a real-world example where three suppliers 1A , 2A  and 3A , produce high-reliability 

components of the same type, with probabilities 1x , 2x  and 3x , which are unknown. 

Probability ix  means that only a fraction ix  of the components produced by supplier i are of 

high-reliabiliy and the rest are not. In the case of suspension automotive springs for example, 

this means that only a fraction ix  of the manufactured suspension springs can last for more 

than 600000 cycles if tested on a specially designed test rig and the rest of the springs fail 

significantly below this limit. 

If two components are to be purchased and installed in an assembly, the question of 

interest is: which strategy maximises the probability that both components will be highly 

reliable?: (i) purchasing the two components from the same supplier or (ii) purchasing the 

two components from different suppliers. At a first glance, it seems that either of these 
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strategies could be chosen because the probabilities 1x , 2x  and 3x  of high-reliability 

components characterising the suppliers are unknown. Surprisingly, this common-sense 

conclusion is incorrect. 

The probability of purchasing two high-reliability components from the same supplier is: 
2 2 2

1 1 2 3(1/ 3) (1/ 3) (1/ 3)p x x x    and is composed of the probabilities of three mutually 

exclusive events: (i) the probability 2
1(1/ 3)x  that supplier 1A  will be selected and both 

components purchased from 1A  will be highly reliable; (ii) the probability 2
2(1/ 3)x  that 

supplier 2A  will be selected and both components purchased from 2A  will be highly reliable 

and (iii) the probability 2
3(1/ 3)x  that supplier 3A  will be selected and both components 

purchased from 3A  will be highly reliable. 

Accordingly, the probability of purchasing two high-reliability components from two 

different suppliers is  2 1 2 1 3 2 3(1/ 3) (1/ 3) (1/ 3)p x x x x x x   .  

The probability is composed of the probabilities of three mutually exclusive events: (i) the 

probability  

1 2 2 1 1 2(1/ 3) (1/ 2) (1/ 3) (1/ 2) (1/ 3)x x x x x x     

that suppliers 1A  and 2A  will be randomly selected and both components purchased from 1A  

and 2A  will be of high reliability; (ii) the probability 1 3(1/ 3)x x  that suppliers 1A  and 3A  will 

be randomly selected and both components purchased from 1A  and 3A  will be of high 

reliability and (iii) the probability 2 3(1/ 3)x x  that suppliers 2A  and 3A  will be randomly 

selected and both components purchased from 2A  and 3A  will be of high reliability.  

The question is reduced to comparing the probabilities 1p  and 2p . Consequently, the 

problem is reduced to proving (or disproving) the inequality 1 2p p  

The last inequality follows from the general Muirhead's inequality (2), which is discussed 

next. 

Muirhead's inequality: If the sequence { }a  majorizes the sequence { }b  and 1 2, ,..., nx x x  are 

non-negative, the inequality 

1 2 1 2
1 2 1 2... ...n na a b ba b

n n
sym sym

x x x x x x                                           (2) 

holds (Hardy et al, 1999).  
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Consider the two non-increasing sequences 1 2 ,..., na a a    and 1 2 ,..., nb b b    of 

positive real numbers. The sequence { }a  is said to majorize the sequence { }b  if the 

following conditions are fulfilled: 

1 1a b ; 1 2 1 2a a b b   ;...; 1 2 1 1 2 1... ...n na a a b b b        ;  

1 2 1 1 2 1... ...n n n na a a a b b b b                                         (3) 

For any set of non-negative numbers 1 2, ,..., nx x x , a symmetric sum is defined as 

1 2
1 2 ... na a a

n
sym

x x x  which, when expanded, includes !n  terms. Each term is formed by a distinct 

permutation of the elements of the sequence 1 2, ,..., na a a . Thus, if { } [2,1,0]a   then 

2 1 0 2 2 2 2 2 2
1 2 3 1 2 1 3 2 1 2 3 3 1 3 2

sym
x x x x x x x x x x x x x x x       

If { } [2,0,0]a  , then  

2 0 0 2 2 2
1 2 3 1 2 32 2 2

sym
x x x x x x    

Consider now the set of non-negative numbers 1 2 3, ,x x x  and the sequences { } [2,0,0]a   and 

{ } [1,1,0]b  . Clearly, the sequence { } [2,0,0]a   majorizes the sequence { } [1,1,0]b   

because the conditions (3) are fulfilled: 

2 1 ; 2 0 1 1    and 2 0 0 1 1 0     . 

According to the Muirhead's inequality (2): 
2 2 2
1 2 3 1 2 1 3 2 32! ( ) 2( )x x x x x x x x x       

Dividing both sides of the last inequality by the positive constant 3! leads to 
2 2 2

1 1 2 3 2 1 2 1 3 2 3(1/ 3) (1/ 3) (1/ 3) (1/ 3) (1/ 3) 1/ 3)p x x x p x x x x x x               (4) 

According to inequality (4), 1 2p p  therefore purchasing both components from a single, 

randomly selected supplier is the better strategy, resulting in a higher probability that both 

components will be high-reliability components. This is a surprising and highly counter-

intuitive result. After all, the percentages of high-reliability components characterising the 

suppliers are unknown. 

Unexpected as it may seem, the conclusion has been confirmed by a Monte Carlo simulation. 

Consider three suppliers A,B and C, characterised by probabilities of high-reliability 

components 1 0.9a  , 2 0.4a   and 3 0.3a  . The Monte Carlo simulation based on one 

million trials yields 0.35 for the probability of two high-reliability components if a single 
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supplier is randomly selected and 0.25 for the probability of two high-reliability components 

if two suppliers are randomly selected. These values coincide with the values evaluated from 

the left and right hand side of (4). 

The basic idea behind the simulation of purchasing two components from a randomly 

selected supplier and testing the components for high-reliability is done within a loop of ten 

million trials. The pseudo-code fragment is shown next: 

 
a=[0.9, 0.4, 0.3] 

n=3; num_trials=100000000; 

count=0; 

 

for i=1 to num_trials do 

{  

 sup_no=[n*rnd()])+1; 

 

 x=rnd(); y=rnd(); 

 

 if(x<=a[sup_no] and y<=a[sup_no]) then count=count+1;   

 

} 

 

probability=count/num_trials; 

 

A supplier is selected randomly with the statement sup_no=[n*rnd])+1; where [n*rnd] 

is the greatest integer part that does not exceed n*rnd() and rnd() is a function that 

returns a random number from the interval (0,1). The probabilities of a high-reliability 

component are specified in the array a[]. In the test case, a[0.9, 0.4, 0.3] has been specified 

for the three suppliers. The test for two high-reliability components is performed by the 

conditional statement 
if(x<=a[sup_no] and y<=a[sup_no]) then count =count+1;   
where x and y are two random numbers from the interval (0,1). If the compound condition 

x<=a[sup_no] and y<=a[sup_no] is true, this means that both components are high-

reliability components in which case the counter count of two high-reliability components is 

incremented. If the compound condition is false, the counter count is not incremented. 

Finally, the probability of purchasing two high-reliability components from a randomly 

selected supplier is obtained by dividing the content of the counter to the number of trials.  

Simulating purchasing of two high-reliability components from two randomly selected 

suppliers is done in a similar fashion and details will be omitted. First, a supplier is randomly 

selected, then from the remaining two suppliers one more supplier is randomly selected. 

The same technique based on reducing to the Muirhead's general inequality can be 

extended for n different suppliers.  
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The probability of purchasing two high-reliability components from a randomly selected 

supplier is 2
1

1

1 n

i
i

p x
n 

  . Accordingly, the probability of purchasing two high-reliability 

components from two randomly selected suppliers is 2
2

( 1) i j
i j

p x x
n n 



 . 

Since the sequence { } [2,0,0,...,0]a   (containing n elements) majorizes the sequence 

{ } [1,1,0,...,0]b   (also containing n elements), according to the Muirhead's inequality (2): 

2

1
( 1)! ( 2)! 2

n

i i j
i i j

n x n x x
 

        

Dividing both sides of the last inequality by the positive number !n  yields 

2
1 2

1

1 2
( 1)

n

i i j
i i j

p x p x x
n n n 

  


                                              (5) 

The left hand side of (5) is the probability of purchasing two high-reliability components 

from a randomly selected single supplier while the right hand side of (5) is the probability of 

purchasing two high-reliability components from two distinct, randomly selected suppliers. 

Muirhead's inequality can also be applied for a larger number of purchased components. 

If, for example, three components are to be purchased from three suppliers (n = 3) and 

installed in an assembly, the question of interest is to choose between several competing 

strategies: a) purchasing the three components from a single, randomly selected supplier; b) 

purchasing the three components from three different suppliers or c) purchasing the three 

components from two randomly selected suppliers. Suppose that the suppliers are 

characterised by probabilities 1x , 2x  and 3x  of producing high-reliability components. 

Because the sequence { } [3,0,0]a   majorizes the sequence { } [1,1,1]b  , the next inequality 

follows immediately from the Muirhead's inequality (2): 
3 3 3
1 2 3 1 2 3( 1)! ( ) !n x x x n x x x                                              (6) 

By dividing both sides of (6) to !n  (n=3), inequality (6) transforms into 

3 3 3
1 2 3 1 2 3

1 1 1
3 3 3

x x x x x x                                                        (7) 

The left hand side of inequality (7) 3 3 3
1 2 3

1 1 1
3 3 3

x x x   is the probability of purchasing three 

high-reliability components from a randomly selected supplier. The right hand side of 
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inequality (7) is the probability 1 2 3x x x  of purchasing three high-reliability components from 

three separate suppliers. 

Since the sequence { } [3,0,0]a   also majorizes the sequence { } [2,1,0]c  , the following 

inequality follows immediately from the Muirhead's inequality (2): 
3 3 3 2 2 2 2 2 2
1 2 3 1 2 1 3 2 1 2 3 3 1 3 2( 1)! ( )n x x x x x x x x x x x x x x x                              (8) 

Dividing both sides of (8) by 3! (n=3), gives  
3 3 3 2 2
1 2 3 1 2 1 3

2 2 2 2
2 1 2 3 3 1 3 2

(1/ 3) (1/ 3) (1/ 3) (1/ 3) [(1/ 2) (1/ 2) ]

(1/ 3) [(1/ 2) (1/ 2) ] (1/ 3) [(1/ 2) (1/ 2) ]

x x x x x x x

x x x x x x x x

     

    
                         (9) 

The left hand side of inequality (9) gives the probability of purchasing three high-reliability 

components from a randomly selected single supplier. The right hand side of inequality (9) 

gives the probability of purchasing three high-reliability components from two randomly 

selected suppliers.  

Suppose that the fractions of high-reliability components characterising the three suppliers 

are 1 0.9x  , 2 0.75x   and 2 0.25x  . The Monte-Carlo simulation based on 10 million trials 

resulted in probabilities 1 0.389p   and 2 0.26p   of purchasing three high-reliability 

components from a randomly selected single supplier and from two randomly selected 

suppliers, correspondingly. The left and right part of the inequality (9) yields 1 0.389p   and 

2 0.26p   for the same probabilities, which illustrates the validity of inequality (9). 

Finally, since the sequence { } [2,1,0]a   majorizes the sequence { } [1,1,1]c  , the following 

inequality follows immediately from the Muirhead's inequality (2): 
2 2 2 2 2 2
1 2 1 3 2 1 2 3 3 1 3 2 1 2 3!x x x x x x x x x x x x n x x x                                 (10) 

Dividing both sides of (10) by 3! (n=3), gives  
2 2 2 2
1 2 1 3 2 1 2 3

2 2
3 1 3 2 1 2 3

(1/ 3) [(1/ 2) (1/ 2) ] (1/ 3) [(1/ 2) (1/ 2) ]

(1/ 3) [(1/ 2) (1/ 2) ]

x x x x x x x x

x x x x x x x

    

   
                         (11) 

The left hand side of inequality (11) yields the probability of purchasing three high-reliability 

components from two randomly selected suppliers. The right hand side of inequality (11) 

yields the probability of purchasing three high-reliability components from three randomly 

selected suppliers.  

For three suppliers are characterised by the probabilities 1 0.9x  , 2 0.75x   and 2 0.25x   of 

selecting a high-reliability component, The Monte-Carlo simulation based on 10 million trials 
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resulted in probabilities   2 0.26p    and  3 0.169p   of purchasing three high-reliability 

components from two randomly selected suppliers and from the three suppliers, 

correspondingly. 

The left and right hand part of inequality (11) yield 2 0.26p   and 3 0.169p   for the same 

probabilities, which illustrates the validity of the inequality (11). 

The same reasoning can be applied for any number of purchased components. 

In summary, if no information is available about the components reliability characterising 

the separate suppliers, the best strategy is to purchase the components from a single supplier 

or from the smallest possible number of suppliers.  

The same reasoning can be applied for any number of purchased components. 

In summary, if no information is available about the components reliability characterising 

the separate suppliers, the best strategy is to purchase the components from a single supplier 

or from the smallest possible number of suppliers.  

This section also demonstrates an important technique in using inequalities to improve 

reliability and reduce risk. It consists of giving appropriate meaning to the abstract variables 

in the derived inequalities, closely related to reliability improvement and risk reduction. 

 

 

2. Using inequalities for bounding deviations of reliability-critical parameters  
 

This section features a powerful method for improving reliability by limiting the 

deviations of reliability-critical parameters caused by errors associated with the design 

variables. 

Estimating the absolute error associated with a particular quantity in the case where the 

average values of the design variables determining the quantity are known is a standard 

procedure from calculus, based on total differential. Indeed, consider an output quantity z 

which is a smooth function  1 2( , ,..., )nz g x x x  of n variables (parameters) 1,..., nx x , whose 

nominal (specified) values 1 ,...,m nmx x  are known in advance. Suppose that the values 

1,..., nx x  of the parameters vary around the specified nominal values 1 ,...,m nmx x  with the 

small quantities 1,..., nx x  . The absolute error z  associated with the output quantity z is 

then determined from the total differential  

1 1 1
1

...
m n nmx x x x n

n

g gz x x
x x 

 
     

 
                                       (12) 
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which relates the absolute error z  of 1( ,..., )nz g x x  at the nominal values of the specified 

parameters ( 1 ,...,m nmx x )  to the errors 1,..., nx x    associated with the independent variables 

1,..., nx x  at these nominal values. 

In order to evaluate the absolute error z  from (12), the values of the partial derivatives at 

the point ( 1mx ,..., nmx ) must be known. 

Consider now the case where the nominal values 1 ,...,m nmx x  of the independent variables 

1,..., nx x  are unknown. The question of interest is to select the nominal values 1 ,...,m nmx x  in 

such a way that the absolute error z  of the output quantity z is minimised. If the absolute 

error is bounded in this way, it is guaranteed that the reliability-critical parameter cannot 

exceed a dangerous value and reliability cannot be compromised. 

This important question can be answered by presenting the error z  of the output quantity 

as a function 1( ,..., ) 0nf x x   of n variables and minimising this function under the constraint   

1 2( , ,..., )nz g x x x  

which is effectively the function describing the output quantity. 

According to the theory of multivariable optimisation (McCallum W.G., Hughes-Hallett 

D., Gleason A. M. et al., 2005), at the point of extremum, the equation: 

1 1( ,..., ) ( ,..., )n nf x x g x xgrad grad                                           (13) 

and the equation 

                                          1( ,..., ) 0ng x x                                                          (14) 

must be satisfied, where   is a constant of proportionality. These conditions are then used to 

derive the points at which the extremum is reached and also to evaluate the extremum. This 

approach will be illustrated by an application example from manufacturing. 

Suppose that pieces of a particular material with volumes V=7062 mm3 are delivered for a 

subsequent re-melting and processing. The pieces have a cylindrical shape with radius of the 

base r and length h. The actual values of the dimensions r and h that guarantee the required 

volume of V=7062mm3 are not critical, as long as the volume V does not deviate by more 

than 320 mmV   from the required value of V=7062mm3. If the volume V deviates by 

more than 20mm3 from the required value, the subsequent processing of the workpiece will 

result in a faulty component. Suppose that the absolute errors in the radius r and the length h 

of the cylindrical workpieces are 0.1r h mm    . The question of interest is estimating the 

dimensions *r  and *h  with which the pieces must be cut so that the absolute error *V  in 
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the volume V is the smallest possible. In other words, the dimensions *r  and *h   are sought 

that correspond to an absolute error  *V  such that the inequality: 

*V V    

holds, where V  is an absolute error that corresponds to dimensions r and h, different from 

*r  and *h  but guaranteeing the required volume of V=7062mm3. 

Since the volume of the cylindrical pieces is 2V r h , the absolute error associated with V is  

given by V VV r h
r h

 
    

 
, or  

22V rh r r h                                                           (15) 

Substituting in (15) 0.1r h mm     yields 
20.2 0.1V rh r                                                           (16) 

Since the nominal values of r and h which guarantee the required volume V=7062mm3 are 

unknown, to find the minimum absolute error V  in the required volume V, the function 

 2( , ) 0.2 0.1f r h rh r                                                     (17) 

must be minimised under the constraint  

  2( , ) 7062 0g r h r h                                            (18) 

The gradients of the functions  ( , )f r h  and  ( , )g r h  are: 

( , ) (0.2 0.2 ) 0.2f r h h r r    grad i j                                   (19) 

where i an j are the unit vectors along the r and h axis 
2( , ) 2g r h rh r  grad i j                                                (20) 

From  ( , ) ( , )f r h g r hgrad grad , the system of equations   

  0.2 ( ) 2h r rh                                                           (21) 

  20.2 r r                                                                  (22) 

is obtained. 

Dividing the left and the right hand parts of the equations results in ( ) / 2 /h r r h r  , from 

which, it follows that 3 3* * / 7062 / 13.1h r V       is a critical point. From the contour 

plots of the functions ( , )f r h  and ( , )g r h , it can be verified that the critical point is the 

minimum. 

Consequently,  
2 2* 0.2 0.1 0.3 0.3 13.1 12.35V rh r r           . 

This means that the inequality 
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*V V    

has been proved regarding the absolute error V  associated with any other selected 

dimensions (r,h) which guarantee the required volume V. 

The absolute error is smaller than 20mm3 therefore, the workpieces with dimensions 

13.1r h  mm dimensions will not result in defective components. By selecting the nominal 

dimensions  * * 13.1mmh r   the deviation of the volume V due to errors in the dimensions 

(r,h) has effectively been bounded. This guarantees that the volume V cannot exceed a 

dangerous value and reliability cannot be compromised. 

If for example, the dimensions 14.1r   and 11.31h   which deviate from the nominal values 

are selected, from 
2 2 32 14.1 11.31 0.1 14.1 0.1 162.66 mmV rh r r h                         (23) 

it can be seen that the error in V significantly exceeds the maximum acceptable 20 mm3. 

If the dimensions 12.1r  , 15.35h   which also deviate from the nominal values are 

selected, from 
2 2 32 12.1 15.35 0.1 12.1 0.1 162.69 mmV rh r r h                         (24) 

it can be seen that the error in V again significantly exceeds the maximum acceptable of 20 

mm3. 

 

 

3. Improving reliability and reducing risk by segmentation of loads and by chain-rule 

segmentation 

 

The underlying idea of the method of segmentation is to prevent failure modes and reduce the 

vulnerability to a single failure, by dividing an entity into a number of distinct parts (Todinov, 

2019).  

In this section, it is demonstrated that combining domain-specific knowledge from strength 

of materials and the domain-independent method of segmentation could achieve an increase 

in reliability by increasing the resistance to overstress failure. 

 

3.1 Reducing the risk of overstress failure by a segmentation of the external forces 

It is not at all obvious that segmenting external loading forces could achieve a significant 

reduction of the internal stresses in a loaded structure. In the cases where engineers have 
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control over the design of the application points of external forces, a load segmentation can 

achieve a significant reduction of the internal stresses.  

Consider the simply supported beam with length l and uniform cross section in Figure 1, 

loaded with a concentrated force P. From the bending moment diagram, in section x=l/2, the 

beam is subjected to a maximum moment max,1 / 4M Pl . 

 

 
Figure 1. Reducing the risk of overstress failure of a beam by segmenting the external concentrated load P. 

 

It is assumed that the design engineer has control over the application points of the external 

loads. Segmenting the concentrated load P into two concentrated loads with magnitudes P/2, 

applied at distances l/6 from the supports, reduces the maximum bending moment which, in 

turn, reduces the internal tensile stresses from bending. Reducing the magnitudes of the 

internal tensile stresses increases the resistance to overstress failure and therefore improves 

reliability. A similar reliability improvement effect is also present if external concentrated 

moments, instead of concentrated forces are segmented. 

The load segmentation also improves reliability in the case of a horizontal concentrated 

external load. This mechanism will be illustrated by the example of a statically indetermined 

loaded bar in Figure 2a, loaded with the external concentrated load P. 

The stresses in the different sections of the bar in Figure 2a can be determined by using an 

extra compatibility of displacements equation. This is a standard technique documented, for 

example, in (Gere and Timoshenko, 1999). Neglecting the weight of the bar, as being much 

smaller compared to the magnitude of the concentrated force P, the stresses acting in the parts 

AC and CB of the bar are 
2AC
P
A

   and 
2BC
P
A

   , correspondingly (Figure 2b). 



15 
 

 
Figure 2. Reducing the overstress failure of a statically indeterminate bar by segmenting the external load 

 

Now if the original concentrated load P is segmented into two loads, each with magnitude 

P/2, applied at the same distances a from the supports (Figure 2c), the stresses acting in the 

parts AC and DB of the bar are still 
2AC
P
A

   and 
2BC
P
A

   , correspondingly, but the 

stress in any section of the part CD with length 'b' is now zero (Figure 2d). This means that 

because of the reduced length where internal stresses are excited, the probability of failure 

due to buckling is reduced and the probability of failure due to a presence of a flaw in the 

material is also reduced. 

Finally, consider the more complex truss structure in Figure 3a loaded by a 6kN external 

force. It is assumed again that the designer can control the points of application for the 

external load. The forces in the separate members have been calculated by the standard  

method of sections (Hibbeler, 2004) and are given in Table 1. The tensile forces are with plus 

sign while the compressive forces are with a negative sign. 

As can be verified from Table 1, the loading with a single (non-segmented) force (Figure 3a) 

resulted in higher stresses in the members of the truss. Thus, the largest load for the truss with 

non-segmented load is 7.5kN (Table 1) while the largest load for the truss with segmented 

force is 5.25kN (Table 1). In addition, the magnitudes of the loads in the truss with 

segmented external load (Figure 3b) are more uniform compared with the truss with non-

segmented external load (Figure 3a). Indeed, the average value of the absolute values of the 

forces for the truss in Figure 3a is 4.91kN and the standard deviation of the absolute 

magnitudes of the forces is 2kN. In contrast, the average value of the absolute values of the 
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forces for the truss with segmented external load (Figure 3b) is 3.31kN and the standard 

deviation of the absolute magnitudes of the forces is 1.12kN.  

 

 
Figure 3. Reducing the overstress failure of a truss by segmenting the external load 

 
Table 1  Forces calculated in the truss by the method of sections. 

 

Force [kN] S12 S15 S23 S25 S34 S35 S45 

Truss (a) -5.196 +7.5 -5.196 -6 -3 +6 +1.5 

Truss (b) -2.59 +5.25 -2.59 -3 -4.5 +3 +2.25 

 

The presented simple solution for reducing the stresses in loaded structures based on 

segmentation has never been suggested in standard textbook on stress analysis and strength of 

components (Hearn 1985; Budynas, 1999; Gere and Timoshenko, 1999; Budynas and Nisbett 

2015; Collins 2003; Norton, 2006). This shows that the lack of knowledge of the domain-

independent method of segmentation made it invisible to the domain-specific experts that 

segmenting external loads can be used to reduce the internal stresses in a loaded structure and 

to reduce its risk of failure.  

 

3.2 Reducing the risk of computational errors by the method of chain-rule segmentation 

 

Segmentation is a universal domain-independent concept for risk reduction and can even be 

applied in the distant area related to reducing the risk of computational errors. 

In this section, domain-specific knowledge from kinematic analysis of mechanisms and the 

domain-independent method of segmentation through the chain rule are combined to achieve a 

decrease in the risk of computational errors. 



17 
 

The chain rule for differentiation of a function of a function is a well-known concept (Ellis 

and Gulick, 1991). The idea behind the concept of reducing errors by a segmentation through 

the chain rule is described next. 

Suppose that a process output is a complex continuous function ( )y y x  of the input 

parameter x. Finding the derivative dy
dx

 which describes the process output rate is often 

difficult and associated with a large likelihood of errors because of the complex function 

( )y y x . The direct differentiation, if at all practicable, often leads to enormous, very 

complex expressions, during whose derivation the likelihood of making an error is very high. 

These difficulties disappear if segmentation through the chain rule is applied. The complex 

continuous function ( )y y x  is segmented into several simpler functions. Suppose that y is 

expressed as a continuous function 1( )y u  of the parameter 1u ; the parameter 1u  is expressed 

as a continuous function 1 2( )u u  of the parameter 2u  and so on, until a parameter nu  is 

reached, which is expressed as a simple function ( )nu x  of x. As a result, ( )y y x  is 

effectively segmented to a nested composition of several functions: 

             1 2 3( ( ( (... ( ))))ny y u u u u x                                                         (25) 

Applying the chain rule, for the derivative dxdy / , of the expression (25) gives 

             1 2

1 2 3
... ndudu dudy dy

dx du du du dx
                                                      (26) 

Expression (26) is effectively a segmentation of the complex derivative /dy dx  into 

derivatives 1/dy du , 1 2/du du , /ndu dx  whose evaluation is relatively easy. Reducing the 

risk of errors comes from the circumstance that the evaluation of the separate derivatives 

1

i

i

du
du 

 is associated with a significantly smaller likelihood of error than the evaluation of the 

original derivative dy
dx

. The complex task related to determining the rate dy
dx

 has effectively 

been replaced by a number of sub-tasks with easy solutions. The solution of the original 

problem is assembled by multiplying the solutions of the partial problems, which is a 

straightforward operation. By making the differentiation of a complex expression easy 

through the chain-rule segmentation, the likelihood of errors is reduced significantly. 
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The method of chain-rule segmentation remains the same if some of the parameters 

depend not on a single parameter but on two or more parameters. In this case, partial 

derivatives are used. 

This chain-rule segmentation method will be illustrated with an example related to the 

specific domain "kinematic analysis of complex mechanisms". The mechanism in Fig.4, whose 

kinematics is to be modelled, incorporates a primary slider B and a secondary slider D connected 

to the primary slider by the rod CD, the pin joint C and the link CB. The link CB is welded firmly 

to the primary slider B as shown in the figure and remains always perpendicular to the link AT. 

The crank PA rotates in clockwise direction, with a uniform angular velocity of 2   rad/s. The 

crank PA subtends an angle   with the vertical axis and varies within the interval [0, 2 ] (

0 2   ). The values of the parameters fully specifying the mechanism are as follows: 

  0.35PA r m   ; 0.65CB s m   ; 0.75CD m m   ; 0.60OP p m   ; 0.85OB d m    

By using trigonometry, the coordinate ( )y y t  of point D can be expressed as: 

2 2
2

2 22 2

cos( ) [ sin( )]( )
[ cos( )] [ sin( )][ cos( )] [ sin( )]

p r t s d r ty t d s m
p r t d r tp r t d r wt

 

 

 
    

      
(27) 

 
Figure 4. A mechanism whose kinematic analysis benefits from segmenting the problem through the application 

of the chain rule. 
 

Differentiating expression (27) directly with respect to t in order to determine the time 

dependence of the velocity of the slider D ( ( ) ( ) /v t dy t dt ) leads to a very complex 

expression, in whose derivation the likelihood of errors is very high. 

However, ( )y t  can be presented as a nested composition of three functions: 
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( ) ( ( ( )))y t y t  , 

each of which is easy to define: 

2 2 2( ) sin cosy d s m s                                                   (28) 

1 cos( ) tan
sin

p r
d r


 



  
  

 
                                                     (29) 

and ( )t t  .  

Now the evaluation of the complex derivative ( ) ( ) /v t dy t dt  is segmented by using the 

chain rule: 

( ) / [ / ] [ / ] [ / ]dy t dt dy d d d d dt                                             (30) 

Combining the derivatives by using the chain rule (26), results in 

2 2

2 2 22 2 2

sin(2 ) sin cos/ cos
2 sin 2 cos2 cos

s r rd prdy dt s
r d p dr prm s

  
 

 

   
    
      

       (31) 

where the angle   is given by the expression (29).  

As a result, the chain-rule segmentation method avoids the difficult direct differentiation of 

expression (27) where the likelihood of making errors is significant. This is a powerful 

application of the method of segmentation in reducing the likelihood of computational errors 

while determining the rate of complex processes. 

The graphs presenting the displacement and velocity of slider D are given in Fig.5. 

The correctness of the proposed chain-rule segmentation method (analytical expression 

(31)) in determining the velocity of the second slider, has been verified by using a direct 

(numerical) differentiation of expression (27) by discretising the angle 0 2    into small 

steps 0.001h rad . The value of the velocity for any time t is given by 

( ) / ( / ) ( / )v t dy dt dy d d dt                                          (32) 

Since /dy d  at an angle i  can be approximated numerically by 

1( ) ( )( / ) |
i

i iy ydy d
h 

 
 




 ,                                           (33) 

Consequently 

1( ) ( )i i
i

y yv
h

 
 

                                                    (34) 
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Figure 5. The velocity of slider D obtained from the chain-rule segmentation method coincide with the velocity 

obtained from a direct numerical differentiation. 
 

The results from the numerical differentiation for the velocity of slider D coincide with the 

results for the velocity of slider D calculated from the chain-rule segmentation method. The 

excellent correspondence of results obtained by two principally different methods validates 

the chain-rule segmentation method for reducing the risk of computational errors and 

demonstrates its validity. 

To the best of our knowledge, the chain rule segmentation technique has not been 

discussed as a powerful analytic method for reducing the risk of computational errors in the 

analysis of complex mechanisms and machines (Uicker et al., 2017; Dicker et al, 2003; 

Sandor and Erdman, 1984). This example also demonstrates that the lack of knowledge of the 

method of segmentation made it invisible to experts that chain rule segmentation can be used 

with great success to reduce the risk of errors in complex calculations. 

 

 

CONCLUSIONS 
 

• A powerful domain-independent method for improving reliability and reducing risk based 

on algebraic inequalities has been introduced. 

 

• A major advantage of algebraic inequalities has been demonstrated in ranking decision 

strategies in the absence of any knowledge related to the individual building elements. 

If no information about the component reliability characterising the individual suppliers is 

available, purchasing components from a single supplier or from the smallest possible 

number of suppliers maximises the probability of a high-reliability assembly. 
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• A major advantage of algebraic inequalities has been demonstrated in limiting the variation 

of a critical output parameter caused by variation of the design variables.  

 

• The presented methods for risk reduction transcend mechanical engineering and work in 

many unrelated domains. The benefits from combining domain-independent methods with 

domain-specific knowledge to achieve risk reduction have been demonstrated in four 

unrelated application domains: decision-making, manufacturing, strength of components and 

kinematic analysis of mechanisms. 

 

• A powerful chain-rule segmentation method for reducing the likelihood of computational 

errors during determining the rate of complex processes has been introduced and 

demonstrated in the area of kinematics analysis of complex mechanisms.  

 

• Segmenting external loads can improve significantly the resistance to overstress failure by 

reducing the magnitudes of the internal stresses in loaded structures.  

 

The presented research can be continued with: (i) new applications of algebraic inequalities 

for improving reliability and reducing risk; (ii) new applications demonstrating the benefits 

from combining domain-independent methods with specific knowledge in a particular 

domain to achieve effective risk reduction and (iii) developing new domain-independent 

methods for reliability improvement and risk reduction. 
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