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Abstract – The paper introduces a powerful domain-independent method for improving 
reliability and reducing risk based on algebraic inequalities, which transcends mechanical 
engineering and can be applied in many unrelated domains.  

The paper demonstrates the application of inequalities to reduce the risk of failure 
by producing tight uncertainty bounds for properties and risk-critical parameters. 
Numerous applications of the upper-bound-variance inequality have been demonstrated 
in bounding uncertainty from multiple sources, among which is the estimation of 
uncertainty in setting positioning distance and increasing the robustness of electronic 
devices.  
The rearrangement inequality has been used to maximise the reliability of components 
purchased from suppliers. With the help of the rearrangement inequality, a highly counter-
intuitive result has been obtained. If no information about the component reliability 
characterising the individual suppliers is available, purchasing components from a single 
supplier or from the smallest possible number of suppliers maximises the probability of a 
high-reliability assembly. 
The Cauchy-Schwartz inequality has been applied for determining sharp bounds of 
mechanical properties and the Chebyshev's inequality for determining a lower bound for the 
reliability of an assembly. The inequality of the inversely correlated random events has been 
introduced and applied for ranking risky prospects involving units with unknown 
probabilities of survival. 

Keywords:  inequality; uncertainty;  bound; upper bound variance; reliability; risk; reliability 
improvement; risk reduction 

1. Introduction. Uncertainty associated with risk-critical parameters

A systematic classification of methods for reducing risk is crucial to risk management, safe 
operation, engineering designs and software. However, this strategic topic, has 
been underestimated by the reliability and risk science. For many decades, the focus 
of the reliability and risk research has been exclusively on identifying risks, risk 
assessment and reliability prediction rather than general methods for reliability 
improvement and risk reduction. Risk reduction has been done exclusively by using 
methods specific for the application domain. This approach created the illusion that 
efficient risk reduction can be delivered successfully solely by using methods from the 
specific application domain.  
The price for this illusion is ineffective reliability improvement and risk reduction across the 
entire industry. Valuable opportunities for improving reliability and reducing risk have been 
overlooked which led to numerous accidents resulting in financial losses, fatalities and 
damage to the environment. The numerous advantages of the domain-independent approach 
to risk reduction have been recently discussed in (Todinov, 2019). The present paper 
contributes a new domain-independent method for reducing risk, based on algebraic 
inequalities. 
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In many cases, the actual values of reliability-critical parameters are unknown or are 
associated with large uncertainty. However if a tight bound can be determined, for the worst 
possible variation of a key property in components pooled from multiple sources, the design 
could be complied with this bound and a number of failure modes avoided. 

The robustness of components and manufacturing processes can be significantly improved 
by complying their design with the worst possible variation of properties. Robustness is an 
important attribute of engineering products and processes and can be generally defined as 
'the capability of a product or process to cope with variability with minimal loss of 
functionality'.  The process capability index is defined as (Montgomery et al, 2001):

                                                                (1) 



max max 

where USL and LSL are the upper and the lower specification limits and  is the standard 
deviation characterising the process. 
A large process capability index means that fewer defective or non-conforming units will be 
produced. A process with a large capability index is a robust process which means that the 
process mean can shift off-target while the percentage of faulty items is still remaining very 
low.  
For example, a conservative estimate of the process capability index for properties pooled 
from multiple sources is important to assessing the quality of the process. Such an estimate 
can be obtained if the tight upper bound estimate  ( ) of the standard deviation 
 of the process is used. (The upper bound is tight if equality can be attained).

There are a number of algebraic inequalities (e.g. the Arithmetic mean – Geometric mean 
inequality, Cauchy-Schwartz inequality, the rearrangement inequality, the Chebyshev’s 
inequality, Jensen’s inequality, etc.) that can be used for producing tight bounds for risk-
critical parameters. Algebraic inequalities have been discussed extensively in (Steele, 
2004; Cloud et al. 1998; Engel 1998; Hardy et al., 1999; Kazarinoff, 1961; Pachpatte 2005). 

In probability theory (De Groot, 1989; Miller and Miller, 1999), well-known 
algebraic inequalities are the Chebyshev’s inequality, Markov’s inequality, Boole’s 
inequality, Bonferroni inequalities and Jensen’s inequality. Some of these inequalities have 
been used in reliability theory for obtaining lower and upper bound on the system 
reliability by using minimal cut sets and minimal path sets (Ebeling, 1997). 

Algebraic inequalities can be proved by: (i) algebraic manipulation only, (ii) reducing to 
standard inequalities, (iii) mathematical induction, (iv) segmentation (v) methods from 
calculus, (vi) substitutions, (vii) using symmetry and homogeneity, (viii) using the properties 
of convex(concave) functions, etc. 

Although standard reliability textbooks (e.g. Lewis,1996; Ebeling, 1997; O'Connor 2002; 
Dhillon 2017; Modarres et al, 2017) allocate substantial space for discussing risk reduction 
methods such as introducing redundancy, derating, eliminating common cause and condition 
monitoring, there is a surprising lack of discussion related to reducing risk by 
using algebraic inequalities.  

Applications of inequalities have been considered in physics (Rastegin, 2012) and 
engineering (Cloud et al. 1998). However, in the mechanical engineering design literature 
(Budinas and Nisbett 2015; Childs 2014; Collins, 2003; Norton, 2006; Mott et al, 2018; Pahl 
and Beitz 2007; Thompson 1999; French 1999), there is a clear lack of discussion on the use 
of algebraic inequalities to improve reliability and reduce risk. In engineering design, 
the application of inequalities is mainly confined to design variables required to satisfy 
various simple conditions in order to guarantee that the design will perform its required 
functions (Samuel and Weir, 1999). Simple inequalities, obtained from solving with respect 
to one of 
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the variables have also been used for specifying the upper bound of the lineal density 
of Poisson-distributed flaws to guarantee a probability of clustering below a 
maximum acceptable level (Todinov, 2005). 

Despite the existing comprehensive introductions to analytic inequalities and presence 
of applications in physics, engineering, and reliability science, there is a profound lack 
of discussion related to the application of algebraic inequalities to determining 
uncertainty bounds for risk-critical parameters, improving reliability and reducing risk. 

Variability and lack of knowledge associated with critical design parameters is a 
major source of substandard items and unreliability. Therefore a central objective in this 
paper is establishing tight bounds for the uncertainty related to properties and 
critical design parameters and using these bounds for assessing the risk of poor properties. 
To derive tight bounds for properties and parameters, standard inequalities will be used 
as well as new inequalities derived specifically for this purpose.  

Algebraic inequalities used as a domain-independent method reduce risk by: 
(i) maximising reliability (ii) reducing epistemic uncertainty; (iii) reducing aleatoric 
uncertainty; (iv) ranking the reliabilities of systems and processes in the absence of 
knowledge about the reliabilities of the building parts (v) providing tight bounds for 
reliability-critical parameters and (vi) ranking decision alternatives.

2 Applications of the upper bound variance inequality 

2.1 Variation of a property from multiple sources 

Most of the failures, especially the ones occurring early in life, are quality failures due 
to the presence of substandard items that find their way into the end products. 
Production variability of material properties often promote early-life failures.  

Suppose that a product collected from M different sources is delivered in certain 

proportions Mppp ,...,, 21 , 1
1




M

k
ip  (Figure 1). A critical property X of the product from 

each source k is characterised by a distribution )(xFk  with mean k  and variance 2
kkV  , 

where k is the standard deviation. Quantifying the uncertainty related to the property X,

)( xXP 

associated with the pooled products from different sources, is of significant practical interest. 
Such is, for example, the quantification of the probability  that the pooled property 
will not exceed a specified value x. The pooled property X, formed by sampling the M distinct 
sources, follows a distribution mixture.  
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Figure 1 Variation of reliability-critical properties from multiple sources. 

The distributions of the property characterising the individual sources are )(xFi , i=1,2,...,M, 
correspondingly. Thus, the probability )()( xXPxF   of the event B that the pooled 
critical property X will not be greater than a specified value x can be presented as a union of 
the following mutually exclusive and exhaustive events: BA 1 : the first source is sampled
(event 1A ) and the property X is not greater than x (the probability of this compound event is

)(11 xFp ; BA 2 : the second source is sampled (event 2A  ) and the property X is not greater
than x (the probability of this compound event is )(22 xFp ;…; BAM  : the Mth source is 
sampled (event MA ) and the property X is not greater than x (the probability of this
compound event is )(xFp MM . According to the total probability theorem, the probability
that the pooled critical property X will not be greater than a specified value x is then given by 





M

k
kk xFpxXPxF

1
)()()( (2) 

which is the cumulative distribution of the pooled property from all sources. )(xF  is a 
mixture of the cumulative probability distribution functions )(xFk  characterising the 
individual sources, scaled by the probabilities kp , Mk ,1  with which they are sampled. 
After differentiating equation (2), a relationship for the probability density function ( )f x  of 
the distribution mixture is obtained: 





M

k
kk xfpxf

1
)()( (3) 

where ( )( ) dF xf x
dx

 and ( )( ) k
k

dF xf x
dx



Multiplying both sides of equation (3) by x and integrating:

 











M

k
kk dxxfxpdxxfx

1
)()( , gives 





M

k
kkp

1
  (4) 

for the mean value   of a property from M different sources, characterised by means k

(Everitt and Hand, 1981). 
Distribution mixtures are a useful tool in describing uncertainty associated with 

material properties and the analysis of the fracture properties of inhomogeneous 
mictrostructures benefits significantly from using distribution mixtures (Todinov 2003). 
Distribution mixtures are also the correct tool for modelling the repair times of systems 
including different types of components, each type, characterised by its own distribution of 
the repair times.  

In quantifying uncertainty related to pooled properties from multiple sources, two 
fundamental problems emerge: 
(i) Quantifying uncertainty related to the pooled properties if the mixing proportions

Mppp ,...,, 21 , 1
1




M

k
ip  characterising the separate sources are known; 
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(ii) Quantifying uncertainty related to the pooled properties if the mixing proportions

Mppp ,...,, 21 , 1
1




M

k
ip  characterizing the separate sources are unknown. 

In the case where the mixing proportions 1p , 2p ,..., Mp are known, the variance V of the 
mixture distribution (3) for continuous probability density functions )(xf k  characterising M 
existing sources is given by (Todinov 2002): 





M

k
kkk VpV

1

2 ])([  (5) 

kV Mk ,1where ,  are the variances characterising the M sources.
The case where the mixing proportions are unknown is considered in detail in the next 
section. 

2.2  Upper-bound-variance inequality. Application to removing the worst sources 
of variation 

If the mixing proportions kp  characterising the separate sources are unknown, the 
variance V  in equation (5) cannot be evaluated. Depending on the actual mixing proportions 

kp , the total variance of the pooled property may vary from the smallest variance kV , 

ip

kp

characterising one of the sources, up to the largest possible variance obtained from sampling 
a particular combination of sources with appropriate probabilities (mixing proportions) . 
The question of interest is to establish a tight upper bound for the variance V in equation (5) 
irrespective of the mixing proportions  characterising the separate sources. The tight upper 
bound can be obtained by using a numerical algorithm which is based on the upper bound 
variance theorem formulated in (Todinov, 2003):”The tight upper bound of the variance of 
properties from sampling multiple sources is obtained from sampling not more than two 
sources”. 
The proof of the variance upper bound theorem and the algorithm for determining the pair of 
sources producing the largest variance are given in (Todinov, 2003) and will not be 
reproduced here. 

In short, the global maximum of the right hand side of equation (5) is attained either from 
sampling a single source/individual distribution, in which case one of the sampling 
probabilities ip  is unity and the rest are zero ( 0;1  iji pp ), or from sampling only two 
individual distributions k  and m  among all individual distributions composing the mixture 

0kpdistribution. In the second case,  and 0mp ; the rest of the ip are zero ( 0ip ) for 
i  k and mi  . If max, ,k mV  denotes the maximum of the variance from sampling all possible 
pairs of sources (individual distributions) k  and m  ( mk  ), the global maximum maxV  of
the right hand side of equation (5) can be found from max 1 2 max, ,max{ , ,..., , }M k mV V V V V  where 

Mk ,2 and 1,1  km . Since there are 2/)1(  MM  number of terms max, ,k mV , the 
global maximum is determined after 2/)1(2/)1(  MMMMM  checks (Todinov, 
2003).  
Mathematically, the upper bound variance theorem can be expressed as 

2
max max max max max(1 ) (1 )( )r s r sV p V p V p p        (6)
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where r and s are the indices of the sources for which the upper bound of the variance is 
attained and 10 max  p  and max1 p  are the mixing proportions with which the two 

1max p

maxV

sources must be sampled to obtain the upper bound of the variance. If , the 
upper bound of the variance is obtained from sampling a single source only. The upper bound 

 of the variance is obtained by an algorithm whose details are given in (Todinov, 2003). 
As a result, for the variance of properties V given by equation 5, from sampling multiple 
sources with unknown mixing proportions kp , the following sharp inequality holds: 

maxV V (7) 

kp
This inequality will be referred to as the upper-bound-variance inequality. It provides a tight 
upper bound for the variance because for a particular combination of mixing proportions , 

m n

an equality is attained in (7). 
The upper-bound-variance inequality can be used to assess the maximum possible 

variation of a property pooled from multiple sources.  
The application of the upper-bound-variance inequality is particularly useful in cases 

where the mixing proportions from the n sources of variation are unknown and m sources of 
variation must be removed ( ). A decision needs to be made about which m sources 
of variation out of the n available sources should be removed so that a maximum reduction 
of the maximum possible variation is achieved. In the case of unknown mixing proportions ip (

1,2,...,i n ), the decision should be based on the sources of variation whose removal yields
the smallest variance upper bound n mV  among the remaining n m sources of variation. 

1m Suppose that only a single source of variation can be removed ( ) and a decision 
needs to be made about which source of variation should be removed so that the 
maximum reduction of the maximum possible variation is achieved or the smallest 
variance upper bound 1nV   is obtained. This will ensure that irrespective of the mixing proportions ip , the 
variance V  from the remaining 1n  sources of variation will never exceed the obtained 
smallest variance upper bound 1nV  :  1nV V  . 
The algorithm in (Todinov, 2003), determines the pair of sources which yield the largest 
variance. Removing one of these sources results in the smallest variance upper bound 1nV  . 
This application of the upper-bound-variance inequality (7) will be illustrated by the 
following numerical example. 
Suppose that the rates of degradation for a key property characterizing items pooled from five 
processing units are characterised by individual distributions with variances 2081 V ,

2402 V , 1083 V , 1024 V  and 905 V  and means 391  , 432  , 453  ,
564   and 655  , correspondingly.

The question of interest is the removal of which processing unit yields the largest decrease in 
the tight variance upper bound of the degradation rate. 
The global maximum of the variance of the rate of degradation from the processing units is 

15.323max V , attained from sampling the fifth processing unit with probability 41.0max p  
and the first processing unit with probability 59.01 max  p . Removing the fifth processing
unit yields the largest reduction of the variance upper bound of the degradation rate. Indeed, 
the calculations show that after removing the fifth processing unit, the tight variance upper 

maxVbound  of the degradation rate is max 1 241.4nV V   , attained from sampling the fourth
processing unit with probability 09.0max p  and the second processing unit with probability

91.01 max  p . The removal of the fifth processing unit yields a value 1 241.4nV    of the
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 variance upper bound that cannot be improved (decreased) by the removal of any other 
processing unit instead. 
The variance-upper-bound inequality has effectively been used for conducting 
uncertainty importance analysis - identifying the source of variation whose removal yields 
the smallest value of the variance upper bound. 
If m out of n sources of variation need to be removed, the described procedure is 
repeated m times.  

2.3  Increasing the robustness of products and processes by the variance-upper-
bound inequality 

The variance upper bound inequality can be used as a basis for developing a worst-
case design, aimed at improving the robustness of processes, operations and products 
originating from different sources. For such processes or products, the mean of the 
particular property is not critical and can be easily adjusted to a specified target value by 
adding or subtracting a constant quantity. It is the deviation from the mean that leads to 
undesirable performance and needs to be reduced.  
An example can be given with positioning of identical components at a certain distance 
by different positioning devices. Each device is characterized by a mean positioning 
distance and a variance. While the mean value of the positioning distance can be easily 
adjusted to a target value by adding or subtracting an appropriate value, the variance 
cannot be adjusted easily. Reducing the variance of a process usually requires 
fundamental technological changes associated with substantial investment. 

A conservative estimate of process capability index for properties from multiple sources 
can be obtained by using an upper bound variance estimate 2

max maxV  : 

(8) 

Determining a non-parametric and conservative estimate of the process capability index 
helps to stabilize the variation of the process within the control limits and reduce the 
number of faults in the end product. The non-parametric capability index can serve as 
a basis for ranking, comparing and selecting competing manufacturing processes. 
If sources of variation can be removed, by removing the source resulting in the 
most significant decrease of the variance upper bound, the overall variability of the 
process can be reduced and the process capability index increased. 
If no source of variation can be removed, the pair of distributions which yield the 
worst possible variation of the property can be identified. This is followed by a verification 
whether the design can accommodate this worst-case variation. In short, the process of 
creating a more robust product based on the variance upper bound inequality is a process 
of making the design resistant against the worst-case variation of a critical property from 
its target value. This is a way of achieving a robust manufacturing process, whose 
variation is under control, irrespective of the actual mixing proportions of the products 
coming from different manufacturing centers. 

2.4 Using the variance-upper-bound inequality for increasing the robustness of 
electronic devices 
Components building electronic circuits are characterized by properties like 
resistance, capacitance, inductance, etc. Because of imprecision, during manufacturing, 
the actual magnitudes of these properties deviate from their stated nominal values.  

max

*

6
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Suppose that these components are part of safety-critical systems containing sensors 
measuring temperature, pressure, concentration, etc. in two different zones. Suppose that 
a difference in the readings from the sensors, exceeding a particular threshold, triggers 
an alarm or a shutdown system. Large deviations in the properties of the components 
building the measurement circuit are undesirable, because they lead to a deteriorated 
performance of the safety-critical devices. 
Suppose that the components building the measurement circuit are manufactured by different 
centers/manufacturers. Each center/manufacturer is characterized by its 
individual distribution of the corresponding property. Usually, the variation of the property 
(resistivity, capacitance, inductance, etc.) associated with the existing pool of manufactured 
components, is not the maximum possible variation that can occur. There exists a particular 
combination of sources and mixing proportions that yield the largest (worst-case) variation. 
The variance-upper-bound inequality makes it possible to assess this worst-case 
variation. This is illustrated by the next case study. 

2.4.1 Case study: Calculating the worst-case variation by using the variance upper bound 
inequality 
Suppose that resistors are delivered from four suppliers. The mean 
resistances [Ω] characterizing the individual suppliers are }516,510,504,500{R . The 
variances 2

R RV  , equal to the squared standard deviations of the resistances characterizing 
the individual suppliers, are }85,166,141,102{RV . 
If, in the batch, the shares from the different suppliers are unknown, a calculation of the exact 
upper bound of the variance yields , attained from sampling two suppliers: the first 

.  
For any other combination of suppliers and mixing proportions, a smaller variance is 
obtained. Indeed if, for example, the mixing proportions are: , 

where , for the variance of the supplied components, equation (5) yields only 

. 

1 2, ,..., na a a 1 2, ,..., nb b b

The designer must ensure that the electronic circuit will operate satisfactorily under the worst 
possible combination of mixing proportions, yielding the maximum possible variation of the 
resistance. 

3. Determining a bound related to uncertainty in mechanical properties by using the
Cauchy- Schwarz inequality

One of the most important algebraic inequalities is the Cauchy-Schwarz inequality which 
states that for the sequences of real numbers and , the following sharp 
inequality holds: 

2 2 2 2 2 2 2
1 1 2 2 1 2 1 2( ... ) ( ... )( ... )n n n na b a b a b a a a b b b          (9) 

Equality holds if and only if for any i j , i j j ia b a b are fulfilled.
Inequality (9) and the conditions for equality can be deduced directly from the equivalent 
inequality: 

169max V
p  0.18supplier, with a mixing proportion  and the third supplier, with a mixing proportion

82.01  pq

}05.0,15.0,65.0,15.0{Rp

1
4

1


i
Rip

150V
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2 2 2 2 2 2 2 2
1 2 1 2 1 1 2 2

; 1
( ... )( ... ) ( ... ) ( ) 0

n

n n n n i j i j
i j j

a a a b b b a b a b a b a b b a
 

                     (10) 

Here is a powerful application of the Cauchy-Schwarz inequality. Consider the equivalent 
stiffness sk of n elastic elements in series and the equivalent stiffness pk of n elastic
elements in parallel. The stiffness of the separate elastic elements are 1k , 2k ,…, nk , 
correspondingly. The equivalent stiffness of the elastic elements in series is given by the 
well-known relationship (Samuel and Weir, 1999): 

1 2

1
1 1 1...

s

n

k

k k k



  

(11) 

For elastic elements in parallel, the equivalent stiffness is 
1 2 ...p nk k k k    (12) 

Equation (11) follows from the fact that the total deflection s for elastic elements in series,
loaded by a common force F, is the sum of the deflections of the separate elastic elements. 

1 2 ...s n       (13) 

Since, the link between a deflection   and stiffness k is given by F
k

  , equation (13) 

becomes  
1 2

...
s n

F F F F
k k k k

    , from which equation (11) follows directly. 

Equation (12) follows from the fact that for elastic elements in parallel, all deflections of the 
elastic elements are the same 1 2 ...p n       and the total force F  acting on the elastic
elements is a sum of the forces 1 2, ,..., nF F F acting on the separate elements: 

1 2 ... nF F F F    . Since, the link between the force F, deflection   and stiffness k is given
by F k , it follows that 1 2 ...p p p p n pk k k k       from which equation (12) follows 

1x 

directly. 
It is important to compare the equivalent stiffness of a series arrangement with the 
equivalent stiffness of the parallel arrangement if the stiffness values characterising the 
separate elastic elements are unknown. 
Finding the unknown factor x ( ) for which 

s px k k

given that the stiffness ik ( 1,i n ) of the separate elastic elements is unknown, is equivalent
to finding the lower bound x of the product on the left hand side of: 

1 2
1 2

1 1 1( ... ) ...n
n

k k k x
k k k

 
       

 

This can be done by using the Cauchy- Schwarz inequality (9), by setting 
; 1,i ia k i n  and 1/ ; 1,i ib k i n  . 

Substituting ia and ib in the Cauchy-Schwarz inequality (9) gives:

2
1 2

1 2

1 1 1( ... ) ...n
n

k k k n
k k k

 
       

 

Therefore, the unknown factor has been determined to be 2x n . 
The conclusion is that irrespective of the uncertainty related to the stiffness values of the n 
elastic elements, the equivalent stiffness of the series arrangement is always at least 2n times
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smaller than the equivalent stiffness of the parallel arrangement. The upper bound 2
s pn k k

is tight and equality is attained if all stiffness values are equal 1 2 ... nk k k k    . 
This is also an example of a physical property derived from a meaningful interpretation of an 
abstract mathematical inequality. The property must be present because, if not, the 
underlying mathematical inequality must be wrong, which is impossible. 

The robust design of clamping devices, often requires a small variation of the spring force 
with the spring length. This can be ensured by creating a spring with a smaller 
constant. If springs are rearranged in series, rather than in parallel, an equivalent spring 
constant that is at least 2n times smaller than the equivalent spring constant of the parallel
arrangement is guaranteed. The factor of 2n is guaranteed, irrespective of the uncertainty 
related to the spring constants of the individual springs. 
   Next, to increase the energy-absorbing potential upon impact, a deliberate weakness can be 
created by arranging the elastic elements in series rather than parallel. The smaller equivalent 

ekelastic modulus reduces the maximum stress max upon impact and, as a result, the
risk of overstress is reduced. 

The strain energy U accumulated by elastic elements with effective constant ek is given

by 
2

2 e

PU
k

  (Gere and Timoshenko, 1999) where P is the maximum force acting on the

component. For prismatic components with length L, cross-sectional area A and material with

Young's modulus E, loaded in tension/compression, this equation takes the form: 
2

2
P LU
EA

 . 

Consider an impact of a body with mass m and velocity v  and a structure. Suppose that, upon 

the impact, a fraction   of the kinetic energy 
2

2k
mvE   of the body at the point of impact is 

transformed entirely into strain energy of the impacted structure. The dynamic force P 

resulting from the impact can then be evaluated from 
2

2 k
e

P
k

E . The expression for the 

dynamic force P becomes:  
2 e kP k E

From the last equation, it is clear that reducing the equivalent elastic constant ek 2n  times, by 
altering the parallel arrangement to a series arrangement, results in an n-fold reduction of the 
magnitude of the dynamic force  

2' 2( / ) (1/ ) 2 (1/ )e k e kP k n E n k E n P   

Consequently, the guaranteed reduction of the equivalent elastic constant through altering the 
arrangement of the elastic elements from parallel to series significantly reduces 
the magnitude of the dynamic forces upon impact. Even the rearrangement of two 
elastic elements from parallel to series is sufficient to halve the magnitude of the dynamic 
force. 

4. Maximising the likelihood of a high-reliability assembly by using the 
rearrangement inequality

The rearrangement inequality is a powerful tool that can be used to provide bounds for 
the uncertainty associated with reliability-critical parameters. 
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Consider the two sequences 1 2, ,..., na a a and 1 2, ,..., nb b b of positive real numbers. It can be 
shown that: 

a) The sum 1 1 2 2 ... n nS a b a b a b     is maximal if the sequences are sorted in the same
way (both monotonically decreasing: 1 2 ,..., na a a   ; 1 2 ,..., nb b b   or both 
monotonically increasing: 1 2 ,..., na a a   ; 1 2 ,..., nb b b   ). 

b) The sum 1 1 2 2 ... n nS a b a b a b     is minimal if the sequences are sorted in the
opposite way (one monotonically increasing and the other monotonically decreasing). 
Consider the sum where the two sequences 1 2, ,..., na a a and 1 2, ,..., nb b b   of positive real 
numbers have been both sorted in ascending order or in a descending order. To prove 
statement a), the extreme principle will be used. Suppose that there is a sum 

0 1 1 ... ... ...r r s s n nS a b a b a b a b       (14) 
where the a-sequence and b-sequence are not both monotonically increasing or both
monotonically decreasing and which is the largest possible sum. If the a-sequence and b-
sequence are not both sorted in ascending order or in a descending order, there will certainly
be values ra , rb  and sa , sb  ( r s ) for which either  r sa a  and r sb b is true or r sa a

and r sb b is true. If no such pairs can be found, then the a-sequence and b-sequence are
already either both increasing or both decreasing and the hypothesis that the a-sequence 
and b-sequence are not both sorted in ascending order or in a descending order does not hold.
Suppose that r

sa a and rb bs are true. Without loss of generality, it can be assumed that 

i ia b ia

1S
in equation (14) the terms  (i=1,...,n) have been sorted in ascending order of . This can 
always be done by a simple permutation of the terms. Consider the sum  

1 1 1 ... ... ...r s s r n nS a b a b a b a b       (15) 
which has been obtained from 0S by switching the positions of rb and sb  only. Subtracting 

1S from 0S gives:

0 1 ( ) ( ) ( )( )r r s s r s s r r r s s r s r s r sS S a b a b a b a b a b b a b b a a b b           

Because r sa a and r sb b is true,    

0 1 ( )( ) 0r s r sS S a a b b     (16) 
then 0 1 ( )( ) 0r s r sS S a a b b     , therefore the sum 1S is larger than the sum 0S which 
contradicts the initial assumption that 0S  is the largest sum. Consequently, the hypothesis 
that the largest sum can be attained for sequences that are not both increasing or both 
decreasing is incorrect. 
The case  r sa a and r sb b leads to a contradiction in a similar manner.
In a similar fashion, statement b) can also be proved. 

An important application of the rearrangement inequality is in its use as a basis for 
generating new powerful inequalities that can be used to producing bounds for the 
uncertainty related to reliability-critical parameters. For two sequences 1 2, ,..., na a a and

1 2, ,..., nb b b of positive real numbers, the notation  

1 2
1 1 2 2

1 2

...
...

...
n

n n
n

a a a
a b a b a b

b b b
 

    
 

is introduced. This is similar to the definition of a dot product of two vectors with 
components specified by the two rows of the matrix. 

Here is an application of the rearrangement inequality. 
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1A 2A 3AConsider a market where the three suppliers , and , produce high-reliability

1a 2a 3acomponents of the same type, with probabilities , and , which are unknown. If two 
components are to be purchased and installed in a device, the question of interest is which 
strategy maximises the probability that both components will be highly reliable: (i) 
purchasing two components from the same, randomly selected supplier or (ii) purchasing the 
two components from different, randomly selected suppliers. At first glance, it seems that 
either of these strategies could be selected because the probabilities 1a , 2a and 3a of high-
reliability components characterising the suppliers are unknown. Surprisingly, this common-
sense conclusion is incorrect. 
The probability of purchasing two high-reliability components from the same, randomly 
selected supplier is:

2 2 2
1 1 2 3

1 1 1
3 3 3

p a a a   and is composed of the probabilities of three mutually exclusive 

events: (i) the probability 2
1

1
3

a that supplier 1A will be selected and both components 

purchased from 1A  will be highly reliable; (ii) the probability 2
2

1
3

a that supplier 2A will be 

selected and both components purchased from 2A  will be highly reliable and (iii) the 

probability 2
3

1
3

a that supplier 3A will be selected and both components purchased from 3A

will be highly reliable. The probability of purchasing two high-reliability components from
two different suppliers is: 

2 1 2 1 3 2 3
1 1 1
3 3 3

p a a a a a a   and is composed of the probabilities of three mutually exclusive 

events: (i) the probability 1 2 2 1 1 2
1 1 1 1 1
3 2 3 2 3

a a a a a a    that suppliers 1A and 2A will be 

randomly selected and both components purchased from 1A  and 2A  will be highly reliable; 

(ii) the probability 1 3 3 1 1 3
1 1 1 1 1
3 2 3 2 3

a a a a a a    that suppliers 1A and 3A will be randomly 

selected and both components purchased from 1A  and 3A  will be highly reliable and (iii) the

probability 2 3 3 2 2 3
1 1 1 1 1
3 2 3 2 3

a a a a a a    that suppliers 2A and 3A will be randomly 

2A 3A

1 2 3a a a  1 2 3, ,a a a

1 2 3a a a 

selected and both components purchased from  and  will be highly reliable.
Without loss of generality, suppose that  holds holdsx. (The indices of  
can always be reassigned so that  holds.) 

1 2 3 1 2 32 2 2
1 2 3 1 2 2 3 3 1

1 2 3 2 3 1

a a a a a a
a a a a a a a a a

a a a a a a
   

         
   

 (17) 

because in the first matrix, the sequences are sorted in the same way (both in  descending 
order) while in the second matrix, they are not. The second row in the right-hand matrix has 
been obtained by a cyclic permutation of the elements of the first row, starting with the 
second element 2a . From the rearrangement inequality, it also follows that 

1 2 3 1 2 32 2 2
1 2 3 1 3 2 1 3 2

1 2 3 3 1 2

a a a a a a
a a a a a a a a a

a a a a a a
   

         
   

(18)
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The second row in the right-hand matrix has been obtained by another cyclic permutation 
starting with the third element 3a . 
Adding the two inequalities and dividing both sides by 3 (3 1) 6    results in 

2 2 2
1 1 2 3 2 1 2 1 3 2 3

1 1 1 1 1 1
3 3 3 3 3 3

p a a a p a a a a a a             (19) 

1 2p pAccording to inequality (19) , therefore, purchasing both components from a 
randomly selected supplier is better strategy, resulting in a higher probability that both 
components will be high-reliability components. This is a surprising and highly counter-
intuitive result. After all, why would purchasing from a single supplier be more beneficial 
compared to purchasing from multiple suppliers if the percentages of high-reliability 
components characterising the suppliers are unknown? 
The conclusion is unexpected but it has been confirmed by Monte Carlo simulations. 
Consider three suppliers  characterised by probabilities of high-reliability 

1 0.9a  2 0.4a  3 0.3a components ,  and . The Monte Carlo simulation based on one
million trials yields 0.35 for the probability of two high-reliability components if a single
supplier is randomly selected and 0.25 for the probability of two high-reliability components
if two suppliers are randomly selected. These values coincide with the values evaluated from
the left and right hand side of (19). 

The same technique based on the rearrangement inequality can be applied for a larger 
number of suppliers. 
Continuing this reasoning, for m suppliers, adding m-1 expressions of the type 

1 2

1 2

...

...
m

m

a a a
a a a
 
 
 

1mon the left hand side and similar expressions obtained from m 

1 2, ,..., ma a a
( 1)m m 

cyclical permutations of the values  on the right hand side and finally dividing 
both sides by the positive number  yields 

2
1 2

1

1 2
( 1)

m

i i j
i i j

p a p a a
m m m 

  


   (20) 

a b c 

Each term on the left hand side is the probability of purchasing two high-
reliability components from a randomly selected supplier while each term on the right hand 
side is the probability of purchasing two high-reliability components from two 
distinct, randomly selected suppliers. 

The same technique, based on the rearrangement inequality, can be applied for a 
larger number of components.  

If, for example, three components are to be purchased from three suppliers and installed 
in an assembly, the question of interest is: which strategy minimises the risk of a low-
reliability assembly: purchasing the three components from the same supplier or 
purchasing the three components from the three available suppliers. Suppose that the 
suppliers are characterised by probabilities a,b and c of producing high-reliability 
components. Without loss of generality assume that . 
From the rearrangement inequality, the following inequality immediately follows 

3 3 3 3
a b c a b c
a b c a b c b c a abc
a b c c a b

   
   

    
   
      

  (21) 

because in the first matrix, the sequences are sorted in the same way while in the second 
matrix, they are not. Inequality (21) can be transformed into 
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3 3 31 1 1
3 3 3

a b c abc     (22) 

In inequality (22), 3 3 31 1 1
3 3 3

a b c  is the probability of purchasing three high-reliability 

abc

0.9a  0.4b  0.3c 

components from a randomly selected supplier. On the right hand side of (22) is the 
probability of purchasing three high-reliability components from the three available 
suppliers. As can be verified, in this case too, purchasing the components from a single 
supplier maximises the probability that the all purchased components will be of 
high reliability.  

Consider again the suppliers A,B and C, characterised by probabilities of high-reliability 
components , and . The Monte Carlo simulation based on one million 
trials yields 0.27 for the probability of three high-reliability components if a single supplier is 
randomly selected and 0.108 for the probability of three high-reliability components if 
a single component is purchased from each supplier. These values coincide with the 
values evaluated from the left and right side of (22). 

If four components are to be purchased and installed in an assembly, purchasing all four 
components from the same supplier again maximises the probability that all purchased 
components will be high-reliability components compared to purchasing of two components 
from a random supplier followed by purchasing the other two components from the other 
suppliers. From the rearrangement inequality, the following inequality follows 

4 4 4 2 2 2

a b c a b c
a b c a b c

a b c a bc b ca c ab
a b c b c a
a b c c a b

   
   
         
   
   
   

 (23) 

because in the first matrix, the sequences are sorted in the same way while in the second 
matrix, they are not. From inequality (23), the inequality 

4 4 4 2 2 21 1 1 1 1 1
3 3 3 3 3 3

a b c a bc b ca c ab       (24) 

0.9a  0.4b  0.3c 

follows immediately. On the left hand side of inequality (24) is the probability of purchasing 
four high-reliability components from a randomly selected supplier. On the right hand side of 
inequality (24) is the probability of purchasing two high-reliability components from a 
randomly selected supplier followed by purchasing a high-reliability component from each of 
the remaining two suppliers. 
Consider again the suppliers A,B and C, characterised by probabilities of high-reliability 
components ,  and , correspondingly. The Monte Carlo simulation 
based on one million trials yields 0.23 for the probability of four high-reliability components 
if a single supplier is randomly selected and 0.058 for the probability of four high-reliability 
components if the components are purchased from three suppliers. These values coincide 
with the values evaluated from left and right hand side of (24). 

5. Determining a tight upper bound for the risk of a faulty assembly by using the
Chebyshev's inequality

Another important algebraic inequality is the Chebyshev's sum inequality which states that 
for the sequences of real numbers 1 2 ,..., na a a    and 1 2 ,..., nb b b   , the following sharp
inequality holds: 
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1 1 2 2 1 2 1 2( ... ) ( ... )( ... )n n n nn a b a b a b a a a b b b          (25) 
Equality is attained if 1 2 .... na a a   or 1 2 .... nb b b   holds. The Chebyshev's inequality 
(25) can be proved by using the rearrangement inequality.
According to the rearrangement inequality, the following inequalities are true:

1 1 2 2 3 3
1

...
n

i i n n
i

a b a b a b a b a b


    

1 2 2 3 3 4 1
1

...
n

i i n
i

a b a b a b a b a b


    

................................................. 

1 2 1 2 2 1
1

...
n

i i n n n
i

a b a b a b a b a b 



    

1A 2A 3A 1a 2a 3a 1 2 3 1a a a  

1B 2B 3B 1b 2b 3b

1 2 3 1b b b  

iA

1A 1B 2A 2B 3A 3B

By adding these inequalities the Chebyshev's inequality (25) is obtained. 

Consider an assembly which includes components of type A and B. Within type A there are 

three varieties ,  and  with fractions ,  and  ( ) and within type 

B there are also three different varieties ,  and  with fractions ,  and  ( 

). A component of type A and a component of type B are randomly purchased 

without any knowledge of their varieties. 

An assembly is fully functional only if each variety  from type A is combined with exactly 

one particular variety from type B. 

Without restricting generality (the indices of the varieties from types A and B can always be 

reassigned appropriately), it can be assumed that a fully functional assembly is only present if 

variety  is paired with variety , variety  with  and variety  with variety .

Such a case is commonly present if, in an assembly, the two types of components A and B 

are in contact, and the varieties are 'normal', 'soft' and 'high' surface hardness. A high-

reliability assembly exists only if the contacting surfaces are both with normal hardness, both 

soft or both hard. The rest of the combinations are associated with fast wear of one of the 

contacting components which compromises the durability of the assembly. It is known that the 

fraction of components with normal hardness is the largest, followed by the fractions of soft 

components and hard components ( 1 2 3a a a  ; 1 2 3b b b  ). 

The question of interest is the lower bound of the probability that from fours assemblies at 

least one will be a high-reliability assembly. 
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If the percentages of the separate varieties are unknown (which is usually the case), the answer 

reduces to deriving a lower bound estimate for the probability of a fully functional assembly. 

Since the probability R of a durable assembly is given by 

1 1 2 2 3 3R a b a b a b   (26) 

and, in addition, the equalities 1 2 3 1a a a    , 1 2 3 1b b b    also hold, the lower bound 

can be conveniently estimated by using the Chebyshev's inequality (25): 

1 2 3 1 2 3
1 1 2 2 3 3

( )( )
3

a a a b b ba b a b a b    
    (27) 

Since 1 2 3 1a a a    and 1 2 3 1b b b   , we finally get

1 1 2 2 3 3
1
3

a b a b a b  

The probability of a durable assembly is at least 33.33%. As a result, the probability that a 

single assembly will be with insufficient reliability never exceeds 0.66, irrespective of the 

actual proportions 1 2,a a , 3a and 1 2,b b , 3b of the different varieties. 

Since the probability of an inferior assembly does not exceed 2/3, the probability that from 4 
41 (2 / 3) 0.8 assemblies, at least one will be a high-reliability assembly is at least . This is 

a lower bound of the probability that from 4 randomly selected assemblies at least one high-
reliability assembly will be present, irrespective of the actual proportions 1 2,a a , 3a and  1 2,b b ,

3b of the varieties.

1A 2A nA

mA

mA

iA jA ( ) 0i jP A A 

5. Ranking risky prospects by using the inequality of the negatively correlated events

The inequality of the negatively correlated random events can be used for ranking risky 

prospects and selecting the prospect characterised by the smallest risk. The inequality is 

based on the following idea. Suppose that there are n independent events , ,..., , 

which are not mutually exclusive. For any particular event  from the set of n events, it is 

known with certainty that if  does not occur, then at least one of the remaining events will 

occur. It is also known that there are at least two events which can be simultaneously present. 

In other words, there are events  and , for which . Under these 

assumptions, it can be shown that for the probabilities of these negatively correlated events, 

the inequality 

1 2( ) ( ) ... ( ) ... ( ) 1m nP A P A P A P A      (28)
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holds. Indeed, from a total number of possible outcomes N, let 1N  be the number of 

outcomes in which event 1A  has occurred, 2N  be the number of outcomes in which event 2A

has occurred and so on. From the definition, it follows that any outcome from the N possible 

outcomes corresponds to the occurrence of at least one event iA  because the events are 

negatively correlated. Therefore, 

1 2 ... nN N N N    (29) 

By definition, there are at least two events ,i jA A which could occur simultaneously. This 

means that at least one outcome has been counted twice on the left hand side of (29). Equality 

in (29) is therefore not possible and 

1 2 ... nN N N N    (30) 

Dividing both sides of inequality (30) by the positive number N does not alter the direction of 

the inequality and results in  

1 2/ / ... / 1nN N N N N N   

which is the inequality (28). 

The approach based on the inequality of the negatively correlated events is truly domain-

independent. It can be applied to rank risky prospects, multistage processes and system 

reliabilities. The application featured next is related to ranking risky prospects. 

Consider m groups of units (Figure 2), each including n independently working units of 

different types (1,...,n) during a specified time interval. Each group contains the same types of 

units (1,...,n). (Units with the same index are of the same type). The individual types of units 

are characterised by unknown probabilities 10 1s  ; 20 1s  ;...; 0 1ns   of surviving the 

end of the operational time interval. The probabilities of failure of the units before the end of 

the time interval are 1 11f s  , 2 21f s  ,..., 1n nf s  , correspondingly. 

1E

2E

A decision needs to be made about which event is more likely: (i) Event 1 ( ): at the end 

of the operational interval there will be at least one working unit in each group or (ii) Event 2 

( ): there is a type of unit which will survive the end of the operation interval in all groups. 

If the operations are completed independently from one another, the probability of event 1 

(Figure 2) is: 

1 1 2 3( ) (1 ... )m
nP E f f f f  (31)
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1 2 3(1 ... )nf f f f

1 2 3(1 ... )nf f f f

Figure 2. Arrangement of m groups, each of which includes n independently working units. 

This probability is formed as a product of the probability  that not all units

will fail in the first group, the probability  that not all units will fail in the 

second group and so on until the m-th group is reached. 

The probability of event 2 that there will be a type of unit which will survive the end of the 

operational interval in each separate group is obtained by subtracting from unity the 

probability that there will be no such a unit (Figure 2). The probability of the event 2E  that 

there will be no type of unit which will survive the end of the operational interval in each 

separate group can be presented as a product of the probability 1(1 )ms  that the first type of 

unit will not survive in each separate group (the number of groups is m), the probability 

2(1 )ms  that the second type of unit will not survive in each separate group and so on, until 

the nth unit is reached: 

2 1 2( ) (1 )(1 )...(1 )m m m
nP E s s s   

Since the events 2E  and 2E  are complimentary events, 

2 2 1 2( ) 1 ( ) 1 (1 )(1 )...(1 )m m m
nP E P E s s s       (32) 

The decision about which event is more likely ( 1E  or 2E ), reduces to proving the inequality 

1 2( ) ( ) 0P E P E   or 1 2( ) ( ) 0P E P E  . Proving 1 2( ) ( ) 0P E P E   is equivalent to proving 

(see Figure 3) 

1 2( ) ( ) 1P E P E  (33) 

which is equivalent to 

1 2 3 1 2(1 ... ) (1 )(1 )...(1 ) 1m m m m
n nf f f f s s s      (34) 

Without the inequality of negatively correlated events it is difficult to see which event is 

more likely: event 1E or event 2E . 
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Figure 3. Venn diagram for the events 1E and 2E composing the left hand part of inequality (33). 

To each unit in the groups, a biased coin is assigned whose probability is of landing 'heads' (

1,...,i n ) is equal to the probability of that the unit will survive the end of the operational

1i if s interval. Accordingly,  is the probability that the i-th biased coin will land 'tail' 

which is equal to the probability     that the unit will fail before the end of the operational 

interval. The expression 1 2 3(1 ... )nf f f f  gives the probability that after a single toss of all n 

biased coins, there will be at least one coin landing 'heads'. The expression, 

1 1 2 3( ) (1 ... )m
nP E f f f f  (35) 

now gives the probability of event 1E  that in each of the m tosses of all n biased coins, there 

will be at least one head.  

The probability that after m tosses of all n biased coins, the first coin will land ‘heads’ in 

every single toss is given by 1
ms . The probability that after m tosses of all n biased coins, the 

first coin will land ‘tail’ at least once is given by 1(1 )ms . As a result, the probability of event 

2E that after m tosses of all biased coins, each coin will land 'tails' at least once, becomes

2 1 2( ) (1 )(1 )...(1 )m m m
nP E s s s    (36) 

If event 2E  has not occurred, there must be a biased coin that has landed 'heads' in all m 

tosses. However, this means that event 1E  has occurred: there will be a unit that has survived 

the end of the operational interval in each of the m groups. If event 1E  has not occurred then, 

in m tosses each biased coin (from 1 to n) must have landed tails at least once. However, this 

2Emeans that event  has occurred (absence of a coin which landed heads in each of the 

m tosses). 
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In addition, events 1E  and 2E  can certainly occur simultaneously. If, for example, in the first 

toss the first of the coins landed ‘tail’ and the rest of the coins landed all heads; in the second 

toss, the second coin landed ‘tail’ and the rest landed heads and so on.  

1 2( ) 0P E E This means that . As a result, inequality (28) is fulfilled and 

1 2 1 2 3 1 2( ) ( ) (1 ... ) (1 )(1 )...(1 ) 1m m m m
n nP E P E f f f f s s s        (37) 

1 2( ) ( ) 0P E P E  1E

2E

which shows that  and that the first event  is characterised by a larger

likelihood compared to the second event . The inequality (28) of negatively correlated 

events has been applied successfully to rank the likelihoods of risky prospects including units 

whose probabilities of survival are unknown. 

The validity of inequality (37) has also been confirmed by Monte-Carlo simulations. 

Conclusions 

• A powerful domain-independent method for improving reliability and reducing risk based 
on algebraic inequalities has been introduced. The method transcends mechanical engineering 
and can be applied as a risk reduction tool in many unrelated domains.

• With the help of the rearrangement inequality, a highly counter-intuitive result has been 
obtained. If no information about the component reliability characterising the 
individual suppliers is available, purchasing components from a single, randomly selected 
supplier or from the smallest possible number of suppliers maximises the probability of a 
high-reliability assembly.

• The application of inequalities to obtain uncertainty bounds for properties and risk-critical 
parameters has been demonstrated. The inequality of inversely correlated random events has 
been introduced and applied for ranking risky prospects involving units with unknown 
probabilities of survival.

• Numerous applications of the upper bound variance inequality have been demonstrated in 
bounding uncertainty from multiple sources, among which is  increasing the robustness of 
electronic devices.

• The Cauchy-Schwartz inequality has been used for determining sharp bounds of mechanical 
properties and the Chebyshev's inequality for determining a lower bound for the reliability of 
an assembly.

• Inequalities have been used for determining tight upper and lower bound for the risk of a 
faulty component in a pool of components coming from different sources. 
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