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1. ABSTRACT 
 

Chlamydia trachomatis (C. trachomatis) is a leading cause of bacterial sexually 

transmitted infections in developed and undeveloped countries, and therefore a global public 

health issue. In an era of increasing bacterial resistance to antibiotics, resistance has been an 

exceedingly rare phenomenon in C. trachomatis; however, clinical treatment failures 

attributed to multidrug-resistant C. trachomatis strains have been described on several 

occasions. Cell culture systems using McCoy cells and subsequent immunofluorescent 

staining are still the most common methodology used for antimicrobial susceptibility testing, 

but the presence of resistance markers should be appraised by further genetic analysis. 

Azithromycin resistance of C. trachomatis is often a result of the mutations in the peptidyl 

transferase region of 23S rRNA genes, tetracycline resistance is usually linked to the presence 

of foreign genomic islands integrated in chlamydial chromosome, whereas a predominant 

mechanism of fluoroquinolone resistance is a point mutation in the gyrA quinolone-

resistance-determining region. A nucleotide substitution in rpoB gene is responsible for 

rifampin resistance, and different mechanisms have been involved in the development of 

resistance to aminoglycosides, lincomycin and sulphonamide/trimethoprim combinations. 
 

 

2. INTRODUCTION 

 

Chlamydia trachomatis (C. trachomatis) is an obligate intracellular bacterium 

responsible for a variety of clinical syndromes that stem from genital and ocular mucous 

membranes infection, primarily transmitted due to unprotected sexually intercourse. 

Moreover, it is a leading cause of bacterial sexually transmitted infections (STIs) in both 

developed and undeveloped countries. In 2015 in the United States of America (USA), and in 

2014 in Europe, a total of 1 526 658 and 396 128 chlamydial infections were reported, 

respectively, giving an overall rate of 479 cases per 100,000 inhabitants in USA, and 187 

cases per 100,000 inhabitants in Europe (1,2). It should be noted that reported rates of 

chlamydia infection between European countries vary considerably (i.e. 549/100,000 in 

Denmark vs. 0.1/100,000 in Romania), which reflects the differences in chlamydia testing and 

case finding rather than real differences in chlamydia prevalence (2). 

 

C. trachomatis genome is the circular chromosome of a 1,042,519 base pairs (bp) 

which encodes minimal sets of genes needed for DNA replication, transcription and 

translation, and almost 900 protein-coding genes – including genes for peptidoglycan 

biosynthesis (3). Additionally, C. trachomatis carries a 7.5 kilobase (kb) plasmid that encodes 

eight plasmid glycoproteins which are not critical for chlamydial growth in vitro, but play a 

pivotal role in chlamydial pathogenesis (4). It has been shown that recombination as a way for 

altering the standard set of genes is not an unusual event in C. trachomatis. Recombination 

was first revealed within ompA gene which encodes the major outer membrane protein, 

following the identification of hotspots located near genes that code for virulence factors (5,6). 

Recently, C. trachomatis recombination was generated in vitro under antibiotic selection (7). 

 

C. trachomatis is characterized by its unique life cycle (Figure 1). The life cycle 

begins with infection of the host cell by elementary body (ET) – the infectious form 

characterized by spore-like cell-wall which enables C. trachomatis to survive outside of the 

host cell, and the ability to catabolize glucose, therefore providing the energy required for 

host cell entry and differentiation into the reticulate body (RB) (8). Upon attachment to the 

host cell, which is mediated by several bacterial ligands and receptors, the type III secretion 

system (T3SS) is injected, and ET is internalized into the inclusion (9). Transformation into 

RB follows, which is highly metabolically active and divides by binary fission within an 



inclusion that consequently grows until the entire cytoplasm is filled and the nucleus 

dislocated (Figure 1). A unique family of T3SS effectors termed inclusion membrane proteins 

are produced during establishment and maintenance of the inclusion providing its structural 

stability and acquisition of nutrients (9,10). After 24 to 74 hours of infection the transition of 

RB in ET in an asynchronous manner ensues, and finally, ET are released by host cell lysis 

and/or the extrusion of the inclusion (Figure 1). 

 

Another crucial characteristic of C. trachomatis is its capacity to establish the 

persistence. This is a reversible state that occurs in unfavourable growing or stress conditions 

in which C. trachomatis remains viable but shows atypical morphology and quiescent 

metabolism (11). In fact, the RTs upon stress (i.e. depletion of nutrients such as tryptophan 

and iron, and treatment with gamma-interferon and penicillin) are transformed into the 

enlarged aberrant bodies, and in such form they may successfully survive until the stress 

factor is removed. Stress response in persistence is associated with lack of RT to ET 

transformation (12) and the lack of septum synthesis (11). 

 

C. trachomatis causes the infection of lower and upper genital tract of both sexes, thus 

having the great influence on human reproductive health (13). The most common clinical 

manifestation is mucopurulent cervicitis in woman, and non-gonocccal urethritis in man. 

Untreated infection can ascend and lead to the severe complications such as pelvic 

inflammatory disease, ectopic pregnancy, chronic prostatitis and infertility in both sexes (14-

16).  The fact that complicates the diagnosis and subsequent treatment is that the most 

infections are asymptomatic (up to 70% in woman and 50% in man) (17,18). Such substantial 

rate of asymptomatic infections makes the screening programs – especially for high risk 

groups of population – crucial in timely diagnosis and treatment in order to prevent possible 

long-term consequences (19,20). 

 

Fortunately, chlamydial infection belongs to the curable STIs. Moreover, effective 

single-dose regimen of treatment with azithromycin exists (21). But regardless of a simple 

treatment regimen, STIs caused by C. trachomatis are continuously on the rise (1,2), which is 

manly attributed to the more frequent testing with improved detection systems such as nucleic 

acid amplification tests (NAATs) (22), but also changes in sexual behaviour and lack of 

education and prevention. Additionally, resistance to antibiotics of some STIs, particularly 

gonorrhoea and Mycoplasma genitalium infection, has increased rapidly in recent years, and 

reduced available treatment options for these infections (23,24). Such undesirable course of 

events with a possible increase of STIs prevalence (25) has raised concerns on antimicrobial 

resistance of all curable STIs. Although it seems to be very rare, C. trachomatis resistance 

exists, and may potentially also contribute to the increase of chlamydial infection. The aim of 

this review is to provide insight into the likelihood for appearance of C. trachomatis 

antimicrobial resistance, considering the frequency of its occurrence to date and molecular 

mechanisms of its development. 

 

 

3. TYPES AND FREQUENCY OF ANTIMICROBIAL RESISTANCE IN HUMAN 

ISOLATES OF C. TRACHOMATIS 

 

C. trachomatis is susceptible and treated with antibiotics that inhibit protein synthesis 

(tetracyclines and macrolides), and those that inhibit nucleic acid synthesis (fluoroquinolones 

and rifampin). Although it has been demonstrated that chlamydial persistence can be induced 

in vitro and in vivo when exposed to beta-lactam antibiotics (26,27), amoxicillin is still 

recommended as a third option in the treatment of pregnant women (28). 

 



Clinical treatment failures rates range from 5 to 23%, depends from the population 

tested (29). Although, majority of cases can be explained by post-treatment reinfection or lack 

of treatment compliance, some of them suggest true therapeutic failure caused by other 

reasons – including chlamydial resistance (30). Clinical treatment failures linked to the 

laboratory proved chlamydial resistance are not a common event in humans. A majority of 

studies report excellent susceptibility of chlamydial clinical isolates in laboratory and clinical 

settings (31-33). Quite opposite, in animals (particularly in swine), Chlamydia suis (C. suis) 

resistance as the result of selective pressure of continuous exposure to the tetracycline drugs 

which are used as additives is common (34,35). Selection for C. trachomatis antimicrobial 

resistance has been demonstrated in laboratory settings using serial passage of C. trachomatis 

strains in subinhibitory concentrations of rifampin, fluoroquinolones, and macrolides (36-38). 

There are few reports, but of considerable importance, that describe chlamydial antimicrobial 

resistance in vivo (39-43). All these reports informed about limited number of clinically 

detected and laboratory confirmed cases of C. trachomatis reduced susceptibility or 

antimicrobial resistance (Table 1). 

 

Basically, there are two types (or patterns) of described resistance in Chlamydia spp.: 

homotypic in which most of the organisms survive at concentrations well above the minimal 

inhibitory concentration (MIC), and heterotypic, a pattern in which small numbers of 

organisms (less than 1%) survive antimicrobial concentrations above MIC (44). All human 

resistant isolates showed heterotypic pattern of resistance (39-41), which has been also 

previously described in Staphylococcus spp. (45). In addition, chlamydial resistant isolates 

showed reduced viability (i.e. they could not survive long-term passage) or they lost their 

resistance upon passage. It is possible that heterotypic antibiotics resistance in chlamydia can 

be associated with aberrancy as is shown in the penicillin persistence model of Chlamydiae 

(46). Since homotypic antibiotic resistance has not yet been documented in C. trachomatis, 

Borel et al. hypothesise that some of the clinical treatment failure may be explained by 

development of heterotypic antibiotic resistance due to slower growth in certain environments 

or entry into a stress response in which the organisms are refractory to antibiotic treatment 

(47). 

 

One explanation of C. trachomatis resistance as a rare phenomenon in vivo despite 

selective pressure could be its unique developmental cycle. The impermeability of ET and 

isolation of RT (which readily exchanges DNA) within intracellular inclusion limit genetic 

exchange with non-self DNA (9), making it difficult for chlamydia to acquire the foreign 

antibiotic resistance gene (48). The other, more plausible explanation (which has shown to 

play important role in macrolide resistance) is that mechanisms which confer high-level 

resistance in chlamydiae severely affected chlamydial infectivity and may thus limit the 

emergence of highly resistant clones of these important pathogens in vivo (38). 

 

 

4. MAIN METHODS OF APPRAISING ANTIMICROBIAL RESISTANCE OF 

CHLAMYDIAL STRAINS 

 

Determining antimicrobial sensitivity of chlamydial strains is quite different from 

standard procedures in bacteriology, since it is necessary to demonstrate the ability (or 

inability) of C. trachomatis to multiply inside the cell in the presence of different 

concentrations of antibiotics (49). The resistant strains can be subsequently analysed with 

molecular techniques to ascertain potential genetic markers of resistance. Therefore systems 

based on cell culture with the addition of serially diluted concentrations of antibiotic represent 

traditional, but still the most commonly employed method of C. trachomatis sensitivity 

testing (44,50). However, there is still no universal testing methodology and the techniques 



that are used are time-consuming and technically challenging, which is the reason they are 

pursued only in highly specialized laboratories (46,49). 

 

A plethora of cell culture types of both human and animal origin can be used for 

testing, although McCoy cells derived from mouse fibroblasts provide the most reliable and 

consistent results (49,51). HeLa (human cervical adenocarcinoma), HL (human epithelial cells) 

and HEp-2 (human epidermoid laryngeal carcinoma) cell cultures can also be used, whereas 

Vero cells and primate kidney cell line BGMK are employed less frequently (44,49,51). In the 

past, the detection of intracellular inclusions after appropriate incubation period in such cell 

culture methods was done with iodine or Giemsa (52,53), but today uniform fluorescein-

labelled monoclonal antibodies are the best choice for visualization purposes (54). 

 

Regardless of a chosen cell line, a wide range of factors can influence the 

antimicrobial susceptibility testing results, most notably laboratory conditions such as pH, 

temperature, the polarity of the infected cells, the secretion of cytokines and the general 

nutritional content of the medium (51,55). Accordingly, it has been shown that a medium 

containing a high concentration of glucose, neutral pH and a high temperature during 

centrifugation (i.e. 33-35 °C) may yield a higher number of C. trachomatis inclusions (56), 

while polarized host cells enable more efficient transport and intracellular accumulation of 

antimicrobial drugs (57). Also, some additional factors that play include the size of the 

inoculum (it should not be less than 5000 inclusion forming units per well of microtiter plate), 

the period between the infection and the application of an antimicrobial drug, timely removal 

of the antibiotic, as well as the presence (or absence) of cycloheximide that is used to slow 

growth of the host cells (46,51). 

 

Still, the most important aspect for achieving reproducibility of results is to introduce 

standardized definitions of minimal inhibitory concentration (MIC) and minimal 

chlamydicidal concentration (MCC). To achieve this, it is highly recommended to introduce 

(and use) the transition point MIC (MICTP), defined as the concentration of drug where 90% 

or more of the inclusions have altered morphology and/or size (44). The MIC can then be 

defined as the concentration of drug that is one twofold dilution more concentrated that the 

MICTP, while the MCC is defined as the lowest concentration of drug at which no visible 

inclusions are observed after one passage from the cell culture that contains certain 

antimicrobial drug to the cell culture without them (44,58,59). 

 

An alternative approach is antimicrobial susceptibility testing of C. trachomatis strains 

by reverse transcription polymerase chain reaction (RT-PCR) based on the detection of 

specific DnaK transcript (60). The method also requires cell culture growth, followed by a 

molecular detection of live bacteria in the supernatant, with the advantage of detecting 

chlamydia in cultures deemed negative after immunofluorescent staining. In this approach, 

the MIC can be defined as the lowest concentration of antibiotic that inhibits the occurrence 

of a 318-bp product in the form of bands on the gel stained with ethidium bromide. 

 

The main advantage of the RT-PCR technique are corresponding (but consistently 

higher) MIC values when compared with cell culture method followed by immunofluorescent 

staining, as showed by Cross and his colleagues on the example of erythromycin and 

amoxicillin, which points to the improved sensitivity of this method (61). This can be 

explained by the adequately suppressed chlamydial growth in concentrations exceeding the 

MIC values measured in cell culture, but with a presence of low-level replication and the 

detection of RNA produced only by viable organisms (62). However, due to the questionable 

laboratory or clinical value of such aberrant inclusions with potential residual replication, a 



traditional cell culture system with a defined MICTP still represents a standard approach for 

antimicrobial susceptibility testing of C. trachomatis strains. 

 

One other method of appraising chlamydial antimicrobial sensitivity to standard 

antibiotics that did not gain much prominence is using flow cytometry after culturing C. 

trachomatis in McCoy cells and staining them with fluorescein isothiocyanate (FITC) 

antibodies, as described by Dessus-Babus et al. (63). After staining the infected cells show 

green fluorescence, which is reflected by the right-sided peak on the histograms. Nevertheless, 

it is necessary to evaluate two parameters before analysing the results – the percentage of 

positive cells and their mean fluorescence intensity (MFI) (63). The latter is a crucial 

parameter when assessing antibiotic activity, while the active concentration of the 

antimicrobial drug is expressed as inhibitory concentration 50 (IC50), which is the 

concentration necessary for a 50% reduction of the MFI when compared to the control 

without antibiotics. 

 

Although not as sensitive as classic immunofluorescent staining after incubation in 

cell culture, the main advantages of cultivation with detection by flow cytometry is its 

specificity, reproducibility and objective interpretation. The main disadvantage is the inability 

to detect “heterotypic resistance” due to insufficient sensitivity of detecting low levels of 

infection (51,63). In addition, the method is very cumbersome and time-consuming as flow 

cytometry necessitates a higher inoculum of chlamydia (more specifically 100,000 IFU/mL), 

not to mention a high price of equipment. Therefore this method today is rarely used, and it is 

hard to expect any further impact in the modern era of molecular techniques. 
 

 

5. RESISTANCE TO MACROLIDES – MUTATIONS IN CONSERVED REGIONS 
 

Macrolides are a class of broad-spectrum antimicrobials of large molecular size, and 

the group is saliently represented by a compound azithromycin (a part of azalide subclass with 

a 15-membered ring) as one of the drugs of choice for the treatment of C. trachomatis 

infection (64-66). The mechanism of action of the whole class is reversible binding to the 

large ribosomal subunit near the peptidyl-transferase center, stopping in turn the bacterial 

growth due to protein synthesis inhibition (64,65). Using a specifically-designed in vitro 

model, Binet and Maurelli described a population of C. trachomatis serovar L2 that was eight 

times less sensitive to azithromycin and four time less sensitive to erithromycin due to 

mutations of rplD gene which codes for ribosomal protein L4 (38). The substitution of neutral 

glutamine located at the position 66 with a positively charged lysine affects the binding of 

chlamydial ribosomal protein L4 to the corresponding 23S rRNA molecules. Even before the 

aforementioned experiment, it has been known that the mutations in the conserved regions of 

protein L4 affect the conformational change of the 23S rRNA in domains II, III and V (67,68), 

leading in turn to disruption of translational activity of ribosomes and, consequently,  

weakened action of the antibiotic in the peptidyl transferase center. 

 

Misyurina et al. described mutations A2058C i T2611C (according to E. coli 

numbering) in the peptidyl transferase region of 23S rRNA genes in clinical isolates resistant 

to erythromycin, azithromycin and josamycin (69). At the same time a triple mutation was 

found in a non-conserved region of the protein L22 (i.e. glutamine replacement with serine at 

position 52, arginine replacement with cysteine at position 65, as well as valine replacement 

with alanine at position 77) (69). The exact role of such amino acid replacements in the 

resistance of C. trachomatis is not yet fully elucidated, but it is assumed that they represent 

compensatory mutations to maintain virulence of the affected chlamydial strains. 

 



This is corroborated by the fact that the rplD gene mutations are linked to in vitro 

macrolide resistance of a myriad of clinically relevant microorganisms (70-72), they are often 

accompanied by additional mutations of 23S rRNA or rplV genes (encoding ribosomal protein 

L22) (73,74). Wolter and his colleagues showed that the survival of Streptococcus 

pneumoniae isolates resistant to macrolides due to mutations in ribosomal protein L4 is 

possible primarily because of secondary mutations that compensate for the defect in the 

bacterial growth (75). Since the resistant strains of C. trachomatis in the experimental model 

by Binet and Maurelli showed weaker growth, formed smaller inclusions and produced fewer 

infectious particles in the absence of the antibiotic (38), it seems that compensatory mutations 

are pivotal in the development of chlamydial resistance in vivo. 

 

 

6. RESISTANCE TO TETRACYCLINES – A PIVOTAL ROLE OF GENOMIC 

ISLANDS AND HORIZONTAL GENE TRANSFER 

 

Tetracyclines are a group of drugs that inhibit protein synthesis in bacteria by binding 

to their ribosome (with a high affinity to 30S subunit) and preventing the attachment of amino 

acyl-tRNA at the acceptor site (76). Doxycycline is a semisynthetic tetracycline that 

(alongside azithromycin) represents a first-line treatment against C. trachomatis (particularly 

for LGV strains) (65,77). However, although tetracycline usage is pervasive in human and 

veterinary medicine, their use has generally declined in recent decades due to the accounts of 

resistance in a wide array of different bacteria (47). Regarding C. trachomatis, mechanisms of 

resistance to tetracycline antibiotics have been described in detail in a closely related and 

highly recombinogenic species C. suis (34,46,78-80), and it was demonstrated that such 

resistance may be transferred to clinical isolates of C. trachomatis in vitro (81). 

 

Genetic characterization of resistant isolates revealed the presence of foreign genomic 

islands (between 6 and 13.5 kb) integrated in chlamydial chromosome (34). Each island 

harbors genes that encode antibiotic efflux pump (tet[C]) and regulatory repressor (tetR), a 

unique insertion sequence (IScs605), and up to ten additional genes involved in the replication 

and mobilization of the plasmid (34). Genomic islands of resistant C. suis that contain the 

gene tet[C] reveal 99% homology with the plasmid isolated from the Gram-negative 

bacterium Aeromonas salmonicida (A. salmonicida) found in fish (most notably trout and 

salmon) (34,82). Nevertheless, IScs605 insertion sequence was not detected in that plasmid, 

but in another aqueous Gram-negative bacterium – Laribacter hongkongensis – that is 

increasingly being recognized as a cause of gastroenteritis and traveler’s diarrhea in humans 

(83). A discovery of tet[C] represents the first description of the horizontal transfer of 

antibiotic resistance genes in any obligate intracellular bacterial species (46). 

 

Today, pig farming around the world still significantly relies on the prophylactic usage 

of tetracyclines, with fish being one of the commonly used sources of food (35,46). A large 

number of pigs in the United States is infected with resistant strains of C. suis (84-85), akin to 

the situation described in Belgium (86) and  Italy (87). It is believed that the plasmid enters 

the digestive system of pigs inside the bacterial species A. salmonicida characteristic for fish; 

on the other hand, as insertion sequences related to IScs605 are found in a plethora of 

bacterial species from the genus Helicobacter (88), as well as in already mentioned L. 

hongkongensis, the plasmid can acquire that sequence as well while passing through the 

gastrointestinal tract. The entire genomic island is then physically transferred to C. suis, 

anchoring next to TTCAA sequence within inv-like gene (34). 

 

The aforementioned process may be significant for C. trachomatis resistance 

development as well. In spite of the fact that the rise of resistance in this kind of natural 



ecosystem is very demanding, in laboratory conditions the transfer of resistance via 

homologous recombination between different strains can be achieved much faster and easier. 

Suchland and colleagues have shown that the transfer resistance markers from C. suis to C. 

trachomatis occurs almost routinely after co-cultivation of these two species (81). Therefore, 

a mere contact between the chlamydial strains resistant and sensitive to tetracyclines can 

enable the transfer of resistance genes and the development of resistant phenotype, which in 

patients treated with tetracyclines may result in the propagation and selection of such strains. 

 

Moreover, as both C. suis and C. trachomatis are known to infect the human 

conjunctival tissue and rectum, this creates an ideal in vivo opportunity for horizontal gene 

transfer to C. trachomatis (80). Co-infections with C. suis and C. trachomatis have already 

been described in patients presenting with trachoma (89), and both Helicobacter species and 

C. trachomatis may act as cofactors in the development of chlamydial proctitis (90), creating 

another milieu for genetic exchange. Marti et al. have recently showed that, while the 

frequency of such recombination in the laboratory conditions is low, the transfer of resistance 

genes may be instigated by sub-inhibitory concentrations of tetracycline antibiotics (80). 

Novel research on cassette transfer will provide us with a template for figuring the 

mechanisms and occurrence rate of resistance gene transfer among Chlamydia species (most 

notably C. trachomatis) that may be present in humans at the same anatomic sites as 

tetracycline-resistant zoonotic strains of C. suis, with substantial implications for treatment 

and public health approaches. 

 

 

7. RESISTANCE TO FLUOROQUINOLONES – POINT MUTATIONS AS A 

PREDOMINANT MECHANISM 

 

Fluoroquinolones are broad-spectrum synthetic bactericidal antimicrobial agents that 

inhibit two bacterial enzymes of the class II topoisomerase family – DNA gyrase and DNA 

topoisomerase IV (91). Several different mechanisms for resistance to fluoroquinolones have 

been elucidated, with the mutation at the target site being the most common (91). Although 

clinical response of patients infected with C. trachomatis to fluroquinolones is superb, strains 

can develop resistance in vitro when subjected to subinhibitory concentrations of the drug 

(36,46,92-94). 

 

Morissey et al. showed that initial passages of C. trachomatis strains with sub-

inhibitory concentrations of fluoroquinolones did not affect susceptibility to this group of 

drugs, but after an initial lag of at least 10 passages there was a prompt development of 

resistance to either ofloxain or ciprofloxacin (36). Furthermore, Dessus-Babus et al. showed 

that after only four passages in the presence of ofloxacin (0.5 μg/ml) and sparfloxacin (0.015 

μg/ml) spontaneous mutations were obtained and resistance ensued (93). Even after the first 

passage with subinhibitory concentrations of aforementioned antimicrobials, only a few small 

inclusions could be observed in the McCoy cell culture system (93). 

 

All the available evidence from those studies suggests that the main mechanisms of C. 

trachomatis resistance to multiple derivates of fluoroquinolones is a point mutation in the 

gyrA quinolone-resistance-determining region (QRDR), which leads to serine to isoleucine 

substitution at amino acid position 83 (according to the numbering pertinent to E. coli) in the 

corresponding protein (36,46,92,93). Although Yokoi et al. reported certain substitutions in 

ParC, those isolates remained susceptible to fluoroquinolones (94). One proposed explanation 

for ParC of C. trachomatis is that the alanine located at position 80 may be a reason for the 

lower affinity of ParC than GyrA subunit for fluoroquinolones (93), resulting in what we 

would call a privileged configuration. No literature data shows change of gyrB and parE 



QRDRs in the resistant strains when compared to the reference strains. Also, the role of other 

mechanisms of resistance to fluroquinoloes (such as drug efflux modification or drug 

permeation) may contribute to the resistance pattern (93). 

 

 

8. RESISTANCE TO RIFAMPIN – NUCLEOTIDE SUBSTITUTION MECHANISM 

 

Rifamycines and their main representative rifampin represent a group of bactericidal 

antibiotics which inhibit bacterial transcription by interacting with beta-subunit of bacterial 

DNA-dependent RNA polymerase, resulting in a potent bactericidal activity (95). Although 

they are the cornerstone of the tuberculosis treatment, they also show excellent activity 

against C. trachomatis in vitro (96). The favorable pharmacokinetics, high antimicrobial 

activity, as well as substantial cell penetration led to the belief that this class of drugs could be 

another addition to our antimicrobial armamentarium against chlamydial infections (37). 

Nevertheless, concerns about the development of resistance during treatment have 

discouraged the use of this group of drugs in the treatment of human chlamydial infections 

(97). 

 

In a small number of studies, treatment of infections caused by C. trachomatis with 

rifampin has been found to be as effective as treatment with tetracycline (37,97). MICs that 

were demonstrated in vitro against Chlamydia spp. ranged from 0.0075 to 0.03 μg/ml (98-

100), with no signs of emerging resistance in vivo. Still, several in vitro studies showed that C. 

trachomatis can easily and swiftly develop resistance after serial passages in subinhibitory 

concentrations of rifamycins – both in eggs and tissue culture (100,101). In the research 

conducted by Kutlin and his colleagues, C. trachomatis developed resistance to rifampin and 

rifalazil within six passages; higher level resistance was noted in the case of rifampin (128-

256 μg/ml), while lower level resistance was described for rifalazil (0.5-1 μg/ml) (37). 

 

Akin to a plethora of bacterial species that develop resistance to rifampin by 

nucleotide exchange in the rpoB gene responsible for coding beta-subunit of DNA-dependent 

RNA polymerase (and thus enabling bacteria to survive even high concentrations of this 

antimicrobial drug) (37,102-104), chlamydial species also show a preponderance of changes 

in the mid-portion of that gene (37,101). Therefore a substitution of only one amino acid may 

increase MIC of rifampin from 0.008 μg/ml to between 0.5 and 64 μg/ml in C. trachomatis 

belonging to D serovars, as well as between 4 and 64 μg/ml in C. trachomatis belonging to K 

serovars (46). The most common site affected with the mutation in resistant strains of C. 

trachomatis was the nucleotide at the position 471 in the gene rpoB (37,46,101). When this 

was compounded with one additional mutation, different groups of researchers have shown 

that the MIC may increase from 64 to 256 and 512 μg/ml in serovars D and K, respectively 

(101,105). 

 

On the other hand, in the research of Kutlin and his colleagues, strains resistant to 

rifalazil (as evidenced by BU-434/L2 strain) were characterized by a mutation at the 

beginning rather than at the middle of the rpoB gene (at codon 136 to be more precise) (37). 

This rare mutation is not a novel discovery, as Lisitsyn et al. found it in the rpoB gene of E. 

coli resistant to rifampin a few decades ago (106). On the other hand, in that same BU-434/L2 

strain that same group of authors observed high-level phenotypic resistance to rifampin 

without any evident genetic alterations in the rpoB gene (37), which brings into play other 

potential mechanisms of rifampin resistance described in other bacteria (such as ribosylation, 

phosphorylation and glucosylation enzymes of the activity of efflux pumps) (37). Thus far, no 

resistance has been found in C. trachomatis strains propagated in the addition of the rifamycin 



derivatives (namely 3-azinomethyl-rifamycin and rifabutin) under identical in vitro conditions 

(37). 

 

 

9. RESISTANCE MECHANISMS TO OTHER ANTIMICROBIAL DRUGS 

 

Aminoglycoside antibiotics are a family of compounds with an aminocyclitol nucleus 

(streptamine, streptidine or 2-deoxystreptamine) linked to amino sugars via glycosidic bonds 

(107). They interact with the 30S ribosomal subunit, interfering in turn with the initiation of 

genetic material translation (107). Since this family exhibits poor penetration into the 

mammalian cells, MIC values for C. trachomatis are quite high (approximately 1 mg/ml) (46); 

therefore, these drugs are not used in routine clinical conditions, albeit certain research 

endeavors were pursued using kasugamycin and spectinomycin to see whether 

aminoglycoside-resistant strains of C. trachomatis would develop (46). This was indeed 

shown for kasugamycin, where resistant C. trachomatis strains carried a two-nucleotide 

insertion in ksgA gene that encodes a protein responsible for post-transcriptional methylation 

of adenosine residues in the ribosome (108). Conversely, spectinomycin-resistant C. 

trachomatis strains have hitherto not been generated, most likely as a result of (safeguarding) 

dual rRNA and dual drug target sites (46,109). 

 

Lincomycin is a bacteriostatic agent that is widely used in clinical practice, stimulating 

dissociation of peptidyl-tRNA from ribosomes (110). It has not been used nor widely research 

in regards to C. trachomatis, although there has been one report of lincomycin-resistant C. 

trachomatis strains generated in vitro after the infected cells were grown and passaged in 

subinhibitory concentrations of antibiotic (46,110). Characteristic for these mutant strains 

were mutations in both 23S ribosomal RNA genes that corresponded to the same sites in E. 

coli with comparable resistance response (110). 

 

A combination of trimethoprim and a sulfonamide can successfully interfere with and 

block the synthesis of folic acid which is pivotal for bacterial growth (111). Sulfonamides 

competitively inhibit the incorporation of para-aminobenzoic acid into folic acid, preventing 

in turn the synthesis of folic acid, whereas trimethoprim binds to and inhibits dihyrofolate 

reductase, also decreasing folic acid synthesis by preventing the formation of tetrahydrofolic 

acid (111). One paper described stable trimethoprim-resistant strains of C. trachomatis after 

in vitro culturing in subinhibitory concentrations of the antimicrobial drug (110) – these were 

in very low frequencies (less than 5 × 10
−10

) as a result of mutations in the folA gene (coding 

for dihydrofolate reductase) (112). 

 

 

10. CONCLUSION 

 

Antimicrobial resistance arises as the result of the perpetual evolutionary struggle 

between hosts and pathogens, and as we aimed to demonstrate, various genetic changes 

represent the main mechanism in pathogenic bacteria (113). In C. trachomatis such events 

may involve mutations in conserved regions of 23S rRNA genes, horizontal gene transfer, 

nucleotide substitution and a myriad of other significant mechanisms. For one small, 

intracellular bacterial species, it is a rather rich repertoire of mechanisms responsible for 

developing resistance to antimicrobial agents (although its occurrence is still mostly confined 

to the in vitro setting). In order to ensure long-term and effective management of all infections 

caused by C. trachomatis we should be adequately prepared for the possibility of further 

development of clinically significant antibiotic resistance, as well as refine our approaches to 

livestock management, with an end-goal of preventing the rise of antibiotic resistance. As 



researchers have already shown, the use of antibiotic-resistant strains in research settings may 

lead to improved understanding of C. trachomatis recombination in vitro and the genetic 

underlying different phenotypic traits and growth characteristics of chlamydial strains (114). 

Consequently, this will open the doors for the use of evolutionary solutions in the 

development of new drugs and compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Laboratory determined C. trachomatis resistance in patients with clinical treatment 

failure 

Tested antimicrobial drug 
Number of clinical 

isolates 

Laboratory detected 

minimal inhibitory 

concentrations 

(MICs) 

Reference 

tetracycline, doxycycline, 

erythromycin 

5 ≥8 µg/ml 39 

tetracycline 1 > 64 µg/ml 40 

doxycycline, ofloxacin, 

azithromycin 

3 >4 µg/ml 41 

ciprofloxacin, ofloxacin, 

pefloxacin 

14 4-64 µg/ml 42 

doxycycline, azithromycin 5 4-8 µg/ml 43 



 
 

 

 

Figure 1. The life cycle of Chlamydia trachomatis; Photographs present C. trachomatis 

grown in McCoy cell culture and detected in different stages of infection using fluorescein-

labelled monoclonal antibodies against lipopolysaccharide antigen (Pathfinder®, Bio-Rad 

Laboratories, France). Legend: ET = elementary body; RT= reticulate body. 

  



 

11. REFERENCES 

 

1. Centers for Disease Control and Prevention: Sexually Transmitted Disease Surveillance 

2015. [Internet]. Atlanta: U.S. Department of Health and Human Services; 2016 [cited 2017 

03 10]. Available at: https://www.cdc.gov/std/stats  

2. European Centre for Disease Prevention and Control: Annual Epidemiological Report 2016 

– Chlamydia. [Internet]. Stockholm: ECDC; 2016 [cited 2017 03 10]. Available at: 

http://ecdc.europa.eu/en/healthtopics/Chlamydia/Pages/Annual-epidemiological-report-

2016.aspx 

3. R.S. Stephens, S. Kalman, C. Lammel, J. Fan, R. Marathe, L. Aravind, W. Mitchell, L. 

Olinger, R.L. Tatusov, Q. Zhao, E.V. Koonin, R.W. Davis: Genome sequence of an obligate 

intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754-759 (1998) 

4. G. Zhong: Chlamydial Plasmid-Dependent Pathogenicity. Trends Microbiol 25, 141-152 

(2017) 

5. L.J. Hayes, P. Yearsley, J.D. Treharne, R.A. Ballard, G.H. Fehler,  M.E. Ward: Evidence 

for naturally occurring recombination in the gene encoding the major outer membrane protein 

of lymphogranuloma venereum isolates of Chlamydia trachomatis. Infect Immun 62, 5659-

5663 (1994) 

6. J.P. Gomes, W.J. Bruno, A. Nunes, N. Santos, C. Florindo, M.J. Borrego, D. Dean: 

Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination 

involving hotspots. Genome Res 17, 50-60 (2007) 

7. B.M. Jeffrey, R.J. Suchland, S.G. Eriksen, K.M. Sandoz, D.D. Rockey: Genomic and 

phenotypic characterization of in vitro-generated Chlamydia trachomatis recombinants. BMC 

Microbiol 13, 142 (2013) 

8. H.A. Saka, J.W. Thompson, Y.S. Chen, Y. Kumar, L.G. Dubois, M.A. Moseley,  R.H. 

Valdivia: Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia 

trachomatis developmental forms. Mol Microbiol 82, 1185-1203 (2011) 

9. C. Elwell, K. Mirrashidi, J. Engel: Chlamydia cell biology and pathogenesis. Nat Rev 

Microbiol 14, 385-400 (2016) 

10. E.R. Moore, S.P. Ouellette: Reconceptualizing the chlamydial inclusion as a pathogen-

specified parasitic organelle: an expanded role for Inc proteins. Front Cell Infect Microbiol 4, 

157 (2014) 

11. P. Mpiga, M. Ravaoarinoro: Chlamydia trachomatis persistence: an update. Microbiol Res 

161, 9-19 (2006) 

12. P. Timms, D. Good, C. Wan, C. Theodoropoulos, S. Mukhopadhyay, J. Summersgill, S. 

Mathews: Differential transcriptional responses between the interferon-gamma-induction and 

iron-limitation models of persistence for Chlamydia pneumoniae. J Microbiol Immunol Infect 

42, 27-37 (2009) 

13. S. Ljubin-Sternak S, T. Meštrović: Chlamydia trachomatis and Genital Mycoplasmas: 

Pathogens with an Impact on Human Reproductive Health. J Pathog 2014, 183167 (2014) 

14. M.J. Price, A.E. Ades, N.J. Welton, I. Simms, J. Macleod, P.J. Horner: Proportion of 

Pelvic Inflammatory Disease Cases Caused by Chlamydia trachomatis: Consistent Picture 

From Different Methods. J Infect Dis 214:617-624 (2016) 

15. M. Pasini, V. Kotarski, V. Škerk, A. Markotić, A.T. Andrašević, S.Ž. Lepej, G. Maleković, 

S.L. Sternak, V. Škerk: The significance of Chlamydia trachomatis in prostatitis syndrome. J 

Chemother 26, 382-384 (2014) 

16. J. Mania-Pramanik, S. Kerkar, S. Sonawane, P. Mehta, V. Salvi: Current Chlamydia 

trachomatis Infection, A Major Cause of Infertility. J Reprod Infertil 13, 204-210 (2012) 

17. M.J. van de Laar, S.A. Morré: Chlamydia: a major challenge for public health. Euro 

Surveill 12:E1-2 (2007) 



18. G.F. Gonzales, G. Muñoz, R. Sánchez, R. Henkel, G. Gallegos-Avila, O. Díaz-Gutierrez, 

P. Vigil, F. Vásquez, G. Kortebani, A. Mazzolli, E. Bustos-Obregón: Update on the impact of 

Chlamydia trachomatis infection on male fertility. Andrologia 36, 1-23 (2004) 

19. N.L. Chandra, K. Soldan Dangerfield C, Sile B, Duffell S, Talebi A, Choi YH, Hughes G, 

Woodhall SC: Filling in the gaps: estimating numbers of chlamydia tests and diagnoses by 

age group and sex before and during the implementation of the English National Screening 

Programme, 2000 to 2012. Euro Surveill 22, pii: 30453 (2017) 

20. S. Bianchi, F.R. Frati, M. Canuti, D. Colzani, E. Fasoli, A. Amendola, E. Tanzi: 

Molecular epidemiology and genotyping of Chlamydia trachomatis infection in a cohort of 

young asymptomatic sexually active women (18-25 years) in Milan, Italy. J Prev Med Hyg 57, 

E128-E134 (2016) 

21. H. Moi, K. Blee, P.J. Horner: Management of non-gonococcal urethritis. BMC Infect Dis 

15, 294 (2015) 

22. T. Meyet: Diagnostic Procedures to Detect Chlamydia trachomatis Infections. 

Microorganisms 4, pii: E25 (2016) 

23. N. Unemo, J.S. Jensen: Antimicrobial-resistant sexually transmitted infections: 

gonorrhoea and Mycoplasma genitalium. Nat Rev Urol 14, 139-152 (2017) 

24. A. Lau, C.S. Bradshaw, D. Lewis, C.K. Fairley, M.Y. Chen, F.Y. Kong, J.S. Hocking: 

The Efficacy of Azithromycin for the Treatment of Genital Mycoplasma genitalium: A 

Systematic Review and Meta-analysis. Clin Infect Dis 61, 1389-1399 (2015) 

25. M. Hamze, M. Osman, M. Achkar, H. Mallat, F. Dabboussi: Alarming increase in 

prevalence of Neisseria gonorrhoeae infections associated with a high level of antibiotic 

resistance in Tripoli, Lebanon. Int J Antimicrob Agents 48, 576-577 (2016) 

26. R.J. Hogan, S.A. Mathews, S. Mukhopadhyay, J.T. Summersgill, P. Timms: Chlamydial 

persistence: beyond the biphasic paradigm. Infect Immun 72, 1843–1855 (2004) 

27. J. Kintner, D. Lajoie, J. Hall, J. Whittimore, R.V. Schoborg: Commonly prescribed beta-

lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically 

relevant concentrations. Front Cell Infect Microbiol 4, 44 (2014) 

28. World Health Organization: WHO Guidelines for the Treatment of Chlamydia 

trachomatis. 2016. [Internet]. Geneva; 2016 [cited 2017 03 10]. Available at: 

http://www.who.int 

29. P.J. Horner: Azithromycin antimicrobial resistance and genital Chlamydia trachomatis 

infection: duration of therapy may be the key to improving efficacy. Sex Transm Infect 88, 

154–156 (2012) 

30. B.E. Batteiger, W. Tu, S. Ofner, B. Van Der Pol, D.R. Stothard, D.P. Orr, B.P. Katz BP, 

J.D. Fortenberry: Repeated Chlamydia trachomatis genital infections in adolescent women. J 

Infect Dis 201, 42–51 (2010) 

31. V. Škerk, I. Krhen, M. Lisić, J. Begovac, S. Roglić, V. Škerk, S.L. Sternak, A. Banaszak, 

J. Strugar-Šuica, J. Vuković. Comparative randomized pilot study of azithromycin and 

doxycycline efficacy in the treatment of prostate infection caused by Chlamydia trachomatis. 

Int J Antimicrob Agents 24, 188–191 (2004) 

32. M. Donati, A. Di Francesco, A. D’antuono, F. Delucca, A. Shurdhi, A. Moroni, R. 

Baldelli, R. Cevenini: In vitro activities of several antimicrobial agents against recently 

isolated and genotyped Chlamydia trachomatis urogenital serovars D through K. Antimicrob 

Agents Chemother 54, 5379–5380 (2010) 

33. T. Meštrović, S. Ljubin-Sternak, M. Sviben, B. Bedenić, J. Vraneš, A. Markotić, V. Škerk: 

Antimicrobial sensitivity profile of Chlamydia trachomatis isolates from Croatia in McCoy 

cell culture system and comparison with the literature. Clin Lab 62, 357-364 (2016) 

34. J. Dugan, D.D. Rockey, L. Jones, A.A. Andersen: Tetracycline resistance in Chlamydia 

suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob 

Agents Chemother 48, 3989-3995 (2004) 



35. S. Wanninger, M. Donati, A. Di Francesco, M. Hässig, K. Hoffmann, H.M. Seth-Smith, H. 

Marti, N. Borel: Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in 

Fattening Pigs. PLoS One 11, e0166917 (2016) 

36. C. Morrisey, H.I. Salman, S. Bakker, D. Farrell, C.M. Bebear, G. Ridgway: Serial passage 

of Chlamydia spp. in sub-inhibitory fluoroquinolone concentrations. J Antimicrob Chemother 

49, 757-761 (2002) 

37. A. Kutlin, S. Kohlhoff, P. Roblin, M.R. Hammerschlag, P. Riska: Emergence of resistance 

to rifampin and rifalazil in Chlamydophila pneumoniae and Chlamydia trachomatis. 

Antimicrob Agents Chemother 49, 903-907 (2005) 

38. R. Binet, A.T. Maurelli: Frequency of development and associated physiological cost of 

azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Antimicrob Agents 

Chemother 51, 4267-4275 (2007) 

39. R.B. Jones, B. Van der Pol, D.H. Martin, M.K. Shepard: Partial characterization of 

Chlamydia trachomatis isolates resistant to multiple antibiotics. J Infect Dis 162, 1309-1315 

(1990) 

40. J.C. Lefevre, J.P. Lepargneur, D. Guion, S. Bei: Tetracycline-resistant Chlamydia 

trachomatis in Toulouse, France. Pathol Biol (Paris) 45, 376-378 (1997) 

41. J. Somani, V.B. Bhullar, K.A. Workowski, C.E. Farshy, C.M. Black: Multiple drug-

resistant Chlamydia trachomatis associated with clinical treatment failure. J Infect Dis 181, 

1421-1427 (2000) 

42. O.I. Misiurina, E.V. Shipitsina, I.P. Finashutina, V.N. Lazarev, T.A. Akopian, A.M. 

Savicheva, V.M. Govorun: Analysis of point mutations in the ygeD, gyrA and parC genes in 

fluoroquinolones resistant clinical isolates of Chlamydia trachomatis. Mol Gen Mikrobiol 

Virusol 3, 3-7 (2004) 

43. A.R. Bhengraj, H. Vardhan, P. Srivastava, S. Salhan, A. Mittal: Decreased susceptibility 

to azithromycin and doxycycline in clinical isolates of Chlamydia trachomatis obtained from 

recurrently infected female patients in India. Chemotherapy 56, 371-377 (2010) 

44. R.J. Suchland, W.M. Geisler, W.E. Stamm: Methodologies and cell lines used for 

antimicrobial susceptibility testing of Chlamydia spp. Antimicrob Agents Chemother 47, 636-

642 (2003) 

45. B. Berger-Bächi: Expression of resistance to methicillin. Trends Microbiol 2, 389–393 

(1994) 

46. K.M. Sandoz, D.D. Rockey: Antibiotic resistance in Chlamydiae. Future Microbiol 5, 

1427-1442 (2010) 

47. N. Borel, C. Leonard, J. Slade, R.V. Schoborg: Chlamydial Antibiotic Resistance and 

Treatment Failure in Veterinary and Human Medicine. Curr Clin Microbiol Rep 3, 10-18 

(2016) 

48. W.E. Stamm: Potential for antimicrobial resistance in Chlamydia pneumoniae. J Infect 

Dis 181(Suppl), S456-S459 (2000) 

49. T. Meštrović, Ljubin-Sternak S, Bedenić B: Technical aspects of Chlamydia trachomatis 

antimicrobial susceptibility testing in cell culture system. Technical journal 2, 136-141 (2015) 

50. G.L. Ridgway, J.M. Owen, J.D. Oriel: A method for testing the antibiotic susceptibility of 

Chlamydia trachomatis in a cell culture system. J Antimicrob Chemother 2, 71-76 (1976) 

51. T. Meštrović: In vitro efficacy of azithromycin, doxycycline and levofloxacin against 

urogenital Chlamydia trachomatis strains, Dissertation, University of Zagreb Medical School 

Repository, Zagreb, 2014. Available at: http://medlib.mef.hr/2066/ 

52. C.K. Lee, W.R. Bowie, E.R. Alexander: In vitro assays of the efficacy of antimicrobial 

agents in controlling Chlamydia trachomatis propagation. Antimicrob Agents Chemother 13, 

441-445 (1978) 

53. P. Stirling, S. Richmond: The developmental cycle of Chlamydia trachomatis in McCoy 

cells treated with cytochalasin B. J Gen Microbiol 100, 31-42 (1977) 



54. J.M. Ehret, F.N. Judson: Susceptibility testing of Chlamydia trachomatis: from eggs to 

monoclonal antibodies. Antimicrob Agents Chemother 32, 1295-1299 (1988) 

55. P.B. Wyrick, C.H. Davis, J.E. Raulston, S.T. Knight, J. Choong: Effect of clinically 

relevant culture conditions on antimicrobial susceptibility of Chlamydia trachomatis. Clin 

Infect Dis 19: 931-936 (1994) 

56. T.R. Rota: Techniques for culturing and determining antimicrobial susceptibility of 

Chlamydia trachomatis. Arch Androl 4, 63-69 (1980) 

57. P.B. Wyrick, C.H. Davis, S.T. Knight, J. Choong: In-vitro activity of azithromycin on 

Chlamydia trachomatis infected, polarized human endometrial epithelial cells. J Antimicrob 

Chemother 31, 139-150 (1993) 

58. S.L. Sternak, V. Škerk: Determining antimicrobial resistance to Chlamydia trachomatis 

and applying present findings in daily practice. Med Glas (Zenica) 7, 26-31 (2010) 

59. S. Ljubin-Sternak, T. Meštrović, T. Vilibić-Čavlek, G. Mlinarić-Galinović, M. Sviben, A. 

Markotić, V. Škerk: In vitro susceptibility of urogenital Chlamydia trachomatis strains in a 

country with high azithromycin consumption rate. Folia Microbiol (Praha) 58, 361-365 

(2013) 

60. M.A. Khan, C.W. Potter, R.M. Sharrard: A reverse transcriptase-PCR based assay for in-

vitro antibiotic susceptibility testing of Chlamydia pneumoniae. J Antimicrob Chemother 37, 

677-685 (1996) 

61. N.A. Cross, D.J. Kellock, G.R. Kinghorn, M. Taraktchoglou, E. Bataki, K.M. Oxley, P.M. 

Hawkey, A. Eley: Antimicrobial susceptibility testing of Chlamydia trachomatis using a 

reverse transcriptase PCR-based method. Antimicrob Agents Chemother 43, 2311-2313 (1999) 

62. S.M. Holland, A.P. Hudson, L. Bobo, J.A. Whittum-Hudson, R.P. Viscidi, T.C. Quinn, 

H.R. Taylor: Demonstration of chlamydial RNA and DNA during a culture-negative state. 

Infect Immun 60, 2040-2047 (1992) 

63. S. Dessus-Babus, F. Belloc, C.M. Bébéar, F. Poutiers, F. Lacombe, C. Bébéar, B. de 

Barbeyrac: Antibiotic susceptibility testing for Chlamydia trachomatis using flow cytometry. 

Cytometry 31, 37-44 (1998) 

64. A.E. Fohner, A. Sparreboom, A.B. Altman, T.E. Klein: PharmGKB summary: Macrolide 

antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 27, 164-

167 (2017) 

65. B. de Barbeyrac: Current aspects of Chlamydia trachomatis infection. Presse Med 42, 

440-445 (2013) 

66. A. Kreuter, U. Wieland: Azithromycin versus Doxycycline for Chlamydia. N Engl J Med 

374, 1786-1787 (2016) 

67. F. Leontiadou, M.A. Xaplanteri, G. Papadopoulos, C. Gerassimou, D.L. Kalpaxis, T. 

Choli Papadopoulou: On the structural and functional importance of the highly conserved 

Glu56 of Thermus thermophilus L4 ribosomal protein. J Mol Biol 332, 73-84 (2003) 

68. M. O'Connor, S.T. Gregory, A.E. Dahlberg: Multiple defects in translation associated with 

altered ribosomal protein L4. Nucleic Acids Res 32, 5750-5756 (2004) 

69. O.Y. Misyurina, E.V. Chipitsyna, Y.P. Finashutina, V.N. Lazarev, T.A. Akopian, A.M. 

Savicheva, V.M. Govorun: Mutations in a 23S rRNA gene of Chlamydia trachomatis 

associated with resistance to macrolides. Antimicrob Agents Chemother 48, 1347-1349 (2004) 

70. C. Clark, B. Bozdogan, M. Perić, B. Dewasse, M.R. Jacobs, P.C. Appelbaum: In vitro 

selection of resistance in Haemophilus influenzae by amoxicillin-clavulanate, cefpodoxime, 

cefprozil, azithromycin, and clarithromycin. Antimicrob Agents Chemother 46, 2956-2962 

(2002) 

71. S. Pereyre, C. Guyot, H. Renaudin, A. Charron, C. Bébéar, C.M. Bébéar: In vitro selection 

and characterization of resistance to macrolides and related antibiotics in Mycoplasma 

pneumoniae. Antimicrob Agents Chemother 48, 460-465 (2004) 



72. A.B. Sidhu, Q. Sun, L.J. Nkrumah, M.W. Dunne, J.C. Sacchettini, D.A. Fidock: In vitro 

efficacy, resistance selection, and structural modeling studies implicate the malarial parasite 

apicoplast as the target of azithromycin. J Biol Chem 282, 2494-2504 (2007)  

73. R.R. Reinert, A. Wild, P. Appelbaum, R. Lütticken, M.Y. Cil, A. Al-Lahham: Ribosomal 

mutations conferring resistance to macrolides in Streptococcus pneumoniae clinical strains 

isolated in Germany. Antimicrob Agents Chemother 47, 2319-2322 (2003) 

74. M. Perić, B. Bozdogan, M.R. Jacobs, P.C. Appelbaum: Effects of an efflux mechanism 

and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical 

isolates. Antimicrob Agents Chemother 47, 1017-1022 (2003) 

75. N. Wolter, A.M. Smith, D.J. Farrell, W. Schaffner, M. Moore, C.G. Whitney, J.H. 

Jorgensen, K.P. Klugman: Novel mechanism of resistance to oxazolidinones, macrolides, and 

chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents 

Chemother 49, 3554-3557 (2005) 

76. M.O. Griffin, E. Fricovsky, G. Ceballos, F. Villarreal: Tetracyclines: a pleitropic family of 

compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell 

Physiol 299, C539-548 (2010) 

77. S.A. Kohlhoff, M.R. Hammerschlag: Treatment of Chlamydial infections: 2014 update. 

Expert Opin Pharmacother 16, 205-212 (2015) 

78. J. Dugan, A.A. Andersen, D.D. Rockey: Functional characterization of IScs605, an 

insertion element carried by tetracycline-resistant Chlamydia suis. Microbiology 153, 71-79 

(2007) 

79. N. Borel, N. Regenscheit, A. Di Francesco, M. Donati, J. Markov, Y. Masserey, A. 

Pospischil: Selection for tetracycline-resistant Chlamydia suis in treated pigs. Vet Microbiol 

156, 143-146 (2012) 

80. H. Marti, H. Kim, S.J. Joseph, S. Dojiri, T.D. Read, D. Dean: Tet(C) Gene Transfer 

between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: 

Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front Microbiol 

8156 (2017) 

81. R.J. Suchland, K.M. Sandoz, B.M. Jeffrey, W.E. Stamm, D.D. Rockey: Horizontal 

transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob Agents 

Chemother 53, 4604-4611 (2009) 

82. E.E. Ishiguro, W.W. Kay, T. Ainsworth, J.B. Chamberlain, R.A. Austen, J.T. Buckley, T.J. 

Trust: Loss of virulence during culture of Aeromonas salmonicida at high temperature. J 

Bacteriol 148, 333-340 (1981) 

83. S.K. Lau, G.K. Wong, M.W. Li, P.C. Woo, K.Y. Yuen: Distribution and molecular 

characterization of tetracycline resistance in Laribacter hongkongensis. J Antimicrob 

Chemother 61, 488-497 (2008) 

84. A.A. Andersen, K.G. Rogers: Resistance to tetracycline and sulfadiazine in swine C. 

trachomatis isolates. In: Stephens S, Byrne GI, Christiansen G, Clarke IN, Grayston JT, Rank 

RG, Ridgeway GL, Saikku P, Schachter J, Stamm WE, editors. Chlamydial infections. 

Proceedings of the 9th International Symposium on Human Chlamydial Infection, Napa, 

California, Berkeley University Press, California; 313-316 (1998) 

85. C. Chae, D.S. Cheon, D. Kwon, O. Kim, B. Kim, J. Suh, D.G. Rogers, K.D. Everett, A.A. 

Andersen: In situ hybridization for the detection and localization of swine Chlamydia 

trachomatis. Vet Pathol 36, 133-7 (1999) 

86. L. De Puysseleyr, K. De Puysseleyr, L. Braeckman, S.A. Morré, E. Cox, D. Vanrompay: 

Assessment of Chlamydia suis Infection in Pig Farmers. Transbound Emerg Dis Nov 18. doi: 

10.1111/tbed.12446 (2015) [Epub ahead of print] 

87. A. Di Francesco, M. Donati, M. Rossi, S. Pignanelli, A. Shurdhi, R. Baldelli, R. Cevenini: 

Tetracycline-resistant Chlamydia suis isolates in Italy. Vet Rec 163, 251-252 (2008) 



88. J. Höök-Nikanne, D.E. Berg, P.M. Peek Jr, D. Kersulyte, M.K. Tummuru, M.J. Blaser: 

DNA sequence conservation and diversity in transposable element IS605 of Helicobacter 

pylori. Helicobacter 3, 79-85 (1998) 

89. D. Dean, J. Rothschild, A. Ruettger, R.P. Kandel, K. Sachse: Zoonotic Chlamydiaceae 

species associated with trachoma, Nepal. Emerg Infect Dis 19, 1948-1955 (2013) 

90. T. Meštrović, S. Ljubin-Sternak, M. Sviben: Potential role of enterohepatic Helicobacter 

species as a facilitating factor in the development of Chlamydia trachomatis proctitis. Med 

Hypotheses 81, 481-483 (2013) 

91. A. Naeem, S.L. Badshah, M. Muska, N. Ahmad, K. Khan: The Current Case of 

Quinolones: Synthetic Approaches and Antibacterial Activity. Molecules 21, 268 (2016) 

92. R. DeMars, J. Weinfurter: Interstrain gene transfer in Chlamydia trachomatis in vitro: 

mechanism and significance. J Bacteriol 190, 1605–1614 (2008) 

93. S. Dessus-Babus, C.M. Bébéar, A. Charron, C. Bébéar, B. de Barbeyrac: Sequencing of 

gyrase and topoisomerase IV quinolone-resistance-determining regions of Chlamydia 

trachomatis and characterization of quinolone-resistant mutants obtained in vitro. Antimicrob 

Agents Chemother 42, 2474-2481 (1998) 

94. S. Yokoi, M. Yasuda, S. Ito, Y. Takahashi, S. Ishihara, T. Deguchi, S. Maeda, Y. Kubota, 

M. Tamaki, H. Fukushi: Uncommon occurrence of fluoroquinolone resistance-associated 

alterations in GyrA and ParC in clinical strains of Chlamydia trachomatis. J Infect Chemother 

10, 262-267 (2004) 

95. L.F. Chen, D. Kaye: Current use for old antibacterial agents: polymyxins, rifamycins, and 

aminoglycosides. Med Clin North Am 95, 819-842 (2011) 

96. R.E. Chaisson: Treatment of chronic infections with rifamycins: is resistance likely to 

follow? Antimicrob Agents Chemother 47, 3037-3039 (2003) 

97. J. Schachter: Rifampin in chlamydial infections. Rev Infect Dis 5 Suppl 3, S562-564 (1983) 

98. U. Dreses-Werringloer, I. Padubrin, H. Zeidler, L. Köhler: Effects of azithromycin and 

rifampin on Chlamydia trachomatis infection in vitro. Antimicrob Agents Chemother 45, 

3001-3008 (2001) 

99. H.M. Freidank, P. Losch, H. Vögele and M. Wiedmann-Al-Ahmad: In vitro 

susceptibilities of Chlamydia pneumoniae isolates from German patients and synergistic 

activity of antibiotic combinations. Antimicrob Agents Chemother 43, 1808-1810 (1999) 

100. K. Hosoe, T. Mae, E. Konishi, K. Fujii, K. Yamashita, T. Yamane, T. Hidaka, T. Ohashi: 

Pharmacokinetics of KRM-1648, a new benzoxazinorifamycin, in rats and dogs. Antimicrob 

Agents Chemother 40, 2749-55 (1996). 

101. U. Dreses-Werringloer, I. Padubrin, L. Köhler, A.P. Hudson: Detection of nucleotide 

variability in rpoB in both rifampin-sensitive and rifampin-resistant strains of Chlamydia 

trachomatis. Antimicrob Agents Chemother 47, 2316-2318 (2003) 

102. H. Aubry-Damon, C.J. Soussy, P. Courvalin: Characterization of mutations in the rpoB 

gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 

42, 2590-2594 (1998) 

103. D.J. Jin, C.A. Gross: Mapping and sequencing of mutations in the Escherichia coli rpoB 

gene that lead to rifampicin resistance. J Mol Biol 202, 45-58 (1988) 

104. B. Yang, H. Koga, H. Ohno, K. Ogawa, M. Fukuda, Y. Hirakata, S. Maesaki, K. 

Tomono, T. Tashiro, S. Kohno: Relationship between antimycobacterial activities of 

rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J 

Antimicrob Chemother 42, 621-628 (1998) 

105. R.J. Suchland, A. Bourillon, E. Denamur, W.E. Stamm, D.M. Rothstein: Rifampin-

resistant RNA polymerase mutants of Chlamydia trachomatis remain susceptible to the 

ansamycin rifalazil. Antimicrob Agents Chemother 49, 1120-1126 (2005) 

106. N.A. Lisitsyn, E.D. Sverdlov, E.P. Moiseyeva, O.N. Danilevskaya, V.G. Nikiforov: 

Mutation to rifampicin resistance at the beginning of the RNA polymerase beta subunit gene 

in Escherichia coli. Mol Gen Genet 196, 173-174 (1984) 



107. M.S. Ramirez, M.E. Tolmasky: Aminoglycoside modifying enzymes. Drug Resist Updat 

13, 151-171 (2010) 

108. R. Binet, A.T. Maurelli: The chlamydial functional homolog of KsgA confers 

kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness. BMC 

Microbiol 9, 279 (2009) 

109. R. Binet, A.T. Maurelli: Frequency of spontaneous mutations that confer antibiotic 

resistance in Chlamydia spp. Antimicrob Agents Chemother 49, 2865-2873 (2005) 

110. R. DeMars, J. Weinfurter, E. Guex, J. Lin, Y. Potucek: Lateral gene transfer in vitro in 

the intracellular pathogen Chlamydia trachomatis. J Bacteriol 189, 991-1003 (2007) 

111. C.L. Smith, K.R. Powell: Review of the sulfonamides and trimethoprim. Pediatr Rev 21, 

368-371 (2000) 

112. O. Sköld: Resistance to trimethoprim and sulfonamides. Vet Res 32, 261-273 (2001) 

113. J. Davies, D. Davies: Origins and evolution of antibiotic resistance. Microbiol Mol Biol 

Rev 74, 417-433 (2010) 

114. R. Suchland, B.M. Jeffrey, K.M. Sandoz, W.E. Stamm, D.D. Rockey: Generation of 

recombinant C. trachomatis strains for associating individual genes with known phenotypes. 

Proceedings of the 12th International Symposium on Human Chlamydial Infections; Salzburg, 

Austria (2010) 

 

 


