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Abstract Background: Cancer of unknown primary (CUP) accounts for approximately 3%

of all malignancies. Avoiding immune destruction is a major cancer characteristic and thera-

pies aimed at immune checkpoint blockade are in use for several specific cancer types. A

comprehensive survey of predictive biomarkers to immune checkpoint blockade in CUP were

explored in this study.

Methods: About 389 cases of CUP were analysed for mutations in 592 genes and 52 gene fu-

sions using a massively parallel DNA sequencing platform (next-generation sequencing

[NGS]). Total mutational load (TML) and microsatellite instability (MSI) were calculated

from NGS data. PD-L1 expression was explored using immunohistochemistry (with 5% cutoff

value).

Results: High TML was seen in 11.8% (46/389) of tumours. MSI-high (MSI-H) was detected

in 7/384 (1.8%) of tumours. Tumour PD-L1 expression was detected in 80/362 CUP (22%). A

small proportion of CUP cases harboured genetic alterations of negative predictive bio-

markers to immune checkpoint inhibitors (predictors to hyperprogression) including

MDM2 gene amplification (2%) and loss of function JAK2 gene mutations (1%). Amplifica-

tions of CD274 (PD-L1) and PDCD1LG2 (PD-L2) genes were also rare (1.4% and 0.8%,

respectively). The most frequently mutated genes were TP53 (54%), KRAS (22%), ARID1A

(13%), PIK3CA (9%), CDKN2A (8%), SMARCA4 (7%) and PBRM1, STK11, APC, RB1

(5%, respectively).
edicine, Qatar University, PO Box 2713, Doha, Qatar.

il.com, svranic@qu.edu.qa (S. Vranic).

blished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

4.0/).

https://core.ac.uk/display/231879875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:semir.vranic@gmail.com
mailto:svranic@qu.edu.qa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejca.2018.02.021&domain=pdf
https://doi.org/10.1016/j.ejca.2018.02.021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/09598049
www.ejcancer.com
https://doi.org/10.1016/j.ejca.2018.02.021
https://doi.org/10.1016/j.ejca.2018.02.021


Z. Gatalica et al. / European Journal of Cancer 94 (2018) 179e186180
Conclusions: Using a multiplex testing approach, 28% of CUP carried one or more predictive

biomarkers (MSI-H, PD-L1 and/or TML-H) to the immune checkpoint blockade, providing a

novel option for treatment in patients with CUP.

ª 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer of unknown primary (CUP) are a heterogeneous

group comprising approximately 3e5% of all malig-

nancies and are associated with poor prognosis [1e3].
Usually, extensive tumour sample investigations are

performed to identify the presumed tissue of origin

[3e5], but in true CUP, by definition, the diagnosis of

the primary cancer cannot be verified. Recently, we [6]

and others [7e10] have identified numerous genetic al-

terations in common cancer pathways [11] in CUP,

providing an opportunity to administer pathway-specific

(targeted) therapies in CUP. All these studies identified
at least one clinically targetable genetic alteration in

CUP. In contrast to the previous studies, we utilised an

extended next-generation sequencing (NGS) panel

composed of 592 genes and used Archer Panel to

explore the gene fusions.

In the last couple of years, a dramatic improvement in

advanced cancers therapy has been achieved with immune

checkpoint blockade. To date, five immune checkpoint
inhibitors (pembrolizumab, nivolumab, atezolizumab,

avelumab and durvalumab) targeting either programmed

death 1 (PD-1) or its ligand (PD-L1) have received the US

Food and Drug Administration (FDA) approval (https://

www.fda.gov/) and caused a paradigm shift in treatment

of various cancer types including melanoma, nonesmall

cell lung carcinoma, renal cell carcinoma, advanced

bladder carcinoma, Merkel cell carcinoma,
gastroesophageal junction adenocarcinoma and classical

Hodgkin lymphoma [12e23]. Several predictive bio-

markers for immune checkpoint inhibitors have been

proposed (PD-L1 status in tumour and inflammatory

cells, tumour mutational load and microsatellite insta-

bility [MSI] status) and some have achieved companion

diagnostics status (e.g. PD-L1 immunohistochemistry in

certain cancer lineages and MSI status in all tumours
regardless of a lineage). In addition, recent breakthrough

studies revealed several predictors of hyperprogression

after the therapy with the immune checkpoint inhibitors

(e.g. JAK1/2, MDM2 and EGFR) [24e26]. A compre-

hensive molecular profiling (biomarkers) of CUP with

regard to immune checkpoint inhibitors has not been

conducted so far. Therefore, we decided to explore a

comprehensive survey of predictive biomarkers to im-
mune checkpoint inhibitors in a large cohort of CUP

profiled at a single institution.
2. Results

2.1. Patients and histopathologic characteristics

Three hundred eighty-nine patients (53% female and

47% male) were included in the study cohort. The

average patient’s age was 62.7 years. No clinically rec-
ognised primary tumour site was identified in any of the

patients tested (Table 1) [3].

Histologically, CUP were classified as adenocarci-

nomas (n Z 175, 45%), carcinomas not otherwise

specified (n Z 120, 31%), squamous cell carcinomas

(n Z 30, 8%) or other subtypes (n Z 64, 16%) (Table 1).

Referring laboratories’ immunohistochemical analyses

for markers of tissue of origin (e.g. wide-spectrum
cytokeratins [AE1/AE3, Cam5.2], CK7, CK20, PSA,

oestrogen receptor, progesterone receptor, CDX2,

TTF1, napsin-A, thyroglobulin, calcitonin, neuroendo-

crine markers: NSE, chromogranin, synaptophysin)

were non-conclusive in all analysed cases (i.e. more than

one possible site of origin was considered) [3]. Board-

certified pathologists reviewed all cases and selected

appropriate slides for molecular profiling.

2.2. Predictive biomarkers to immune checkpoint

inhibitors

Fig. 1 (Venn diagram) summarises total mutational load

(TML), PD-L1 status and MSI status for the subgroup

of CUP tumours that had PD-L1, MSI and TML in-

formation available (n Z 362).

In the complete cohort of 389 tumour analysed, TML-

high was seen in 11.8% (46/389) of CUPs, similar to the

rate observed in common cancers profiled at Caris (Non-

small cell lung cancer (NSCLC), bladder carcinoma,
Fig. 3). In contrast to other common cancers, MSI-high

(MSI-H) rate was detected in 7/389 (1.8%) of CUP cases

(Fig. 3). Subsequent immunohistochemistry (IHC) anal-

ysis of MSI-H cases showed combined loss of expression

of MSH2 and MSH6 or MLH1 and PMS2 mismatch

repair proteins in five cases and isolated PMS2 loss in one

case, while one case was not evaluable (Table 2). In

addition, 12 microsatellite stable cases by NGS were also
confirmed by IHC as mismatch repair proficient (no loss

of expression of mismatch repair proteins).

Expression of PD-L1 (on�5% cancer cells) was seen in

22.5% (82/365) of tumours, while the presence of PD-1

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.fda.gov/
https://www.fda.gov/


Fig. 1. Venn diagram showing the relationship between TML-H,

MSI-H and PD-L1D CUP cases. Three hundred sixty-two cases

were analysed for all three predictive biomarkers: 103 cases had at

least one of the three predictive biomarkers to immune checkpoint

blockade and 259 CUP cases were with all three biomarkers

negative result (TML-low/MSS/PD-L1-negative cases).

Table 1
Demographic and pathologic characteristics of the CUP cohort.

Gender N (%)

Male 186 (47%)

Female 203 (53%)

Age Years

Average (range) 62.7 (18e90)

Histology N

Adenocarcinoma 175 (45%)

Carcinoma NOS 120 (31%)

Squamous cell carcinoma 30 (8%)

NSCC 15 (3.8%)

Mucinous carcinoma 14 (3.6%)

Neuroendocrine carcinoma 9 (2.3%)

Sarcomatoid and spindle cell carcinoma 8 (2%)

Carcinosarcoma 2 (0.5%)

Pleomorphic carcinoma 2 (0.5%)

Serous carcinoma 2 (0.5%)

Signet ring carcinoma 2 (0.5%)

Other rare cancer subtypes 10 (2.5%)

Total 389

ACC Z adenoid cystic carcinoma; NOS Z not otherwise specified

carcinoma; NSCC Z nonesmall cell carcinoma; SCC Z small cell

carcinoma; TCC Z transitional cell carcinoma.
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expressing tumour infiltrating lymphocytes was seen in

58.7% (37/63) of cases.
2.3. Individual gene alterations detected by NGS

Fig. 2 and Supplemental Table 1 illustrate detected gene

alteration frequencies in the entire cohort.
A total of 70 different genes were found with path-

ogenic and presumed pathogenic mutations ranging in

incidence from 0.3% to 54%; the most frequently

mutated gene was TP53 (54%), followed by KRAS

(22%), ARID1A (13%), PIK3CA (9%), CDKN2A (8%),

SMARCA4 (7%), PBRM1, STK11, APC, RB1 (5%,

respectively) and PTEN, BRAF, NF2, BAP1 (4%,

respectively). ERBB2 (HER2) was mutated in 1.5% of
cases while BRCA1 and BRCA2 were each mutated in

1%.

Gene amplifications of CCND1 (5%), FGF3, FGF4,

FGF19 (3%, respectively; all located on chromosome

11q13.3 near CCND1), ERBB2, MYC (3%, respectively)

were most frequent, while AKT2, MCL1, KRAS,

CCNE1 and MDM2 were each amplified in w2% of the

cases. Of note, amplifications of CD274 (PD-L1),

PDCD1LG2 (PD-L2) and JAK2 (all located at chro-

mosome 9p24.1) were rare (1.4, 0.8 and 1.1%,

respectively).

Targetable gene fusions were identified in five cases

including two FGFR2 fusions, two RET fusions and one

RAF1 fusion. Tumours inwhich fusionswere identified as

cancer driver events carried a significantly lower TML

(average 6/Mb) than the complete cohort (11.0/Mb,
p < 0.001).
3. Discussion

Numerous studies have identified potential predictive

biomarkers to drug therapies in cancers of various, well-

defined lineages [27e29]. Recent work from The Cancer

Genome Atlas demonstrated that the tissue of origin of

a particular cancer may be much less relevant to prog-

nosis and response to therapy than identification of

causative mutations and optimal predictive biomarkers

[30,31]. Along those observations, several CUP cases
that harboured activating EGFR mutations were suc-

cessfully treated with EGFR inhibitors (e.g. gefitinib)

[6,32,33]. Also, CUP cases harbouring potentially

actionable ERBB2 and EGFR gene copy alterations

benefited from targeted treatments [34,35]. In our pre-

sent study, we failed to detect new cases with actionable

EGFR gene alterations, so CUP remains a rare candi-

date for EGFR inhibitors.
Recent advances in cancer treatment with immune

checkpoint inhibitors significantly improved outcomes

in several different cancer lineages (e.g. NSCLC, mela-

noma, urothelial carcinoma). Very limited data are

available regarding the treatment of CUP patients with



Table 2
Molecular profile of the 7 CUP cases with MSI-H status.

Case MSI-NGS MMR-SEQ (mutation) IHC MMRP Other NGS TML PD-L1

#1 MSI-H Wild type No loss (MSH6 fail?) BRAF V600E 10 Negative

#2 MSI-H Wild type MLH1/PMS2 loss CTNNB1 11 Negative

#3 MSI-H MSH2 (R621X), MSH6 (F1088fs) MSH2/MSH6 loss KRAS G12D 16 Not performed

#4 MSI-H Wild type MLH1/PMS2 loss BRAF V600E 66 Negative

#5 MSI-H MSH6 (F1088fs/S616F), PMS2 mutation result unknown Isolated PMS2 loss KRAS A59T 48 Negative

#6 MSI-H Wild type MLH1/PMS2 loss KRAS G12V 9 Positive (5%, 3þ)

#7 MSI-H MSH2 (D680X 49) Loss of MSH2/MSH6 MSH2 D603V 31 Negative

IHCZ immunohistochemistry; MMRPZmismatch repair protein; MSI-HZmicrosatellite instability-high; NGSZ next-generation sequencing;

PD-L1 Z programmed death-ligand 1; TML Z tumour mutational load.
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immune checkpoint inhibitors, presumably due to the

lack of routine testing for predictive immuno-oncology

biomarkers. Recently, Groschel et al. [8] reported suc-

cess with pembrolizumab, a checkpoint inhibitor (anti-

PD1 drug), in a patient with CUP exhibiting focal
high-level amplification of chromosome 9p including the

PD-L1 gene [CD274]; Similarly, Kato et al. [9] reported

a successful response to combined treatment with

nivolumab and trametinib in a CUP patient whose

cancer was MSI-H due to an MLH1 mutation. In our

cohort, we identified 7 CUP cases harbouring MSI-H

status, but the clinical response data were not avail-

able. We believe that the wider implementation of the
FDA approval of immune therapy for all MSI-H can-

cers will lead to increased utilisation of the therapy and

subsequently evaluation if its efficacy in this cancer type.

Several predictive biomarkers have recently emerged

for checkpoint inhibitors and include immunohisto-

chemical PD-L1 status and DNA MSI status. Tumour

mutational (neoantigen) load has been recently associ-

ated with response to immune checkpoint inhibitors in
malignant melanomas [36,37]. High TML is also a

characteristic of mismatch repair deficient tumours and

measurement of MSI had been associated with response

to pembrolizumab in a variety of tumours exhibiting

MSI-H and TML-H [38]. The FDA has recently

approved mismatch repair deficiency (defined as either

identification of loss of mismatch repair protein expres-

sion or identification of microsatellite DNA alterations)
as a biomarker for Pembrolizumab for adult and paedi-

atric patients with unresectable or metastatic solid can-

cers, irrespective of lineage (https://www.fda.gov/Drugs/

InformationOnDrugs/ApprovedDrugs/ucm560040.htm).

In this large cohort of CUP, we demonstrated the

presence of a high TML in 12% of cases. Also, most

recently, high tumour mutational load (burden)

(defined as �10 mutations per megabase) was found to
be predictive of response to Opdivo (nivolumab) plus

Yervoy (ipilimumab) combination therapy (Phase 3

CheckMate-227 trial) [39].

We also identified a small subset of MSI-H CUP,

which in some cases may have been associated with

Lynch syndrome; however, we have not pursued
germline testing in any of the cases. In Fig. 3, we

compare the status of predictive biomarkers for immune

checkpoint inhibitors in CUP with four other major

cancer types (melanoma, NSCLC, bladder and kidney

carcinomas) that have the FDA-approved immune
checkpoint treatment modalities. Although no optimal

predictive biomarker to assign patients for therapy with

immune checkpoint inhibitors has been identified,

expression of PD-L1 by immunohistochemistry is most

commonly used for that purpose. Several different an-

tibodies and thresholds are in use for associating protein

expression with specific drugs in specific tumours

[15,16,40]. No uniform threshold is applied in the liter-
ature [41], but for the SP142 antibody, a frequently cited

threshold is 5% positivity in cancer cells, which we used

in our study. With this approach, we identified 22.5%

positivity for PD-L1 in CUP. This represents one of the

most frequent detection rates of PD-L1 in a cancer

cohort [42]. When presence of any one of the three

biomarkers was taken into account, 28% of CUP cases

were potentially eligible for treatment with immune
checkpoint inhibitors. These findings, along with the

two recently described successful CUP cases treated with

immune checkpoint blockade [8,9], clearly indicate a

potential for this novel treatment approach with CUP

patients.

In addition to the aforementioned biomarkers, our

study also revealed a small proportion of CUP cases

harbouring the presence of negative predictive bio-
markers (MDM2 amplification and loss of function

JAK2 mutations) to immune checkpoint inhibitors

(predictors to hyperprogression). These biomarkers

along with JAK1 are associated with cancer progression

following anti-PD-1/PD-L1 therapy [24,25].

Our study had limitations; the lack of clinical (follow-

up) data did not allow us to explore the clinical rele-

vance of the observed findings. However, we believe that
our study as well as recently recognised predictive value

in determination of MSI and TML status using NGS

will lead to immune checkpoint inhibitors therapy in the

selected patients with CUP.

In conclusion, our study showed that a substantial

proportion of CUP patients are potential candidates for

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm560040.htm
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm560040.htm


Fig. 2. Most commonly mutated genes in CUP. Genes with pathogenic mutations occurring with �1% frequency in the CUP cohort are

presented.
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immune checkpoint therapy, but to achieve maximum

detection success multiplatform testing may be necessary.
4. Materials and methods

Formalin-fixed paraffin-embedded tissue samples from
389 consecutive patients with verified CUP [3] were used

in the study. All the tested cases were previously char-

acterised as CUP by the referring pathologists and on-

cologists (mainly from the United States) who submitted

the specimens for molecular profiling over 34-month

period. The haematoxylin and eosin stained slides were

re-reviewed by a board-certified pathologist (Z.G.) to

confirm the diagnosis of CUP. All assays were per-
formed in CLIA/CAP/ISO15189 certified clinical labo-

ratory (Caris Life Sciences, Phoenix, AZ).

The samples were analysed with massively parallel,

NGS platform that included 592 genes (NGS, NextSeq,
Illumina, San Diego, CA) [43]. TML was calculated

using nonsynonymous missense mutations; common

germline variants excluded. A high TML was considered

�17 mutations/Mb. This threshold was previously vali-
dated and was based on the MSI and NGS data com-

parisons (more info is available here: https://www.

carismolecularintelligence.com/wp-content/uploads/

2016/12/TN0291-v1_Total-Mutational-Load-Immuno-

therapy-REVERSED-PAGES.pdf). Copy number

variation was tested by NGS and was determined by

comparing the depth of sequencing of genomic loci to a

diploid control as well as the known performance of
these genomic loci. Calculated gains �6 copies were

considered amplified.

MSI was calculated from the NGS data by direct

analysis of short tandem repeat tracts in the target re-

gions of sequenced genes. The count only included al-

terations that resulted in increases or decreases in the

number of repeats; MSI-H was defined as �46 altered

https://www.carismolecularintelligence.com/wp-content/uploads/2016/12/TN0291-v1_Total-Mutational-Load-Immunotherapy-REVERSED-PAGES.pdf
https://www.carismolecularintelligence.com/wp-content/uploads/2016/12/TN0291-v1_Total-Mutational-Load-Immunotherapy-REVERSED-PAGES.pdf
https://www.carismolecularintelligence.com/wp-content/uploads/2016/12/TN0291-v1_Total-Mutational-Load-Immunotherapy-REVERSED-PAGES.pdf
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Fig. 3. Comparison between CUP and four common cancer types (nonesmall cell lung cancer, malignant melanoma, renal cell carcinoma and

urothelial/bladder carcinoma) for three predictive biomarkers to the immune checkpoint inhibitors. The analysis was based on n Z 173

(urothelial carcinoma), n Z 192 (renal cell carcinoma), n Z 399 (malignant melanoma) and n Z 2185 (nonesmall cell lung carcinoma).

Prevalence of PD-L1 expression in NSCLC was based on 22c3 clone (FDA-approved Companion diagnostics, DAKO) and approved

thresholds (shaded bar indicates high expression: staining percentage or TPS �50%, while empty bar indicates low expression: TPS be-

tween 1 and 49%); for all other cancer types, PD-L1 SP142 clone (Ventana) was used with �5% threshold positivity.
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microsatellite loci (this threshold was established by

comparing to the polymerase chain reactionebased MSI

FA results from w2100 cases [44,45]).

ArcherDx FusionPlex Assay (ArcherDX, Boulder,

CO) was used to detect gene fusions; 52 gene targets were

analysed in 156 tumours. The panel of tested gene fusions

is available here: https://www.carismolecularintelligence.

com/tumor-profiling-menu/mi-profile-usa-excluding-
new-york/.

IHC was used to detect expression of PD-L1 (SP142

antibody) and, in some cases, presence of PD-1

expressing tumour infiltrating lymphocytes (NAT105

antibody), using an automated staining platform (Ven-

tana Medical Systems, Inc., Tucson, AZ). Tumour cells

were considered positive for PD-L1 if �5% of cancer

cells exhibited moderate (2þ) membranous positivity
[6,41,46,47]. Benign tonsil samples served as a positive

control for PD-L1.

In addition, IHC (Ventana) was used to assess the

expression of mismatch repair proteins (MLH1, MSH2,

MSH6 and PMS2) in seven MSI-H confirmed cases and

12 additional MSI-stable cases with available tissue [48].
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