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Abstract: The progression of breast cancer and its association with clinical outcome and treatment
remain largely unexplored. Accumulating data has highlighted the interaction between cells of the
immune system and the tumor microenvironment in cancer progression, and although studies have
identified multiple facets of cancer progression within the development of the tumor microenvironment
(TME) and its constituents, there is lack of research into the associations between breast cancer subtype
and staging. Current literature has provided insight into the cells and pathways associated with
breast cancer progression through expression analysis. However, there is lack of co-expression studies
between immune pathways and cells of the TME that form pro-tumorigenic relationships contributing
to immune-evasion. We focus on the immune checkpoint and TME elements that influence cancer
progression, particularly studies in molecular subtypes of breast cancer.

Keywords: breast cancer; checkpoint; checkpoint inhibitors; tumor microenvironment;
tumor-associated macrophages; cancer-associated fibroblasts; tumor-associated neutrophils; IDO;
PD-L1; Siglec-9

1. Introduction

Breast carcinoma remains a complex heterogeneous disorder, being the most frequent malignant
disease in women worldwide, leading to premature death in women in developed countries [1]. In fact,
the higher developed countries such as Europe, Australia, and the USA have the highest incidence
of breast cancer compared to those from mid-developed countries including, Latin America, central
Europe, and the Caribbean; the lowest incidence being in the low developed countries such as Asia
and Africa [2]. In the last decade, the mortality rate of breast cancer has declined as a result of early
detection and effective treatments [3,4], although, 20% of women diagnosed with breast cancer will still
die from the disease [5]. One of the challenges of breast cancer research has been the characterization
of the molecular changes that are associated with breast cancer progression [6]. The diagnosis of
breast cancer is based on three key parameters including histological type, tumor grade, and tumor
stage. Within this, there are at least 20 different histological subtypes of breast cancer, which display
differences in morphology and growth patterns [7].

The main biological markers utilized in the diagnosis and treatment of breast cancer include
the overexpression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2). Based on these clinically used markers, 5 major molecular intrinsic
subtypes of breast cancer have been identified: (i) luminal A (histological phenotype: ER+, PR+,
HER2−, Ki67−), (ii) luminal B (ER+. PR+, HER2+/−, Ki67+), (iii) HER2 enriched (ER−, PR−, HER2+),
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(iv) basal-like subtype (ER−, PR−, HER2−, triple negative; associated with poor prognosis and early
onset of metastasis) and (v) claudin-low tumor subtype which is commonly classified as basal-like (or
normal breast-like) [8–11]. In addition to these established subtypes, breast cancer staging refers to
the extent of disease and is a critical factor in the prognostic outcomes of the patients as well as for
oncologists in making treatment decisions. Staging is categorized by stages 0–IV which is determined
by tumor size, invasion of tumor cells into the chest wall and lymph nodes, and distant metastasis.

The proliferation of tumor cells and metastasis is influenced by immune cells present within the
tumor microenvironment (TME) and their mechanisms of actions. As such, lymphocytes, fibroblasts,
neutrophils, eosinophils, macrophages and myeloid-derived suppressor cells are present within
the TME with altered mechanisms and influence the outcome of cancer cell growth and migration.
In addition, immune-checkpoints have been identified and can be expressed on both immune cells and
tumor cells. A number of negative regulatory mechanisms can inhibit the anti-tumor immune response
through the expression of these immune checkpoints. An ongoing immune response can be represented
by the upregulation of immune checkpoints (CTLA4, PD-1/PD-L1, IDO and members of the CD33-like
siglecs i.e., siglec-7 and siglec-9, but their expression on tumor cells can also be driven by oncogenic
pathways. By activating these inhibitory pathways, cancer cells are able to escape from immune cell
attack by causing apoptosis of tumor-specific T cells [12–16]. Siglec-7 inhibits NK cell lysis [17] and the
mucin MUC1 modulates the tumor immunological microenvironment through engagement of the
lectin Siglec-9 [18]. Development of immune checkpoint inhibitors, such as anti-CTLA-4, anti-PD-1
and anti-PD-L1, bypass the immune checkpoint, with the aim of rescuing and enhancing the function
of anti-tumor T cells [19].

Immunotherapy or vaccine studies to date have primarily focused on the stimulation of CD8+ T cells
and/or T helper (Th)-1 pro-inflammatory responses to biological targets expressed by tumor cells [20].
For example, the high molecular weight tumor-associated glycoprotein, MUC1 (CD227) [21–25], has
been used as a target for cancer immunotherapy studies in both mice [26–43] and in human clinical
trials [44–46]. In particular, human clinical studies of MUC1 conjugated to the carrier mannan has been
in phase I, II, III trials, and in early stage breast cancer patients these conjugates show protection against
recurrence up to 18 years post-vaccination clinical follow-up [47–50]. Although showing efficacy in
early stage breast cancer patients, in other clinical studies in advanced cancer patients clinical outcomes
were only modest. In an attempt to improve clinical outcomes, checkpoint inhibitors are being used in
combination with vaccines/immunotherapeutics. In addition, it is important to understand the role of
other immune cell infiltrates within the TME, which will aid in the design of new improved cancer
immunotherapeutics. Herein, we focus on immune cells within the TME and immune-checkpoints
associated with breast cancer progression.

2. Tumor Microenvironment

Advances in the understanding of the TME in pre-invasive and invasive breast cancer have
demonstrated strong evidence to suggest that the TME and associated molecules as well as the
infiltration of immune cells, soluble factors and altered extracellular matrix, are involved in promoting
tumor growth and metastasis [51,52]. These critical elements of the TME have initiated the identification
of new breast cancer markers, such as biological, immunological and immunosuppressive which are
associated with tumor development and progression [53]. More recently, there are implications that the
nervous system also modulates immune responses in suppressing tumor growth, or, enhances tumors
ability to evade immune surveillance leading to metastasis [12–14,54]. Over the past decades of cancer
research, focus has predominately fallen into the complex interactions of the TME. Its contribution
to cancer progression relies heavily on the residents within the TME including, tumor-associated
macrophages (TAMs), cancer-associated fibroblasts (CAF), endothelial cells, pericytes, leukocytes,
tumor-infiltrating lymphocytes (TILs), cytokine milieu and the extracellular matrix (ECM) (Figure 1,
Table 1). It is important to note that tumor cells can efficiently recruit stromal cells (e.g., fibroblasts),
immune cells and vascular cells by secreting growth factors, cytokines and chemokines. These cells
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build the microenvironment by releasing growth promoting signals and intermediate metabolites as
well as remodel tissue structure. The signaling between the cancer cells and the TME stimulates or
inhibits proliferation and metastatic capability [55–58]. The tumor not only manages to escape from
the host immune system, but it effectively benefits from infiltrating cells by modifying their functions
to create the microenvironment favorable to tumor progression [59].

2.1. Epithelial-Mesenchymal Transition

Epithelial-mesenchymal transition (EMT) is the ability of cancer cells to leave their epithelial state
and acquire characteristics of mesenchymal cells. EMT plays a fundamental role in tumor progression
and metastasis and involves a number of signaling pathways such as transforming growth factor beta
(TGFβ), nuclear factor-κB (NF-κB), Wnt, Notch and others [60]. EMT markers such as Snail, Twist-1 and
Lox are transcription factors that induce EMT which have also been shown to be expressed by human
breast tumors [61,62]. Snail is known to repress E-cadherin (a key molecule involved in epithelial
adhesion) expression, a hallmark of EMT, and has been linked to the migratory and invasive phenotype
of breast cancer cells [63]. Twist is a helix loop helix protein involved in the downregulation of the
epithelial genes such as E-cadherin, claudins, occludins and stimulates a number of the mesenchymal
genes including, N-cadherin and fibronectin [64]. Lox is involved in remodeling the extracellular matrix
facilitating invasion and metastasis [65]. In addition, circulatory tumor cells and highly enriched
for characteristics of mesenchymal cells showing loss of E-cadherin and gain of N-cadherin [66,67].
Studies show that CXC chemokine ligand 8 (CXCL8 or IL-8) promotes the EMT of human breast
cancer cells via the formation of the TWIST1-p65 complex that activates transcription of NF-κB and
increases the binding affinity of p65 to CXCL8 [68]. Studies of EMT markers in triple negative breast
cancer (TNBC) and non-TNBC subtypes showed the overexpression of Lox to be significantly higher
in TNBC subtype compared to non-TNBC subtypes. However, the expressions of Snail and Twist
showed no difference between TNBC and non-TNBC [62]. Although the expression of Lox cannot be
linked to prognosis it may be a possible target for future TNBC systemic therapies (Figure 1, Table 1).
In addition, immune infiltrates in TNBC is associated with good prognosis although this is not the case
for ER+ tumors.

Figure 1. Tumor-associated immune cells in the tumor microenvironment (TME) of breast cancer models.
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Within the TME there is an array of resident cells contributing to the progression and metastasis of
breast cancer cells. The different residents and their associated secretory elements including stimulatory
growth factors, chemokines and cytokines are shown. The expression of these residents within the TME
of breast cancer patients may aid in discovering new markers associated with specific subtype leading
to earlier diagnosis and better clinical outcome. [ARG1. Arginase 1; CAF. Cancer-associated Fibroblast;
CD163. Macrophage scavenger receptor; CCL2; Chemokine Ligand 2; CXCL8-CXCR1/2. Chemokine
Ligand 8-Chemokine Receptor 1 & 2; CXCL12. Chemokine Ligand 12; COX-2. cyclooxygenase-2;
EMT. Epithelial-Mesenchymal Transition; ER− Estrogen Receptor Negative; FGF. Fibroblast Growth
Factor; GM-CSF. Granulocyte-Macrophage Colony-Stimulating Factor; HGF. Hepatocyte Growth Factor;
IDO. Idoleamine-2, 3-Dioxygenase; IL. Interleukin; iDC. immature Dendritic Cells; mDC. mature
Dendritic Cells; MDSCs. Myeloid-derived suppressor cells; M2 TAMS. M2 subtype Tumor-associated
Macrophage; NK CELL. Natural Killer; N2 TAN. N2 Subtype Tumor-associated Neutrophil; PDGF-R.
Platelet-Derived Growth Factor Receptor; PD-1. Programmed cell death protein 1; PGE2. Prostaglandin
E2; ROS. Reactive Oxygen Species; SDF-1. Stromal cell-derived factor-1; TGF-β. Transforming Growth
Factor-beta; Th Cells. T-helper cells; TILs. Tumor-Infiltrating Lymphocytes; TREG. T-regulatory cells;
VEGF. Vascular endothelial growth factor].

2.2. Tumor-Infiltrating Lymphocytes

Immune cells present within the tumor include those mediating adaptive immune responses,
such as T cells, dendritic cells and B cells, as well as effectors of the innate immune responses, i.e.,
macrophages, neutrophils, eosinophils and natural killer cells [69]. In fact, premalignant ductal
breast carcinoma in situ shows an increase in lymphocyte infiltration, with predominant cells being,
activated T cells, B cells, and, the immune suppressive regulatory T cells (Treg; CD4+CD25+Forkhead
box protein 3 (Foxp3)+ cells) [70]. Tumor-infiltrating lymphocytes (TILs) are largely CD8+ T cells,
CD4+ T helper (Th) cells and Treg cells [69,71]. Among CD4+ T cells present in the tumor, a subset
of CD4+CD25highFoxp3+ Treg cells are able to suppress proliferation of other T cells within the
microenvironment through contact-dependent mechanisms, or anti-inflammatory cytokine (IL-10 and
TGFβ) secretion [72,73]. Cytotoxic CD8+ T-cells have the ability to kill cancer cells via secretion of
pro-inflammatory interferon-γ (IFNγ) and granzyme-perforin complex. In addition, the activation
and maturation of CD8+ T-cells is also modulated by IFNγ secreted by CD4+ Th1 cells and specific
tumor-associated antigens processed by dendritic cells [74]. In relation to breast cancer subtypes, ER−
cancers show higher number of TILs compared to ER+ cancers [75]. In addition, the overall number of
T cells, B cells, macrophages and myeloid-derived suppressor cells (MDSC) are also higher in ER−
compared to ER+ breast cancers [75]. Thus, the number of TILs within the tumor microenvironment
may not only help distinguish subtype but can be used to identify markers associated with progression
and metastasis from the primary tumor (Figure 1, Table 1).

2.3. Cancer-Associated Fibroblasts

Fibroblast cells are important contributors to the development of the extracellular matrix and they
secrete a number of factors including collagen and cytokines, which aids in the structural framework of
the extracellular matrix [76]. Within the TME and surrounding space, accumulation of different immune
and regulatory cells may stimulate or inhibit tumor growth (Figure 1, Table 1). Fibroblasts represent the
majority of stromal cells within the TME. Commonly, activated fibroblasts inhibit early stages of tumor
progression through production of fibroblast factors and IL-6 occurring in gap junctions [77]. However,
epithelial cells, endothelial cells, and cancer cells have been associated with altering fibroblasts into
cancer-associated fibroblasts (CAFs) [78]. CAFs have shown to secrete various growth factors and
cytokines associated with promoting breast cancer proliferation and metastasis [79]. In fact, fibroblast
growth factor, human growth factor, tenascin, thrombospondin-1, TGFβ and stromal cell-derived factor
1 (SDF-1 or CXCL12), are found in cancer cells including breast cancer, at sites of chronic inflammation
produced by CAFs [80–82]. The secretion of high levels of TGFβ by tumor cells causes migration of
fibroblasts to the TME initiating trans-differentiation of fibroblasts to CAFs [83]. Platelet-derived growth



Cancers 2019, 11, 1205 5 of 21

factor can also indirectly recruit myofibroblasts by stimulating TGFβ secretion from macrophages [84].
Thus, CAFs have the potential to promote growth and angiogenesis, remodel the ECM, and direct
cell-to-cell interaction. Furthermore, CAFs have been associated with breast cancer subtype, ER+,
TNBC and HER2+ [85]. Gene expression analysis have indicated that CAFs within the tumor stroma
may have subtype-specific gene expression profiles, with CAFs increasing the invasive properties of
the HER2+ subtype. These studies show the importance of CAFs in cancer progression and their ability
to alter the normal function of fibroblasts and their anti-tumorigenic abilities. In addition, further
studies are warranted to bridge the gap in knowledge as CAFs may hold potential prognostic value
and could be used to distinguish breast cancer subtype and stage.

2.4. Tumor-Associated Macrophages

Macrophage cells are large phagocytic cells found at sites of inflammation and engulf foreign
antigens and cancer-associated proteins to stimulate the adaptive immune responses. Macrophages
(and dendritic cells) have been the target for cancer immunotherapy and vaccines studies [86–90].
Macrophages also infiltrate the breast cancer microenvironment to initiate an inflammatory response
but differentiate into tumor-associated macrophages (TAMs) resembling M2 macrophages (Figure 1).
TAMs are re-programmed to inhibit lymphocyte functions through the secretion of inhibitory cytokines
including IL-10, prostaglandins and reactive oxygen species (ROS) [91,92]. ROS activates TGFβ which
inhibits cell growth by arresting cells in the G1 phase of the cell cycle leading to either terminal
differentiation or induction of apoptosis [93]. TAMs also produce extracellular matrix-degrading
enzymes such as metalloproteinases (MMPs). The proteolytic cleavage of TGFβ from latency-associated
peptide regulates the secretion, expression and activation of MMP2, MMP3, MMP9 and MMP13, which
facilitate tumor cell migration, degradation of blood vessel basal membranes and, metastasis [94,95].
M2 macrophages express arginase 1 (ARG1), anti-inflammatory cytokines, and proteases that support
their pro-oncogenic functions [19]. Increased numbers of CD163+ M2 macrophages associate with
unfavorable prognosis linked to non-luminal and basal-like breast cancer subtype [96,97]. In addition,
vascular endothelial growth factor (VEGF) secretion by TAM stimulate tumor angiogenesis, promoting
its invasiveness and metastatic potential [98–100]. TAMs are also able to transform cancer cells to
undergo EMT which subsequently enhances the invasion and metastasis of breast cancer cells [101–103].
Similarly, mesenchymal-like breast cancer cells can activate macrophages to a TAM-like phenotype by
granulocyte macrophage-colony stimulating factor 1 (GM-CSF1) [101].

TAMs are also associated with the regulation of programmed death receptor-1 (PD-1) and its
ligand (L; PD-L1) expression in the tumor microenvironment of TNBC. IFNγ, IL-1β, tumor TNFα,
TGFβ, IL-6, and IL-18 are key to the functionality of TAM [104,105]. The expression of PD-L1 on
tumor cells might be induced by the secretion of IFNγ via Janus kinase/signal transducer and activator
of transcription 3 (JAK/STAT3) and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)
signaling pathways, which has been shown in lung cancer [106]. TGFβ increases the suppressive
ability of TAMs by differentiating TAMs into M2 macrophages and upregulation of PD-L1 leads
to tumor escape [107]. Tumor-derived IL-18 increases the immunosuppressive properties on NK
subsets inducing their PD-1 expression which is correlated with poor prognosis of TNBC patients [108].
This mechanism can lead to inactivation of TILs in the TME and cancer immunotherapy and vaccines
studies, and would, therefore, not be effective in such an environment.

2.5. Tumor-Associated Neutrophils

Neutrophils are polymorphonuclear cells whose main function in the innate immune response
is the first line of defense and protection against fungal and bacterial infections. Neutrophils are
abundantly found in human blood and migrate to a number of tissues from the blood circulation.
In recent years it has been noted that neutrophils are also present within the TME with both pro- and
anti-tumorigenic properties [109]. In the TME, cytokines initiate polarization of tumor-associated
neutrophils (TANs) causing them to differentiate into either pro-inflammatory/anti-tumorigenic (N1
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phenotype) or, anti-inflammatory/pro-tumorigenic (N2 phenotype) (Figure 1, Table 1). Their migration
from the blood circulation into the TME is stimulated by IL-8 (CXCL8-CXCR1/2 axis) expression
by tumor cells [109]. Neutrophils in their normal state do not secrete oncostatin M however, upon
interaction with cancer cells oncostatin M becomes highly expressed in TANs. Oncostatin M exhibits
an inhibitory effect on cell proliferation of breast cancer cell lines exerting a pro-inflammatory response
by inducing adhesion and chemotaxis of neutrophils [110,111]. Conversely, oncostatin M has also been
shown to promote tumor progression by enhancing angiogenesis and metastasis to breast cancer cell
lines (MDA-MB-23 and T47D) [112]. Neutrophils isolated from healthy human volunteers display
no expression of oncostatin M but upon co-culture with MDA-MB-231 or T47D cells, oncostatin M
expression is significantly increased [112]. Furthermore, production of GM-CSF1 by breast cancer cells
and cell-cell contact are also necessary for neutrophils to release oncostatin M which has also been
noted to concurrently increase VEGF and invasive capacity of cell lines [112].

TANs associate with aggressive breast cancer phenotype, facilitates angiogenesis, promotes
mutagenesis and suppresses the immune system, leading to poor prognosis of patients [113,114].
The presence of TAN in breast cancer has also been associated with the clinical subtypes of breast cancer
indicating that there is a preferential chemotaxis of neutrophils dependent on the subtype [115]. In fact,
TANs predominate in TNBC compared to non-TNBC, suggesting that factors associated with the
TME may have direct or indirect effects on neutrophil production and chemotaxis into the TME [115].
In addition, TGFβ which is highly expressed in TNBC has been shown to be a major contributor to
neutrophil chemotaxis, however, TGFβ may also induce a pro-tumorigenic N2 phenotype [116–118].
The presence of TANs in the TME of breast cancer patients highlights their involvement in tumor
growth and metastasis. However, not much is known regarding their presence and their correlation to
the range of breast cancer subtypes, and whether they impact in cancer immunotherapy studies.

2.6. Tumor-Associated Eosinophils

The primary function of eosinophils was believed to be to fight parasitic and bacterial infections,
and were involved in the pathogenesis of inflammatory diseases such as allergic asthma and chronic
obstructive pulmonary disease with high secretion of IL-5 and other eosinophilia granules [119].
More recently, evidence suggests that eosinophils are abundant in inflammatory bowel disease
although their role within the intestinal tissues is not clear [120]. Blood eosinophils migrate to tissues
at sites of infection. In the human breast, eosinophils are crucial for mammary gland development
where they are interlaced within the terminal end buds of the breast together with a complex stroma
of fibroblasts and macrophages; once terminal end buds convert into terminal end ducts, fibroblasts
disappear [121,122]. Eosinophils have also be observed within the TME of cancer, including colon,
ovarian, prostate and lung carcinomas [123] (Figure 1). Of interest, eosinophils have been noted at the
edge of breast cancer biopsy wounds, suggesting that breast cancer biopsies may trigger the recruitment
of inflammatory cells including eosinophils [124]. In addition, low eosinophil counts in the peripheral
blood of breast cancer patients is a major risk factor of breast cancer recurrence [123]. The presence
and amount of mast cells and tumor-associated eosinophils was determined in patients diagnosed
with invasive breast cancer of different stages [125]. In that study, it was noted that eosinophils
were also not present within the TME. Although a positive correlation of improved prognosis with
tumor-associated eosinophils has been shown in a number of solid cancers, in Hodgkin’s lymphoma
their presence in the TME display a poor prognosis [123]. There is conflicting data on the presence of
eosinophils within the TME of breast cancer which requires further studies to understand their role
and interaction with other immune cells in the TME and their interaction with cancer cells. The little or
lack of eosinophil presence in breast cancers compared to other solid tumors, could be associated with
the current methods utilized or different interactions between eosinophils and breast cancer that are
yet not defined. Whether eosinophils contribute to immune suppression or immune stimulation in
breast cancer immunotherapy studies is also unknown.
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2.7. Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) are a diverse population of myeloid progenitor cells
which have been shown to play a key role in chronic inflammation and cancer development [126].
In cancer, MDSCs (CD34+CD33+CD13+CD15(−)) promote tumor cell growth and suppresses immune
cell function through production of arginase 1 (ARG1) which synergizes with inducible nitric oxide
synthase (iNOS) to increase superoxide and nitric oxide (NO) production, thus, reducing lymphocyte
function [127,128] (Figure 1, Table 1). Studies on the levels and phenotypes of myeloid cells in peripheral
blood and TME of breast cancer patients revealed high levels of tumor-infiltrating myeloid cells, including
granulocytes and immature cells lacking expression markers for fully differentiated monocytes or
granulocytes [129]. However, the expansion was not reflected in the peripheral blood or in samples from
non-breast cancer patients. In addition, the presence of ARG1 expression, important in T cell suppression,
reinforces the immunosuppressive ability of MDSCs [129]. Furthermore, MDSCs isolated from breast
cancer tissues show high expression of indole amine 2,3 dioxygenase (IDO), an enzyme responsible for
the catabolism of tryptophan. This depletion of tryptophan by IDO in the TME produces kynurenine
based by-products that lead to inhibition of T cell proliferation and induces T cell apoptosis [130].

3. Immune Checkpoint Molecules and Breast Cancer

Immune-editing involves the process of malignant cell progression based on cancer cell and
immune cell interactions in three stages: (i) Elimination: where cancer cells are eliminated following
immuno-surveillance involving both innate and adaptive immune cell infiltration including, NK cells,
NK-T cells, T cells, and increased pro-inflammatory cytokines in the TME; (ii) Equilibrium: the balance
between anti-tumor and tumor-promoting factors in that transformed cells are held in control but are
not eliminated following immuno-surveillance; and (iii) Escape: where modifications to tumor cells
themselves shape disease progression, as seen in breast cancer, where escape mechanisms include
reduced expression of major histocompatibility complex class I [39] and/or co-stimulatory molecules
and increased expression of immunosuppressive factors [16]. Immunosuppressive factors involved in
the evasion of immune-surveillance play influential roles in cancer progression. Immune checkpoints
of inhibitory pathways are crucial for the immune system to maintain self-tolerance and modulate
immune responses in order to minimize damage. Immune checkpoints (such as CTLA4, PD-1/PD-L1,
IDO, and Siglec-9) are initiated by ligand-receptor interactions and can be blocked by antibodies or
modulated by recombinant forms of ligands or receptors [131] (Figure 2, Table 2). It is important
to understand immune checkpoint molecules and their role in breast cancer and numerous clinical
trials are assessing the efficacy of immune checkpoint inhibitors (via monoclonal antibodies) in cancer
therapies either alone or in combination with other cancer therapies.
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Figure 2. Immune checkpoints of immunosuppressive actions associated with breast cancer. Immune
checkpoints of inhibitory pathways are fundamental in the immune system to maintain self-tolerance and
modulate immune responses. In breast cancer, some of these immune checkpoints and immunosuppressive
factors have been associated with subtype specificity through their expressions on breast cancer
cells. The different immune cells and their ligand-receptor interactions and secreted stimulatory
growth factors, chemokines and cytokines are shown. The expression of these immune markers in
the TME in breast cancer may or not be subtype-specific but are important in circumventing immune
recognition or to immobilize effector T cells. Thus, the expression of these ligands and receptors
may be associated with breast cancer stage and clinical outcome. (AKT. serine/threonine kinase or
protein kinase B; ARG1. Arginase 1; Bcl-xL. B-cell lymphoma-xtra large; CAFs. Cancer-associated
fibroblasts; CTLA4. cytotoxic T-lymphocyte-associated protein 4; ER− Estrogen Receptor Negative;
GM-CSF. Granulocyte-Macrophage Colony-Stimulating Factor; HER2+. Human Epidermal Growth Factor
Receptor 2; IDO. Indoleamine-2,3-dioxygenase; IFN-γ. interferon gamma; IFN-γR. interferon gamma
receptor; IL. Interleukin; JAK. Janus kinase; iNOS. Inducible nitric oxide synthase; MDSC. Myeloid-derived
suppressor cells; MHC. major histocompatibility complex; MMP. Matrix Metalloproteinases; mTOR.
Mammalian target of rapamycin; MUC. Mucins; NK. natural killer; NF-κB. nuclear factor-κB;
NLR. Neutrophil-lymphocyte ratio; NO. Nitric Oxide; PI3K. PI3K.phosphoinositide 3-kinase; PD-1.
programmed death-1; PD-L1. Programmed death-ligand1; PGE2. Prostaglandin E2; PR−. Progesterone
Receptor Negative; ROS. Reactive Oxygen Species; SHP. Src homology protein-tyrosine phosphatase;
Siglec 9. Sialic acid-binding lectins 9; STAT. Signal transducer and activator of transcription; TAMs.
Tumor-associated macrophages; TANs. Tumor-associated neutrophils; TGF-β. Transforming Growth
Factor-beta; TIL. Tumor-Infiltrating Lymphocytes; TNBC. Triple Negative Breast Cancer; Treg. regulatory
T cell; TCR. T cell receptor; VEGF. Vascular endothelial growth factor).

3.1. Cytotoxic T Lymphocyte-Associated Protein 4

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4, CD152), expressed on the surface of
activated T cells and a subset of Treg cells, functions as an immune checkpoint molecule which can
downregulate T cells and inhibit anti-tumor responses [132]. CTLA-4 interacts with the cell surface
immune stimulatory markers CD80 and CD86 on dendritic cells, resulting in the activation of dendritic
cells and CD4/CD8 T cells. Treg cells (CD4+Foxp3+) are able to block this interaction resulting in
decreased dendritic cell activation, inhibition of cytokine production (IL-2), T cell cycle arrest and
suppression of CD8+ T cell proliferation [132]. One approach cancer cells have evolved to escape
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from the immune system, is via the expression of CTLA-4 on their surface and in a limited number
of studies, it has been shown to decrease survival in non-small lung cancer and nasopharyngeal
cancer patients [133]. In vitro, co-culture of monocyte-derived human dendritic cells activated with
lipopolysaccharide and CTLA-4+ breast cancer cell line, resulted in decreased expression of MHC
class II, and costimulatory cell surface molecules (CD40, CD80, CD83, CD86) on dendritic cells and
inability to activate T cells [133]. The addition of anti-CTLA-4 monoclonal antibody was able to
reverse dendritic cell suppression and activate CD8+ T cells and induce apoptosis of CTLA-4+ breast
cancer cells. Thus, CTLA-4 blockade is a promising approach for therapeutic studies in breast cancer
patients, with or without combination with immunotherapy. Further, CTLA-4 expression by T cells is
associated with better prognosis, whereas the expression of CTLA-4 on tumor cells is associated with
poor prognosis [134].

3.2. Programmed Cell Death Protein 1

Programmed cell death protein 1 (PD-1, CD279) which is homologous to CD28, is an inhibitory
immune signaling molecule and regulates adaptive immune responses. PD-1 is not expressed on
circulating T cells but is expressed on activated T cells via TGFβ, IL-2, IL-7, IL-15 and IL-21. PD-1 is
also expressed by activated NK cells, B cells, monocytes, dendritic cells, myeloid cells, and thymocytes.
The ligands (L) for PD-1 are PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) which are expressed
on dendritic cells and monocytes and are upregulated by IFNγ, GM-CSF, vascular endothelial
growth factor, VEGF, lipopolysaccharide, IL-10 and IL-14 [133]. The interaction between PD-1 and
its ligands PD-L1 or PD-L2 leads to decreased T cell activity and its expression has been associated
with poor prognosis [135]. In breast cancer, in particular in TNBC subtype, PD-L1 is upregulated
which suppresses tumor-infiltrating T cells [136] resulting in higher Ki-67+ cells, basal-like subtypes,
and distant metastasis [137]. Furthermore, analysis of PD-L1 expression in breast cancer cell lines
showed higher PD-L1 expression in basal and mesenchymal cell lines than luminal cell lines [138].
Clinical samples from breast cancer patients, show upregulated expression of PD-L1 and is associated
with poor prognostic features: ductal type, large tumor size, high grade, ER−, PR−, ERB-B2 receptor
tyrosine kinase 2 (ERBB2)+, high proliferation rate and aggressive molecular subtypes (basal and
ERBB2-enriched) [138]. In the last decade a number of clinical trials have been conducted to block
PD-L1/PD-1 axis on non-small cell lung carcinoma and melanoma [135]. In fact, as of March 2019
the FDA approved an anti-PD-L1 antibody, in combination with chemotherapy, for the treatment of
triple-negative, metastatic breast cancer for patients whose tumors expressed PD-L1.

3.3. Indoleamine 2,3-Dioxygenase

Indoleamine 2,3-dioxygenase (IDO) is an enzyme which catalyzes the oxidative break-down of
tryptophan via kynurenine pathway in the presence of IFNγ [139]. Tryptophan is a vital amino acid for
cell survival, and a lack of tryptophan in the TME leads to inhibition of T cell proliferation, thus, IDO
exerts an immunosuppressive effect allowing tumor cells to escape from immune cells [130,139,140].
There are a number of mechanisms by which IDO influences the anergy of T cell activity within the TME.
Firstly, by inhibiting mammalian target of rapamycin complex 1 and protein kinase C, both of which are
regulators of glucokinase (GLK1), an important glucose regulator [141,142]. Secondly, the expression
of IDO on cancer cells can activate the general control non-depressible-2 (GCN2) inducing a stress
response in cells. GCN2 is stimulated by tryptophan transfer RNA (tRNA) in cells from accumulated
uncharged tryptophan as a result of tryptophan degradation via IDO. Stimulation of GCN2 by the
tryptophan tRNA alters protein translation and, prevents activation of T cells and promotes Treg
cell differentiation [143–145]. Thirdly, the production of kynurenine, resulting from catabolism of
tryptophan, activates transcription of the aryl hydrocarbon receptor (AHR), leading to differentiation
of Foxp3+ Treg cells which suppress of anti-tumor responses [146,147]. Expression of high levels of
IDO by cancer cells has been correlated with poor prognosis and reduced overall survival in patients
with solid tumors including, breast cancer [140]. In fact, microvesicles released by malignant tumors,
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in breast cancer patients contained a significantly high expression of IDO compared to normal breast
tissues or benign tumor samples [148,149]. In addition, IDO expression is higher in advanced stages of
breast cancer and mainly expressed in the TNBC subgroup [148,149]. The expression of IDO in TNBC
has also shown to correlate with high expressions of PD-L1 in invasive primary breast carcinomas
which highlights the need for combination therapies over single ones [150].

3.4. Sialic Acid-Binding Immunoglobulin-Type Lectin

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the surface of immune
cells and to date, 15 different Siglecs have been identified. In particular Siglec-7 on NK cells and
Siglec-9 on neutrophils, dendritic cells, monocytes, are associated with anti-tumor immunity [151].
In particular, Siglec-9 interacts with sialic acids on cancer cells (i.e., with MUC1, a high molecular
weight glycoprotein expressed on adenocarcinoma cells including breast cancer) leading to immune
suppression [152]. The mucous barrier that protects the epithelia contains secreted and transmembrane
mucins. These membrane-bound mucins have important biological roles in cell-cell and cell-matrix
interactions [20,25]. Human adenocarcinomas overexpress tumor-associated transmembrane mucins,
such as MUC1 and MUC4, and are associated with tumor progression by enhancing their role in
cell growth and survival [153,154]. Thus, mucins have been identified as potential prognostic and
therapeutic targets for breast cancer development. In fact, vaccines/immunotherapeutic strategies
targeting MUC1 have shown promise in pre-clinical animal models and in human clinical trials, with
immune cell activation and clinical responses [24,25,42,48,155–161]. MUC1 is cleaved into N- and C-
terminal subunits (MUC1-N and MUC1-C) which form a heterodimeric complex expressed at the
cell membrane [162]. Studies have shown that MUC1-C functions as an oncoprotein by interacting
with epidermal growth factor receptor (EGFR), ERbB2, and other tyrosine kinase receptors [163].
MUC1 also contributes to the malignant phenotype of cancer cells by binding to β-catenin, blocking
phosphorylation and degradation [163,164]. In fact, the interaction between Siglec-9 and MUC1 via
sialylated O-glycans, aids in cell growth by stimulating the recruitment of β-catenin [152]. In breast
cancer, overexpression of MUC1 is associated with poor prognosis [165], suggesting that Siglec-9 may
play an important role in the progression of breast cancer. Hence, studies that evaluate the complex
interaction between Siglec-9-MUC1 and breast cancer, as well as the mechanism of this interaction
in vitro and in vivo are warranted. In addition, human clinical studies utilizing MUC1 as a target
should include blockade of Siglec-9 for improved clinical outcomes to patients with breast and other
cancers. In fact, at the American Associate for Cancer Research Meeting in Chicago April 2018, it was
announced that first-in-class antibodies against Siglec-9 immune checkpoints are being developed for
cancer immunotherapy (Benac, O., et al., conference presentation).

Table 1. Cells within the tumor microenvironment and their role in breast cancer.

Cell Type Mechanisms Model Detection Ref

Epithelial-mesenchymal
transition (EMT) (via
transcription factors Snail,
Twist-1 and Lox and markers
vimentin and N-cadherin)

Involved in tumor progression and
metastasis through signaling pathways
such as TGFβ, NF-κB, Wnt, Notch

[60,61]

Lox important in extracellular matrix (ECM)
→ invasion and metastasis

Triple negative breast cancer
(TNBC) and non-TNBC human
samples

Immunohistochemistry (IHC) [62]

↑Lox in TNBC

NF-κB→ ↑Snail→ TNF-α induced EMT MCF-7 Cell line
Cell migration (CM)

[166]Real time polymerase chain
reaction (RTPCR)
Western Blot (WB)

MSC’s (Mesenchymal stem cells)
↑metastasis through facilitation of EMT

MDA-MB-231, T47D and SK-Br3
cell lines

Low-density array
[167]RT-PCR

Gene expression and
proliferation assays
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Table 1. Cont.

Cell Type Mechanisms Model Detection Ref

Immune cells
Tumor-infiltrating
Lymphocytes (TILs), T-cells
(Tregs: CD4, CD25, FOXP3;
CD8+; CD4+ Th cells)

Suppress T-cell proliferation [74]
Induce tumor cell death via IFN-γ and
granzyme-perforin molecules

naïve CD4+ T cell recruitment→
↓Immunosuppression

MDA-MB-231 cell line IHC and immunofluorescence
staining, Flow cytometry (FC),
Migration assay [70]Primary breast carcinoma

CD4+ naïve T cell
Female NOD/scid mice qRT-PCR, Binding assays, WB
Humanized mice
NOD/SCID/IL2rγnull (NSG)

Tumor-associated

TAMs are re-programmed to inhibit
lymphocyte functions through release of
inhibitory cytokines such as IL-10,
prostaglandins or reactive oxygen species
(ROS)

[91,92]

macrophage (TAM) ↑CD163+ in non-luminal and basal-like
breast caner Human tumor tissue IHC with CD163 [96]

breast cancer cell-secreted factors modulate
macrophage differentiation to M2 status

Human tumor tissue
IHC

[168]FC
Cell line MCF-7, MDA-MB231 and
T47D

ELISA
Zymography

↑CD163+ in tumor stroma of TNBC
Human Luminal A and Triple
Neg/basal-like tissue

IHC [169]
Gene Expression

Cancer-associated Fibroblast
(CAF)

Shown to secrete various growth factors
and cytokines associated with promoting
breast cancer proliferation

[79]

CAFs derived from Her2+ breast cancers→
↑actin cytoskeleton and integrin signaling

Breast tumors sub grouped
according to receptor expression

IHC [85]
Gene Expression

ER+ expressing CD146neg
→ ↑tumor

resistance to tamoxifen
Human tissue (Stage II & III, ER+
and/or ER−) Immunocytochemistry (ICC) [170]

ER+ expressing CD146pos
→ ↓tumor

resistance to tamoxifen MCF-7 cell line Gene expression

TNBC exhibit CAF subsets, ↑CAF-S1→ ↑T
Lymphocyte survival→ ↑Treg→ Ø T
effector proliferation→
Immunosuppression

Female BC patient cohort
(Luminal, HER2 and TN subtype
tissues)

FC [171]

IHC

Tumor-associated
Neutrophils (TANs)

N2 phenotype: pro-tumorigenic or
pro-inflammatory [172]

N1 phenotype: anti-tumorigenic

Oncostastin M expressed by TANs→
↑angiogenesis and metastasis MDA-MB-231 & T47D cell lines

ICC [112]
ELISA

↑TAN in TNBC

Stage I-III breast cancer patient
tumors divided into three
subtypes: hormone-receptor
[HR]-positive, HER2-negative
(HR+, HER2-ve); HER2-positive
and triple negative (TN)

Hematoxylin & eosin [115]

IHC

↑TβRIII (TGF-β receptor) in TNBC→
↑mesenchymal-stem like (MSL) TNBC cells
→ cell migration, invasion, and
tumorigenicity

MSL cell lines SUM159,
MDA-MB-231 and MDA-MB-157

Cell proliferation assay

[116]
CM and invasion assay
Immunoblotting
FC
Gene Expression

Tumor-associated
Eosinophils

High presence of eosinophils at biopsy site
may be linked to proliferation rate of tumor
cells adjacent to wound

Female patients with primary
breast cancer Peripheral eosinophil counts [173]

Myeloid-derived suppressor
cells (MDSCs)

↑Arginase 1 (ARG1) + nitric oxide synthase
(iNOS)→ ↑superoxide and nitric oxide
(NO)→ Ø lymphocyte responses→ ↑iNOS
in surrounding cells→ ↑tumor growth and
↓ immune cell functions

[127,128]

stage IV patients with extensive metastasis
→ ↑MDSC

Blood from patients with stages
I–IV solid malignancies obtained
prior to surgery

FC [174]

↑MDSC correlates with worse prognosis Peripheral blood specimens stage
IV breast cancer patients

FC [175]
Proliferation assay

MDSC ↑IDO→ ↓tryptophan→ Ø T-cell
proliferation and induced T-cell apoptosis

Female breast cancer patients
(Stages I–III)

IHC

[176]RT-PCR
WB
ELISA
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Table 2. Immune Checkpoints and Breast Cancer.

Immune Checkpoint Factor Mechanisms Model Detection Ref

CTLA4

Expressed on the surface of activated T-cells and a
subset of Tregs ↓T-cell activation→ Anti-T cell response [177]

CTLA4 blockade→ Ø proliferation and induced
apoptosis of CTLA-4+ breast cancer cells

MDA-MB-231, SKBR3,
MCF-7 and T47D cell lines

FC [178]
WB

↑CTLA-4 in lymphocytes→ better prognosis 130 BC patients IHC [134]
↑CTLA-4 in T cells→worse prognosis

PD-1 (PD-L1/PD-L2)

PD-1 is expressed by activated lymphocytes→ ligation
PD-L1/PD-L2→ ↓T-cell activity→ poor prognosis [135]

TNBC subtype; ↑PD-L1→ suppresses
auto-immunity—T cell proliferation—Cytokine
production—Cytotoxic activity

[136]

PD1 ↑TILs, but ↓PDL1 in T cells→ positive TNBC
prognostic factor

negative ER, PR, and HER-2
BC patients

IHC [137]
RNAscope

↑PD-L1 in Basal & TNBC subtypes→ ↑cytotoxic local
immune response→ ↑better survival BC patient is Cell lines [138]

Indoleamine
2,3-dioxygenase (IDO)

Catalyzes the oxidative break-down of tryptophan via
kynurenine pathway in the presence of IFN-γ→
enabling immune escape

[130]

Correlation between expression of IDO and PD-1 in
myoepithelial, stromal, and T cells

Human BC patient tissues
and healthy tissues

IHC
[179]WB

RT-PCR

↑IDO expression in TNBC and basal-like BC 200 TNBC patients IHC [180]
RT-PCR

IDO expression ↑ER+ as compared to ER− is breast cancer tissue sections IHC [52]

Siglec-9

Siglec-9 found on neutrophils and Siglec-7 found on NK
cells have been associated with anti-T immunity [151]

Siglec-9→ T-associated MUC1 downstream signal
transduction, following T cell proliferation

Transgenic mice and murine
mammary T cell

WB,
Immunoperoxidase
staining, IHC [181]
Gene expression
Proliferation (MTT)
assay

↑Siglec-9 on DCs involved in immunoregulation
through ligation with mucins in epithelial cancer

Human colon cancer cell line
(LS 180 cells)

FC
[182]RT-PCR

ELISA

4. Conclusions and Future Prospects

The interaction between the immune system and the TME have become a pivotal point of research.
The ability of cancer cells to signal pro-tumorigenic modifications to normal anti-tumorigenic cells to
aid in cell proliferation and angiogenesis has provided multiple advancements in cancer therapies and
prognostic value. As a consequence, not all current therapies and treatments have been able to provide
relief from the 100 or more types of cancers, with breast cancer being the most common among women.
In addition, in breast cancer, each subtype and stage has risk factors for incidence, treatment response,
rate of disease progression and metastasis associated with it [53]. Current studies continue to isolate the
different immune cell populations and those found within the TME of breast cancers, their association
with hormone receptor phenotype and immune-evasion mechanisms. The interaction between immune
cells and cancer cells in the TME and immune-checkpoints could potentially be used for identification
of new markers associated with progression of tumors in their early developmental stages.

Currently, breast cancer-positive hormone receptor phenotypes (ER+, PR+, HER2+) have more
treatment options with favorable outcomes compared to the TNBC subtype. The immune cells
function and their cytokines are key factors whose modulation strongly encourages further study
and consideration as predictive markers and important therapeutic targets in different subtypes of
breast cancer [183]. No systemic method has been associated with the combination of markers in early
diagnosis of cancer patients. Although the current methods and biomarkers can be used to place
patients within a clinical stage critical for treatment options, having a systemic method that correlates
the expression of biological, immunological, and potential neurological markers could pave the way
into new prognostic and clinical outcomes of cancer patients. In addition, all this combined with
immune checkpoint inhibitors and cancer immunotherapeutics would yield new improved treatments
for breast cancer.
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