
Advances in Deep Generative Modeling
With Applications to Image Generation

and Neuroscience

Gabriel Loaiza Ganem

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019

c©2019

Gabriel Loaiza Ganem

All Rights Reserved

ABSTRACT

Advances in Deep Generative Modeling
With Applications to Image Generation

and Neuroscience

Gabriel Loaiza Ganem

Deep generative modeling is an increasingly popular area of machine learning that

takes advantage of recent developments in neural networks in order to estimate the

distribution of observed data. In this dissertation we introduce three advances in this

area. The first one, Maximum Entropy Flow Networks, allows to do maximum entropy

modeling by combining normalizing flows with the augmented Lagrangian optimization

method. The second one is the continuous Bernoulli, a new [0,1]-supported distribution

which we introduce with the motivation of fixing the pervasive error in variational

autoencoders of using a Bernoulli likelihood for non-binary data. The last one, Deep

Random Splines, is a novel distribution over functions, where samples are obtained

by sampling Gaussian noise and transforming it through a neural network to obtain

the parameters of a spline. We apply these to model texture images, natural images

and neural population data, respectively; and observe significant improvements over

current state of the art alternatives.

Table of Contents

List of Figures iv

List of Tables vii

List of Algorithms viii

Chapter 1 Introduction 1

Chapter 2 Background 6

2.1 Maximum Entropy Modeling and the Gibbs Distribution 6

2.2 The Augmented Lagrangian Method 8

2.3 Texture Networks . 10

2.4 Normalizing Flows . 11

2.4.1 Fast Backward Computations 12

2.4.2 Fast Forward Computations 12

2.4.3 Fast Backward and Forward Computations 13

2.5 Variational Autoencoders . 14

2.5.1 Importance Weighting . 16

2.5.2 β-VAE . 17

2.5.3 PfLDS . 17

2.5.4 Discrete Latent Variables . 18

2.6 Evaluation Metrics . 19

2.6.1 Inception Score . 20

i

2.6.2 Fréchet Inception Distance . 20

2.7 Poisson Processes . 21

2.8 Splines and Nonnegative Polynomials 22

2.9 Method of Alternating Projections 23

Chapter 3 Maximum Entropy Flow Networks 25

3.1 Introduction . 25

3.2 Maximum Entropy Flow Network Algorithm 27

3.2.1 Formulation . 27

3.2.2 Algorithm . 28

3.3 Experiments . 32

3.3.1 A Maximum Entropy Problem With Known Solution 32

3.3.2 Risk-Neutral Asset Pricing . 36

3.3.3 Modeling Images of Textures 39

3.4 Conclusions . 42

Chapter 4 The Continuous Bernoulli 45

4.1 Introduction . 45

4.2 The Continuous Bernoulli Distribution 47

4.3 The Continuous Bernoulli VAE . 54

4.3.1 Binarizing . 55

4.3.2 Data Augmentation . 55

4.3.3 Bernoulli VAE as a Different Objective 56

4.3.4 Bernoulli VAE as a Lower Lower Bound 56

4.3.5 Mean Parameterization . 56

4.4 Experiments . 57

4.4.1 MNIST . 57

4.4.2 Warped MNIST Datasets . 58

4.4.3 CIFAR-10 . 63

ii

4.4.4 Simulated Data . 64

4.5 Conclusions . 65

Chapter 5 Deep Random Splines 67

5.1 Introduction . 67

5.2 Deep Random Splines . 69

5.2.1 Parameterizing Nonnegative Splines 70

5.2.2 Enforcing Nonnegativity . 71

5.3 Deep Random Splines as Intensity Functions of Point Processes . . . 73

5.3.1 Our Model . 74

5.3.2 Inference . 75

5.4 Experiments . 76

5.4.1 Simulated Data . 76

5.4.2 Real Data . 79

5.5 Conclusions . 82

Chapter 6 Conclusions 84

Appendix A 102

Appendix B 103

Appendix C 112

iii

List of Figures

Figure 3.1 Example results from the ME problem with known Dirichlet

ground truth. Left panel: The normal density p0 (purple) and iid

samples from p0 (red points). Middle panel: The MEFN transforms

p0 to the desired maximum entropy distribution pθ∗ on the simplex

(calculated density pθ∗ in purple). Truly iid samples are easily drawn

from pθ∗ (red points) by drawing from p0 and mapping those points

through fθ∗ . Shown in the middle panel are the same points in the

top left panel mapped through fθ∗ . Samples corresponding to training

the same network as MEFN to simply match the specified moments

(ignoring entropy) are also shown (dark green points; see text). Right

panel: The ground truth (in this example, known to be Dirichlet)

distribution in purple, and iid samples from it in red. 35

Figure 3.2 Quantitative analysis of simulation results. See text for description. 36

Figure 3.3 Constructing risk-neutral measure from observed option price.

Left panel: fitted risk-neutral measure by Gibbs and MEFN method.

Middle panel: Q-Q plot for the quantiles from the distributions on the

left panel. Right panel: observed and fitted option price for different

strikes. 38

Figure 3.4 Analysis of texture synthesis experiment. See text for description. 41

Figure 3.5 MEFN and texture network samples. 43

Figure 4.1 Continuous Bernoulli log normalizing constant (left panel), pdf

(middle panel) and mean (right panel). 49

iv

Figure 4.2 Samples from MNIST, continuous Bernoulli VAE, Bernoulli

VAE, and Gaussian VAE. 58

Figure 4.3 fγ for different γ values. 59

Figure 4.4 Continuous Bernoulli comparisons against Bernoulli VAE. See

text for details. 60

Figure 4.5 More continuous Bernoulli comparisons against Bernoulli VAE.

See text for details. 61

Figure 4.6 Gaussian (top panels) and beta (bottom panels) distributions

comparisons between including and excluding the normalizing constants.

Left panels show ELBOs, middle panels inceptions scores, and right

panels 15-nearest neighbors accuracy. 62

Figure 4.7 Bias of the EM algorithm to estimate continuous Bernoulli

parameters when using a continuous Bernoulli likelihood (dark blue),

Bernoulli likelihood (light blue) and a Bernoulli likelihood plus a µ−1

correction. 65

Figure 5.1 Encoder architecture. 76

Figure 5.2 Posterior means of the hidden variables of DRS-VAE by type of

trial on simulated data (left panel), comparison of posterior intensities

of our method (DRS-VAE) against competing alternatives on simulated

data (middle panel) and Q-Q plot of events (right panel). 78

Figure 5.3 Comparison of posterior intensities of our method (DRS-VAE)

against competing alternatives on reaching data. 80

Figure B.1 Behavior of continuous Bernoulli against similar beta around 0. 105

Figure B.2 Inception scores for continuous Bernoulli VAE (dark) and

Bernoulli VAE (light). See text for details. 107

Figure B.3 MNIST continuous Bernoulli VAE and Bernoulli VAE samples

1. First three columns are also shown in the main manuscript. 108

v

Figure B.4 MNIST continuous Bernoulli VAE and Bernoulli VAE samples 2.108

Figure B.5 MNIST continuous Bernoulli VAE and Bernoulli VAE samples 3.109

Figure B.6 MNIST Gaussian VAE (denoted N) and beta distribution VAE

(denoted B) samples, both including normalizing constants and ignoring

them (denoted with tilde). Third columns is also shown in the main

manuscript. 109

Figure B.7 CIFAR-10 continuous Bernoulli VAE and Bernoulli VAE samples

1. 110

Figure B.8 CIFAR-10 continuous Bernoulli VAE and Bernoulli VAE samples

2. 110

Figure B.9 CIFAR-10 Gaussian VAE (denoted N) and beta distribution

VAE (denoted B) samples, both including normalizing constants and

ignoring them (denoted with tilde). 111

vi

List of Tables

Table 3.1 Quantitative measure of image diversity using 20 randomly sam-

pled images. 41

Table 4.1 Comparisons of training with and without normalizing constants

for CIFAR-10. For connection to the panels in figures 4.4 to 4.6, column

headers are colored accordingly. 64

Table 5.1 Quantitative comparison of our method (DRS-VAE) against

competing alternatives on simulated data. 78

Table 5.2 Quantitative comparison of our method (DRS-VAE) against

competing alternatives on reaching data. 81

Table 5.3 Quantitative comparison of our method (DRS-VAE) against

competing alternatives on cycling data. 82

vii

List of Algorithms

Algorithm 1 Augmented Lagrangian Method 9

Algorithm 2 Training MEFN . 30

viii

Acknowledgments

Going through a PhD has been a fulfilling and rewarding experience, during which

I have learned an enormous amount. This was in good part due to my advisor,

John Cunningham, whom I want to thank for his continuous guidance, support and

patience, which were all fundamental to the completion of this dissertation. I have

fond memories of our weekly discussions, which were always intellectually stimulating.

Thank you, John!

I also want to thank my dissertation committee members, Liam Paninski, David

Blei, David Knowles and Nikolaus Kriegeskorte for reading this work and helping to

improve it; as well as Columbia University and its Statistics Department, as this work

would not have been possible without their financial support.

I was very lucky to interact with many fantastic people at Columbia from whom

I learned a lot, among them Yuanjun Gao, Sean Perkins, Karen Schroeder, Mark

Churchland, Andrew Miller, Evan Archer, Scott Linderman, Christian Naesseth, Sean

Bittner, Taiga Abe, Shreya Saxena, Joshua Glaser, Kenneth Kay, Peter Orbanz, Arian

Maleki and Andrew Gelman.

I also want to thank Papá, Mamá, Ignatz, Añu, Abuelo, and Tita as well as Omar,

Sylvain, Sebastián and Nathan for their constant support and encouragement.

Finally, I also want to thank my undergraduate professors, specially Alberto Tubilla,

Carlos Bosch and Zeferino Parada for giving me the proper foundations to pursue

graduate studies, and helping me do so.

ix

To my parents, Gabriel and Claudia.

x

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The goal of generative modeling is, given some data, to estimate the distribution that

generated it. In a way this is the most general statistical problem, as any question

of interest about a set of random variables can be formulated in terms of their joint

distribution. The price to pay for solving such a general problem is that it is hard to do

so, for example, kernel density estimation [Rosenblatt, 1956, Parzen, 1962] suffers from

very slow convergence rates in high dimensions. Hierarchical and graphical models

[Gelman and Hill, 2006, Wainwright and Jordan, 2008] have been very successful

approaches, as they allow to model complex structure in the data, which can help

alleviate the curse of dimensionality. Significant effort has been devoted to performing

inference on these models [Dempster et al., 1977, Jordan et al., 1999, Murphy et al.,

1999].

On the other side of the machine learning spectrum, thanks to back-propagation

[Rumelhart et al., 1988] neural networks have been remarkably successful in supervised

tasks such as classification [LeCun et al., 1998, Krizhevsky et al., 2012, He et al.,

2016]. While we do not yet fully understand why these incredibly flexible models

do not overfit [Zhang et al., 2016], they have been empirically shown to significantly

outperform alternatives. More recently, neural networks have also been used, at the

cost of some parameter interpretability but to much empirical success, in generative

CHAPTER 1. INTRODUCTION 2

modeling. The most popular frameworks for deep generative models are Generative

Adversarial Networks (GAN) [Goodfellow et al., 2014], Variational Autoencoders

(VAE) [Kingma and Welling, 2013] and to a lesser degree, Normalizing Flows [Dinh

et al., 2014, Rezende and Mohamed, 2015]. All these methods take advantage of the

huge flexibility of neural networks and use it for generative modeling.

In order to fully take advantage of neural networks, deep generative modeling requires

large amounts of data. As such, image modeling is among the most popular applica-

tions of deep generative modeling, as large image datasets such as MNIST [LeCun,

1998], CIFAR-10 [Krizhevsky et al., 2009] and ImageNet [Russakovsky et al., 2015]

are easily available. Deep generative modeling has also been applied in areas such

as image generation [Gregor et al., 2015, Denton et al., 2015], text generation [Hu

et al., 2017], text to image synthesis [Zhang et al., 2017], neuroscience [Gao et al.,

2016], chemistry [Gómez-Bombarelli et al., 2018] and music generation [Mogren, 2016],

among others. Recent developments in microelectrode arrays for neural recordings

[Ballini et al., 2014] allow to measure population level spiking activity, resulting in the

type of large datasets that are amenable to deep generative modeling. These datasets,

after spike sorting [Lee et al., 2017], contain simultaneous spiking times (i.e. times

when neurons fire) over large populations of neurons. Analyzing these datasets is a

challenging task that can help to further our understanding of the brain, and doing so

with neural networks and generative modeling is an exciting research area. In what

follows we give a brief description of the main deep generative modeling frameworks.

GAN work by transforming Gaussian noise through a neural network, called the

generator. The idea is that the distribution of the transformed variable should match

the true data generating distribution. Computing the distribution of the transformed

variables is not tractable, so estimating the parameters of the generator through

maximum likelihood cannot be done. In order to circumvent this issue, a second neural

network, called the discriminator, is introduced. The discriminator is a binary classifier

that tries to differentiate between true and generated samples. The generator and dis-

CHAPTER 1. INTRODUCTION 3

criminator are trained together on a saddle point optimization (often called adversarial

training) objective, which the generator tries to minimize and the discriminator to

maximize. Goodfellow et al. [2014] show that if the discriminator has infinite capacity,

the adversarial objective is equivalent to minimizing the Jensen-Shannon divergence

between real and generated data. There are extensions where the minimized divergence

is changed [Nowozin et al., 2016, Arjovsky et al., 2017]. However, GAN suffer from

several issues: First, the capacity needed for the discriminator for the adversarial

objective to be close enough to the divergences that it is supposedly approximating is

not achievable in practice, as shown by Arora et al. [2017]. Second, in practice the

adversarial training objective is optimized with stochastic gradient methods, which

have no guarantees (not even local ones, unlike for minimization problems) for this

type of optimization problems. Third, despite some efforts, evaluating the performance

of a trained generator remains challenging [Salimans et al., 2016, Arora and Zhang,

2017, Heusel et al., 2017].

VAE proceed in a similar fashion to GAN by transforming noise (usually Gaussian)

through a neural network. The difference is that the output of the network is not the

data directly, but the parameters of a distribution which we assume generated the

data. This allows to interpret the initial noise as local latent variable, and approximate

posterior inference can be performed on it. This allows VAE to not only posit a

generative model for the data of interest, but to carry out dimensionality reduction at

the same time (there are GAN efforts to achieve this [Donahue et al., 2016], but they

still suffer from all the GAN issues). While the likelihood still cannot be computed,

a lower bound called the ELBO is tractable, which allows to estimate the model

parameters and perform approximate posterior inference, thus resulting in a more

sound procedure than GAN, both from a probabilistic and from an optimization

perspective. Furthermore, there are extensions of VAE that allow to regain some of

the interpretability that is lost by using neural networks, see for example Gao et al.

[2016], Johnson et al. [2016].

CHAPTER 1. INTRODUCTION 4

Normalizing flows are like GAN in that they transform Gaussian noise directly into

the data through a neural network. However, the neural network is carefully designed

in such a way that the density of the transformed variable can be efficiently computed.

This is achieved by constructing invertible neural networks and using the change of

variable theorem. The result is that adversarial training is no longer necessary and

the network can be trained with maximum likelihood. While, unlike in VAE, the

likelihood can be computed exactly and not just a lower bound, normalizing flows do

not perform dimensionality reduction as the “latent” variables (which can actually be

computed exactly) need to have the same dimension as the observed data due to the

imposed invertibility of the neural network.

GAN have had impressive empirical success, particularly for image modeling [Denton

et al., 2015, Radford et al., 2015], where conventional wisdom says that GAN produces

sharper images than the alternatives, particularly VAE, which produces blurry im-

ages. However, recent advances in VAE [Gulrajani et al., 2016] and normalizing flows

[Kingma and Dhariwal, 2018] have helped breach this gap in empirical performance.

Furthermore, VAE and normalizing flows are much more principled models than

GAN, as they train on an objective that has a valid and well understood probabilistic

meaning, while also avoiding the GAN pitfalls of unstable training and difficulty to

evaluate performance.

In this dissertation we make three contributions to the area of deep generative mod-

eling. The first one, Maximum Entropy Flow Networks (MEFN), uses normalizing

flows for maximum entropy modeling. Maximum entropy modeling is a modeling

framework proposed by Jaynes [1957] that, while related to maximum likelihood, is

neither frequentist nor Bayesian and assumes that the data came from the maximally

uninformative distribution out of the set of distributions which obey certain prespeci-

fied constraints. Using normalizing flows allows density evaluation and thus entropy

estimation, which we combine with the augmented Lagrangian method to optimize

the resulting optimization problem. We then apply MEFN for generating texture

CHAPTER 1. INTRODUCTION 5

images, and achieve state of the art results.

The second one, the continuous Bernoulli, is a new distribution supported on the

[0, 1] interval which we introduce to correct a common error in the implementation

of Bernoulli VAE of modeling real valued (almost binary) data as binary. We fully

characterize this distribution and show that using it significantly improves VAE per-

formance.

The third and last one is Deep Random Splines (DRS), a novel distribution over

functions which we use to model the firing rate of neural populations with a VAE-type

model. DRS work by sampling Gaussian noise and transforming it through a neural

network, obtaining the parameters of a spline. Those parameters are then run through

the method of alternating projections in order to ensure the splines satisfy any shape

constraints of interest, such as the nonnegativity that is needed for modeling firing

rates. Our model achieves significantly better dimensionality reduction than competing

alternatives.

The rest of this dissertation is organized as follows: on chapter 2 we cover the necessary

background material, on chapters 3 to 5 we introduce MEFN, the continuous Bernoulli

and DRS, respectively. Note that chapters 3 to 5 use different notation. While common

elements follow the same notation across chapters (e.g. θ always denotes generative

parameters), some notations are different. We do this as it should always be clear from

context what we are referring to, and this avoids running out of common symbols and

having to use more obscure and uncommon notation that might confuse a reader who

is familiar with the corresponding literature. The subsections of chapter 2 follow the

notation of the chapter for which they are background. Finally, we conclude in chapter

6. The code used for this dissertation can be found at https://github.com/gabloa.

https://github.com/gabloa

CHAPTER 2. BACKGROUND 6

Chapter 2

Background

In order to be as self-contained as possible, we introduce all the necessary background

material in this chapter. We also include some material that is not directly used in

this dissertation with the goal of giving a short overview of the areas to which we

make contributions in later chapters.

2.1 Maximum Entropy Modeling and the Gibbs

Distribution

In chapter 3 we will propose novel methodology to solve the maximum entropy problem,

which we define in this section. Consider a continuous random variable X ∈X ⊆ RD

with density p, where p has differential entropy H(p) = −
∫
p(z) log p(z)dz and support

supp(p). The goal of ME modeling is to find, and then be able to easily sample from,

the maximum entropy distribution given a set of moment and support constraints,

namely the solution to:

p∗ = maximize
p

H(p) (2.1)

subject to EX∼p[T (X)] = 0

supp(p) = X

CHAPTER 2. BACKGROUND 7

where T (x) = (T1(x), ..., Tm(x)) : X → Rm is the vector of known (assumed sufficient)

statistics, and X is the given support of the distribution. Under standard regularity

conditions, the optimization problem can be solved by Lagrange multipliers, yielding

an exponential family p∗ of the form:

p∗(x) ∝ eη
∗>T (x)

1(x ∈X) (2.2)

where η∗ ∈ Rm is the choice of natural parameters of p∗ such that Ep∗ [T (X)] = 0 (this

distribution is often called the Gibbs distribution). To see this informally, consider

the Lagrangian functional:

J(p, η) = −
∫
p(x) log p(x)dx+ η0

(∫
p(x)dx− 1

)
+

m∑
j=1

ηj

∫
p(x)Tj(x)dx (2.3)

where the η terms are the Lagrangian multipliers (η0 corresponds to the implicit

constraint that p is a density) and the support term is omitted (as is the nonnegativity

constraint, as the solution will be nonnegative regardless). Differentiating with respect

to p:
∂J(p, η)
∂p

(x) = − log p(x)− 1 + η0 +
m∑
j=1

ηjTj(x) (2.4)

By setting the derivative equal to 0 and solving for p(x):

p∗(x) = eη
∗
0−1+η∗>T (x) (2.5)

Finally, the second derivative is negative, so p∗ is indeed a maximum:

∂2J(p∗, η)
∂p2 (x) = − 1

p∗(x) < 0 (2.6)

Despite this simple form, these distributions are only in rare cases tractable from

the standpoint of calculating η∗, calculating the normalizing constant of p∗, and

sampling from the resulting distribution. There is extensive literature on finding η∗

numerically [Darroch and Ratcliff, 1972, Salakhutdinov et al., 2002, Della Pietra et al.,

1997, Dudik et al., 2004, Malouf, 2002, Collins et al., 2002], but doing so requires

CHAPTER 2. BACKGROUND 8

computing normalizing constants, which poses a challenge even for problems with

modest dimensions. To see why this is the case, consider the exponential family:

pη(x) = C−1(η)eη>T (x)
1(x ∈X) (2.7)

where C(η) =
∫
X eη

>T (x)dx. By properties of exponential families:

− ∂ logC(η)
∂η

= EX∼pη [T (X)] (2.8)

Since EX∼pη∗ [T (X)] = 0, this means that finding p∗ is equivalent to finding a critical

point of − logC(η). Furthermore, by properties of exponential families:

− ∂2 logC(η)
∂η2 = covX∼pη

(
T (X)

)
� 0 (2.9)

Thus, to find η∗ we can minimize − logC(η). In most practical problems, this is not

tractable as we do not have access to the normalizing constant. Finally, even if η∗ is

somehow correctly found, it is still not trivial to sample from p∗. Problem-specific

sampling methods, such as MCMC have to be designed [Zhu et al., 2000]. This requires

problem-specific considerations and faces the usual MCMC issues: having to wait

a burn-in period, the chains might mix very slowly so the target distribution might

not be sampled from, and having to throw away samples because they are correlated

instead of iid.

2.2 The Augmented Lagrangian Method

In chapter 3, we will use the augmented Lagrangian method [Bertsekas, 2014], which

we introduce in this section, to solve the maximum entropy problem. The method

allows to solve constrained optimization problems of the form:

θ∗ = minimize
θ

−H(θ) (2.10)

subject to R(θ) = 0

CHAPTER 2. BACKGROUND 9

Algorithm 1 Augmented Lagrangian Method
1: Set γ ∈ (0, 1) and β > 1.

2: Initialize θ0, c0 and λ0.

3: for k = 1, ..., kmax do

4: Find θk+1, the minimizer of L(·;λk, ck) using θk as initial point.

5: Update λk+1 = λk + ckR(θk)

6: Update ck+1 =


βck, if ||R(θk+1)|| > γ||R(θk)||

ck, otherwise
7: end for

where both H : Rq → R and R : Rq → Rm are smooth functions. The augmented

Lagrangian is defined as:

L(θ;λ, c) = −H(θ) + λ>R(θ) + c

2 ||R(θ)||2 (2.11)

where c > 0 and λ ∈ Rm. The augmented Lagrangian is minimized for a non-decreasing

sequence of c and well-chosen λ (see details in algorithm 1). It might at first appear

that the middle term is unnecessary, as optimizing L(θ; 0, ck) should recover the

solution as ck →∞. However, doing this is numerically unstable, as ck has to go to

infinity. The idea behind the augmented Lagrangian method is that if λ is close to

the Lagrange multiplier associated with equation 2.10, then c does not have to grow

to infinity.

A couple of things should be noted about algorithm 1: First, the λ updates are simply

updates on the direction of the augmented Lagrangian’s gradient with respect to λ,

with step-size ck. Second, the intuition behind the c updates is that c should only

be increased if the constraints did not sufficiently decrease. Under some regularity

conditions it can be proved that ck is the optimal step-size for the λ updates, that ck
will not diverge to infinity (thus avoiding the ill-conditioning problem) and that the

augmented Lagrangian method will solve the constrained minimization problem of

equation 2.10, see Bertsekas [2014].

CHAPTER 2. BACKGROUND 10

2.3 Texture Networks

Constructing generative models to generate random images with certain texture is an

important task in computer vision which can be naturally formulated as a maximum

entropy problem. In this section, we will explain the approach followed by Ulyanov

et al. [2016]. While they do not formulate the problem as a maximum entropy problem,

we will show in chapter 3 that doing so outperforms their method. Having a texture

image ∼x, the goal is to train a neural network fθ such that after applying the network

to a random noise input X0, an image fθ(X0) of the same texture as ∼x is generated.

To achieve this goal, a complicated loss T introduced by Gatys et al. [2015] is used.

The idea is that T (θ) is small only when the the images produced by the network

and the original image correspond to images with the same texture. The network is

trained to minimize:

θ∗ = minimize
θ

R(θ) (2.12)

where R(θ) = E[T (fθ(X0))]. It should be noted that while this produces high-quality

synthetic texture images, this network only focuses on generating feature-matching

images. Doing so can be deeply problematic: this could result in obtaining a point

mass at the original image. In what follows, we give a brief description of the loss used.

A convolutional neural network is pre-trained for image recognition [Simonyan and

Zisserman, 2014, Chatfield et al., 2014] and the i-th feature of the l-th convolutional

layer applied to image x is denoted F l
i (x). Then, the Gram matrix Gl(x) is defined as:

Gl
ij(x) = F l

i (x)>F l
j(x) (2.13)

Finally, the loss is defined as:

T (x) =
∑
||Gl(x)−Gl(∼x)||2 (2.14)

where the sum is over a selected set of indices l of convolutional layers.

CHAPTER 2. BACKGROUND 11

2.4 Normalizing Flows

Following Rezende and Mohamed [2015], we define a normalizing flow as the transfor-

mation of a probability density through a sequence of invertible mappings. Normalizing

flows provide an elegant way of generating a complicated distribution while maintain-

ing tractable density evaluation, which we will use in chapter 3 to solve the maximum

entropy problem. Starting with a simple distribution X0 ∈ RD ∼ p0 (usually taken

to be a standard multivariate Gaussian), and by applying k invertible and smooth

functions fi : RD → RD(i = 1, ..., k), the resulting variable Xk = fk ◦fk−1◦· · ·◦f1(X0)

has density:

pk(xk) = p0(f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
k (xk))

k∏
i=1

∣∣∣∣ det
(
∂f−1

i

∂xi
(xi)

)∣∣∣∣ (2.15)

= p0(x0)
k∏
i=1

∣∣∣∣ det
(
∂fi
∂xi−1

(xi−1)
)∣∣∣∣−1

(2.16)

Equations 2.15 and 2.16 allow to compute the density of the transformed variable under

two (sometimes overlapping) scenarios: when we have access to f−1
i and when we have

access to fi, respectively. In applications such as maximum likelihood estimation where

we have observations of Xk, we need to compute f−1
i , and thus equation 2.15 is used.

The fi functions have then to be constructed in such a way that the determinant of

the Jacobian of their inverses, |∂f−1
i /∂xi|, can be computed efficiently. In applications

where we have access to the non-transformed variable, such as variational inference,

equation 2.16 is used instead and the normalizing flows have to be constructed in

such a way that |∂fi/∂xi−1| can be computed efficiently. Finally, note that efficient

sampling of observations of Xk requires efficiently computing each of the fi functions.

In the rest of this section we go over popular normalizing flows for both of these

scenarios.

CHAPTER 2. BACKGROUND 12

2.4.1 Fast Backward Computations

Papamakarios et al. [2017] propose the Masked Autoregressive Flow, which is a type

of normalizing flow designed for maximum likelihood estimation, that is, it allows

for fast computation of f−1
i for efficient evaluation of the log likelihood, although it

suffers from slow fi evaluations and thus slow sampling. For notational simplicity, we

drop the i index and write xi−1 as x and xi as f as each fi is built in a similar way.

In order to obtain f from x, the following recursion is performed:

fd = xd exp
(
g

(d)
θ (f:d−1)

)
+ h

(d)
θ (f:d−1) for d = 1, . . . , D (2.17)

where fd and xd are the d-th coordinates of f and x, respectively, f:d−1 are the first

d−1 coordinates of f and each g(d)
θ and h(d)

θ is a neural network parameterized by θ that

depends only on the first d− 1 coordinates of f . Note that this transformation results

in a triangular Jacobian, whose determinant can be computed efficiently. Computing f

from x is slow, as each coordinate requires computing all the previous ones beforehand,

that is, fd depends on f:d−1. However, computing the inverse, i.e. x from f does not

require sequential computations:

xd =
(
fd − h(d)

θ (f:d−1)
)

exp
(
− g(d)

θ (f:d−1)
)

(2.18)

Equation 2.18 can be computed at the same time for d = 1, . . . , D, thus resulting in

fast evaluation of the inverse normalizing flow. Further speedups are achieved by using

binary masks on f in order to only have one neural network gθ and one hθ instead of

D of each.

2.4.2 Fast Forward Computations

Rezende and Mohamed [2015] proposed two specific families of transformations for

variational inference, namely planar flows and radial flows, respectively:

f = x+ uh(wTx+ b) and f = x+ βh(α, r)(x− x′), (2.19)

CHAPTER 2. BACKGROUND 13

where b ∈ R, u,w ∈ RD and h is an activation function in the planar case, and

where β ∈ R, α > 0, x′ ∈ RD , h(α, r) = 1/(α + r) and r = ||x − x′|| in the radial.

For a certain domain of the parameters, the transformations are invertible and the

determinant of the Jacobian can be easily computed with the matrix determinant

lemma. However, x cannot be analytically recovered from f .

Kingma et al. [2016] propose the Inverse Autoregressive Flow, which is very similar to

the inverse of the Masked Autoregressive Flow (section 2.4.1). Obtaining x from f is

slow, so that while this normalizing flow is well suited for variational inference, it is

not so for maximum likelihood estimation. Computing f from x is done as follows:

fd =
xd − h(d)

φ (x:d−1)
g

(d)
φ (x:d−1)

(2.20)

where again, instead of implementing each of the 2D neural networks h(d)
φ and g(d)

φ ,

they are all implemented at the same time by using binary masks for their inputs. Note

that we parameterize these networks with φ and not θ to make notation consistent

with section 2.5, as these normalizing flows are usually used for variational inference

and not for the generative part of the model which we parameterize with θ.

2.4.3 Fast Backward and Forward Computations

There are also normalizing flows which allow, at the price of some flexibility as

compared to their autoregressive counterparts, for both efficient backward anf forward

computations. Dinh et al. [2016] proposed one such normalizing flow, called real NVP,

which uses a convolutional, multiscale structure that is suitable for image modeling.

The real NVP is constructed by stacking multiple coupling layers on top of each other.

The coupling layer which transforms x into f is defined as follows:
fA = xA

fB = xB � exp
(
gθ(xA)

)
+ hθ(xA)

(2.21)

where A and B are a partition of the indices {1, . . . , D}, hθ and gθ are neural networks

parameterized by θ mapping from R|A| to R|B| and � denotes element-wise product.

CHAPTER 2. BACKGROUND 14

This is clearly invertible as:
xA = fA

xB =
(
fB − hθ(fA)

)
� exp

(
− gθ(fA)

) (2.22)

A key feature of coupling layers is that their Jacobian is triangular and can thus be

computed efficiently. Furthermore, computing the Jacobian requires only evaluating

gθ. Invertibility of hθ and gθ is thus not required, and these functions can indeed be

arbitrary. In practice, they are taken as convolutional neural networks. When stacking

coupling layers on top of each other, the index partitions are changed to ensure that

all the coordinates are transformed. There is further work in making normalizing

flows even more flexible, for example Kingma and Dhariwal [2018] use invertible 1× 1

convolutions in addition to coupling layers, and some works change the affine relation

between fB and xB to more general invertible one, such as monotonic cubic splines

[Durkan et al., 2019a] or monotonic rational-quadratic transforms [Durkan et al.,

2019b].

2.5 Variational Autoencoders

Autoencoding variational Bayes [Kingma and Welling, 2013] is a technique to perform

inference in the model:
Zr ∼ π(z)

Xr|Zr ∼ pθ(x|zr) , for r = 1, . . . , R,
(2.23)

where each Zr ∈ RM is a local hidden variable, and θ are parameters for the likelihood

of observablesXr. We refer to these models as Variational Autoencoders (VAE), and we

will use them in chapters 4 and 5. We denote the observed data (x1, . . . , xR) by x and

the corresponding latent variables (z1, . . . , zR) by z. The prior π(z) is conventionally

a Gaussian N (0, IM). When the data is binary, i.e. xr ∈ {0, 1}D, the conditional

likelihood pθ(xr|zr) is chosen to be B(λθ(zr)), where λθ : RM → RD is a neural

CHAPTER 2. BACKGROUND 15

network with parameters θ. B(λ) denotes the product of D independent Bernoulli

distributions, with parameters λ ∈ [0, 1]D (in the standard way we overload B(·) to

be the univariate Bernoulli or the product of independent Bernoullis). When the data

is real-valued, a Gaussian distribution is commonly used instead of a Bernoulli. Since

direct maximum likelihood estimation of θ is intractable, variational autoencoders use

VBEM Jordan et al. [1999], first positing a now-standard variational posterior family:

qφ(z|x) =
R∏
r=1

qφ(zr|xr),with qφ(zr|xr) = N
(
mφ(xr), diag

(
s2
φ(xr)

))
(2.24)

where mφ : RD → RM , sφ : RD → RM
+ are neural networks parameterized by φ. Note

that amortized inference [Gershman and Goodman, 2014, Rezende et al., 2014] is

used, that is, instead of having separate variational parameters for each observation,

a neural network is used to map from observables to variational parameters. This

makes training faster and reduces computations at test time at the price of inference

suboptimality [Cremer et al., 2018]. To train the model, the evidence lower bound

(ELBO) E (θ, φ) is maximized over both generative and posterior (decoder and encoder)

parameters (θ, φ):

E (θ, φ) =
R∑
r=1

Eqφ(zr|xr)[log pθ(xr|zr)]−KL(qφ(zr|xr)||π(zr)) ≤ log pθ(x) (2.25)

The log likelihood is lower bounded by the ELBO, and the bound becomes tight when

the approximate posterior matches the true posterior. Optimizing the ELBO is usually

done with stochastic gradient methods [Robbins and Monro, 1951], which allow to

use data mini-batches and use sample based estimates of the involved expectations.

In order to do this, the gradient of the ELBO with respect to both θ and φ has to

be estimated. Doing this for the KL term is not difficult as it can be written down

analytically:

KL(qφ(zr|xr)||π(zr)) = 1
2

M∑
j=1

(
1 + 2 log sφ,j(xr)−m2

φ,j(xr)− s2
φ,j(xr)

)
(2.26)

where mφ,j and sφ,j are the j-th coordinates of mφ and sφ, respectively. The first

term (called reconstruction term) is slightly trickier: its gradient with respect to θ can

CHAPTER 2. BACKGROUND 16

be easily estimated since the gradient can be brought down inside the expectation,

allowing to use a sample based estimator. However, this cannot be done with φ, as the

expectation is with respect to a distribution that depends on φ. One possible solution

is to use the log derivative trick, which results in the score estimator [Kleijnen and

Rubinstein, 1996]:

∇φEqφ(zr|xr)[log pθ(xr|zr)] = Eqφ(zr|xr)[log pθ(xr|zr)∇φqφ(zr|xr)] (2.27)

While equation 2.27 allows to use sample based estimators of the gradient of the

ELBO with respect to φ, empirically these estimators suffer from high variance. To

avoid this high variance issue, the reconstruction term is usually written down using

the reparameterization trick:

Eqφ(zr|xr)[log pθ(xr|zr)] = Eε∼N (0,IM)
[

log pθ
(
xr|mφ(xr) + sφ(xr)� ε

)]
(2.28)

where � denotes elementwise product. The reparameterization trick enables writting

the reconstruction term as an expectation with respect to a distribution that does not

depend on φ. When computing the gradient with respect to φ, this allows to simply

bring the gradient inside the expectation.

Note that making the prior depend on learnable generative parameters θ can be done

with the same procedure of maximizing the ELBO. Normalizing flows with tractable

forward computations (section 2.4.2) can be used to obtain more flexible posterior

approximations than the Gaussian one presented here, as the they still allow the use

of the reparameterization trick (tractably, thanks to the fast forward computations)

and tractable density evaluation means that the KL term can still be computed.

2.5.1 Importance Weighting

Burda et al. [2015] modify the ELBO to obtain a tighter bound to the log likelihood

by using importance weights:

Lk(θ, φ) = Ez(1),...,z(k)∼qφ(z|x)

[
log 1

k

k∑
j=1

pθ(x|z(j))π(z(j))
qφ(z(j)|x)

]
≤ log pθ(x) (2.29)

CHAPTER 2. BACKGROUND 17

Note that when k = 1, this modified objective recovers the ELBO. This objective has

the advantage that, as k goes to infinity, Lk converges to the log likelihood under

reasonable assumptions. While this objective does provide a better approximation to

the log likelihood than the regular ELBO, maximizing Lk results in worse posterior

approximations and is slower. Thus, Lk can also be used not as an objective, but

simply to better approximate the log likelihood after having trained using the ELBO.

2.5.2 β-VAE

With the goal of obtaining disentangled representations, Higgins et al. [2017] modify

the ELBO by weighting the KL term differently:

Eβ(θ, φ) =
R∑
r=1

Eqφ(zr|xr)[log pθ(xr|zr)]− βKL(qφ(zr|xr)||π(zr)) (2.30)

when β > 1, the approximate posterior is more strongly pushed towards matching the

standard Gaussian prior, resulting in more independent coordinates of the latent repre-

sentations. The β-VAE objective can be interpreted as maximizing the reconstruction

term of the ELBO subject to the constraint that the KL between the approximate

posterior and the prior is less than a certain threshold. This allows to interpret β

as the Lagrange multiplier obtained by the KKT conditions of the corresponding

constrained optimization problem.

2.5.3 PfLDS

Gao et al. [2016] introduce a VAE-type model for neural population data, called

PfLDS, against which we compare our method in chapter 5. Suppose the spiking times

of N neurons are simultaneously recorded for R trials over a time interval [T1, T2),

which is partitioned into B disjoint intervals, which we call time bins. Let xr,n,b be the

observed number of spikes on time bin b for neuron n on trial r. To incorporate the

temporal structure of the data into the model, there is not just a latent variable Zr
per trial, but a latent variable per trial per time bin, Zr,b. The evolution of this latent

CHAPTER 2. BACKGROUND 18

trajectory is modeled with a Gaussian linear dynamical system, which is transformed

through a neural network to obtain the parameters of the Poisson distribution which

is used to model the observed spike counts:

Zr,1 ∼ N (µ1,Σ1) for r = 1, . . . , R

Zr,b+1|Zr,b ∼ N (AZr,b,Σ) for b = 1, . . . , B − 1

λr,n,b = f
(n,b)
θ−

(Zr,b) for n = 1, . . . , N

Xr,n,b|λr,n,b ∼P(λr,n,b)

(2.31)

where each f (n,b)
θ−

is a neural network (we denote the parameters of all these networks

with θ−), P denotes the Poisson distribution and the generative parameters of the

model are θ = (µ1,Σ1, A,Σ, θ−). Once again in order to account for the temporal

structure of the data, the approximate posterior over Zr = (Zr,1, . . . , Zr,B) is modified:

instead of the usual diagonal covariance structure, a block tridiagonal structure is

used. The model is then trained by maximizing the ELBO.

2.5.4 Discrete Latent Variables

While many standard VAE choices, such a Gaussian priors, can be changed while

retaining the ability to optimize the ELBO, using discrete latent variables is not so

straightforward. This is because the reparameterization trick cannot be used anymore

as writing the latents as a transformation of parameter-free noise can only be done

through a transformation that takes finitely many values, thus not allowing the use

of gradient methods. Maddison et al. [2016] and Jang et al. [2016] simultaneously

proposed a method to circumvent this issue. Their method allows to maximize

expressions of the form:

q∗ = maximize
q

EZ∼q[f(Z)] (2.32)

where q is a discrete distribution over the finite set {1, . . . , C} and f : {1, . . . , C} → R.

Note that a VAE with discrete latent variables falls exactly into this category due to

CHAPTER 2. BACKGROUND 19

the reconstruction term. While score estimators (equation 2.27) can still be used in

this setting, they still suffer from the same high variance issue as in the continuous

case. The solution is to use a continuous relaxation ∼qa of q. By using a one-hot

representation of the elements of {1, . . . , C}, the support of ∼qa is chosen to be the

(C − 1)-dimensional simplex S C−1 = {(x1, . . . , xC) : xc ≥ 0 and ∑C
c=1 xc = 1}. A

sample
∼
Z from this relaxation can be obtained by:

∼
Z = softmax

(log a+ ε

τ

)
(2.33)

where a ∈ (0,∞)C and τ ∈ (0,∞) are the parameters of the distribution and ε ∈

RC is a random vector with independent Gumbel(0,1) distributed entries. This

distribution, called Gumbel-softmax or concrete distribution, has the property that

as the temperature τ (which is treated as a hyperparameter) goes to 0, ∼qa converges

to the distribution proportional to a on the vertices of S C−1 (i.e. one-hot vectors).

The concrete distribution also admits a closed form density and allows to use the

reparameterization trick by relaxing the objective of equation 2.32 to:

a∗ = maximize
a

E
Z∼∼qa

[
∼
f(Z)] (2.34)

where
∼
f : S C−1 → R is a relaxation of f . The fact that not only q but also f needs

to be relaxed is often glossed over or ignored in the literature. Further studying this is

an interesting project for future research, as this seemingly unimportant technicality

is very similar to the seemingly unimportant technicality that is the basis for chapter

4, namely using a Bernoulli likelihood to model [0, 1]-valued data.

2.6 Evaluation Metrics

Constructing metrics to evaluate performance of implicit generative models (i.e. when

there is no access to the likelihood or a bound on it) is an active area of research.

The goal is having some measure of how good a trained model is when having access

to nothing but samples from the model and real samples, which is typical in models

CHAPTER 2. BACKGROUND 20

such as GAN [Goodfellow et al., 2014]. Some of these metrics are specifically designed

to measure mostly GAN-specific problems such as mode collapse [Arora and Zhang,

2017], but some other metrics attempt to measure sample quality. In this section we

present two methods to do so. Although we do not use GAN in chapter 4, we use one

of these metrics to show the empirical advantage produced by our model.

2.6.1 Inception Score

The inception score [Salimans et al., 2016] is a popular technique used to evaluate

performance of deep generative models. In order to compute the inception score, a

labeled dataset (x1, y1), . . . , (xR, yR) is needed. As a first step, a classifier is trained:

given an input x, the classifier returns a probability distribution p(y|x) over the labels.

The inception score for a generative model pθ(x) is given by:

exp
(
EX∼pθ [KL(p(y|X)||p(y))]

)
(2.35)

where p(y) =
∫
p(y|x)pθ(x)dx. Note that the inception score can be easily approxi-

mated by sampling from pθ(x). To understand why the inception score is a reasonable

metric, note that:

EX∼pθ [KL(p(y|X)||p(y))] = H(Y)−H(Y |X) (2.36)

where H(Y) and H(Y |X) denote the entropy of Y and the conditional entropy of Y

given X, respectively. A high inception score thus embodies two desirable properties

of a generative model: the entropy of the labels, H(Y) is large, meaning that the

model generates samples from all possible labels; and H(Y |X) is small, meaning that

conditioning on a sample reduces uncertainty about its label.

2.6.2 Fréchet Inception Distance

The Fréchet inception distance [Heusel et al., 2017] is another metric to evaluate

performance of deep generative models. Once again, a classifier is trained to predict

CHAPTER 2. BACKGROUND 21

the labels and a particular layer of this classifier is chosen. Denoting l(X) as the

chosen layer evaluated at input X, the Fréchet inception distance is given by:

||µg − µtrue||22 − tr(Σtrue + Σg − 2(ΣtrueΣg)1/2) (2.37)

where µg = E[l(X)] and Σg = cov(l(X)) under pθ and µtrue and Σtrue are defined

analogously but with respect to ptrue, the true data generating distribution. Note

that sample based approximations can be used for all these quantities. The Fréchet

inception distance corresponds to placing Gaussian observation models on layer l for

generated and real data and then computing the Fréchet distance between these two

Gaussians, so that lower values of the Fréchet inception distance are better. The

Fréchet inception distance has the advantage over the inception score that it compares

the generated samples against real ones instead of evaluating them in a vacuum

(although the inception score also uses real samples when training the classifier).

However, the choice of the layer l can have a big impact on this metric.

2.7 Poisson Processes

A Poisson process in a measurable space S is a distribution over subsets of S . We

will use Poisson processes in chapter 5 to model spiking times of neural populations.

A Poisson process is parameterized by a measure G in S , and we say that a random

set S follows a Poisson process on S , which we denote by S ∼ PPS (G), if the

following conditions hold:

1. For any disjoint measurable subsets A1, . . . , An of S , |A1 ∩ S|, . . . , |An ∩ S| are

independent random variables, where | · | denotes the number of elements in a

set.

2. For any measurable subset A of S , |A ∩ S| ∼P(G(A)), where P denotes the

Poisson distribution.

CHAPTER 2. BACKGROUND 22

Under mild conditions on S and G, the Poisson process exists [Kingman, 1992] and,

if G is finite, can be sampled as follows:

1. Sample K ∼P(G(S)).

2. Sample x1, . . . , xK iid from a distribution proportional to G, i.e., G(·)/G(S),

and take S = {x1, . . . , xK}.

If G admits a density with respect to some base measure, the density g (called intensity)

is commonly used to parameterize the process instead of G. For our purposes, we

will consider the case where S = [T1, T2) and the base measure will be the Lebesgue

measure, as we will be interested in modeling events (elements of S) in time. If

S = {xk}Kk=1 ∼PPS (g), then the log likelihood of S is given by:

log p({xk}Kk=1|g) =
K∑
k=1

log g(xk)−
∫

S
g(t)dt (2.38)

A useful extension of Poisson processes are the so called marked Poisson processes.

These are simply Poisson processes over S × {1, . . . , N}. This allows to model N

different types of events that can happen in the same time interval. Bayesian estimation

of the intensity of Poisson processes can be performed by placing a Gaussian process

[Rasmussen, 2004] prior on the log intensity function, resulting in log Gaussian Cox

processes [Møller et al., 1998]. However, due to the integral in equation 2.38, this

procedure results in a difficult, doubly intractable inference procedure, despite some

efforts by Cunningham et al. [2008], Adams et al. [2009], Lloyd et al. [2015].

2.8 Splines and Nonnegative Polynomials

Splines are a flexible class of functions which we will use in chapter 5 to model intensity

functions of Poisson processes. Consider the interval [T1, T2) and I + 1 fixed knots

T1 = t0 < · · · < tI = T2. A spline of degree d and smoothness s < d is a continuous, s

times differentiable function on [T1, T2) which is a polynomial in each interval [ti−1, ti)

CHAPTER 2. BACKGROUND 23

for i = 1, . . . , I. Splines have the nice property that they form a vector space whose

basis functions can be written down explicitly [Wahba, 1990]. This allows to easily

fit splines in regression settings by using linear regression with the basis functions

as features. Splines are popular for regression as they are more flexible than linear

models, while not being overly complex.

Since we will later use spline to model intensity functions of Poisson processes, we are

interested in nonnegative splines. Unfortunately, the space of nonnegative splines does

not form a vector space anymore, so the same “trick” that is used in the regression

setting cannot be applied anymore. The other “natural” way of parameterizing splines,

namely with the d+ 1 polynomial coefficients for each of the I intervals, also does not

lend itself to easily characterize nonnegativity [Schmidt and Hess, 1988]. A beautiful

but perhaps lesser known spline result (see Lasserre [2010]) gives that a polynomial

p(t) of degree d, where d = 2k + 1 for some k ∈ N, is nonnegative in the interval [l, u)

if and only if it can be written down as follows:

p(t) = (u− t)[t]>Q1[t] + (t− l)[t]>Q2[t] (2.39)

where [t] = (1, t, t2, . . . , tk)> and Q1 and Q2 are (k + 1)× (k + 1) symmetric positive

semidefinite matrices. An analogous result holds for polynomials of even degree d = 2k,

which are nonnegative in [l, u) if and only if:

p(t) = [t]>Q1[t] + (u− t)(t− l)
∼
[t]
>
Q2
∼
[t] (2.40)

where in this case Q2 is now a k × k symmetric positive semidefinite matrix and
∼
[t] = (1, t, t2, . . . , tk−1)>. These results will later allow us to parameterize nonnegative

splines.

2.9 Method of Alternating Projections

Consider closed, convex sets C0, . . . ,Cs+1 in a Hilbert space H with nonempty in-

tersection. The method of alternating projections [von Neumann, 1950, Bauschke

CHAPTER 2. BACKGROUND 24

and Borwein, 1996] allows to recover a point in ∩s+1
j=0Cj when projecting onto this

intersection is hard but projecting onto each of the sets Cj is easy. We will use this in

chapter 5 to obtain nonnegative splines. As the name suggests, the method proceeds

by iteratively projecting onto each of the sets in a cycling fashion. Formally, given

a starting point ψ(0) ∈ H, the k-th step of the method of alternating projections is

obtained by:

ψ(k) = Pk mod (s+2)(ψ(k−1)) (2.41)

where Pj is the projection onto Cj for j = 0, . . . , s+ 1. As k →∞, ψ(k) converges to

a point in ∩s+1
j=0Cj.

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 25

Chapter 3

Maximum Entropy Flow Networks

3.1 Introduction

Maximum entropy modeling is a flexible and popular framework for formulating statisti-

cal models given partial knowledge. In this chapter, rather than the traditional method

of optimizing over the continuous density directly, we learn a smooth and invertible

transformation that maps a simple distribution to the desired maximum entropy

distribution. Doing so is nontrivial in that the objective being maximized (entropy) is

a function of the density itself. By exploiting recent developments in normalizing flow

networks, we cast the maximum entropy problem into a finite-dimensional constrained

optimization, and solve the problem by combining stochastic optimization with the

augmented Lagrangian method. Simulation results demonstrate the effectiveness of

our method, and applications to finance and computer vision show the flexibility and

accuracy of using maximum entropy flow networks.

The maximum entropy (ME) principle [Jaynes, 1957] states that subject to some given

prior knowledge, typically some given list of moment constraints, the distribution that

makes minimal additional assumptions – and is therefore appropriate for a range of

applications from hypothesis testing to price forecasting to texture synthesis – is that

which has the largest entropy of any distribution obeying those constraints. First

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 26

introduced in statistical mechanics by Jaynes [1957], and considered both celebrated

and controversial, ME has been extensively applied in areas including natural language

processing [Berger et al., 1996], ecology [Phillips et al., 2006], finance [Buchen and

Kelly, 1996], computer vision [Zhu et al., 1998], and many more.

Continuous ME modeling problems typically include certain expectation constraints,

and are usually solved by introducing Lagrange multipliers, which under typical as-

sumptions yields an exponential family distribution with natural parameters such that

the expectation constraints are obeyed (see section 2.1). Unfortunately, fitting ME

distributions in even modest dimensions poses significant challenges. First, optimizing

the Lagrangian for a Gibbs distribution (the solution to the ME problem) requires

evaluating the normalizing constant, which is in general computationally very costly

and error prone. Secondly, in all but the rarest cases, there is no way to draw samples

independently and identically from this Gibbs distribution, even if one could derive it.

Third, unlike in the discrete case where a number of recent and exciting works have

addressed the problem of estimating entropy from discrete-valued data [Jiao et al.,

2015, Valiant and Valiant, 2013], estimating differential entropy from data samples

remains inefficient and typically biased. These shortcomings are critical and costly,

given the common use of ME distributions for generating reference data samples for a

null distribution of a test statistic. There is thus ample need for a method that can

both solve the ME problem and produce a solution that is easy and fast to sample.

In this chapter we develop Maximum Entropy Flow Networks (MEFN), a stochastic-

optimization-based framework and algorithm for fitting continuous maximum entropy

models. Two key steps are required. First, conceptually, we replace the idea of

maximizing entropy over a density directly with maximizing, over the parameter

space of an indexed function family, the entropy of the density induced by mapping

a simple distribution (a Gaussian) through that optimized function. Modern neural

networks, particularly in variational inference [Kingma and Welling, 2013, Rezende

and Mohamed, 2015], have successfully employed this same idea to generate complex

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 27

distributions, and we look to similar technologies. Secondly, unlike most other ob-

jectives in this network literature, the entropy objective itself requires evaluation of

the target density directly, which is unavailable in most traditional architectures. We

overcome this potential issue by learning a smooth, invertible transformation that

maps a simple distribution to an (approximate) ME distribution. Recent developments

in normalizing flows [Rezende and Mohamed, 2015, Dinh et al., 2016] allow us to avoid

biased and computationally inefficient estimators of differential entropy (such as the

nearest-neighbor class of estimators like that of Kozachenko-Leonenko; see Berrett et al.

[2016]). Our approach avoids calculation of normalizing constants by learning a map

with an easy-to-compute Jacobian, yielding tractable probability density computation.

The resulting transformation also allows us to reliably generate iid samples from the

learned ME distribution. We demonstrate MEFN in detail in examples where we can

access ground truth, and then we demonstrate further the ability of MEFN networks

in equity option prices fitting and texture synthesis.

Primary contributions of this chapter, which was published as Loaiza-Ganem et al.

[2017], include: (i) addressing the substantial need for methods to sample ME distri-

butions; (ii) introducing ME problems, and the value of including entropy in a range

of generative modeling problems, to the deep learning community; (iii) the novel use

of constrained optimization for a deep learning application; and (iv) the application of

MEFN to option pricing and texture synthesis, where in the latter we show significant

increase in the diversity of synthesized textures (over current state of the art) by using

MEFN.

3.2 Maximum Entropy Flow Network Algorithm

3.2.1 Formulation

Instead of directly finding the Gibbs distribution (solving equation 2.2), we propose

solving the ME problem (equation 2.1) directly by optimizing a transformation that

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 28

maps a random variable X0, with simple distribution p0, to the ME distribution.

Given a parametric family of invertible transformations F = {fθ, θ ∈ Rq}, we denote

pθ(x) = p0(x0)| det(Jθ(x0))|−1 as the distribution of the variable fθ(X0), where Jθ is

the Jacobian of fθ. We then rewrite the ME problem as:

θ∗ = maximize
θ

H(pθ) (3.1)

subject to R(θ) := EX0∼p0 [T (fθ(X0))] = 0

supp(pθ) = X .

When p0 is continuous and F is suitably general, the program in equation 3.1 recovers

the ME distribution pθ exactly. With a flexible transformation family, the ME

distribution can be well approximated. In practice, we take F to be a family of

normalizing flows with fast forward computations (sections 2.4.2 and 2.4.3) followed by

some invertible function g which maps to X , the support of interest. In experiments

we found that taking p0 to be a standard multivariate normal distribution achieves

good empirical performance. Taking p0 to be a bounded distribution (e.g. uniform

distribution) is problematic for learning transformations near the boundary, and heavy

tailed distributions (e.g. Cauchy distribution) caused similar trouble due to large

numbers of outliers.

3.2.2 Algorithm

We solved equation 3.1 using the augmented Lagrangian method (see section 2.2). As

a technical note, the augmented Lagrangian method is guaranteed to converge under

some regularity conditions [Bertsekas, 2014]. As is usual in neural networks, a proof

of these conditions is challenging and not yet available, though intuitive arguments

suggest that most of them should hold. Due to the non rigorous nature of these

arguments, we rely on the empirical results of the algorithm to claim that it is indeed

solving the optimization problem.

For a fixed (λ, c) pair, we optimize the augmented Lagrangian L (equation 2.11)

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 29

with stochastic gradient descent. Owing to our choice of network and the resulting

ability to efficiently calculate the density pθ(x(i)) for any sample point x(i) (which are

easy-to-sample iid draws from the multivariate normal p0), we compute the unbiased

estimator of H(pθ) with:

H(pθ) ≈ −
1
n

n∑
i=1

log pθ(fθ(x(i))) (3.2)

R(θ) can also be estimated without bias by taking a sample average of x(i) draws:

R(θ) ≈ 1
n

n∑
i=1

T (fθ(x(i))) (3.3)

Since ∇θ||R(θ)||2 = 2(∇θR(θ))R(θ), the gradient of the third term of the augmented

Lagrangian can also be estimated without bias:

∇θ
c

2 ||R(θ)||2 ≈ c · 2
n

n
2∑
i=1
∇θT (fθ(x(i))) · 2

n

n∑
i=n

2 +1
T (fθ(x(i))) (3.4)

The resulting optimization procedure is detailed in Algorithm 2, of which step 9

requires some detail: denoting θk as the resulting θ after imax SGD iterations at the

augmented Lagrangian iteration k, the usual update rule for c [Bertsekas, 2014] is:

ck+1 =


βck, if ||R(θk+1)|| > γ||R(θk)||

ck, otherwise
(3.5)

where γ ∈ (0, 1) and β > 1. Monte Carlo estimation of R(θ) sometimes caused c

to be updated too fast, causing numerical issues. Accordingly, we changed the hard

update rule for c to a probabilistic update rule: a hypothesis test is carried out

with null hypothesis H0 : E[||R(θk+1)||] = E[γ||R(θk)||] and alternative hypothesis

H1 : E[||R(θk+1)||] > E[γ||R(θk)||]. The p-value p is computed, and ck+1 is updated

to βck with probability 1− p. We used a two-sample t-test to calculate the p-value.

What results is a robust and novel algorithm for estimating maximum entropy dis-

tributions, while preserving the critical properties of being both easy to calculate

densities of particular points, and being trivially able to produce truly iid samples.

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 30

Algorithm 2 Training MEFN
1: initialize θ = θ0, set c0 > 0 and λ0.

2: for Augmented Lagrangian iteration k = 1, ..., kmax do

3: for SGD iteration i = 1, ..., imax do

4: Sample x(1), ..., x(n) ∼ p0, get transformed variables x(i)
θ = fθ(x(i)), i =

1, ..., n
5: Update θ by descending its stochastic gradient (using e.g. ADADELTA

[Zeiler, 2012]):

∇θL(θ;λk, ck) ≈
1
n

n∑
i=1

∇θ log pθ(x(i)
θ

) +
1
n

n∑
i=1

∇θT (x(i)
θ

)λk + ck
2
n

n
2∑
i=1

∇θT (x(i)
θ

) ·
2
n

n∑
i=n

2 +1

T (x(i)
θ

)

6: end for

7: Sample x(1), ..., x(∼n) ∼ p0, get transformed variables x(i)
θ = fθ(x(i)), i = 1, ..., ∼n

8: Update λk+1 = λk + ck
1
∼
n

∑∼n
i=1 T (x(i)

θ)

9: Update ck+1 ≥ ck (see text for detail)

10: end for

Below we give a more thorough discussion of the regularity conditions which ensure

that the augmented Lagrangian method will work and why some should hold in our

case. The goal is simply to give some intuition and not to attempt to prove that they

indeed hold. The conditions [Bertsekas, 2014] are:

• There exists a strict local minimum θ∗ of the optimization problem of equation

3.1:

If the function class F is rich enough that it contains a true solver of the

maximum entropy problem, then a global optimum exists. Although not rigorous,

we would expect that even in the finite expressivity case that a global optimum

remains, and indeed, recent theoretical work [Raghu et al., 2016, Poole et al.,

2016] has gotten close to proving this.

• θ∗ is a regular point of the optimization problem, that is, the rows of ∇θR(θ∗)

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 31

are linearly independent:

Again, this is not formal, but we should not expect this to cause any issues. This

clearly depends on the specific form of T , but the condition basically says that

there should not be redundant constraints at the optimum, so if T is reasonable

this should not happen.

• H(pθ) and R(θ) are twice continuously differentiable on a neighborhood around

θ∗:

This holds by the smoothness of the normalizing flows.

• y>∇2
θL(θ∗;λ∗, 0)y > 0 for every y 6= 0 such that ∇θR(θ∗)y = 0, where λ∗ is the

true Lagrange multiplier:

This condition is harder to justify. It would appear it is just asking that

the Lagrangian (not the augmented Lagrangian) be strictly convex in feasible

directions, but it is actually stronger than this and some simple functions might

not satisfy the property. For example, if the function we are optimizing was

x4 and we had no constraints, the Lagrangian’s Hessian would be 12x2, which

is 0 at x∗ = 0 thus not satisfying the condition. Importantly, these conditions

are sufficient but not necessary, so even if this doesn’t hold the augmented

Lagrangian method might work (it certainly would for x4). Because of this and

the non-rigorous justifications of the first two conditions, we relied instead on

the empirical performance to justify that we are indeed recovering the maximum

entropy distribution.

If all of these conditions hold, the augmented Lagrangian (for large enough c and λ

close enough to λ∗) has a unique optimum in a neighborhood around θ∗ that is close to

θ∗ (as λ→ λ∗ it converges to θ∗) and its Hessian at this optimum is positive-definite.

Furthermore, λk → λ∗. This implies that gradient descent (with the usual caveats

of being started close enough to the solution and with the right steps) will correctly

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 32

recover θ∗ using the augmented Lagrangian method. This of course just guarantees

convergence to a local optimum, but if there are no additional assumptions such as

convexity, it can be very hard to ensure that it is indeed a global optimum. Some

recent research has attempted to explain why optimization algorithms perform so well

for neural networks [Choromanska et al., 2015, Kawaguchi, 2016], but we leave such

attempts for our case for future research.

3.3 Experiments

We first construct an ME problem with a known solution (section 3.3.1), and we

analyze the MEFN algorithm with respect to the ground truth and to an approximate

Gibbs solution. These examples test the validity of our algorithm and illustrate its

performance. Sections 3.3.2 and 3.3.3 then apply MEFN to a financial data application

(predicting equity option values) and texture synthesis, respectively, to illustrate the

flexibility and practicality of our algorithm. Architectural and training choices are

detailed in appendix A.

3.3.1 A Maximum Entropy Problem With Known Solution

Following the setup of the typical ME problem, suppose we are given a specified

support S = {x = (x1, . . . , xD−1) : xi ≥ 0 and ∑D−1
k=1 zk ≤ 1} and a set of constraints

E[logXd] = κd(d = 1, ..., D), where XD = 1−∑D−1
d=1 Xd. We then write the maximum

entropy program:

p∗ = maximize
p

H(p) (3.6)

subject to EX∼p[logXd − κd] = 0 ∀d = 1, ..., D

supp(p) = S

This is a general ME problem that can be solved via MEFN. Of course, we have

particularly chosen this example because, though it may not obviously appear so,

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 33

the solution has a standard and tractable form, namely the Dirichlet. This choice

allows us to consider a complicated optimization program that happens to have known

global optimum, providing a solid test bed for the MEFN (and for the Gibbs approach

against which we will compare). Specifically, given a parameter α ∈ RD, the Dirichlet

has density:

p(x1, . . . , xD−1) = 1
B(α)

D∏
d=1

xαd−1
d 1 ((x1, . . . , xD−1) ∈ S) (3.7)

where B(α) is the multivariate Beta function, and xD = 1−∑D−1
d=1 xd. Note that this

Dirichlet is a distribution on S and not on the (D− 1)-dimensional simplex S D−1 =

{(x1, . . . , xD) : xd ≥ 0 and ∑D
d=1 xd = 1} (an often ignored and seemingly unimportant

technicality that needs to be correct here to ensure the proper transformation of

measure). Connecting this familiar distribution to the ME problem above, we simply

have to choose α such that κd = ψ(αd)− ψ(α0) for d = 1, ..., D, where α0 = ∑D
d=1 αd

and ψ is the digamma function. We then can pose the above ME problem to the

MEFN and compare performance against ground truth.

Before doing so, we must stipulate the transformation g that maps the Euclidean space

of the multivariate normal p0 to the desired support S . Any sensible choice will work

well (another point of flexibility for the MEFN); we use the standard transformation:

g(x1, ..., xD−1) =
(

ex1∑D−1
d=1 e

xd + 1
, ...,

exD−1∑D−1
d=1 e

xd + 1

)>
(3.8)

Note that the MEFN outputs vectors in RD−1, and not RD, because the Dirichlet is

specified as a distribution on S (and not on the simplex S D−1). Accordingly, the

Jacobian is a square matrix and its determinant can be computed efficiently using

the matrix determinant lemma. Here, p0 is set to the (D − 1)-dimensional standard

normal.

We proceed as follows: We choose α and compute the constraints κ1, ..., κD. We run

MEFN pretending we do not know α or the Dirichlet form. We then take a random

sample from the fitted distribution and a random sample from the Dirichlet with

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 34

parameter α, and compare the two samples using the maximum mean discrepancy

(MMD) kernel two sample test [Gretton et al., 2012], which assesses the fit quality.

We take the sample size to be 300 for the two sample kernel test. Figure 3.1 shows an

example of the transformation from normal (left panel) to MEFN (middle panel), and

comparing that to the ground truth Dirichlet (right panel). The MEFN and ground

truth Dirichlet densities shown in purple match closely, and the samples drawn (red)

indeed appear to be iid draws from the same (maximum entropy) distribution in both

cases.

Additionally, the middle panel of figure 3.1 shows an important cautionary tale that

foreshadows our texture synthesis results (section 3.3.3). One might suppose that

satisfying the moment matching constraints is adequate to produce a distribution

which, if not technically the ME distribution, is still interestingly variable. The middle

panel shows the failure of this intuition: in dark green, we show a network trained to

simply match the moments specified above, and the resulting distribution quite poorly

expresses the variability available to a distribution with these constraints, leading to

samples that are needlessly similar. Given the substantial interest in using networks to

learn implicit generative models (e.g., Mohamed and Lakshminarayanan [2016]), this

concern is particularly relevant and highlights the importance of considering entropy.

Figure 3.2 quantitatively analyzes these results. In the left panel, for a specific choice

of α = (1, 2, 3), we show our unbiased entropy estimate of the MEFN distribution

pθ as a function of the number of SGD iterations (red), along with the ground truth

maximum entropy H(p∗) (green line). Note that the MEFN stabilizes at the correct

value (as a stochastic estimator, variance around that value is expected). In the middle

panel, we show the distribution of MMD values for the kernel two sample test, as well

as the observed statistic for the MEFN (red) and for a randomly chosen Dirichlet

distribution (gray; chosen to be close to the true optimum, making a conservative

comparison). The MMD test does not reject MEFN as being different from the true

ME distribution p∗, but it does reject a Dirichlet whose KL to the true p∗ is small

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 35

Initial distribution p0 MEFN result pθ∗ Ground truth p∗p0 True

Figure 3.1: Example results from the ME problem with known Dirichlet ground truth.

Left panel: The normal density p0 (purple) and iid samples from p0 (red points).

Middle panel: The MEFN transforms p0 to the desired maximum entropy distribution

pθ∗ on the simplex (calculated density pθ∗ in purple). Truly iid samples are easily

drawn from pθ∗ (red points) by drawing from p0 and mapping those points through

fθ∗ . Shown in the middle panel are the same points in the top left panel mapped

through fθ∗ . Samples corresponding to training the same network as MEFN to simply

match the specified moments (ignoring entropy) are also shown (dark green points;

see text). Right panel: The ground truth (in this example, known to be Dirichlet)

distribution in purple, and iid samples from it in red.

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 36

0 10000 20000 30000
Iterations

1.6

1.4

1.2

1.0

0.8

0.6
En

tro
py

Estimated
True

0.00 0.01 0.02 0.03
MMD 2

u

0

50

100

150

200

250

p
(M

M
D

2 u
)

MEFN, KL=0.0088
Dirichlet, KL=0.10
Null distribution

0.1 0.0 0.1 0.2 0.3 0.4 0.5
MMD 2

u p-value

0.1

0.0

0.1

0.2

0.3

0.4

0.5

KL

MEFN
Dirichlets

Figure 3.2: Quantitative analysis of simulation results. See text for description.

(see legend). In the right panel, for many different Dirichlets in a small grid around a

single true p∗, the kernel two sample test statistic is computed, the MMD p-value is

calculated, as is the KL to the true distribution. We plot a scatter of these points

in grey, and we plot the particular MEFN solution as a red star. We see that for

other Dirichlets with similar KL to the true distribution as the MEFN distribution,

the p-values seem uniform, meaning that the KL to the true is indeed very small.

Again this is conservative, as the grey points have access to the known Dirichlet form,

whereas the MEFN considered the entire space (within its network capacity) of S

supported distributions. Given this fact, the performance of MEFN is impressive.

3.3.2 Risk-Neutral Asset Pricing

We extract the risk-neutral asset price probability distribution based on option prices,

an active and interesting area for ME models. We give a brief introduction of the

problem and refer interested readers to see Buchen and Kelly [1996] for a more detailed

explanation. Denoting St as the price of an asset at time t, the buyer of a European

call option for the stock that expires at time te with strike price K will receive a

payoff of cK = (Ste −K)+ = max(Ste −K, 0) at time te. Under the efficient market

assumption, the risk-neutral probability distribution for the stock price at time te
satisfies:

cK = F (te)Eq[(Ste −K)+], (3.9)

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 37

where F (te) is the risk-free discount factor and q is the risk-neutral measure. We also

have that, under the risk-neutral measure, the current stock price S0 is the discounted

expected value of Ste :

S0 = F (te)Eq(Ste). (3.10)

When given m options that expire at time te with strikes K1, ..., Km and prices

cK1 , ..., cKm , we get m expectation constraints on q(Ste) from equation 3.9, together

with equation 3.10, we have m+ 1 expectation constraints in total. With that partial

knowledge we can approximate q(Ste), which is helpful for understanding the market

expected volatility and identify mispricing in option markets, etc.

Inferring the risk-neutral density of asset price from a finite number of option prices

is an important question in finance and has been studied extensively [Buchen and

Kelly, 1996, Borwein et al., 2003, Bondarenko, 2003, Figlewski, 2008]. One popular

method proposed by Buchen and Kelly [1996] estimates the probability density as the

maximum entropy distribution satisfying the expectation constraints and a positivity

support constraint by fitting a Gibbs distribution, which results in a piece-wise linear

log density:

p(x) ∝ exp
{
η0x+

m∑
i=1

ηi(x−Ki)+

}
1 (x ≥ 0) (3.11)

and optimize the distribution with numerical methods. Here we compare the per-

formance of the MEFN algorithm with the method proposed in Buchen and Kelly

[1996]. To enforce the positivity constraint we choose g(x) = eax+b, where a and b are

additional parameters.

We collect the closing price of European call options on Nov. 1 2016 for the stock

AAPL (Apple inc.) that expires on te = Jun. 16 2017. We use m = 4 of the options

with highest trading volume as training data and the rest as testing data. On the left

panel of figure 3.3, we show the fitted risk-neutral density of Ste by MEFN (red line)

with that of the fitted Gibbs distribution result (blue line). We find that while the

distributions share similar location and variability, the distribution inferred by MEFN

is smoother and arguably more plausible. In the middle panel we show a Q-Q plot

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 38

of the quantiles of the MEFN and Gibbs distributions. We can see that the quantile

pairs match the identity closely, which should happen if both methods recovered the

exact same distribution. This highlights the effectiveness of MEFN. There does exist

a small mismatch in the tails: the distribution inferred by MEFN has slightly heavier

tails. This mismatch is difficult to interpret: given that both the Gibbs and MEFN

distributions are fit with option price data (and given that one can observe at most one

value from the distribution, namely the stock price at expiration), it is fundamentally

unclear which distribution is superior, in the sense of better capturing the true ME

distribution’s tails. On the right panel we show the fitted option price for the two

fitted distributions (for each strike price, we can recover the fitted option price by

equation 3.9). We noted that the fitted option price and strike price lines for both

methods are very similar (they are mostly indiscernible on the right panel of figure

3.3). We also compare the fitted performance on the test data by computing the

root mean square error for the fitted and test data. We observe that the predictive

performances for both methods are comparable.

0 50 100 150 200

Price (dollars)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
e
n
si

ty

Gibbs

MEFN

0 50 100 150 200 250

Gibbs Quantiles

0

50

100

150

200

250

300

M
E
FN

 Q
u
a
n
ti

le
s

identity

0 50 100 150

Strike price (dollars)

20

0

20

40

60

80

100

120

O
p
ti

o
n
 p

ri
ce

 (
d
o
lla

rs
)

Gibbs, RMSE=2.43

MEFN, RMSE=2.39

Training data

Testing data

Figure 3.3: Constructing risk-neutral measure from observed option price. Left panel:

fitted risk-neutral measure by Gibbs and MEFN method. Middle panel: Q-Q plot

for the quantiles from the distributions on the left panel. Right panel: observed and

fitted option price for different strikes.

We note that for this specific application, there are practical concerns such as the

microstructure noise in the data and inefficiency in the market, etc. Applying a

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 39

pre-processing procedure and incorporating prior assumptions can be helpful for get-

ting a more full-fledged method (see e.g. Figlewski [2008]). Here we mainly focus

on illustrating the ability of the MEFN method to approximate the ME distribu-

tion for non-typical distributions. Future work for this application includes fitting a

risk-neutral distribution for multi-dimensional assets by incorporating dependence

structure on assets.

3.3.3 Modeling Images of Textures

Constructing generative models to generate random images with certain texture

structure is an important task in computer vision. A line of texture synthesis research

proceeds by first extracting a set of features that characterizes the target texture and

then generate images that match the features. The seminal work of Zhu et al. [1998]

proposes constructing texture models under the ME framework, where features (or

filters) of the given texture image are adaptively added in the model and a Gibbs

distribution whose expected feature matches the target texture is learnt. One major

difficulty with the method is that both model learning and image generation involve

sampling from a complicated Gibbs distribution. More recent works exploit more

complicated features [Portilla and Simoncelli, 2000, Gatys et al., 2015, Ulyanov et al.,

2016]. Ulyanov et al. [2016] propose the texture network (see section 2.3), which uses a

texture loss function by using the Gram matrices of the outputs of some convolutional

layers of a pre-trained deep neural network for object recognition.

While the use of these complicated features does provide high-quality synthetic texture

images, that work focuses exclusively on generating images that match these feature

(moments). Importantly, this network focuses only on generating feature-matching

images without using the ME framework to promote the diversity of the samples.

Doing so can be deeply problematic: in figure 3.1 (middle panel), we showed the lack

of diversity resulting from only moment matching in that Dirichlet setting, and further

we note that the extreme pathology would result in a point mass on the training

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 40

image – a global optimum for this objective, but obviously a terrible generative model

for synthesizing textures. Ideally, the MEFN will match the moments and promote

sample diversity.

We applied MEFN to texture synthesis with an RGB representation of the 224× 224

pixel images , x ∈X = [0, 1]D, where D = 224× 224× 3. We follow Ulyanov et al.

[2016] to create a texture loss measure T : [0, 1]D → R, and aim to sample a diverse

set of images with small moment violation. For the transformation family F we use

the real NVP network structure proposed in Dinh et al. [2016] (see section 2.4). For

fair comparison, we use the same real NVP structure for both1.

As is shown in top row of figure 3.4, both methods generate visually pleasing images

capturing the texture structure well. The bottom row of figure 3.4 shows that texture

cost (left panel) is similar for both methods, while MEFN generates figures with much

larger entropy than the texture network formulation (middle panel), which is desirable

(as previously discussed). The bottom right panel of figure 3.4 compares the marginal

distribution of the RGB values sampled from the networks: we found that MEFN

generates a more variable distribution of RGB values than the texture net.

We compute in table 3.1 the average pairwise Euclidean distance between randomly

sampled images (dL2 = meani 6=j‖xi − xj‖2
2), and MEFN gives higher dL2 , quantifying

diversity across images. We also consider an ANOVA-style analysis to measure the

diversity of the images, where we think of the RGB values for the same pixel across

multiple images as a group, and compute the within and between group variance.

Specifically, denoting xdi as the pixel value for a specific pixel d = 1, ..., D for an image

i = 1,, n. We partition the total sum of square SST = ∑
i,d(xdi − x̄)2 as the within

group error SSW = ∑
i,d(xdi − x̄d)2 and between group error SSB = ∑

i,d n(x̄d − x̄)2,

where x̄ and x̄d are the mean pixel values across all data and for a specific pixel

1Ulyanov et al. [2016] use a quite different generative network structure, which is not invertible

and is therefore infeasible for entropy evaluation, so we replace their generative network by the real

NVP structure.

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 41

Input Texture net [Ulyanov et al., 2016] MEFN (ours)

Texture cost Entropy RGB histogram

0 5000 10000150002000025000
Iteration

106

107

108

109

1010

T
e
x
tu

re
 c

o
st

Texture nets

MEFN

0 5000 10000150002000025000
Iteration

104

105

106

N
e
g
a
ti

v
e
 E

n
tr

o
p
y

0.0 0.2 0.4 0.6 0.8 1.0
RGB value

0.0

0.5

1.0

1.5

2.0

2.5

D
e
n
si

ty

Figure 3.4: Analysis of texture synthesis experiment. See text for description.

d. Ideally we want the samples to exhibit large variability across images (large

SSW, within a group/pixel) and no structure in the mean image (small SSB, across

groups/pixels). Indeed, MEFN has a larger SSW, implying higher variability around

the mean image, a smaller SSB, implying the stationarity of the generated samples,

and a larger SST, implying larger total variability also. MEFN produces images

that are conclusively more variable without sacrificing the quality of the texture,

implicating the broad utility of ME.

Table 3.1: Quantitative measure of image diversity using 20 randomly sampled images.

Method dL2 SST SSW SSB

Texture net 11534 128680 109577 19103

MEFN 17014 175604 161639 13964

We tried our texture modeling approach with many different textures, and although

MEFN samples don’t always exhibit more visual diversity than samples obtained from

the texture network, they always have more entropy as in figure 3.4. Figure 3.5 shows

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 42

two positive examples, i.e. textures in which samples from MEFN do exhibit higher

visual diversity than those from the texture network, as well as a negative example, in

which MEFN achieves less visual diversity than the texture network, regardless of the

fact that MEFN samples do have larger entropy. We hypothesize that this curious

behavior is due to the optimization achieving a local optimum in which the brick

boundaries and dark brick locations are not diverse but the entropy within each brick

is large. It should also be noted that among the experiments that we ran, this was the

only negative example that we got, and that slightly modifying the hyperparameters

caused the issue to disappear.

3.4 Conclusions

In this chapter we propose a general framework for fitting ME models. This approach

is novel and has three key features. First, by learning a transformation of a simple

distribution rather than the distribution itself, we are able to avoid explicitly computing

an intractable normalizing constant for the ME distribution. Second, by combining

stochastic optimization with the augmented Lagrangian method, we can fit the

model efficiently, allowing us to evaluate the ME density of any point simply and

accurately. Third, critically, this construction allows us to trivially sample iid from

a ME distribution, extending the utility and efficiency of the ME framework more

generally. Also, accuracy equivalent to the classic Gibbs approach is in itself a

contribution (owing to these other features). We illustrate the MEFN in both a

simulated case with known ground truth and real data examples.

There are a few recent works encouraging sample diversity in the setting of texture

modeling. Ulyanov et al. [2017] extended Ulyanov et al. [2016] by adding a penalty term

using the Kozachenko-Leonenko estimator Kozachenko and Leonenko [1987] of entropy.

Their generative network is an arbitrary deep neural network rather than a normalizing

flow, which is more flexible but cannot give the probability density of each sample

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 43

Input
(positive example)

Input
(positive example)

Input
(negative example)

Texture net (Ulyanov et al. [2016], less sample diversity)

MEFN (ours, more sample diversity)

Figure 3.5: MEFN and texture network samples.

easily so as to compute an unbiased estimator of the entropy. Kozachenko-Leonenko

is a biased estimator for entropy and requires a fairly large number of samples to get

good performance in high-dimensional settings, hindering the scalability and accuracy

of the method; indeed, our choice of normalizing flow networks was driven by these

practical issues with Kozachenko-Leonenko. Lu et al. [2016] extended Zhu et al. [1998]

by using a more flexible set of filters derived from a pre-trained deep neural networks,

and using parallel MCMC chains to learn and sample from the Gibbs distribution.

CHAPTER 3. MAXIMUM ENTROPY FLOW NETWORKS 44

Running parallel MCMC chains results in diverse samples but can be computationally

intensive for generating each new sample image. Our MEFN framework enables truly

iid sampling with the ease of a feed forward network.

CHAPTER 4. THE CONTINUOUS BERNOULLI 45

Chapter 4

The Continuous Bernoulli

4.1 Introduction

Variational autoencoders (see section 2.5) have quickly become a central tool in ma-

chine learning, applicable to a broad range of data types and latent variable models.

By far the most common first step, taken by seminal papers and by core software li-

braries alike, is to model MNIST data using a deep network parameterizing a Bernoulli

likelihood. This practice contains what appears to be and what is often set aside

as a minor inconvenience: the pixel data is [0, 1] valued, not {0, 1} as supported by

the Bernoulli likelihood. In this chapter we show that, far from being a triviality or

nuisance that is convenient to ignore, this error has profound importance to VAE,

both qualitative and quantitative. We introduce and fully characterize a new [0, 1]-

supported, single parameter distribution: the continuous Bernoulli, which patches

this pervasive bug in VAE. This distribution is not nitpicking; it produces meaningful

performance improvements across a range of metrics and datasets, including sharper

image samples, and suggests a broader class of performant VAE.

Variational autoencoders have become a central tool for probabilistic modeling of

complex, high dimensional data, and have been applied across image generation

[Gregor et al., 2015], text generation [Hu et al., 2017], neuroscience [Gao et al., 2016],

CHAPTER 4. THE CONTINUOUS BERNOULLI 46

chemistry [Gómez-Bombarelli et al., 2018], and more. One critical choice in the design

of any VAE is the choice of likelihood (decoder) distribution, which stipulates the

stochastic relationship between latents and observables. Consider then using a VAE

to model the MNIST dataset, by far the most common first step for introducing and

implementing VAE. An apparently innocuous practice is to use a Bernoulli likelihood

to model this [0, 1]-valued data (grayscale pixel values), in disagreement with the {0, 1}

support of the Bernoulli distribution. Though doing so will not throw an obvious type

error, the implied object is no longer a coherent probabilistic model, due to a neglected

normalizing constant. This practice is extremely pervasive in the VAE literature,

including the seminal work of Kingma and Welling [2013] (who, while aware of it, set

it aside as an inconvenience), highly-cited follow up work (for example [Larsen et al.,

2015, Sønderby et al., 2016, Jiang et al., 2016, Dilokthanakul et al., 2016] to name

but a few), VAE tutorials [Doersch, 2016, tut], including those in hugely popular deep

learning frameworks such as PyTorch [Paszke et al., 2017] and Keras [Chollet et al.,

2015], and more.

In this chapter, whose content is in Loaiza-Ganem and Cunningham [2019], we intro-

duce and fully characterize the continuous Bernoulli distribution (section 4.2), both

as a means to study the impact of this widespread modeling error, and to provide a

proper VAE for [0, 1]-valued data. Before these details, let us ask the central question:

who cares?

First, theoretically, ignoring normalizing constants is unthinkable throughout most of

probabilistic machine learning: these objects serve a central role in restricted Boltz-

mann machines [Smolensky, 1986, Hinton, 2002], graphical models [Koller et al., 2009,

Pearl, 1982, Murphy et al., 1999, Wainwright and Jordan, 2008], maximum entropy

modeling [Jaynes, 1957, Malouf, 2002, Loaiza-Ganem et al., 2017], the “Occam’s razor”

nature of Bayesian models [MacKay, 2003], and much more.

Second, one might suppose this error can be interpreted or fixed via data augmen-

tation, binarizing data, stipulating a different lower bound, or as a nonprobabilistic

CHAPTER 4. THE CONTINUOUS BERNOULLI 47

model with a “negative binary cross-entropy” objective. Section 4.3 explores these

possibilities and finds them wanting. Also, one might be tempted to call the Bernoulli

VAE a toy model or a minor point. Let us avoid that trap: MNIST is likely the single

most widely used dataset in machine learning, and VAE is quickly becoming one of

our most popular probabilistic models.

Third, and most importantly, empiricism; section 4.4 shows three key results: (i) as

a result of this error, we show that the Bernoulli VAE significantly underperforms

the continuous Bernoulli VAE across a range of evaluation metrics, models, and

datasets; (ii) a further unexpected finding is that this performance loss is significant

even when the data is close to binary, a result that becomes clear by consideration of

continuous Bernoulli limits; and (iii) we further compare the continuous Bernoulli to

beta likelihood and Gaussian likelihood VAE, again finding the continuous Bernoulli

performant.

All together this work suggests that careful treatment of data type – neither ignoring

normalizing constants nor defaulting immediately to a Gaussian likelihood – can

produce optimal results when modeling some of the most core datasets in machine

learning.

4.2 The Continuous Bernoulli Distribution

When using a Bernoulli VAE to model binary data x1, . . . , xR ∈ {0, 1}D, the recon-

struction term in the ELBO 2.25 is:

Eqφ(zr|xr)[log pθ(xr|zr)] = Eqφ(zr|xr)

[D∑
d=1

xr,d log λθ,d(zr) + (1− xr,d) log(1− λθ,d(zr))
]

(4.1)

where xr,d and λθ,d(zr) are the d-th coordinates of xr and λθ(zr), respectively. However,

critically, Bernoulli likelihoods and the reconstruction term of equation 4.1 are com-

monly used for [0, 1]-valued data, which loses the interpretation of probabilistic infer-

ence. To clarify, hereafter we denote the Bernoulli distribution as ∼p(x|λ) = λx(1−λ)1−x

to emphasize the fact that it is an unnormalized distribution (when evaluated over

CHAPTER 4. THE CONTINUOUS BERNOULLI 48

[0, 1]). We will also make this explicit in the ELBO, writing E (∼p, θ, φ) to denote that

the reconstruction term of equation 4.1 is being used. When analyzing [0, 1]-valued

data such as MNIST, the Bernoulli VAE has optimal parameter values θ∗(∼p) and

φ∗(∼p); that is:

(θ∗(∼p), φ∗(∼p)) = maximize
(θ,φ)

E (∼p, θ, φ). (4.2)

In order to analyze the implications of this modeling error, we introduce the continuous

Bernoulli, a novel distribution on [0, 1], which is parameterized by λ ∈ (0, 1) and

defined by:

X ∼ C B(λ) ⇐⇒ p(x|λ) ∝ ∼p(x|λ) = λx(1− λ)1−x. (4.3)

We now fully characterize this distribution. Note that if X ∼ C B(0.5) then X follows

a uniform distribution on [0, 1], which makes the proofs of the following propositions

trivial for that case. In the following proofs we thus assume that λ 6= 0.5.

Proposition 1 (C B density and mean): The continuous Bernoulli distribution

is well defined, that is, 0 <
∫ 1

0
∼
p(x|λ)dx < ∞ for every λ ∈ (0, 1). Furthermore, if

X ∼ C B(λ), then the density function of X and its expected value are:

p(x|λ) = C(λ)λx(1− λ)1−x,where C(λ) =


2tanh−1(1− 2λ)

1− 2λ if λ 6= 0.5

2 otherwise
(4.4)

µ(λ) := E[X] =


λ

2λ− 1 + 1
2tanh−1(1− 2λ)

if λ 6= 0.5

0.5 otherwise
(4.5)

Proof :

We define the function
∼
F (·|λ) : [0, 1]→ [0, 1] as:

∼
F (x|λ) = −λ

x(1− λ)1−x + λ− 1
2tanh−1(1− 2λ)

(4.6)

It is straightforward to verify that
∼
F
′
(x|λ) = ∼

p(x|λ), so that for every x ∈ [0, 1]:
∫ x

0
λs(1− λ)1−sds =

∼
F (x|λ)−

∼
F (0|λ) (4.7)

CHAPTER 4. THE CONTINUOUS BERNOULLI 49

In particular:

0 < C(λ) =
∫ 1

0
λs(1− λ)1−sds =

∼
F (1|λ)−

∼
F (0|λ) = 2tanh−1(1− 2λ)

1− 2λ <∞ (4.8)

And thus p(x|λ) = C(λ)∼p(x|λ). Furthermore:

µ(λ) =
∫ 1

0
C(λ)xλx(1− λ)1−xdx (4.9)

= C(λ)(λ− 1)(1− λ)−xλx(x log(1− λ)− x log λ+ 1)
(log(1− λ)− log λ)2

∣∣∣∣∣∣
x=1

x=0

(4.10)

= λ

2λ− 1 + 1
2tanh−1(1− 2λ)

(4.11)

�

Figure 4.1 shows logC(λ), p(x|λ), and µ(λ). Some notes warrant mention: (i) unlike

the Bernoulli, the mean of the continuous Bernoulli is not λ; (ii) however, like for

the Bernoulli, µ(λ) is increasing on λ and goes to 0 or 1 when λ goes to 0 or 1; (iii)

the continuous Bernoulli is not a beta distribution (see appendix B for a detailed

analysis of the differences), nor any other [0, 1]-supported distribution we are aware

of; (iv) C(λ) and µ(λ) are continuous functions of λ; and (v) the log normalizing

constant logC(λ) is well characterized but numerically unstable close to λ = 0.5, so

our implementation uses a Taylor approximation near that critical point to calculate

logC(λ) to high numerical precision.

0.0 0.2 0.4 0.6 0.8 1.0
parameter

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

lo
g

C(
)

 log normalizing constant

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

p(
x|

)

 density

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pa
ra

m
et

er

0.0 0.2 0.4 0.6 0.8 1.0
parameter

0.0

0.2

0.4

0.6

0.8

1.0

(
)

 mean
continuous Bernoulli
Bernoulli

Figure 4.1: Continuous Bernoulli log normalizing constant (left panel), pdf (middle

panel) and mean (right panel).

Proposition 2 (C B additional properties): The continuous Bernoulli forms

CHAPTER 4. THE CONTINUOUS BERNOULLI 50

an exponential family with sufficient statistic T (x) = x and natural parameter

log(λ/(1− λ)). Furthermore, if X ∼ C B(λ), the following hold:

1. The variance of X is:

var(X) =


(λ− 1)λ
(1− 2λ)2 + 1

(2tanh−1(1− 2λ))2 if λ 6= 0.5

1/12 otherwise
(4.12)

2. The cumulative distribution function of X is:

F (x|λ) =


λx(1− λ)1−x + λ− 1

2λ− 1 if λ 6= 0.5

x otherwise
(4.13)

3. The inverse cumulative distribution function of X is:

F−1(u|λ) =


log(u(2λ− 1) + 1− λ)− log(1− λ)

log(λ)− log(1− λ) if λ 6= 0.5

u otherwise
(4.14)

and thus we immediately have the reparameterization X = F−1(U) (in distribu-

tion), where U ∼ Uniform(0, 1).

4. The characteristic function of X is:

ϕX(t) =



C(λ) i(1− λeit − λ)
t+ 2itanh−1(1− 2λ)

if λ 6= 0.5 and t 6= 0

eit − 1
it

if λ = 0.5 and t 6= 0

1 if t = 0

(4.15)

5. The entropy of X is:

H(X) = µ(λ) log 1− λ
λ
− logC(λ)− log(1− λ) (4.16)

6. The KL divergence between two continuous Bernoulli distributions is:

KL
(
p(x|λ1)||p(x|λ2)

)
= µ(λ1) log λ1(1− λ2)

λ2(1− λ1) + log C(λ1)(1− λ1)
C(λ2)(1− λ2) (4.17)

CHAPTER 4. THE CONTINUOUS BERNOULLI 51

7. C(λ) is convex.

Proof :

1. Clearly:

p(x|λ) = 1(x ∈ [0, 1])ex log λ
1−λ+(log(1−λ)+logC(λ)) (4.18)

So that the continuous Bernoulli indeed forms an exponential family with sufficient

statistic T (x) = x and natural parameter log(λ/(1− λ)). �

2. Also:

var(X) =
∫ 1

0
C(λ)(x− µ(λ))2λx(1− λ)1−xdx (4.19)

= −C(λ)
(1− λ)1−xλx

(
4(µ(λ)− x)tanh−1(1− 2λ)

(
(µ(λ)− x)tanh−1(1− 2λ)− 1

)
+ 2
)(

2tanh−1(1− 2λ)
)3

∣∣∣x=1

x=0
(4.20)

= (λ− 1)λ
(1− 2λ)2 + 1

(2tanh−1(1− 2λ))2 (4.21)

�

3. Furthermore:

F (x) = C(λ)
∼
F (x|λ) = λx(1− λ)1−x + λ− 1

2λ− 1 (4.22)

The above equation, equated to u, can easily be inverted algebraically to obtain:

F−1(u|λ) = log(u(2λ− 1) + 1− λ)− log(1− λ)
log(λ)− log(1− λ) (4.23)

�

4. Since ϕX(t) = E[eitX], the case where t = 0 is trivial. We have:

E[cos(tX)] =
∫ 1

0
cos(tx)C(λ)λx(1− λ)1−xdx (4.24)

= C(λ)
(λ− 1)(1− λ)−xλx

(
(log(1− λ)− log λ) cos(tx)− t sin(tx)

)
t2 + log2(1− λ) + log2 λ− 2 log(1− λ) log λ

∣∣∣∣∣
x=1

x=0

(4.25)

Also:

E[sin(tX)] =
∫ 1

0
sin(tx)C(λ)λx(1− λ)1−xdx (4.26)

= C(λ)
(λ− 1)(1− λ)−xλx

(
(log(1− λ)− log λ) sin(tx)− t cos(tx)

)
t2 + log2(1− λ) + log2 λ− 2 log(1− λ) log λ

∣∣∣∣∣
x=1

x=0

(4.27)

CHAPTER 4. THE CONTINUOUS BERNOULLI 52

Combining the above two expressions and simplifying, we get:

ϕX(t) = E[eitX] = E[cos(tX) + i sin(tX)] = C(λ) i(1− λeit − λ)
t+ 2itanh−1(1− 2λ)

(4.28)

�

5. We have:

H(X) = −E[log p(X|λ)] = −E[logC(λ) +X log λ+ (1−X) log(1− λ)] (4.29)

= − logC(λ)− µ(λ) log λ− (1− µ(λ)) log(1− λ) (4.30)

= µ(λ) log 1− λ
λ
− logC(λ)− log(1− λ) (4.31)

�

6. The KL divergence between X1 ∼ C B(λ1) and X2 ∼ C B(λ2) is given by:

KL
(
p(x|λ1)||p(x|λ2)

)
= E

[
log p(X1|λ1)

p(X1|λ2)

]
(4.32)

= −E[logC(λ2) +X1 log λ2 + (1−X1) log(1− λ2)]−H(X1) (4.33)

= µ(λ1) log λ1(1− λ2)
λ2(1− λ1) + log C(λ1)(1− λ1)

C(λ2)(1− λ2) (4.34)

�

7. Finally, to show that C(λ) is convex, we first show that the function:

g(ν) =


tanh−1(ν)

ν
, if ν 6= 0

1, otherwise
(4.35)

is convex in (−1, 1). The Taylor series expansion of tanh−1(ν) is given by:

tanh−1(ν) =
∞∑
k=0

1
2k + 1ν

2k+1 (4.36)

So that g(ν) admits the expansion:

g(ν) =
∞∑
k=0

1
2k + 1ν

2k (4.37)

Then:

g′′(ν) =
∞∑
k=1

2k(2k − 1)
2k + 1 ν2k−2 ≥ 0 (4.38)

CHAPTER 4. THE CONTINUOUS BERNOULLI 53

So that g is convex. Since C(λ) = 2g(1− 2λ), C(λ) is convex as well. �

Proposition 3 (C B Bernoulli limit): C B(λ) λ→0−−→ δ(0) and C B(λ) λ→1−−→ δ(1) in

distribution; that is, the continuous Bernoulli becomes a Bernoulli in the limit.

Proof : We have that F (x|λ) λ→0−−→ 1(x > 0) and F (x|λ) λ→1−−→ 1(x = 1), which

concludes the proof. �

This proposition might at a first glance suggest that, as long as the estimated parame-

ters are close to 0 or 1 (which should happen when the data is close to binary), then

the practice of erroneously applying a Bernoulli VAE should be of little consequence.

However, the above reasoning is wrong, as it ignores the shape of logC(λ): as λ→ 0

or λ→ 1, logC(λ)→∞ (figure 4.1, left). Thus, if data is close to binary, the term

neglected by the Bernoulli VAE becomes even more important, the exact opposite

conclusion than the naive one presented above.

Proposition 4 (C B normalizing constant bound): C(λ) ≥ 2, with equality if

and only if λ = 0.5. And thus it follows that, for any x, λ, we have log p(x|λ) >

log ∼p(x|λ).

Proof :

It is straightforward to verify, using L’Hôpital’s rule, that:

∂

∂λ
C(λ)

∣∣∣∣
λ=0.5

= 0 (4.39)

Thus, 0.5 is a local optimum of C(λ). Since C(λ) is convex, λ = 0.5 is a global

minimizer of C(λ), and since C(0.5) = 2, this finishes the proof. �

This proposition allows us to interpret E (∼p, θ, φ) as a lower lower bound of the log

likelihood (section 4.3).

Proposition 5 (C B maximum likelihood): For an observed sample x1, . . . , xR ∼iid
C B(λ), the maximum likelihood estimator λ̂ of λ is such that:

µ(λ̂) = 1
R

R∑
r=1

xr (4.40)

Proof :

CHAPTER 4. THE CONTINUOUS BERNOULLI 54

The proof follows from the fact that doing maximum likelihood in an exponential

family reduces to doing moment matching on the sufficient statistic. �

Beyond characterizing a novel and interesting distribution, these propositions now

allow full analysis of the error in applying a Bernoulli VAE to the wrong data type.

4.3 The Continuous Bernoulli VAE

We define the continuous Bernoulli VAE analogously to the Bernoulli VAE:
Zr ∼ N (0, IM)

Xr|Zr ∼ C B (λθ(Zr)) for r = 1, . . . , R
(4.41)

where again λθ : RM → RD is a neural network with parameters θ, and C B(λ) now
denotes the product of D independent continuous Bernoulli distributions. Opera-
tionally, this results only in a change to the optimized objective; for clarity we compare
the ELBO of the continuous Bernoulli VAE (top), E (p, θ, φ), to the Bernoulli VAE
(bottom):

E (p, θ, φ) =
R∑
r=1

−KL(qφ||π) + Eqφ

[
D∑
d=1

xr,d log λθ,d(zr) + (1− xr,d) log(1− λθ,d(zr)) + logC(λθ,d(zr))

]

E (∼p, θ, φ) =
R∑
r=1

−KL(qφ||π) + Eqφ

[
D∑
d=1

xr,d log λθ,d(zr) + (1− xr,d) log(1− λθ,d(zr))

]
,

Analogously, we denote θ∗(p) and φ∗(p) as the maximizers of the continuous Bernoulli

ELBO:

(θ∗(p), φ∗(p)) = maximize
(θ,φ)

E (p, θ, φ). (4.42)

Immediately, a number of potential interpretations for the Bernoulli VAE come to

mind, some of which have appeared in literature. We analyze each in turn.

CHAPTER 4. THE CONTINUOUS BERNOULLI 55

4.3.1 Binarizing

One obvious workaround is to simply binarize any [0, 1]-valued data (MNIST pixel

values or otherwise), so that it accords with the Bernoulli likelihood [Larochelle and

Murray, 2011], a practice that has been followed in some subsequent works (e.g.

[Rezende and Mohamed, 2015, Burda et al., 2015]). First, modifying data to fit a

model, particularly an unsupervised model, is fundamentally problematic. Second,

many [0, 1]-valued datasets are heavily degraded by binarization (see appendix B for

CIFAR-10 samples), indicating major practical limitations.

4.3.2 Data Augmentation

Because the expectation of a Bernoulli random variable is precisely its parameter,

the Bernoulli VAE might (erroneously) be assumed to be equivalent to a continuous

Bernoulli VAE on an infinitely augmented dataset, obtained by sampling binary data

whose mean is given by the observed data; indeed this idea is suggested by Kingma

and Welling [2013]1. However, this interpretation does not hold2; it would result in a

reconstruction term as in the first line in the equation below, while a correct Bernoulli

VAE on the augmented dataset would have a reconstruction term given by the second

line (not equal, as the order of expectation can not be switched because qφ depends

on Xr on the second line):

Ezn∼qφ(zn|xn)

[
EXn∼B(xn)

[D∑
d=1

Xn,d log λθ,d(zn) + (1−Xn,d) log λθ,d(zn)
]]

(4.43)

6= EXn∼B(xn)

[
Ezn∼qφ(zn|Xn)

[D∑
d=1

Xn,d log λθ,d(zn) + (1−Xn,d) log λθ,d(zn)
]]
.

1see the comments in https://openreview.net/forum?id=33X9fd2-9FyZd

2see http://ruishu.io/2018/03/19/bernoulli-vae/ for a looser lower bound interpretation

https://openreview.net/forum?id=33X9fd2-9FyZd
http://ruishu.io/2018/03/19/bernoulli-vae/

CHAPTER 4. THE CONTINUOUS BERNOULLI 56

4.3.3 Bernoulli VAE as a Different Objective

Knoblauch et al. [2019] study changing the reconstruction and/or the KL term in

the ELBO. While their main focus is to obtain more robust inference, they provide a

framework in which the Bernoulli VAE corresponds simply to a different (nonprob-

abilistic) loss. In this perspective, empirical results must determine the adequacy

of this objective; section 4.4 shows the Bernoulli VAE to underperform its proper

probabilistic counterpart across a range of settings.

4.3.4 Bernoulli VAE as a Lower Lower Bound

Because the continuous Bernoulli ELBO and the Bernoulli ELBO are related by:

E (∼p, θ, φ) +
R∑
r=1

D∑
d=1

Ezr∼qφ(zr|xr)[logC(λθ,d(zr))] = E (p, θ, φ) (4.44)

and recalling Proposition 4, since log 2 > 0, we get that E (∼p, θ, φ) < E (p, θ, φ). That

is, using the Bernoulli VAE results in optimizing an even-lower bound of the log

likelihood than using the continuous Bernoulli ELBO. Note however that unlike the

ELBO, E (∼p, θ, φ) is not tight even if the approximate posterior matches the true

posterior.

4.3.5 Mean Parameterization

The conventional maximum likelihood estimator for a Bernoulli, namely:

λ̂B = 1
R

R∑
r=1

xr (4.45)

maximizes ∼p(x1, ..., xR|λ) regardless of whether data is {0, 1} and [0, 1]. As a thought

experiment, consider x1, . . . , xR ∼iid C B(λ). Proposition 5 tells us that the correct

maximum likelihood estimator, λ̂C B is such that:

µ(λ̂C B) = 1
R

R∑
r=1

xr (4.46)

CHAPTER 4. THE CONTINUOUS BERNOULLI 57

where µ is the C B mean of equation 4.5. Thus, while using λ̂B is incorrect, one can

(surprisingly) still recover the correct maximum likelihood estimator via:

λ̂C B = µ−1(λ̂B) (4.47)

One might then (wrongly) think that training a Bernoulli VAE, and then subsequently

transforming the decoder parameters with µ−1, would be equivalent to training a

continuous Bernoulli VAE; that is: λθ∗(p) might be equal to µ−1(λ
θ∗(∼p)). This reasoning

is incorrect: the KL term in the ELBO implies that:

λθ∗(p)(zr) 6= µ−1(xr) (4.48)

and so too:

λ
θ∗(∼p)(zr) 6= xr (4.49)

and as such:

λθ∗(p) 6= µ−1(λ
θ∗(∼p)) (4.50)

In fact, our experiments will show that despite this flawed reasoning, applying this

transformation can recover some, but not all, of the performance loss from using a

Bernoulli VAE.

4.4 Experiments

We have introduced the continuous Bernoulli distribution to give a proper probabilistic

VAE for [0, 1]-valued data. The essential question that we now address is how much,

if any, improvement we achieve by making this choice.

4.4.1 MNIST

One frequently noted shortcoming of VAE (and Bernoulli VAE on MNIST in particular)

is that samples from this model are blurry. As noted, the convexity of logC(λ) can

be seen as regularizing sample values from the VAE to be more extremal; that is,

CHAPTER 4. THE CONTINUOUS BERNOULLI 58

data

C B VAE

B VAE

N VAE

Figure 4.2: Samples from MNIST, continuous Bernoulli VAE, Bernoulli VAE, and

Gaussian VAE.

sharper. As such we first compared samples from a trained continuous Bernoulli VAE

against samples from the MNIST dataset itself, from a trained Bernoulli VAE, and

from a trained Gaussian VAE (namely the usual VAE model with a decoder likelihood

pθ(x|z) = N (ηθ(z), σ2
θ(z)), where we use η to avoid confusion with µ of equation 4.5).

These samples are shown in figure 4.2. In each case, as is standard, we show the

parameter output by the generative/decoder network for a given latent draw: λθ∗(p)(z)

for the C B VAE, λ
θ∗(∼p)(z) for the B VAE, and ηθ∗(z) for the N VAE. Qualitatively,

the continuous Bernoulli VAE achieves considerably superior samples vs the Bernoulli

or Gaussian VAE, owing to the effect of logC(λ) pushing the decoder toward sharper

images. Further samples are in appendix B.

4.4.2 Warped MNIST Datasets

The most common justification for the Bernoulli VAE is that MNIST pixel values are

“close” to binary. An important study is thus to ask how the performance of continuous

Bernoulli VAE vs the Bernoulli VAE changes as a function of this “closeness”. We

formalize this concept by introducing a warping function fγ(x) that, depending on

the warping parameter γ, transforms individual pixel values to produce a dataset

that is anywhere from fully binarized (every pixel becomes {0, 1}) to fully degraded

(every pixel becomes 0.5). Figure 4.3 shows fγ for different values of γ, and the (rather

CHAPTER 4. THE CONTINUOUS BERNOULLI 59

uninformative) warping equation appears next to figure 4.3.

Importantly, γ = 0 corresponds to an unwarped dataset, i.e., the original MNIST

dataset. Further, note that negative values of γ warp pixel values towards being more

binarized, completely binarizing it in the case where γ = −0.5, whereas positive values

of γ push the pixel values towards 0.5, recovering constant data at γ = 0.5. We then

train our competing VAE models on the datasets induced by different values of γ and

compare the difference in performance as γ changes. Note importantly that, because γ

induces different datasets, performance values should primarily be compared between

VAE models at each γ value; the trend as a function of γ is not of particular interest.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)

warping functions

0.5
0.4
0.3
0.2
0.1

0.0
0.1
0.2
0.3
0.4
0.5

wa
rp

in
g

Figure 4.3: fγ for different γ values.

fγ(x) =


1(x ≥ 0.5), if γ = −0.5

min
(

1,max
(

0,
x+ γ

1 + 2γ

))
, if γ ∈ (−0.5, 0)

γ + (1− 2γ)x, if γ ∈ [0, 0.5]

Figure 4.4 shows the results of various models applied to these different datasets

(all values are an average of 10 separate training runs). The same neural network

architectures are used across this figure, with architectural choices that are quite

standard (detailed in appendix B, along with training hyperparameters). The left

panel shows ELBO values. In dark blue is the continuous Bernoulli VAE ELBO,

namely E (p, θ∗(p), φ∗(p)). In light blue is the same ELBO when evaluated on a trained

Bernoulli VAE: E (p, θ∗(∼p), φ∗(∼p)). Most importantly, note the γ = 0 values; the

continuous Bernoulli VAE achieves a 300 nat improvement over the Bernoulli VAE.

This finding supports the previous qualitative finding and the theoretical motivation

for this work: significant quantitative gains are achieved via the continuous Bernoulli

model. This finding remains true across a range of γ (dark blue above light blue

CHAPTER 4. THE CONTINUOUS BERNOULLI 60

in figure 4.4), indicating that regardless of how ‘close’ to binary a dataset is, the

continuous Bernoulli is a superior VAE model.

One might then wonder if the continuous Bernoulli is outperforming simply because

the Bernoulli needs a mean correction. We thus apply µ−1, namely the map from

Bernoulli to continuous Bernoulli maximum likelihood estimators (equation 4.5 and

section 4.3.5), and evaluate the same ELBO on µ−1(λ
θ∗(∼p)) as the decoder shown in

light red (figure 4.4, left). This result, which is only achieved via the introduction

of the continuous Bernoulli, shows two important findings: first, that indeed some

improvement over the Bernoulli VAE is achieved by post hoc correction to a continuous

Bernoulli parameterization; but second, that this transformation is still inadequate

to achieve the full performance of the continuous Bernoulli VAE. We also note that

0.4 0.2 0.0 0.2 0.4
warping

0

200

400

600

800

1000

1200

1400

1600

EL
BO

1470

1139

1416

ELBO for VAE

(p, * (p), * (p))
(p, * (p), * (p))
(p, * (p), * (p)) with 1

0.4 0.2 0.0 0.2 0.4
warping

2

4

6

8

10

in
ce

pt
io

n
sc

or
e

inception scores of VAE

IS data
IS * (p)(z)
IS * (p)(z)
IS (* (p)(z))
IS (* (p)(z))

Figure 4.4: Continuous Bernoulli comparisons against Bernoulli VAE. See text for

details.

we ran the same experiment with log likelihood instead of ELBO (using importance

weighted estimates with k = 100 samples; see section 2.5.1), and the same results held

(up to small numerical differences; these traces are omitted for figure clarity). We also

ran the same experiment with a more complicated approximate posterior distribution

using 10 layers of planar flows (see section 2.4.2), results are in the middle panel of

figure 4.5. We can see that not only do the results hold: the gap between continuous

Bernoulli and Bernoulli increases even further. We ran the same experiment yet again

CHAPTER 4. THE CONTINUOUS BERNOULLI 61

0.4 0.2 0.0 0.2 0.4
warping

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

knn accuracy of VAE latents
(p)
(p)

0.4 0.2 0.0 0.2 0.4
warping

500

1000

1500

2000

2500

EL
BO

2580

1066

1316

ELBO for VAE plus NF

(p, * (p), * (p))
(p, * (p), * (p))
(p, * (p), * (p)) plus 1

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1100

1200

1300

1400

1500

EL
BO

-VAE ELBO

(p, * (p), * (p))
(p, * (p), * (p))
(p, * (p), * (p)) with 1

(p, * (p), * (p)) with 1

Figure 4.5: More continuous Bernoulli comparisons against Bernoulli VAE. See text

for details.

for the β-VAE (see section 2.5.2), sweeping a range of β values, and the same results

held, as is shown in the right panel of figure 4.5 (which shows only γ = 0). It is natural

to then wonder if this performance is an artifact of ELBO and log likelihood; thus, we

also evaluated the same datasets and models using different evaluation metrics. In

the right panel of figure 4.4, we use the inception score (see section 2.6.1) to measure

sample quality produced by the different models (higher is better). Once again, we

see that including the normalizing constant produces better samples (dark traces /

continuous Bernoulli lie above light traces / Bernoulli). We include that comparison

on both the decoder parameters λ (dark and light green) and also samples from

distributions indexed by those parameters (dark and light orange). One can imagine a

variety of other parameter transformations that may be of interest; we include several

in appendix B, where again we find that the continuous Bernoulli VAE outperforms

its Bernoulli counterpart.

In the left panel of figure 4.5, to measure usefulness of the latent representations of

these models, we compute mφ∗(p)(xr) and m
φ∗(∼p)(xr) (note that m is the variational

posterior mean from equation 2.24 and not the continuous Bernoulli mean) for training

data and use a 15-nearest neighbor classifier to predict the test labels. The left panel

of figure 4.5 shows the accuracy of the classifiers (denoted K (φ)) as a function of γ.

Once again, the continuous Bernoulli VAE outperforms the Bernoulli VAE.

Now that the continuous Bernoulli VAE gives us a proper model on [0, 1], we can

CHAPTER 4. THE CONTINUOUS BERNOULLI 62

0.4 0.2 0.0 0.2 0.4
warping

900

800

700

600

500

EL
BO

ELBO for Gaussian VAE

(p, * (p), * (p))
(p, * (p), * (p))

0.4 0.2 0.0 0.2 0.4
warping

2

4

6

8

10

in
ce

pt
io

n
sc

or
e

inception scores of Gaussian VAE

IS data
IS * (p)(z)
IS * (p)(z)
IS (* (p)(z), 2

* (p)(z))
IS (* (p)(z), 2

* (p)(z))

0.4 0.2 0.0 0.2 0.4
warping

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

knn accuracy of Gaussian VAE latents
(p)
(p)

0.4 0.2 0.0 0.2 0.4
warping

0

500

1000

1500

2000

EL
BO

ELBO for beta distribution VAE
(p, * (p), * (p))
(p, * (p), * (p))

0.4 0.2 0.0 0.2 0.4
warping

2

4

6

8

10

in
ce

pt
io

n
sc

or
e

inception scores of beta distribution VAE

IS data
IS mean(* (p)(z), * (p)(z))
IS mean(* (p)(z), * (p)(z))
IS Beta(* (p)(z), * (p)(z))
IS Beta(* (p)(z), * (p)(z))

0.4 0.2 0.0 0.2 0.4
warping

0.2

0.4

0.6

0.8

ac
cu

ra
cy

knn accuracy of beta distribution VAE latents
(p)
(p)

Figure 4.6: Gaussian (top panels) and beta (bottom panels) distributions comparisons

between including and excluding the normalizing constants. Left panels show ELBOs,

middle panels inceptions scores, and right panels 15-nearest neighbors accuracy.

also propose other natural models. Here we introduce and compare against the beta

distribution VAE (not β-VAE [Higgins et al., 2017]); as the name implies, the generative

likelihood is Beta(αθ(z), βθ(z)). We repeated the same warped MNIST experiments

using Gaussian VAE and beta distribution VAE, both including and ignoring the

normalizing constants of those distributions, as an analogy to the continuous Bernoulli

and Bernoulli distributions. First, figure 4.6 shows again that that ignoring the

normalizing constant hurts performance in every metric and model (dark above light).

Second, interestingly, we find that the continuous Bernoulli VAE outperforms both the

beta distribution VAE and the Gaussian VAE in terms of inception scores, and that

the beta distribution VAE dominates in terms of ELBO. This figure clarifies that the

continuous Bernoulli and beta distribution are to be preferred over the Gaussian for

VAE applied to [0, 1] valued data, and that ignoring normalizing constants is indeed

unwise.

A few additional notes warrant mention on figure 4.6. Unlike with the continuous

CHAPTER 4. THE CONTINUOUS BERNOULLI 63

Bernoulli, we should not expect the Gaussian and beta normalizing constants to go to

infinity as extrema are reached, so we do not observe the same patterns with respect

to γ as we did with the continuous Bernoulli. Note also that the lower lower bound

property of ignoring normalizing constants does not hold in general, as it is a direct

consequence of the continuous Bernoulli log normalizing constant being nonnegative.

4.4.3 CIFAR-10

We repeat the same experiments as in the previous section on the CIFAR-10 dataset

(without common preprocessing that takes the data outside [0, 1] support), a dataset

often considered to be a bad fit for Bernoulli VAE. For brevity we evaluated only the

non-warped data γ = 0, leading to the results shown in table 4.1 (note the colored

column headers, to connect to the panels in figures 4.4 to 4.6). The top section

shows results for the continuous Bernoulli VAE (first row, top), the Bernoulli VAE

(third row, top), and the Bernoulli VAE with a continuous Bernoulli inverse map µ−1

(second row, top). Across all metrics – ELBO, inception score with parameters λ,

inception score with continuous Bernoulli samples given λ, and k nearest neighbors –

the Bernoulli VAE is suboptimal. Interestingly, unlike in MNIST, here we see that

using the continuous Bernoulli parameter correction µ−1 (section 4.3.5) to a Bernoulli

VAE is optimal under some metrics. Again we note that this is a result belonging

to the continuous Bernoulli, so even these results emphasize the importance of the

continuous Bernoulli.

We then repeat the same set of experiments for Gaussian and beta distribution VAE

(middle and bottom sections of table 4.1). Again, ignoring normalizing constants

produces significant performance loss across all metrics. Comparing metrics across the

continuous Bernoulli, Gaussian, and beta sections, we see again that the Gaussian VAE

is suboptimal across all metrics, with the optimal distribution being the continuous

Bernoulli or beta distribution VAE, depending on the metric.

CHAPTER 4. THE CONTINUOUS BERNOULLI 64

Table 4.1: Comparisons of training with and without normalizing constants for CIFAR-

10. For connection to the panels in figures 4.4 to 4.6, column headers are colored

accordingly.

distribution objective map E (p, θ∗, φ∗) IS w/ samples IS w/ parameters K (φ∗)

C B/B E (p, θ, φ) · 1007 1.15 2.31 0.43

E (∼p, θ, φ) µ−1 916 1.49 4.55 0.42

E (∼p, θ, φ) · 475 1.41 1.39 0.42

Gaussian E (p, θ, φ) · 1891 1.86 3.04 0.42

E (∼p, θ, φ) · -42411 1.24 1.00 0.1

beta E (p, θ, φ) · 3121 2.98 4.07 0.47

E (∼p, θ, φ) · -38913 1.39 1.00 0.1

4.4.4 Simulated Data

Finally, one might wonder if the performance improvements of the continuous Bernoulli

VAE over the Bernoulli VAE and its corrected version with µ−1 are merely an artifact

of not having access to the log likelihood and having to optimize the ELBO instead. In

this section we show, empirically, that the answer is no. In order to do this, we consider

estimating the parameters of a mixture of continuous Bernoulli distributions, of which

the VAE can be thought of as a generalization with infinitely many components. We

proceed as follows: We randomly set a mixture of continuous Bernoulli distributions,

ptrue, with K components in 50 dimensions (independent of each other) and sample

from this mixture 10000 times in order to generate a simulated dataset. We then use

the EM algorithm [Dempster et al., 1977] to estimate the mixture coefficients and

the corresponding continuous Bernoulli parameters. We do this in two different ways:

the first one is done correctly, i.e. using a continuous Bernoulli likelihood; and the

second incorrectly, i.e. using a Bernoulli likelihood. We then measure how close the

estimated parameters are from the true ones. Since doing this in a Euclidean distance

CHAPTER 4. THE CONTINUOUS BERNOULLI 65

sense involves solving a hard optimization problem over permutations, we instead

measure closeness with the KL divergence between the true distribution ptrue and the

estimated one, pest.

The results of performing the procedure described above 10 times and averaging the

KL values (over these 10 repetitions), along with standard errors, are shown in figure

4.7. First, we can see that when using the correct continuous Bernoulli likelihood,

the EM algorithm correctly recovers the true distribution. We can also see that, as

the number of mixture components K gets larger, ignoring the normalizing constant

results in worse performance, even after correcting with µ−1, which helps but does

not fully remedy the situation (except at K = 1, as noted in section 4.3.5).

0 5 10 15 20 25 30
mixture components K

0

2

4

6

8

10

12

14

KL
(p

tr
ue

||p
es

t)

bias of likelihood for mixture

 plus 1

Figure 4.7: Bias of the EM algorithm to estimate continuous Bernoulli parameters

when using a continuous Bernoulli likelihood (dark blue), Bernoulli likelihood (light

blue) and a Bernoulli likelihood plus a µ−1 correction.

4.5 Conclusions

In this chapter we introduce and characterize a novel probability distribution – the

continuous Bernoulli – to study the effect of using a Bernoulli VAE on [0, 1]-valued

CHAPTER 4. THE CONTINUOUS BERNOULLI 66

intensity data, a pervasive error in highly cited papers, publicly available implemen-

tations, and core software tutorials alike. We show that this practice is equivalent

to ignoring the normalizing constant of a continuous Bernoulli, and that doing so

results in significant performance decrease in the qualitative appearance of samples

from these models, the ELBO (approximately 300 nats), the inception score, and

in terms of the latent representation (via k nearest neighbors). Several surprising

findings are shown, including: (i) that some plausible interpretations of ignoring a

normalizing constant are in fact wrong; (ii) the (possibly counterintuitive) fact that

this normalizing constant is most critical when data is near binary; and (iii) that

the Gaussian VAE often underperforms VAE models with the appropriate data type

(continuous Bernoulli or beta distributions).

Taken together, these findings suggest an important potential role for the continuous

Bernoulli distribution going forward. On this point, we note that our characteriza-

tion of the continuous Bernoulli properties (such as its ease of reparameterization,

likelihood evaluation, and sampling) make it compatible with the vast array of VAE

improvements that have been proposed in the literature, including flexible posterior

approximations [Rezende and Mohamed, 2015, Kingma et al., 2016], disentangling

[Higgins et al., 2017], discrete codes [Maddison et al., 2016, Jang et al., 2016], variance

control strategies [Miller et al., 2017], and more.

CHAPTER 5. DEEP RANDOM SPLINES 67

Chapter 5

Deep Random Splines

5.1 Introduction

Gaussian processes (GPs) [Rasmussen, 2004] are the leading class of distributions on

random functions, but they suffer from well known issues including difficulty scaling

and inflexibility with respect to certain shape constraints (such as nonnegativity). In

this chapter we propose Deep Random Splines, a flexible class of random functions

obtained by transforming Gaussian noise through a deep neural network whose output

are the parameters of a spline. Unlike Gaussian processes, Deep Random Splines allow

us to readily enforce shape constraints while inheriting the richness and tractability of

deep generative models. We also present an observational model for point process data

which uses Deep Random Splines to model the intensity function of each point process

and apply it to neural population data to obtain a low-dimensional representation of

spiking activity. Inference is performed via a variational autoencoder that uses a novel

recurrent encoder architecture that can handle multiple point processes as input. We

use a newly collected dataset where a primate completes a pedaling task, and observe

better dimensionality reduction with our model than with competing alternatives.

GPs allow control of the smoothness of the function they are modeling by choosing an

appropriate kernel but have the disadvantage that, except in special cases (for example

CHAPTER 5. DEEP RANDOM SPLINES 68

Gilboa et al. [2015], Flaxman et al. [2015]), inference in GP models scales poorly in

both memory and runtime. Furthermore, GPs cannot easily handle shape constraints.

It can often be of interest to model a function under some shape constraint, for example

nonnegativity, monotonicity or convexity/concavity [Møller et al., 1998, Schmidt and

Hess, 1988, Ramsay, 1988, Mammen, 1991]. While some shape constraints can be

enforced by transforming the GP or by enforcing them at a finite number of points,

doing so cannot always be done and usually makes inference harder, see for example

Lin and Dunson [2014].

Splines are another popular tool for modeling unknown functions (see section 2.8).

When there are no shape constraints, frequentist inference is straightforward and can be

performed using linear regression, by writing the spline as a linear combination of basis

functions. Under shape constraints, the basis function expansion usually no longer

applies, since the space of shape constrained splines is not typically a vector space.

However, the problem can usually still be written down as a tractable constrained

optimization problem [Schmidt and Hess, 1988]. Furthermore, when using splines to

model a random function, a distribution must be placed on the spline’s parameters, so

the inference problem becomes Bayesian. DiMatteo et al. [2001] proposed a method

to perform Bayesian inference in a setting without shape constraints, but the method

relies on the basis function expansion and cannot be used in a shape constrained

setting. Furthermore, fairly simple distributions have to be placed on the spline

parameters for their approximate posterior sampling algorithm to work adequately,

which results in the splines having a restrictive and oversimplified distribution.

On the other hand, deep probabilistic models take advantage of the major progress in

neural networks to fit rich, complex distributions to data in a tractable way [Rezende

et al., 2014, Mohamed and Lakshminarayanan, 2016, Kingma and Welling, 2013, Gao

et al., 2016, Johnson et al., 2016]. However, their goal is not usually to model random

functions.

In this chapter, whose content [Loaiza-Ganem et al., 2019] was presented at Cosyne

CHAPTER 5. DEEP RANDOM SPLINES 69

2019 and at an ICLR 2019 workshop, we introduce Deep Random Splines (DRS),

an alternative to GPs for modeling random functions. DRS are a deep probabilistic

model in which standard Gaussian noise is transformed through a neural network to

obtain the parameters of a spline, and the random function is then the corresponding

spline. This combines the complexity of deep generative models and the ability to

enforce shape constraints of splines.

We use DRS to model the nonnegative intensity functions of Poisson processes (see

section 2.7). In order to ensure that the splines are nonnegative, we use a param-

eterization of nonnegative splines that can be written as an intersection of convex

sets, and then use the method of alternating projections (see section 2.9) to obtain a

point in that intersection (and differentiate through that during learning). To perform

scalable inference, we use a variational autoencoder (see section 2.5) with a novel

encoder architecture that takes multiple, truly continuous point processes as input

(not discretized in bins, as is common).

Our contributions are: (i) Introducing DRS, (ii) using the method of alternating

projections to constrain splines, (iii) proposing a variational autoencoder model whith

a novel encoder architecture for point process data which uses DRS, and (iv) showing

that our model outperforms commonly used alternatives in both simulated and real

data.

5.2 Deep Random Splines

Throughout the chapter we will consider splines on the interval [T1, T2) and will select

I + 1 fixed knots T1 = t0 < · · · < tI = T2. We will denote the set of splines of degree d

and smoothness s by Gd,s = {gψ : ψ ∈ Ψd,s}, where Ψd,s is the set of parameters of each

polynomial in each interval. That is, every ψ ∈ Ψd,s contains the parameters of each of

the I polynomial pieces (it does not contain the locations of the knots as we take them

to be fixed since we observed overfitting when not doing so). While the most natural

CHAPTER 5. DEEP RANDOM SPLINES 70

ways to parameterize splines of degree d are a linear combination of basis functions or

with the d+ 1 polynomial coefficients of each interval, these parameterizations do not

lend themselves to easily enforce constraints such as nonnegativity [Schmidt and Hess,

1988]. We will thus use a parameterization based on equation 2.39. We will denote by

Ψ ⊆ Ψd,s the subset of spline parameters that result in the splines having the shape

constraint of interest, for example, nonnegativity.

DRS are a distribution over Gd,s. To sample from a DRS, a standard Gaussian

random variable Z ∈ RM is transformed through a neural network parameterized by θ,

fθ : RM → Ψ. The DRS is then given by gfθ(Z) and inference on θ can be performed

through a variational autoencoder [Kingma and Welling, 2013]. Note that f maps to

Ψ, thus ensuring that the spline has the relevant shape constraint.

5.2.1 Parameterizing Nonnegative Splines

We now explain how we can parameterize nonnegative splines. We add the nonneg-

ativity constraint to the spline as we will use it for our model in section 5.3, but

constraints such as monotonicity and convexity/concavity can be enforced in an anal-

ogous way. In order to achieve this, we use a parameterization of nonnegative splines

that might seem overly complicated at first. However, it has the critical advantage

that it decomposes into the intersection of convex sets that are easily characterized in

terms of the parameters, which is not the case for the naive parameterization which

only includes the d + 1 coefficients of every polynomial. We will see how to take

advantage of this fact in the next section.

Recall, from equation 2.39, that a polynomial p(t) of degree d, where d = 2k + 1 for

some k ∈ N, is nonnegative in the interval [l, u) if and only if it can be written down

as follows:

p(t) = (u− t)[t]>Q1[t] + (t− l)[t]>Q2[t] (5.1)

where [t] = (1, t, t2, . . . , tk)> and Q1 and Q2 are (k + 1)× (k + 1) symmetric positive

semidefinite matrices. It follows that a piecewise polynomial of degree d with knots

CHAPTER 5. DEEP RANDOM SPLINES 71

t0, . . . , tI defined as p(i)(t) for t ∈ [ti−1, ti) for i = 1, . . . , I is nonnegative if and only if

it can be written as:

p(i)(t) = (ti − t)[t]>Q(i)
1 [t] + (t− ti−1)[t]>Q(i)

2 [t] (5.2)

for i = 1, . . . , I, where each Q
(i)
1 and Q

(i)
2 are (k + 1) × (k + 1) symmetric posi-

tive semidefinite matrices. We can thus parameterize every piecewise nonnegative

polynomial on our I intervals with (Q(i)
1 , Q

(i)
2)Ii=1. If no constraints are added on

these parameters, the resulting piecewise polynomial might not be smooth, so certain

constraints have to be added in order to guarantee that we are parameterizing a

nonnegative spline and not just a nonnegative piecewise polynomial. To that end, we

define C1 as the set of (Q(i)
1 , Q

(i)
2)Ii=1 such that:

p(i)(ti) = p(i+1)(ti) for i = 1, . . . , I − 1 (5.3)

That is, C1 is the set of parameters whose resulting piecewise polynomial as in equation

5.2 is continuous. Analogously, let Cj for j = 2, 3, . . . be the set of (Q(i)
1 , Q

(i)
2)Ii=1 such

that:
∂j−1

∂tj−1p
(i)(ti) = ∂j−1

∂tj−1p
(i+1)(ti) for i = 1, . . . , I − 1 (5.4)

So that Cj is the set of parameters whose corresponding piecewise polynomials have

matching left and right (j− 1)-th derivatives. Let C0 be the set of (Q(i)
1 , Q

(i)
2)Ii=1 which

are symmetric positive semidefinite. We can then parameterize the set of nonnegative

splines on [T1, T2) by Ψ = ∩s+1
j=0Cj. Note that the case where d is even can be treated

analogously (see equation 2.40).

5.2.2 Enforcing Nonnegativity

In order to use a DRS, fθ has to map to Ψ, that is, we need to have a way for a

neural network to map to the parameter set corresponding to nonnegative splines. We

achieve this by taking fθ(z) = h(
∼
f θ(z)), where

∼
f θ is an arbitrary neural network and

h is a surjective function onto Ψ. The most natural choice for h is the projection onto

CHAPTER 5. DEEP RANDOM SPLINES 72

Ψ. However, while computing the projection onto Ψ (for Ψ as in section 5.2.1) can be

done by solving the following convex optimization problem:

h
(
(Q(i)

1 , Q
(i)
2)Ii=1

)
= minimize

(X(i),Y (i))Ii=1

I∑
i=1
||X(i) −Q(i)

1 ||2F + ||Y (i) −Q(i)
2 ||2F (5.5)

subject to (X(i), Y (i))Ii=1 ∈ ∩s+1
j=0Cj

where || · ||F denotes the Frobenius norm, it cannot be done analytically. This is an

issue because when we train the model, we will need to differentiate fθ with respect

to θ. Note that Amos and Kolter [2017] propose a method to have an optimization

problem as a layer in a neural network. One might hope to use their method for our

problem, but it cannot be applied due to the semidefinite constraint on our matrices.

Thus, we apply the method of alternating projections. In our case, projecting onto

C0 can be done by doing eigenvalue decompositions of Q(i)
1 and Q(i)

2 and zeroing out

negative elements in the diagonal matrices containing the eigenvalues. While this

might seem computationally expensive, the matrices are small and this can be done

efficiently. For example, for cubic splines (d = 3), there are 2I matrices each one of

size 2× 2. Projecting onto Cj for j = 1, . . . s+ 1 can be done analytically as it can be

formulated as a quadratic optimization problem with linear constraints. Furthermore,

because of the local nature of the constraints where every interval is only constrained

by its neighboring intervals, this quadratic optimization problem can be reduced to

solving a tridiagonal system of linear equations of size I − 1 which can be solved

efficiently in O(I) time with simplified Gaussian elimination. While the derivation

of this fact is a straightforward application of the KKT conditions, the algebra is

cumbersome, so we omit it here to include it in appendix C.

By letting h be a finite number of iterations of the method of alternating projections,

we can ensure that fθ maps (approximately) to Ψ, while still being able to compute

∇θfθ(z). Note that we could find such an h function using Dykstra’s algorithm (not

to be confused with Dijkstra’s shortest path algorithm), which is a modification of the

method of alternating projections that converges to the projection of ψ(0) onto ∩s+1
j=0Cj

CHAPTER 5. DEEP RANDOM SPLINES 73

[Dykstra, 1983, Boyle and Dykstra, 1986, Tibshirani, 2017]), but we found that the

method of alternating projections was faster to differentiate when using reverse mode

automatic differentiation packages [Abadi et al., 2016].

Another way of finding such an h would be unrolling any iterative optimization

method that solves the projection onto Ψ, such as gradient-based methods or Newton

methods. We found the alternating projections method more convenient as it does

not involve additional hyperparameters such as learning rate that drastically affect

performance. Furthermore, the method of alternating projections is known to have a

linear convergence rate (as fast as gradient-based methods) that is independent of the

starting point [Bauschke and Borwein, 1996]. This last observation is important, as the

starting point in our case is determined by the output of
∼
f θ, so that the convergence

rate being independent of the starting point ensures that
∼
f θ cannot learn to ignore h,

which is not the case for gradient-based and Newton methods (for a fixed number of

iterations and learning rate, there might exist an initial point that is too far away to

actually reach the projection). Finally, note that if we wanted to enforce, for example,

that the spline be monotonic, we could parameterize its derivative and force it to be

nonnegative or nonpositive. Convexity or concavity can be enforced analogously.

5.3 Deep Random Splines as Intensity Functions

of Point Processes

Splines have the key property that they can be analytically integrated (as the integral

of polynomials can be computed in closed form), which allows to exactly evaluate

the log likelihood in equation 2.38 when g is a spline. This was one of our main

motivations for using splines to model intensity functions of point processes, as the

double intractability issue of log-Gaussian Cox processes [Møller et al., 1998] is thus

avoided. As a consequence, fitting a DRS to observed events is more tractable

than fitting models that use GPs to represent g. Splines also vary smoothly, which

CHAPTER 5. DEEP RANDOM SPLINES 74

incorporates the reasonable assumption that the expected number of events changes

smoothly over time, which is another important property that motivated our use of

splines.

5.3.1 Our Model

Suppose we observe N simultaneous point processes in [T1, T2) a total of R repetitions

(we will call each one of these repetitions/samples a trial). Let Xr,n denote the n-th

point process of the r-th trial. Looking ahead to an application we study in the results,

data of this type is a standard setup for microelectrode array data, where N neurons

are measured from time T1 to time T2 for R repetitions, and each event in the point

processes corresponds to a spike (the time at which the neurons “fired”). Each Xr,n

is also called a spike train. The model we propose, which we call DRS-VAE, is as

follows: 

Zr ∼ N (0, IM) for r = 1, . . . , R

ψr,n = f
(n)
θ (Zr) for n = 1, . . . , N

Xr,n|ψr,n ∼PP [T1,T2)(gψr,n)

(5.6)

where each f
(n)
θ : RM → Ψ is obtained as described in section 5.2.2. The hidden

state Zr for the r-th trial Xr := (Xr,1, . . . , Xr,N) can be thought as a low-dimensional

representation of Xr. Note that while the intensity function of every point process

and every trial is a DRS, the latent state Zr of each trial is shared among the N point

processes. Note also that the data we are modeling can be thought of as R marked

point processes [Kingman, 1992], where the mark of the event xr,n,k (the k-th event of

the n-th point process of the r-th trial) is n. In this setting, gψr,n corresponds to the

conditional (on Zr and on the mark being n) intensity of the process for the r-th trial.

Once again, one might think that our parameterization of nonnegative splines is unnec-

essarily complicated and that having f (n)
θ in equation 5.6 be a simpler parameterization

of an arbitrary spline (e.g. basis coefficients) and using τ(gψr,n) instead of gψr,n , where

CHAPTER 5. DEEP RANDOM SPLINES 75

τ is a nonnegative function, might be a better solution to enforcing nonnegativity

constraints. The function τ would have to be chosen in such a way that the integral

of equation 2.38 can still be computed analytically, making τ(t) = t2 a natural choice.

While this would avoid having to use the method of alternating projections, we found

that squared splines perform very poorly as they oscillate too much.

5.3.2 Inference

In order to perform inference in our model, we use autoencoding variational Bayes.
Because of the point process nature of the data, mφ and sφ from equation 2.24 require
a recurrent architecture, since their input xr = (xr,1, xr,2, . . . , xr,N) consists of N
point processes. This is challenging because the input is not just a sequence, but N
sequences of different lengths (numbers of events). In order to deal with this, we use
N separate LSTMs [Hochreiter and Schmidhuber, 1997], one per point process. Each
LSTM takes as input the events of the corresponding point process. The final states
of each LSTM are then concatenated and transformed through a dense layer (followed
by an exponential activation in the case of sφ to ensure positivity) in order to map to
the hidden space RM . We also tried bidirectional LSTMs [Graves and Schmidhuber,
2005] but found regular LSTMs to be faster while having similar performance. The
architecture is depicted in figure 5.1. The ELBO for our model is then given by:

E (θ, φ) =
R∑
r=1
−KL(qφ(zr|xr)||π) + Eqφ(zr|xr)

[N∑
n=1

Kr,n∑
k=1

log gψr,n(xr,n,k)−
∫

S

gψr,n(t)dt
]

(5.7)

where Kr,n is the number of events in the n-th point process of the r-th trial. Gao et al.

[2016] have a similar model, where a hidden Markov model is transformed through

a neural network to obtain event counts on time bins. The hidden state for a trial

in their model is then an entire hidden Markov chain, which will have significantly

higher dimension than our hidden state. Also, their model can be recovered from ours

if we change the standard Gaussian distribution of Zr in equation 5.6 to reflect their

Markovian structure and choose G to be piecewise constant, nonnegative functions.

We also emphasize the fact that our model is very easy to extend: for example, it

would be straightforward to extend it to multi-dimensional point processes (not neural

CHAPTER 5. DEEP RANDOM SPLINES 76

data any more) by changing G and its parameterization. It is also straightforward to

use a more complicated point process than the Poisson one by allowing the intensity

to depend on previous event history. Furthermore, DRS can be used in settings that

require random functions, even if no point process is involved.

xrN

xr2

xr1

LSTM N

LSTM 2

LSTM 1

dense

...

...

1

Figure 5.1: Encoder architecture.

5.4 Experiments

5.4.1 Simulated Data

We simulated data with the following procedure: First, we set 2 different types of

trials. For each type of trial, we sampled one true intensity function on [0, 10) for

each of the N = 2 point processes by sampling from a GP and exponentiating the

result. We then sampled 600 times from each type of trial, resulting in 1200 trials.

We randomly selected 1000 trials for training and set aside the rest for testing. We

then fit the model described in section 5.3.1 an compare against other methods that

perform intensity estimation while recovering a low-dimensional representation of trial:

the PP-GPFA model [Duncker and Sahani, 2018], the PfLDS model [Gao et al., 2016]

and the GPFA model [Yu et al., 2009]. The two latter models discretize time into B

time bins and have a latent variable per time bin and per trial (as opposed to our

model which is only per trial), while the former recovers continuous latent trajectories.

CHAPTER 5. DEEP RANDOM SPLINES 77

They do this as a way of enforcing temporal smoothness by placing an appropriate

prior over their latent trajectories, which we do not have to do as we implicitly enforce

temporal smoothness by using splines to model intensity functions.

We used a uniform grid with 11 knots (resulting in I = 10 intervals), d = 3 and s = 2.

Since a twice-differentiable cubic spline on I intervals has I + 3 degrees of freedom,

when discretizing time for PfLDS and GPFA we use B = I + 3 = 13 time bins. This

way the distribution recovered by PfLDS also has B = 13 degrees of freedom, while

the distribution recovered by GPFA has even more. We set the latent dimension M

in our model to 2 and we also set the latent dimension per time bin in PfLDS and

GPFA to 2, meaning that the overall latent dimension for an entire trial was 2B = 26.

These two choices make the comparison conservative as they allow more flexibility

for the two competing methods than for ours. For PP-GPFA we set the continuous

latent trajectory to have dimension 2. Our architecture and hyperparameter choices

are included in appendix C.

The left panel of figure 5.2 shows the posterior means of the hidden variables in our

model for each of the 200 test trials. Each posterior mean is colored according to its

type of trial. We can see that different types of trials form separate clusters, meaning

that our model successfully obtains low-dimensional representations of the trials. Note

that the model is trained without having access to the type of each trial; colors are

assigned in the figure post hoc. The middle panel shows the events (in black) for a

particular point process on a particular trial, along with the true intensity (in green)

that generated the events and posterior samples from our model (in purple), PP-GPFA

(in orange), PfLDS (in blue), and GPFA (in red) of the corresponding intensities. Note

that since PfLDS and GPFA parameterize the number of counts on each time bin, they

do not have a corresponding intensity. We plot instead a piecewise constant intensity

on each time bin in such a way that the expected number of events in each time bin is

equal to the integral of the intensity. We can see that our method recovers a smooth

function that is closer to the truth than the ones recovered with competing methods.

CHAPTER 5. DEEP RANDOM SPLINES 78

0.4 0.3 0.2 0.1 0.0 0.1 0.2
latent dimension 1

1.0

0.5

0.0

0.5

1.0

la
te

nt
 d

im
en

sio
n

2

0 2 4 6 8 10
time (unitless)

0

2

4

6

8

10

12

in
te

ns
ity

true intensity
DRS-VAE posterior samples
PfLDS posterior samples
GPFA posterior means
PP-GPFA posterior means
events

0.0 0.2 0.4 0.6 0.8 1.0
theoretical quantiles

0.0

0.2

0.4

0.6

0.8

1.0

ob
se

rv
ed

 q
ua

nt
ile

s

DRS-VAE
PfLDS
PP-GPFA

Figure 5.2: Posterior means of the hidden variables of DRS-VAE by type of trial

on simulated data (left panel), comparison of posterior intensities of our method

(DRS-VAE) against competing alternatives on simulated data (middle panel) and Q-Q

plot of events (right panel).

The right panel of the figure shows a Q-Q plot (with time rescaled as in Brown et al.

[2002]) and we can see, once again, that our method recovers better intensities.

Table 5.1 shows performance from our model compared against PP-GPFA, PfLDS and

GPFA. The second column shows the per-trial ELBO on test data, and we can see that

our model has a larger ELBO than the alternatives. While having a better ELBO does

not imply that our log likelihood is better, it does suggest that it is. Since both PfLDS

and GPFA put a distribution on event counts on time bins instead of a distribution

on event times as our models does, the log likelihoods are not directly comparable.

Table 5.1: Quantitative comparison of our method (DRS-VAE) against competing

alternatives on simulated data.

METHOD ELBO L2 p-VALUE

DRS-VAE 57.1 0.11± 0.09 −

PfLDS 52.3 0.21± 0.10 < 10−44

GPFA − 0.21± 0.10 < 10−45

PP-GPFA 29.0 0.38± 0.24 < 10−70

CHAPTER 5. DEEP RANDOM SPLINES 79

However, in the case of PfLDS, we can easily convert from the Poisson likelihood on

time bins to the piecewise constant intensity Poisson process likelihood, so that the

numbers become comparable. In order to get a quantitative comparison between our

model and GPFA, we take advantage of the fact that we know the true intensity that

generated the data and compare average L2 distance, across point processes and trials,

between posterior intensity samples and actual intensity function. Once again, we can

see that our method outperforms the alternatives. Table 5.1 also includes the standard

deviation of these L2 distances. Since the standard deviations are somewhat large in

comparison to the means, for each of the two competing alternatives, we carry out a

two sample t-test comparing the L2 distance means obtained with our method against

the alternative. The p-values indicate that our method recovers intensity functions

that are closer to the truth in a statistically significant way.

5.4.2 Real Data

5.4.2.1 Reaching Data

We also fit our model to the dataset collected by Churchland et al. [2012]. The

dataset, after preprocessing (see appendix C for details), consists of measurements of

20 neurons for 3590 trials on the interval [−100, 300) (in ms) of a primate. In each

trial, the primate reaches with its arm to a specific location, which changes from trial

to trial (we can think of the 40 locations as types of trials), where time 0 corresponds

to the beginning of the movement. We randomly split the data into a training set

with 3000 trials and a test set with the rest of the trials.

We used twice-differentiable cubic splines and 18 uniformly spaced knots (that is, 17

intervals). For the comparison against PfLDS, we split time into 20 bins, resulting

in time bins of 20ms (which is a standard length), once again making sure that the

degrees of freedom are comparable. Further architectural details are included in

appendix C. Since we do not have access to the ground truth, we do not compare

CHAPTER 5. DEEP RANDOM SPLINES 80

100 50 0 50 100 150 200 250 300
time (ms)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

in
te

ns
ity

DRS-VAE posterior samples
PfLDS posterior samples
PP-GPFA posterior samples
spike train

Figure 5.3: Comparison of posterior intensities of our method (DRS-VAE) against

competing alternatives on reaching data.

against GPFA as the L2 metric computed in the previous section cannot be used

here. Again, we used a hidden dimension M = 2 for our model, resulting in hidden

trajectories of dimension 40 for PfLDS, and continuous trajectories of dimension 2 for

PP-GPFA. We experimented with larger values of M but did not observe significant

improvements in either model.

Figure 5.3 shows the spike train (black) for a particular neuron on a particular trial,

along with posterior samples from our model (in purple), PP-GPFA (in orange) and

PfLDS (in blue) of the corresponding intensities. We can see that the posterior samples

from our method look more plausible and smoother than the other ones.

Table 5.2 shows the per-trial ELBO on test data for our model and for the competing

alternatives. Again, our model has a larger ELBO, even when PfLDS has access to

20 times more hidden dimensions: our method is more successful at producing low-

dimensional representations of trials than PfLDS. The table also shows the percentage

of correctly predicted test trial types when using 15-nearest neighbors on the posterior

means of train data (the entire trajectories are used for PfLDS and 20 uniformly spaced

points along each dimension of the continuous trajectories of PP-GPFA, resulting in

CHAPTER 5. DEEP RANDOM SPLINES 81

40 dimensional latent representations). While 23.7% might seem small, it should be

noted that it is significantly better than random guessing (which would have 2.5%

accuracy) and that the model was not trained to minimize this objective. Regardless,

we can see that our method outperforms both PP-GPFA and PfLDS in this metric,

even when using a much lower-dimensional representation of each trial. The table

also includes the percentage of explained variation when doing ANOVA on the test

posterior means (denoted SSG/SST), using trial type as groups. Once again, we can

see that our model recovers a more meaningful representation of the trials.

5.4.2.2 Cycling Data

We also fit our model to our newly collected dataset. After preprocessing (see appendix

C), it consists of 1300 and 188 train and test trials, respectively. During each trial, 20

neurons were recorded as the primate turns a hand-held pedal to navigate through a

virtual environment. There are 8 trial types, based on whether the primate is pedaling

forward or backward and over what distance.

We use the same hyperparameter settings as for the reaching data, except we use

26 uniformly spaced knots (25 intervals) and 28 bins for PfLDS, as well as a hidden

dimension M = 10, resulting in hidden trajectories of dimension 280 for PfLDS

(analogously, we set PP-GPFA to have 10 dimensional continuous trajectories, and

take 28 uniformly spaced points along each dimension to obtain 280 dimensional latent

Table 5.2: Quantitative comparison of our method (DRS-VAE) against competing

alternatives on reaching data.

METHOD ELBO 15-NN SSG/SST

DRS-VAE −500.8 23.7% 73.9%

PfLDS −505.7 3.1% 6.2%

PP-GPFA −523.2 14.1% 30.5%

CHAPTER 5. DEEP RANDOM SPLINES 82

representations). Results are also summarized in table 5.3. We can see that while our

ELBO is higher than for PP-GPFA, it is actually lower than for PfLDS, which we

believe is caused by an artifact of preprocessing the data rather than any essential

performance loss.

While the ELBO was better for PfLDS, the quality of our latent representations is

significantly better, as shown by the accuracy of 15-nearest neighbors to predict test

trial types (random guessing would have 12.5% accuracy) and the ANOVA percentage

of explained variation of the test posterior means, which are also better than for

PP-GPFA. This is particularly impressive as our latent representations have 28 times

fewer dimensions. We did experiment with different hyperparameter settings, and

found that the ELBO of PfLDS increased slightly when using more time bins (at the

cost of even higher-dimensional latent representations), whereas our ELBO remained

the same when increasing the number of intervals. However, even in this setting the

accuracy of 15-nearest neighbors and the percentage of explained variation did not

improve for PfLDS.

5.5 Conclusions

In this chapter we introduced Deep Random Splines, an alternative to Gaussian

processes to model random functions. Owing to our key modeling choices and use of

Table 5.3: Quantitative comparison of our method (DRS-VAE) against competing

alternatives on cycling data.

METHOD ELBO 15-NN SSG/SST

DRS-VAE 6372 55.9% 70.0%

PfLDS 6532 11.7% 3.2%

PP-GPFA 6079 51.1% 14.6%

CHAPTER 5. DEEP RANDOM SPLINES 83

results from the spline and optimization literatures, fitting DRS is tractable and allows

one to enforce shape constraints on the random functions. While we only enforced

nonnegativity and smoothness here, it is straightforward to enforce constraints such as

monotonicity (or convexity/concavity). We also proposed a variational autoencoder

that takes advantage of DRS to accurately model and produce meaningful low-

dimensional representations of neural activity.

Future work includes using DRS-VAE for multi-dimensional point processes, for

example spatial point processes. While splines would become harder to use in such a

setting, they could be replaced by any family of easily-integrable nonnegative functions,

such as, for example, conic combinations of Gaussian kernels. Another line of future

work involves using a more complicated point process than the Poisson, for example

a Hawkes process, by allowing the parameters of the spline in a certain interval to

depend on the previous spiking history of previous intervals. Finally, DRS can be

applied in more general settings than the one explored in this chapter since they can

be used in any setting where a random function is involved, having many potential

applications beyond what we analyzed here.

CHAPTER 6. CONCLUSIONS 84

Chapter 6

Conclusions

In this dissertation we introduce three advances to the deep generative modeling

area: Maximum Entropy Flow Networks, a method for maximum entropy modeling;

a new [0, 1]-supported distribution, the continuous Bernoulli, which we develop to

fix a pervasive error in variational autoencoders; and Deep Random Splines, a novel

distribution over functions which allows to enforce shape constraints in a more tractable

way than Gaussian processes. We apply these to model texture images, natural images

and neural population data, respectively, and observe significant improvements over

previous state of the art methods.

Maximum Entropy Flow Networks work by combining normalizing flows with the

augmented Lagrangian optimization method. Normalizing flows enable tractable

entropy estimation, and the augmented Lagrangian method allows to efficiently

optimize the resulting objective in a more numerically stable way than a naive penalty

method. Applying our method to generate texture images results in significantly more

diverse images than the previous state of the art, while maintaining comparable image

quality. This opens up interesting avenues for future research in areas where maximum

entropy modeling can be applied, such as natural language processing or ecology.

We also introduced the continuous Bernoulli distribution to fix a pervasive and often

set aside as inconsequential error in Bernoulli variational autoencoders, namely using

CHAPTER 6. CONCLUSIONS 85

a Bernoulli likelihood with non-binary data. Here, we showed that this innocuous

looking error can be interpreted as ignoring a normalizing constant during training,

which results in a loss of interpretability and a decrease in performance over several

important metrics. We completely characterize this new distribution, which can be

used to model [0, 1]-valued data, particularly when it is close to the boundaries.

Finally, we also introduced Deep Random Splines, a novel distribution over functions.

To obtain a sample from this distribution, Gaussian noise is mapped through a

neural network to obtain the parameters of a spline. If enforcing shape constraints is

needed, a finite number of steps of the method of alternating projections are applied

to the output of the network in order to enforce them. Backpropagation can be

carried out through this procedure in order to learn the parameters of the neural

network. In particular, we used Deep Random Splines in a variational autoencoder

to model neural population data. Our model outperforms competing alternatives

and recovers significantly lower-dimensional representations of trials. This opens up

exciting avenues for future research, such as further improving our neural population

model, modeling spatial or spatio-temporal point processes, or using Deep Random

Splines for a completely different application, such as shape-constrained regression.

We hope that the contributions presented here will be useful to deep generative

modeling, computational neuroscience and the broader machine learning community,

and that they will inspire further research.

BIBLIOGRAPHY 86

Bibliography

Pytorch VAE turotial: https://github.com/pytorch/examples/

tree/master/vae, Keras VAE turotial: https://blog.keras.io/

building-autoencoders-in-keras.html.

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

Ryan Prescott Adams, Iain Murray, and David JC MacKay. Tractable nonparametric

bayesian inference in poisson processes with gaussian process intensities. In Pro-

ceedings of the 26th Annual International Conference on Machine Learning, pages

9–16. ACM, 2009.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in

neural networks. arXiv preprint arXiv:1703.00443, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-

sarial networks. In International Conference on Machine Learning, pages 214–223,

2017.

Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical

study. arXiv preprint arXiv:1706.08224, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization

and equilibrium in generative adversarial nets (gans). In Proceedings of the 34th

https://github.com/pytorch/examples/tree/master/vae
https://github.com/pytorch/examples/tree/master/vae
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html

BIBLIOGRAPHY 87

International Conference on Machine Learning-Volume 70, pages 224–232. JMLR.

org, 2017.

Marco Ballini, Jan Müller, Paolo Livi, Yihui Chen, Urs Frey, Alexander Stettler, Amir

Shadmani, Vijay Viswam, Ian Lloyd Jones, and David Jäckel. A 1024-channel

cmos microelectrode array with 26,400 electrodes for recording and stimulation of

electrogenic cells in vitro. IEEE journal of solid-state circuits, 49(11):2705–2719,

2014.

Heinz H Bauschke and Jonathan M Borwein. On projection algorithms for solving

convex feasibility problems. SIAM review, 38(3):367–426, 1996.

Adam L Berger, Vincent J Della Pietra, and Stephen A Della Pietra. A maximum

entropy approach to natural language processing. Computational linguistics, 22(1):

39–71, 1996.

Thomas B Berrett, Richard J Samworth, and Ming Yuan. Efficient multivariate entropy

estimation via k-nearest neighbour distances. arXiv preprint arXiv:1606.00304,

2016.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods.

Academic press, 2014.

Oleg Bondarenko. Estimation of risk-neutral densities using positive convolution

approximation. Journal of Econometrics, 116(1):85–112, 2003.

Jonathan Borwein, Rustum Choksi, and Pierre Maréchal. Probability distributions

of assets inferred from option prices via the principle of maximum entropy. SIAM

Journal on Optimization, 14(2):464–478, 2003.

James P Boyle and Richard L Dykstra. A method for finding projections onto the

intersection of convex sets in hilbert spaces. In Advances in order restricted statistical

inference, pages 28–47. Springer, 1986.

BIBLIOGRAPHY 88

Emery N Brown, Riccardo Barbieri, Valérie Ventura, Robert E Kass, and Loren M

Frank. The time-rescaling theorem and its application to neural spike train data

analysis. Neural computation, 14(2):325–346, 2002.

Peter W Buchen and Michael Kelly. The maximum entropy distribution of an asset

inferred from option prices. Journal of Financial and Quantitative Analysis, 31(01):

143–159, 1996.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-

coders. arXiv preprint arXiv:1509.00519, 2015.

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return

of the devil in the details: Delving deep into convolutional nets. arXiv preprint

arXiv:1405.3531, 2014.

François Chollet et al. Keras. https://keras.io, 2015.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann

LeCun. The loss surfaces of multilayer networks. In AISTATS, 2015.

Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Foster, Paul

Nuyujukian, Stephen I Ryu, and Krishna V Shenoy. Neural population dynamics

during reaching. Nature, 487(7405):51, 2012.

Michael Collins, Robert E Schapire, and Yoram Singer. Logistic regression, adaboost

and bregman distances. Machine Learning, 48(1-3):253–285, 2002.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational

autoencoders. arXiv preprint arXiv:1801.03558, 2018.

John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian pro-

cess methods for point process intensity estimation. In Proceedings of the 25th

international conference on Machine learning, pages 192–199. ACM, 2008.

https://keras.io

BIBLIOGRAPHY 89

John N Darroch and Douglas Ratcliff. Generalized iterative scaling for log-linear

models. The annals of mathematical statistics, pages 1470–1480, 1972.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of

random fields. IEEE transactions on pattern analysis and machine intelligence, 19

(4):380–393, 1997.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society:

Series B (Methodological), 39(1):1–22, 1977.

Emily L Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative

image models using a laplacian pyramid of adversarial networks. In Advances in

neural information processing systems, pages 1486–1494, 2015.

Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh

Salimbeni, Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering

with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648,

2016.

Ilaria DiMatteo, Christopher R Genovese, and Robert E Kass. Bayesian curve-fitting

with free-knot splines. Biometrika, 88(4):1055–1071, 2001.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent

components estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real

nvp. arXiv preprint arXiv:1605.08803, 2016.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908,

2016.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning.

arXiv preprint arXiv:1605.09782, 2016.

BIBLIOGRAPHY 90

Miroslav Dudik, Steven J Phillips, and Robert E Schapire. Performance guarantees

for regularized maximum entropy density estimation. In International Conference

on Computational Learning Theory, pages 472–486. Springer, 2004.

Lea Duncker and Maneesh Sahani. Temporal alignment and latent gaussian process

factor inference in population spike trains. In Advances in Neural Information

Processing Systems, pages 10445–10455, 2018.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Cubic-spline

flows. arXiv preprint arXiv:1906.02145, 2019a.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline

flows. arXiv preprint arXiv:1906.04032, 2019b.

Richard L Dykstra. An algorithm for restricted least squares regression. Journal of

the American Statistical Association, 78(384):837–842, 1983.

Stephen Figlewski. Estimating the implied risk neutral density. 2008.

Seth Flaxman, Andrew Wilson, Daniel Neill, Hannes Nickisch, and Alex Smola.

Fast kronecker inference in gaussian processes with non-gaussian likelihoods. In

International Conference on Machine Learning, pages 607–616, 2015.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear

dynamical neural population models through nonlinear embeddings. In Advances in

neural information processing systems, pages 163–171, 2016.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using

convolutional neural networks. In Advances in Neural Information Processing

Systems, pages 262–270, 2015.

Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hier-

archical models. Cambridge university press, 2006.

BIBLIOGRAPHY 91

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning.

In Proceedings of the annual meeting of the cognitive science society, volume 36,

2014.

Elad Gilboa, Yunus Saatçi, and John P Cunningham. Scaling multidimensional

inference for structured gaussian processes. IEEE transactions on pattern analysis

and machine intelligence, 37(2):424–436, 2015.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-

Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,

Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical

design using a data-driven continuous representation of molecules. ACS central

science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-

rectional lstm and other neural network architectures. Neural Networks, 18(5-6):

602–610, 2005.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan

Wierstra. Draw: A recurrent neural network for image generation. arXiv preprint

arXiv:1502.04623, 2015.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and

Alexander Smola. A kernel two-sample test. Journal of Machine Learning Research,

13(Mar):723–773, 2012.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin,

David Vazquez, and Aaron Courville. Pixelvae: A latent variable model for natural

images. arXiv preprint arXiv:1611.05013, 2016.

BIBLIOGRAPHY 92

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local

nash equilibrium. In Advances in Neural Information Processing Systems, pages

6626–6637, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic vi-

sual concepts with a constrained variational framework. In International Conference

on Learning Representations, volume 3, 2017.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence.

Neural computation, 14(8):1771–1800, 2002.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing.

Toward controlled generation of text. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 1587–1596. JMLR. org, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-

softmax. arXiv preprint arXiv:1611.01144, 2016.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106

(4):620, 1957.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Vari-

ational deep embedding: An unsupervised and generative approach to clustering.

arXiv preprint arXiv:1611.05148, 2016.

BIBLIOGRAPHY 93

Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. Minimax estimation

of functionals of discrete distributions. IEEE Transactions on Information Theory,

61(5):2835–2885, 2015.

Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R

Datta. Composing graphical models with neural networks for structured represen-

tations and fast inference. In Advances in neural information processing systems,

pages 2946–2954, 2016.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An

introduction to variational methods for graphical models. Machine learning, 37(2):

183–233, 1999.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances In Neural

Information Processing Systems, pages 586–594, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1

convolutions. In Advances in Neural Information Processing Systems, pages 10215–

10224, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max

Welling. Improved variational inference with inverse autoregressive flow. In Advances

in neural information processing systems, pages 4743–4751, 2016.

John Frank Charles Kingman. Poisson processes, volume 3. Clarendon Press, 1992.

BIBLIOGRAPHY 94

Jack PC Kleijnen and Reuven Y Rubinstein. Optimization and sensitivity analysis of

computer simulation models by the score function method. European Journal of

Operational Research, 88(3):413–427, 1996.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. Generalized variational

inference. arXiv preprint arXiv:1904.02063, 2019.

Daphne Koller, Nir Friedman, and Francis Bach. Probabilistic graphical models:

principles and techniques. MIT press, 2009.

LF Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random

vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator.

In Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, pages 29–37, 2011.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole

Winther. Autoencoding beyond pixels using a learned similarity metric. arXiv

preprint arXiv:1512.09300, 2015.

Jean-Bernard Lasserre. Moments, positive polynomials and their applications, volume 1.

World Scientific, 2010.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exd-

b/mnist/, 1998.

BIBLIOGRAPHY 95

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

Jin Hyung Lee, David E Carlson, Hooshmand Shokri Razaghi, Weichi Yao, Georges A

Goetz, Espen Hagen, Eleanor Batty, EJ Chichilnisky, Gaute T Einevoll, and Liam

Paninski. Yass: Yet another spike sorter. In Advances in neural information

processing systems, pages 4002–4012, 2017.

Lizhen Lin and David B Dunson. Bayesian monotone regression using gaussian process

projection. Biometrika, 101(2):303–317, 2014.

Chris Lloyd, Tom Gunter, Michael Osborne, and Stephen Roberts. Variational inference

for gaussian process modulated poisson processes. In International Conference on

Machine Learning, pages 1814–1822, 2015.

Gabriel Loaiza-Ganem and John P Cunningham. The continuous bernoulli: fixing a

pervasive error in variational autoencoders. arXiv preprint arXiv:1907.06845, 2019.

Gabriel Loaiza-Ganem, Yuanjun Gao, and John P Cunningham. Maximum entropy

flow networks. International Conference on Learning Representations, 2017.

Gabriel Loaiza-Ganem, Sean M Perkins, Karen E Schroeder, Mark M Churchland, and

John P Cunningham. Deep random splines for point process intensity estimation of

neural population data. arXiv preprint arXiv:1903.02610, 2019.

Yang Lu, Song-chun Zhu, and Ying Nian Wu. Learning frame models using cnn filters.

In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge

university press, 2003.

BIBLIOGRAPHY 96

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A

continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712,

2016.

Robert Malouf. A comparison of algorithms for maximum entropy parameter estima-

tion. In proceedings of the 6th conference on Natural language learning-Volume 20,

pages 1–7. Association for Computational Linguistics, 2002.

Enno Mammen. Estimating a smooth monotone regression function. The Annals of

Statistics, pages 724–740, 1991.

Andrew Miller, Nick Foti, Alexander D’Amour, and Ryan P Adams. Reducing

reparameterization gradient variance. In Advances in Neural Information Processing

Systems, pages 3708–3718, 2017.

Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial

training. arXiv preprint arXiv:1611.09904, 2016.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative

models. arXiv preprint arXiv:1610.03483, 2016.

Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log

gaussian cox processes. Scandinavian journal of statistics, 25(3):451–482, 1998.

Kevin P Murphy, Yair Weiss, and Michael I Jordan. Loopy belief propagation for

approximate inference: An empirical study. In Proceedings of the Fifteenth confer-

ence on Uncertainty in artificial intelligence, pages 467–475. Morgan Kaufmann

Publishers Inc., 1999.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative

neural samplers using variational divergence minimization. In Advances in neural

information processing systems, pages 271–279, 2016.

BIBLIOGRAPHY 97

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow

for density estimation. In Advances in Neural Information Processing Systems,

pages 2338–2347, 2017.

Emanuel Parzen. On estimation of a probability density function and mode. The

annals of mathematical statistics, 33(3):1065–1076, 1962.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach.

Cognitive Systems Laboratory, School of Engineering and Applied Science, University

of California, Los Angeles, 1982.

Steven J Phillips, Robert P Anderson, and Robert E Schapire. Maximum entropy

modeling of species geographic distributions. Ecological modelling, 190(3):231–259,

2006.

Ben Poole, Subhaneil Lahiri, Maithreyi Raghu, Jascha Sohl-Dickstein, and Surya

Ganguli. Exponential expressivity in deep neural networks through transient chaos.

In Advances In Neural Information Processing Systems, pages 3360–3368, 2016.

Javier Portilla and Eero P Simoncelli. A parametric texture model based on joint

statistics of complex wavelet coefficients. International journal of computer vision,

40(1):49–70, 2000.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein.

BIBLIOGRAPHY 98

On the expressive power of deep neural networks. arXiv preprint arXiv:1606.05336,

2016.

James O Ramsay. Monotone regression splines in action. Statistical science, pages

425–441, 1988.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures

on machine learning, pages 63–71. Springer, 2004.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing

flows. arXiv preprint arXiv:1505.05770, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals

of mathematical statistics, pages 400–407, 1951.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function.

The Annals of Mathematical Statistics, pages 832–837, 1956.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning represen-

tations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International journal of computer

vision, 115(3):211–252, 2015.

Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. On the convergence

of bound optimization algorithms. In Proceedings of the Nineteenth conference on

Uncertainty in Artificial Intelligence, pages 509–516. Morgan Kaufmann Publishers

Inc., 2002.

BIBLIOGRAPHY 99

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training gans. In Advances in neural information

processing systems, pages 2234–2242, 2016.

Jochen W Schmidt and Walter Hess. Positivity of cubic polynomials on intervals and

positive spline interpolation. BIT Numerical Mathematics, 28(2):340–352, 1988.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Paul Smolensky. Information processing in dynamical systems: Foundations of har-

mony theory. Colorado Univ at Boulder Dept of Computer Science, 1986.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole

Winther. Ladder variational autoencoders. In Advances in neural information

processing systems, pages 3738–3746, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Ryan J Tibshirani. Dykstra’s algorithm, admm, and coordinate descent: Connections,

insights, and extensions. In Advances in Neural Information Processing Systems,

pages 517–528, 2017.

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky. Texture

networks: Feed-forward synthesis of textures and stylized images. arXiv preprint

arXiv:1603.03417, 2016.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture networks:

Maximizing quality and diversity in feed-forward stylization and texture synthesis.

arXiv preprint arXiv:1701.02096, 2017.

BIBLIOGRAPHY 100

Paul Valiant and Gregory Valiant. Estimating the unseen: improved estimators

for entropy and other properties. In Advances in Neural Information Processing

Systems, pages 2157–2165, 2013.

J von Neumann. The geometry of orthogonal spaces, functional operators-vol. ii.

Annals of Math. Studies, 22, 1950.

Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning, 1(1–2):

1–305, 2008.

M Byron Yu, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V

Shenoy, and Maneesh Sahani. Gaussian-process factor analysis for low-dimensional

single-trial analysis of neural population activity. In Advances in neural information

processing systems, pages 1881–1888, 2009.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67, 2006.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,

and Dimitris N Metaxas. Stackgan: Text to photo-realistic image synthesis with

stacked generative adversarial networks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 5907–5915, 2017.

BIBLIOGRAPHY 101

Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and maxi-

mum entropy (frame): Towards a unified theory for texture modeling. International

Journal of Computer Vision, 27(2):107–126, 1998.

Song Chun Zhu, Xiu Wen Liu, and Ying Nian Wu. Exploring texture ensembles by

efficient markov chain monte carlo-toward a" trichromacy" theory of texture. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(6):554–569, 2000.

APPENDIX A. 102

Appendix A

Maximum Entropy Flow Networks

Architectural and Training Choices

For sections 3.3.1 and 3.3.2, we use 10 layers of planar flow, and use with ADADELTA

[Zeiler, 2012]. For section 3.3.3 we use real NVP structure and use ADAM [Kingma

and Ba, 2014] with learning rate = 0.001. For all our experiments, we use imax = 3000,

β = 4, γ = 0.25. For section 3.3.1 and section 3.3.2 we use n = 300, ∼n = 1000,

kmax = 10; for section 3.3.3 we use n = ∼
n = 2, kmax = 8. In section 3.3.3, we use 3

residual blocks with 32 feature maps for each coupling layer and downscale 3 times.

APPENDIX B. 103

Appendix B

The Continuous Bernoulli

Continuous Bernoulli and Beta Differences

While the beta distribution, having two parameters, is more flexible than the continuous

Bernoulli, these distributions have a key difference: concentration of mass at the

extrema. For a given continuous Bernoulli parameter λ, beta distribution parameters

αλ and βλ can be found so that the corresponding distributions are very close (by

matching the mean and variance), but this closeness does not happen at the extrema.

To see this, we denote a beta density as p(x|α, β). We have:

lim
x→0

log p(x|λ)
p(x|α, β) = lim

x→0
logC(λ) + logB(α, β) + x log λ+ (1− x) log(1− λ) (B.1)

− (α− 1) log x− (β − 1) log(1− x) (B.2)

=



−∞ if α < 1

logC(λ) + log(1− λ) + logB(α, β) if α = 1

∞ if α > 1

(B.3)

APPENDIX B. 104

where B(·, ·) is the beta function. This implies that:

lim
x→0

p(x|λ)
p(x|α, β) =



0 if α < 1

C(λ)(1− λ)B(α, β) if α = 1

∞ if α > 1

(B.4)

So that the continuous Bernoulli and the beta can place a comparable amount of

mass around 0 only for α = 1, otherwise the continuous Bernoulli places more mass if

α > 1 and less if α < 1. In particular, for λ < 0.5 we have that αλ < 1, so that the

beta distribution places much more mass around 0 than the continuous Bernoulli to

which it is very similar, as can be seen in figure B.1. Note that this does not imply

that the continuous Bernoulli is not placing most of its mass around 0, just not as

much as the beta. This key insight highlights that even “similar looking” continuous

Bernoullis and betas behave considerably differently at the extrema, which is precisely

the most important part of the densities when modeling almost binary data (such

as MNIST, which while almost binary, does have grayscale pixels). Empirically, we

find that the beta distributed VAE produces means that are less extremal (i.e. grayer

images, as seen in figure B.6), which implies that each beta was shifted away from 0

and 1 to reduce adding too much mass to the extrema (precisely the effect of figure

B.1). Finally, note than an analogous discussion holds around 1, since:

lim
x→1

p(x|λ)
p(x|α, β) =



0 if β < 1

C(λ)λB(α, β) if β = 1

∞ if β > 1

(B.5)

Architectural and Training Choices

We preprocess MNIST by following the standard procedure of adding uniform [0, 1]

noise to the integer pixel values between 0 and 255 and then dividing by 256, resulting

APPENDIX B. 105

0.0 0.1 0.2 0.3 0.4 0.5
x

0.8

0.6

0.4

0.2

0.0

lo
g

p(
x|

)
lo

g
p(

x|
,

)

 vs beta log densities

= 0.1
= 0.2
= 0.3
= 0.4

Figure B.1: Behavior of continuous Bernoulli against similar beta around 0.

in values in [0, 1]. For all our MNIST experiments, we use a latent dimension of 20,

an encoder with two hidden layers with 500 units each, with ReLU nonlinearities,

followed by a dropout layer (with parameter 0.9) [Srivastava et al., 2014]. The output

layer of the encoder has no nonlinearity for the mean and a softplus nonlinearity for

the standard deviation. The decoder also has two hidden layers with 500 units, ReLU

nonlinearities and dropout, as does the classifier we used to compute the inception

score (which has a softmax nonlinearity). The decoder has softplus nonlinearities to

enforce nonnegativity (Gaussian standard deviation and beta parameters), sigmoid

to enforce values in (0, 1) (continuous Bernoulli, Bernoulli and Gaussian mean). We

use a learning rate of 0.001 except for the Gaussian VAE, where we use 0.0001, and

optimize with ADAM [Kingma and Ba, 2014] for 100 epochs.

We preprocess CIFAR-10 in the same fashion as MNIST. For CIFAR-10 the latent

dimension is 50 and the learning rate for continuous Bernoulli VAE and Bernoulli

VAE is 0.001, and 0.0001 for the other distributions. The encoder consists of four

convolutional layers, followed by two fully connected ones. The convolutions have

respectively, 3, 32, 32 and 32 features, kernel size 2, 2, 3 and 3, strides 1, 2, 1, 1 and

are followed by ReLU nonlinearities. The fully connected hidden layer has 128 units

APPENDIX B. 106

and a ReLU non linearity. The decoder has an analogous “reversed” architecture.

The classifier used to compute the inception score has a convolution with 32 features

and kernel size 3 followed by a ReLU activation, 10 residual blocks [He et al., 2016]

at 3 different resolutions and a dense layer with a softmax nonlinearity. Each residual

block consists a convolution, ReLU , batch normalization, another convolution and

adding the result to the input. At the end of each residual block, the resolution is

decreased with a convolution with stride two that doubles the number of features, and

then dropout (with parameter 0.5) is applied.

Further Experimental Results

MNIST

Inception scores

In this section we show more inception scores obtained by the continuous Bernoulli

VAE and Bernoulli VAE on MNIST, by transforming the decoder with µ or µ−1

and/or by sampling from C B or B. The results are in figure B.2. Left panel has

data (black), B(λθ∗(p)) (dark orange), B(λ
θ∗(∼p)) (light orange), B(µ(λθ∗(p))) (dark

purple), B(µ(λ
θ∗(∼p))) (light purple), µ(λθ∗(p)) (dark green) and µ(λ

θ∗(∼p)) (light green).

Right panel has data (black), C B(µ−1(λθ∗(p))) (dark orange), C B(µ−1(λ
θ∗(∼p))) (light

orange), B(µ−1(λθ∗(p))) (dark purple), B(µ−1(λ
θ∗(∼p))) (light purple), µ

−1(λθ∗(p)) (dark

green) and µ−1(λ
θ∗(∼p)) (light green). While these inception scores are not what one

would normally sample, we can see that the continuous Bernoulli VAE achieves better

inception scores than the Bernoulli VAE, regardless of how the decoder is used to

obtain the samples. The only situation in which the Bernoulli VAE manages to

perform similarly to the continuous Bernoulli is when the decoder is corrected by

applying µ−1 after training, similarly to what we observed for the ELBO (although

the ELBO is still lower after doing this correction).

APPENDIX B. 107

0.4 0.2 0.0 0.2 0.4
warping

2

4

6

8

10
in

ce
pt

io
n

sc
or

e
Inception Scores of VAE

0.4 0.2 0.0 0.2 0.4
warping

2

4

6

8

10

in
ce

pt
io

n
sc

or
e

Inception Scores of VAE

Figure B.2: Inception scores for continuous Bernoulli VAE (dark) and Bernoulli VAE

(light). See text for details.

Samples

In this section we show samples used to compute the inception scores for MNIST

(for warping γ = 0, that is, without transforming the data). Samples can be seen in

figures B.3 to B.6.

CIFAR-10 samples

In this section we show samples used to compute the inception scores for CIFAR-10

in figures B.7 to B.9.

APPENDIX B. 108

data λθ∗(p) λ
θ∗(

∼
p)

µ(λθ∗(p)) µ(λ
θ∗(

∼
p)

) CB(λθ∗(p)) CB(λ
θ∗(

∼
p)

)

Figure B.3: MNIST continuous Bernoulli VAE and Bernoulli VAE samples 1. First

three columns are also shown in the main manuscript.

CB(µ(λθ∗(p))) CB(µ(λ
θ∗(

∼
p)

)) B(λθ∗(p)) B(λ
θ∗(

∼
p)

) B(µ(λθ∗(p))) B(µ(λ
θ∗(

∼
p)

))

Figure B.4: MNIST continuous Bernoulli VAE and Bernoulli VAE samples 2.

APPENDIX B. 109

µ−1(λθ∗(p)) µ−1(λ
θ∗(

∼
p)

) CB(µ−1(λθ∗(p))) CB(µ−1(λ
θ∗(

∼
p)

)) B(µ−1(λθ∗(p))) B(µ−1(λ
θ∗(

∼
p)

))

Figure B.5: MNIST continuous Bernoulli VAE and Bernoulli VAE samples 3.

N / p N /
∼
p N mean / p N mean /

∼
p B / p B /

∼
p B mean / p B mean /

∼
p

Figure B.6: MNIST Gaussian VAE (denoted N) and beta distribution VAE (denoted

B) samples, both including normalizing constants and ignoring them (denoted with

tilde). Third columns is also shown in the main manuscript.

APPENDIX B. 110

data f−0.5(data) λθ∗(p) λ
θ∗(

∼
p)

CB(λθ∗(p)) CB(λ
θ∗(

∼
p)

)

Figure B.7: CIFAR-10 continuous Bernoulli VAE and Bernoulli VAE samples 1.

µ−1(λθ∗(p)) µ−1(λ
θ∗(

∼
p)

) CB(µ−1(λθ∗(p))) CB(µ−1(λ
θ∗(

∼
p)

))

Figure B.8: CIFAR-10 continuous Bernoulli VAE and Bernoulli VAE samples 2.

APPENDIX B. 111

N / p N /
∼
p N mean / p N mean /

∼
p B / p B /

∼
p B mean / p B mean /

∼
p

Figure B.9: CIFAR-10 Gaussian VAE (denoted N) and beta distribution VAE

(denoted B) samples, both including normalizing constants and ignoring them (denoted

with tilde).

APPENDIX C. 112

Appendix C

Deep Random Splines

Projecting onto the Space of Smooth Splines

As mentioned in section 5.2.2, mapping to Ψ = ∩s+1
j=0Cj can be achieved through the

method of alternating projections. As mentioned previously, projecting onto C0 can

be easily done through eigen-decomposition. We now go through the details on how

to project onto the other Cj sets. We will only cover C1, C2 and C3 for odd-degree

splines as we used splines of degree 3 and smoothness 2, but projecting onto Cj for

j ≥ 4 for higher degree splines can be done in an analogous way. Projections for even

degree splines can also be derived in an analogous way.

Continuity Projection for Splines of Odd Degree

Suppose we are given (Q(i)
1 , Q

(i)
2)Ii=1, which are (k + 1) × (k + 1) matrices (not nec-

essarily in Ψ), defining a piecewise polynomial as in equation 5.2. Computing the

projection (X(i)
∗ , Y

(i)
∗)Ii=1 of (Q(i)

1 , Q
(i)
2)Ii=1 onto C1 can be done by solving the following

APPENDIX C. 113

optimization problem:

(X(i)
∗ , Y

(i)
∗)Ii=1 = minimize

(X(i),Y (i))Ii=1

I∑
i=1
||X(i) −Q(i)

1 ||2F + ||Y (i) −Q(i)
2 ||2F (C.1)

subject to (ti − ti−1)[ti]>Y (i)[ti] = (ti+1 − ti)[ti]>X(i+1)[ti]

for i = 1, . . . , I − 1

where || · ||F denotes the Frobenius norm and each constraint is merely forcing the

piecewise function to be continuous at knot i for i = 1, . . . , I − 1. Note that this is a

quadratic optimization problem with linear constraints, and can be solved analytically.

The corresponding Lagrangian is:

L((X(i), Y (i))Ii=1, λ) =
I∑
i=1
||X(i) −Q(i)

1 ||2F + ||Y (i) −Q(i)
2 ||2F (C.2)

+
I−1∑
i=1

λi

(
(ti − ti−1)[ti]>Y (i)[ti]− (ti+1 − ti)[ti]>X(i+1)[ti]

)

where λ = (λ1, . . . , λI−1)> ∈ RI−1. By solving the KKT conditions, it can be verified

that: 

X
(i)
∗ = Q

(i)
1 + λ∗i−1

2 Ai−1 , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

ciλ
∗
i

2 Ai , for i = 1, . . . , I

λ∗i = 2
1+c2

i

[ti]>(ciQ(i)
2 −Q

(i+1)
1)[ti]

([ti]>[ti])2 , for i = 1, . . . , I − 1

(C.3)

where ci = ti−ti−1
ti+1−ti for i = 1, . . . , I − 1, cI = 0, λ∗0 = 0, λ∗I = 0 and Ai = [ti][ti]> for

i = 0, . . . , I.

APPENDIX C. 114

Differentiability Projection for Splines of Odd Degree

Analogously, computing the projection (X(i)
∗ , Y

(i)
∗)Ii=1 of (Q(i)

1 , Q
(i)
2)Ii=1 onto C2 can be

done by solving the following optimization problem:

(X(i)
∗ , Y

(i)
∗)Ii=1 = minimize

(X(i),Y (i))Ii=1

I∑
i=1
||X(i) −Q(i)

1 ||2F + ||Y (i) −Q(i)
2 ||2F (C.4)

subject to − [ti]>X(i)[ti] + [ti]>Y (i)[ti]

+ (ti − ti−1)[t′i]>Y (i)[ti] + (ti − ti−1)[ti]>Y (i)[t′i]

= −[ti]>X(i+1)[ti] + (ti+1 − ti)[t′i]>X(i+1)[ti]

+ (ti+1 − ti)[ti]>X(i+1)[t′i] + [ti]>Y (i+1)[ti]

for i = 1, . . . , I − 1

where [t′] = (0, 1, 2t, 3t2, . . . , ktk−1)> and each constraint is now forcing the values of the

left and right derivatives of the piecewise function to match at knot i for i = 1, . . . , I−1.

Again, this is a quadratic optimization problem with linear constraints. By writing

the Lagrangian and solving the KKT conditions, we get:
X

(i)
∗ = Q

(i)
1 + λ∗i

2 Ai −
λ∗i−i

2 (Ai−1 − (ti − ti−1)Mi−1) , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

λ∗i
2 (Ai + (ti − ti−1)Mi) + λ∗i−1

2 Ai−1 , for i = 1, . . . , I
(C.5)

where Mi = [ti][t′i]> + [t′i][ti]> for i = 0, . . . , I and:

λ∗i−1

(
[ti]>(Ai−1 −

ti − ti−1

2 Mi−1)[ti] + (ti − ti−1)[t′i]>Ai−1[ti]
)

(C.6)

+ λ∗i

(
[ti]>(−2Ai −

ti+1 − 2ti + ti−1

2 Mi)[ti]

+ (ti+1 − 2ti + ti−1 − (ti − ti−1)2 − (ti+1 − ti)2)[t′i]>Mi[ti]
)

+ λ∗i+1

(
[ti]>(Ai+1 + ti+1 − ti

2 Mi+1)[ti]− (ti+1 − ti)[t′i]>Ai+1[ti]
)

= [ti]>(Q(i)
1 −Q

(i+1)
1 −Q(i)

2 +Q
(i+1)
2)[ti] + 2[t′i]>((ti+1 − ti)Q(i+1)

1 − (ti − ti−1)Q(i)
2)[ti]

for i = 1, . . . , I − 1 and again, λ∗0 = 0 and λ∗I = 0. This is a tridiagonal system of I − 1

linear equations with I − 1 unknowns and can be solved efficiently in O(I) time with

simplified Gaussian elimination.

APPENDIX C. 115

Second Differentiability Projection for Splines of Odd Degree

Finally, computing the projection (X(i)
∗ , Y

(i)
∗)Ii=1 of (Q(i)

1 , Q
(i)
2)Ii=1 onto C2 can be done

by solving the following optimization problem:

(X(i)
∗ , Y

(i)
∗)Ii=1 = minimize

(X(i),Y (i))Ii=1

I∑
i=1
||X(i) −Q(i)

1 ||2F + ||Y (i) −Q(i)
2 ||2F (C.7)

subject to − 2[t′i]>X(i)[ti]− 2[ti]>X(i)[t′i] + 2[t′i]>Y (i)[ti] + 2[ti]>Y (i)[t′i]

+ (ti − ti−1)[t′′i]>Y (i)[ti] + 2(ti − ti−1)[t′i]>Y (i)[t′i]

+ (ti − ti−1)[ti]>Y (i)[t′′i]

= −2[t′i]>X(i+1)[ti]− 2[ti]>X(i+1)[t′i] + (ti+1 − ti)[t′′i]>X(i+1)[ti]

+ 2(ti+1 − ti)[t′i]>X(i+1)[t′i] + (ti+1 − ti)[ti]>X(i+1)[t′′i]

+ 2[t′i]>Y (i+1)[ti] + 2[ti]>Y (i+1)[t′i]

for i = 1, . . . , I − 1

where [t′′] = (0, 0, 2, 6t, . . . , k(k − 1)tk−2)> and each constraint is now forcing the

values of the left and right second derivatives of the piecewise function to match at

knot i for i = 1, . . . , I − 1. Again, this is a quadratic optimization problem with linear

constraints. By writing the Lagrangian and solving the KKT conditions, we get:
X

(i)
∗ = Q

(i)
1 + λ∗iMi −

λ∗i−i
2 Bi−1 , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

λ∗i
2 Ei + λ∗i−1Mi−1 , for i = 1, . . . , I

(C.8)

APPENDIX C. 116

where Bi−1 = 2Mi−1 − (ti − ti−1)([t′′i−1][ti−1]> + 2[t′i−1][t′i−1]> + [ti−1][t′′i−1]>) and Ei =

2Mi − (ti − ti−1)([t′′i][ti]> + 2[t′i][t′i]> + [ti][t′′i]>) for i = 1, . . . , I and:

λ∗i−1

(
[t′i]>(2Bi−1 + 4Mi−1)[ti] + 2(ti − ti−1)[t′′i]>Mi−1[ti] + 2(ti − ti−1)[t′i]>Mi−1[t′i]

)
+ λ∗i

(
[t′i]>(−8Mi − 2Ei − 2Bi)[ti] + [t′′i]>((ti+1 − ti)Bi − (ti − ti−1)Ei)[ti] (C.9)

+ [t′i]>((ti+1 − ti)Bi − (ti − ti−1)Ei)[t′i]
)

+ λ∗i+1

(
[t′i]>(Ei+1 + 4Mi+1)[ti]− 2(ti+1 − ti)[t′′i]>Mi+1[ti]− 2(ti+1 − ti)[t′i]>Mi+1[t′i]

)
= 4[t′i]>(Q(i)

1 −Q
(i+1)
1 −Q(i)

2 +Q
(i+1)
2)[ti] + 2[t′′i]>((ti+1 − ti)Q(i+1)

1 − (ti − ti−1)Q(i)
2)[ti]

+ 2[t′i]>((ti+1 − ti)Q(i+1)
1 − (ti − ti−1)Q(i)

2)[t′i] , for i = 1, . . . , I − 1

where again, λ∗0 = 0 and λ∗I = 0. Again, this is a tridiagonal system of I − 1 linear

equations with I − 1 unknowns that can be solved efficiently.

Architectural Choices and Training Parameters

For our simulated data experiment, the state of each LSTM has 100 units, and
∼
f is a

feed-forward neural network with ReLU activations and with 3 hidden layers, each

one with 100 units. We apply 102 iterations of the method of alternating projections.

For the feed-forward architecture in PfLDS, we also used 3 hidden layers, each with

100 units. We used a mini-batch of size 2 and the learning rate was 0.001. For the

real data experiments we used the same choices, except the state of each LSTM has

25 units and
∼
f is a feed-forward network with ReLU activations and with 3 hidden

layers, each one with 10 units (we tried more complicated architectures but saw no

improvement).

APPENDIX C. 117

Data Preprocessing

Reaching Data Preprocessing

We include only successful trials (i.e. when the primate reaches to the correct location)

and use only spikes occurring in a window of −100ms and 300ms from the time that

movement starts. We also reduce the total number of neurons as inference with our

method requires one LSTM per neuron and having too many neurons renders training

slow. In order to do so, we use the following GLM:

yr ∼ Multinomial
(
C, softmax(

∼
K
>

r,·β)
)

(C.10)

where yr is the trial type of trial r, C = 40 is the number of trial types,
∼
Kr,· ∈ RN is

a vector containing the (centered and standardized) number of spikes in trial r for

each of the N = 223 neurons, and β ∈ RN×C are the GLM parameters. We train the

GLM using group lasso [Yuan and Lin, 2006], where the groups are defined by neurons.

That is, the GLM is trained through maximum likelihood with an added penalty:

λ
N∑
n=1
||βn,·||22 (C.11)

where βn,· is the nth row of β. This makes it so that the coefficients in each group hit

zero simultaneously. A neuron n is removed if ||β̂n,·|| = 0. We use a regularization

parameter λ such that all but 20 neurons are removed. This provides a principled way

of reducing the number of neurons while making sure that the kept neurons are useful.

As PfLDS does not require the use of LSTMs, it can be run on the data without

removing neurons. While doing this did increase performance of PfLDS, it did so very

marginally and our model still heavily outperformed PfLDS.

Cycling Data Preprocessing

Once again, we only keep successful trials (i.e. when the primate pedals in the correct

direction and speed) and reduce the total number of neurons N = 256 to 20 by using

APPENDIX C. 118

group lasso. Since each trial has a different length, we extend every trial to have the

same length as the longest trial. We add no spikes to these extended time periods.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Maximum Entropy Modeling and the Gibbs Distribution
	The Augmented Lagrangian Method
	Texture Networks
	Normalizing Flows
	Fast Backward Computations
	Fast Forward Computations
	Fast Backward and Forward Computations

	Variational Autoencoders
	Importance Weighting
	-VAE
	PfLDS
	Discrete Latent Variables

	Evaluation Metrics
	Inception Score
	Fréchet Inception Distance

	Poisson Processes
	Splines and Nonnegative Polynomials
	Method of Alternating Projections

	Maximum Entropy Flow Networks
	Introduction
	Maximum Entropy Flow Network Algorithm
	Formulation
	Algorithm

	Experiments
	A Maximum Entropy Problem With Known Solution
	Risk-Neutral Asset Pricing
	Modeling Images of Textures

	Conclusions

	The Continuous Bernoulli
	Introduction
	The Continuous Bernoulli Distribution
	The Continuous Bernoulli VAE
	Binarizing
	Data Augmentation
	Bernoulli VAE as a Different Objective
	Bernoulli VAE as a Lower Lower Bound
	Mean Parameterization

	Experiments
	MNIST
	Warped MNIST Datasets
	CIFAR-10
	Simulated Data

	Conclusions

	Deep Random Splines
	Introduction
	Deep Random Splines
	Parameterizing Nonnegative Splines
	Enforcing Nonnegativity

	Deep Random Splines as Intensity Functions of Point Processes
	Our Model
	Inference

	Experiments
	Simulated Data
	Real Data

	Conclusions

	Conclusions
	Appendix
	Appendix
	Appendix

