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ABSTRACT

Tracing alteration of ultramafic rocks in the Samail ophiolite

Juan Carlos de Obeso

Alteration of ultramafic rocks is ubiquitous to their occurrence near the surface. Pri-

marymantle minerals like olivine and pyroxenes are unstable at low pressure and temper-

atures and undergo hydration (serpentinization), carbonation and weathering reactions

forming hydrated and carbonated minerals. Employing a variety of analytical techniques

including: electron microprobe, X-Ray diffraction, major and trace element geochemistry,

Mg isotopes geochemistry and geochemical modelling this work seeks to contrain condi-

tions of alteration and trace changes in composition of peridotite during alteration.

In Wadi Fins in the southeast of Oman peridotites outcrop at the bottom of a canyon

overlaid by a thick sequence∼ 1.5 km of Cretaceous to Eocene shallow oceanic limestones

and dolostones. The peridotites exhibit different types of alteration. While the common

view is that serpentinization and carbonation of peridotites is isochemical this is not the

case for alteration in Wadi Fins. Peridotites tens of meters below the unconformity are

characterized by a striking grid of carbonate and serpentine veins. The calcite veins and

relatively low MgO/SiO2 suggest that the peridotites reacted with a hydrous fluid derived

from interaction of seawater with the overlying sediments composed of limestones with

minor amounts of chert. This is further affirmed by average δ13C, δ18O and 87Sr/86Sr from

carbonate veins in the peridotites that are similar to values of the sediments. Clumped

isotope thermometry on calcite veins in peridotite establish that they formed at 25–60 ℃.

Reaction path modeling of carbonate- quartz derived fluids with peridotite reproduces the



observed mineral assemblage composed of carbonate and serpentine with similar Mg and

MgO/SiO2 at high water to rock ratios, with carbon, H2O and silica added to the rock by

the reacting fluid.

Close to the unconformity the altered peridotites are characterized by concentric al-

teration halos recording variable fO2 and f S2. The partially serpentinized cores preserved

primary minerals and record extremely low oxygen fugacities (fO2 ∼ 10−75 bars). Two

alteration zones are present evident from the alteration color. These zones exhibit non-

isochemical alteration characterized by intergrowths of stevensite/lizardite. The alter-

ation zones record progressively higher (fO2) recorded by Ni-rich sulfides and iron ox-

ides/hydroxides. The alteration zones lost 20-30% of their initial magnesium content, to-

getherwithmobilization of iron over short distances from inner green zones into outer red

zones, where iron was reprecipitated in goethite intermixed with silicates due to higher

fO2.

The loss of magnesium in this peridotites motivated the final section of work. Mg

isotopic compositions of partially serpentinized harzburgites and dunites in Oman are

identical to average mantle and bulk silicate Earth (δ26Mg=-0.25‰) while altered peri-

odites from Wadi Fins get heavier with increasing alteration. Analyses of peridotite al-

teration products including samples from Wadi Fins and carbonates from Wadi Tayin

were used to show that isochemical serpentinization at low W/R does not fractionate

Mg isotopes. I propose a mechanism that with increasing W/R and co-precipitation of

Mg-carbonates and serpentine leads to carbonates with light isotopic compositions (Mag-

nesite δ26Mg =-3.3 and dolomite δ26Mg=-1.91) and serpentine with heavy compositions

(up to δ26Mg =-0.96 in serpentine veins). This complementary enrichment-depletion and



the finite 14C ages of the carbonates suggest that serpentinization is ongoing along car-

bonation in Oman at ambient temperatures. Rates of calcite precipitation in travertines

inferred from Δ26Mgcal−fl suggest that travertine formation in Oman sequesters a total

of 106-107 kg CO2/yr.
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1 Introduction
This thesis addresses alteration processes of ultramafic rocks in the Samail ophiolite

in eastern Oman. Ultramafic rocks or peridotites are far from equilibrium with hydrous

fluid in near surface conditions and undergo hydration (serpentinization) and carbona-

tion reaction dramatically changing mineralogy and physical characteristics of the rocks.

Most of these reactions are usually thought to proceed under isochemical conditions, this

means only incorporating water and CO2 without changing the major element compo-

sition of the rocks (e.g., Coleman and Keith 1971; Kelemen et al. 2011; Komor, Elthon,

and Casey 1985; O’Hanley 1996). This thesis focuses on conditions in which this is not

the case. In some circumstances, serpentinization, carbonation and weathering produce

drastic changes in major element ratios, which are important for many reasons, including

their effect on volume changes and permeability during alteration, design of engineered

systems that emulate natural carbon mineralization, and sustaining the conditions for

abiotic hydrocarbon synthesis, chemosynthetic subsurface ecosystems and the origin of

life on this and other planets.

1.1 Processes of alteration of ultramafic rocks

Shallow mantle peridotite is mainly composed of olivine, orthopyroxene, clinopyrox-

ene and Cr-spinel. These minerals are unstable in the presence of water at low temper-

atures and pressures, and undergo hydration, carbonation and oxidation reactions. The

importance of these reactions has been made clear over the past 40 years (e.g Evans 2010;

Moody 1976; Neal and Stanger 1985; O’Hanley 1996; Ulmer and Trommsdorff 1995). Hy-

dration of peridotites, commonly known as serpentinization involves drastic changes in

1



the rheology of the rocks; density decreases and the rock becomesweaker (Escartín, Hirth,

and Evans 1997). Serpentinization at relatively low time integrated water-rock ratios pro-

duces strongly reducing conditions as Fe2+ oxidizes to Fe3+ (Bach and Klein 2009; Frost

1985; Früh-Green et al. 2004; Schwarzenbach, Gazel, and Caddick 2014). The resulting flu-

ids are among themost reduced on Earth, saturated inmetal alloys such as awaruite (Ni2Fe

to Ni3Fe), wairauite (CoFe) and native copper (Cu), and sulfides including heazlewood-

ite (Ni3S2) and polydymite (Ni3S4) (Abrajano et al. 1988; Chamberlain et al. 1965; Frost

1985; Klein and Bach 2009; Lorand 1988; Nickel 1959; Schwarzenbach, Gazel, and Caddick

2014). The fluids commonly have high concentration of molecular hydrogen (Abrajano

et al. 1990; Kelley et al. 2005; Neal and Stanger 1985; Sleep et al. 2004; Thayer 1966) and

methane (e.g. Etiope, Schoell, and Hosgörmez 2011; Hitch et al. 1980; Holm and Charlou

2001; Miller et al. 2016; Proskurowski et al. 2008; Rempfert et al. 2017; Russell 2007). These

compounds may form the basis for abiotic synthesis of more complex hydrocarbons, and

are a potential source of energy for chemosynthetic organisms. Locations where these

processes operated have been proposed as a potential place for the emergence of life on

Earth (Evans 2010; McCollom and Seewald 2013; Russell 2007; Sleep et al. 2004) and could

provide a source of energy for hypothesized life in other planetary bodies (Russell et al.

2014; Vance et al. 2007).

Water in the serpentinemineral structure is carried down during subduction of altered

ocean crust and released into the mantle during deserpentinization (Hacker 2003; Hattori

and Guillot 2003; Ulmer and Trommsdorff 1995). This process also cycles several elements

that incorporate into serpentinites like sulfur, boron and chlorine (Alt and Shanks 1998;

Alt et al. 2013; Barnes and Sharp 2006; Bonatti, Lawrence, and Morandi 1984; Boschi

2



et al. 2013; Thompson and Melson 1970). On land, low temperature serpentinization is

ubiquitous to peridotite massifs (Barnes, O’Neil, and Trescases 1978; Clark and Fontes

1990; Kelemen and Matter 2008; Kelemen et al. 2011; Neal and Stanger 1985; Paukert et

al. 2012; Sánchez-Murillo et al. 2014). Carbonation of peridotites has been linked to past

climate change (Jagoutz, Macdonald, and Royden 2016; Reusch 2011) and represents a

significant carbon sink in the seafloor (Alt et al. 2012). Carbonation of seafloor peridotites

forms spectacular carbonate chimneys at the Lost City hydrothermal field (Kelley et al.

2005; Rouméjon et al. 2014) and the Baie de Prony in New Caledonia (Launay and Fontes

1985; Monnin et al. 2014). On land carbonation reactions present as magnesium carbonate

deposits and extensive travertine deposits (e.g. Falk et al. 2016; Kelemen and Matter 2008;

Kelemen et al. 2011; Matter and Kelemen 2009; Mervine et al. 2014; Real et al. 2016).

The carbonation reactions of mantle minerals have been proposed as potential sink of

anthropogenic CO2 emissions (Lackner et al. 1995; Seifritz 1990). Fluids with high pH,

low fO2 and low DIC are a direct result of serpentinization and carbonation reactions

(Barnes and O’Neil 1969; Bruni et al. 2002; Paukert et al. 2012).

Reaction pathways for serpentinization and carbonation change depending on al-

teration conditions. Variation in temperature, pressure, fluid composition, fluid/rock

(W/R) or mineralogy of the protolith can lead to diverse reaction pathways. During

serpentinization at low temperatures (<200℃) lizardite and chrysotile (Mg2Si2O5(OH)4)

are the main serpentine minerals (Evans 2004; Evans et al. 1976) while iron preferen-

tially forms Fe-rich brucite ((Mg,Fe)(OH)2) (Klein and Bach 2009; Klein, Bach, and Mc-

Collom 2013; Seyfried, Foustoukos, and Fu 2007). At higher temperatures antigorite

((Mg,Fe)2.93Si2.07O5.18(OH)3.78) is the main serpentine mineral (Evans 2004; Evans et al.

3



1976) and magnetite (Fe3O4) becomes the main sink for iron (Klein et al. 2014). Higher

concentration of CO2 in the fluids leads to the formation of carbonates instead of hy-

droxides while increased SiO2 activity results in the formation of talc (Bach et al. 2004;

Frost and Beard 2007; Hemley et al. 1977) and/or quartz (Streit, Kelemen, and Eiler 2012).

As fluid-rock ratios increase, the alteration system becomes fluid-dominated, resulting in

more oxidizing and alkaline conditions that produce opaque mineral assemblages record-

ing variable oxygen fugacity (Alt and Shanks 1998; Eckstrand 1975; Frost 1985; Klein and

Bach 2009; Schwarzenbach, Gazel, and Caddick 2014; Schwarzenbach et al. 2012).

Systematic changes in major element ratios, produced by peridotite alteration, have

been observed, particularly for alteration at < 50℃. During seafloor weathering pervasive

loss of magnesium has been documented in peridotites (Snow and Dick 1995). Systemati-

cally elevated Si/Mg compared to residues of mantle melt extraction – often attributed to

Mg loss, but sometimes due to Si gain - is also observed in ophiolites, in which many par-

tially serpentinized peridotites show Si/Mg higher than residual peridotites at the same

Al/Si by 5 to 10% (e.g., Monnier et al. 2006, Figure 5, Obeso and Kelemen 2018, Figure 13).

Much higher Si/Mg (molar ratio 1:1, weight ratio SiO2/MgO∼ 1.5) is observed some local-

ities rich in “deweylite” (Beinlich et al. 2010 and this work), composed of microcrystalline

mixtures of serpentine and clay or talc (Bish and Brindley 1978; Faust and Fahey 1962).

1.2 Brief geological setting

All the work presented in this thesis involves samples collected in the mantle section

of the Samail ophiolite in the Sultanate of Oman. The Samail ophiolite is a section of

oceanic crust and underlyingmantle that was thrust soon after formation into the Arabian

4



continental margin in the late Cretaceous (Boudier, Nicolas, and Ildefonse 1996; Hacker

1994; Hacker, Mosenfelder, and Gnos 1996; Nicolas et al. 2000; Rioux et al. 2012, 2013;

Tilton, Hopson, and Wright 1981; Warren et al. 2005). It is the largest and best-preserved

ophiolitic sequence in the planet and runs as a semi-continuous belt of ∼480 km and up

to 80km wide striking NW to SE along the coast of the United Arab Emirates and the

Sultanate of Oman (Coleman and Hopson 1981) (Figure 1).

The mantle section of the ophiolite is mainly composed of highly depleted, resid-

ual mantle peridotites (mostly harzburgites, e.g. Godard, Jousselin, and Bodinier 2000;

Hanghøj et al. 2010; Monnier et al. 2006), together with 5 to 15% dunite (Boudier and

Coleman 1981; Braun 2004; Braun and Kelemen 2002; Collier 2012; Kelemen, Braun, and

Hirth 2000). The degree of alteration ranges from∼ 20% serpentinization in “fresh” rock to

nearly 100% replacement of the anhydrous silicates and oxides (olivine, pyroxenes, spinel)

with hydrousminerals (mostly serpentine, but also brucite or talc), carbonates (magnesite,

dolomite, calcite, hydrous Mg carbonates), and Fe-oxides and oxy-hydroxides (magnetite,

hematite, goethite). Alteration likely occurred throughout the history of the ophiolite and

continues to the present day (Chavagnac et al. 2013; Clark and Fontes 1990; Kelemen and

Matter 2008; Kelemen et al. 2011; Mervine et al. 2014, 2015; Monnin et al. 2011; Neal and

Stanger 1985; Streit, Kelemen, and Eiler 2012).

1.3 Outline of thesis

This thesis investigates alteration conditions of mantle peridotites in Oman that led to

major element mobility. I focus on petrological, geochemical and modeling approaches

to constrain chemical changes associated with serpentinization and carbonation reactions

5



primarily at low temperatures.

Chapter 2 presents results of analyses of a pervasively serpentinized and carbonated

suite of peridotites fromWadi Fins, along the north facing coast of Oman near the town of

Fins. Using bulk rock chemistry, clumped isotope thermometry and reaction path model-

ing, I show that these rocks were serpentinized at low temperatures and high water/rock

ratio (W/R) during reaction with fluids derived from pore water in the overlying lime-

stones. This alteration setting provides a window into the modification of peridotites by

fluids similar to seawater at low temperatures, far from oceanic spreading ridges, and

provides insights on the behavior of proposed engineered mineral carbonation using sea-

water as the carbon bearing fluid.

Chapter 3 investigates an outcrop in Wadi Fins upstream of that described in Chap-

ter 2, closer to the Cretaceous unconformity where limestones overlie altered, weath-

ered peridotites. The peridotites in the outcrop are heavily altered and exhibit concentric

zoning, with variable composition and mineralogy. The cores are partially serpentinized

harzburgites while the weathered/altered areas are depleted in magnesium and iron. Iron

appears to be remobilized from a central, high Si zone, to a peripheral, iron-rich, oxidized

zone. I use geochemical, petrological and mineralogical data complemented by reaction

path modeling to show that changes in bulk chemistry are associated with changes in

oxygen fugacity and variable W/R. The results show that iron is mobile at small scales

during alteration, while up to 25% of the magnesium is leached out resulting in Si-rich

rocks.

Chapter 4 builds on the idea of magnesium mobility during alteration. Mg-rich al-

teration minerals are common across the ophiolite. They occur as silicates (serpentine),
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hydroxides (brucite) and carbonates (magnesite, dolomite, huntite). Each one of these

minerals has a different magnesium isotope fractionation during hydrous alteration (Li

et al. 2015; Pinilla et al. 2015; Ryu et al. 2016; Schott et al. 2016; Wang et al. 2019). I use

this fractionation to show that magnesium is mobilized during alteration of peridotites in

Oman, removed from peridotites and deposited in Mg-rich carbonate veins. I propose a

mechanism in whichMg isotope ratios in silicates become heavier, and carbonates lighter,

as alteration proceeds. These results allowed me to estimate the amount of carbonates

and silicate reacting in the modern system. These results are consistent with previous

estimates from reaction path modeling (Paukert et al. 2012) and estimates of carbon min-

eralization using different methods (Kelemen et al. 2011; Mervine et al. 2014).
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Figure 1.1: Simplified geologic map of the Samail ophiolite after Nicolas, Boudier, and
France 2009. All samples used in this work come from the southern massifs (red square
and Wadi Fins (red star).
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2 Fluid rock interactions on residual mantle peridotites
overlain by shallow oceanic limestones: Insights from
Wadi Fins, Sultanate of Oman
This chapter has been published in Chemical Geology. The final publication is available
at: https://www.sciencedirect.com/science/article/pii/S0009254118304625

Abstract

In the southeastern Oman Mountains the mantle section of the Samail ophiolite is

unconformably capped by large units of Maastrichtian to Eocene limestones deposited in

a shallow marine environment after ophiolite emplacement. In the vicinity of the town

of Fins, a deep canyon carved by a stream has exposed mantle sections of the ophio-

lite. This section is composed of altered peridotites with high concentrations of calcium

and small enrichments of silica compared to the Samail mantle protolith suggesting that

the peridotites reacted with a hydrous fluid derived from interaction of seawater with the

overlying sediments composed of limestones with minor amounts of chert. This is further

affirmed by average δ13C (-0.25 ‰VPDB), δ18O (-5.53 ‰VPDB) and 87Sr/86Sr (0.70788) in

the carbonate veins, consistent with values in the sediments. Clumped isotope thermom-

etry on calcite veins in peridotite establish that they formed at 25-60 ℃. Reaction path

modeling of carbonate-quartz derived fluids with peridotite reproduces the observed min-

eral assemblage composed of carbonate and serpentine with similar Mg# and MgO/SiO2

at high water to rock ratios, with carbon, H2O and silica added to the rock by the reacting

fluid.
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2.1 Introduction

Mantle peridotite, composed mainly of olivine ((Mg,Fe)2SiO4) and pyroxenes

((Ca,Mg,Fe)2Si2O6), is unstable at Earth’s surface conditions and reactswith hydrous fluids

to form hydrated silicates (serpentinization), carbonates (carbonation) and oxides. These

processes have significant geophysical and geochemical implications. The alteration of

peridotite to serpentinite results in drastic changes in the rheology of the rocks (e.g. Es-

cartín, Hirth, and Evans 1997; Guillot et al. 2015). Serpentinization of seafloor peridotites

is a significant sink for several elements including sulfur, carbon, boron and chlorine (Alt

and Shanks 1998; Alt et al. 2013; Barnes and Sharp 2006; Bonatti, Lawrence, and Morandi

1984; Boschi et al. 2013; Thompson and Melson 1970). On land, low temperature ser-

pentinization and carbonation are ubiquitous in peridotite massifs (Barnes, O’Neil, and

Trescases 1978; Clark and Fontes 1990; Kelemen and Matter 2008; Kelemen et al. 2011;

Neal and Stanger 1985; Paukert et al. 2012; Sánchez-Murillo et al. 2014).

Reaction pathways for serpentinization change depending on temperature, pressure,

fluid composition, fluid/rock (W/R) ratios, and primary mineralogy of the protolith. Sec-

ondary mineralogy for serpentinization reactions at low temperatures (<200℃) is char-

acterized by the presence of lizardite and chrysotile (Mg3Si2O5(OH)4) as the main ser-

pentine minerals (Evans 2004; Evans et al. 1976) while iron preferentially forms Fe-rich

brucite ((Mg,Fe)(OH)2) (Klein, Bach, and McCollom 2013; Klein et al. 2009; Seyfried, Fous-

toukos, and Fu 2007). At higher temperatures antigorite ((Mg,Fe)2.93Si2.07O5.18(OH)3.78)

is the main serpentine mineral (Evans 2004; Evans et al. 1976) and magnetite (Fe3 O4)

becomes the main sink for iron (Klein et al. 2014). Early stages of serpentinization are
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characterized by low water fluxes and strongly reducing conditions (e.g. Bach and Klein

2009; Frost 1985; Früh-Green et al. 2004; Schwarzenbach, Gazel, and Caddick 2014). As

serpentinization advances, fluid fluxes increase, resulting in more oxidizing conditions.

This leads to sharp changes in oxygen fugacity and secondary mineralogy (Schwarzen-

bach et al. 2012).

The objective of this paper is to provide constraints on the temperature, fluid com-

position and fluid source during alteration of mantle peridotite in Wadi Fins, Oman. The

results have relevance for understanding carbonation and serpentinization of near-surface

mantle peridotite during reaction with sediment-derived fluids.

2.2 Geologic setting

The Samail ophiolite along the northeast coast of Oman is among the largest and best

sub-aerially exposed sections of oceanic crust and its underlying mantle in the world

(Coleman 1977; Coleman and Hopson 1981; Lippard, Shelton, and Gass 1986; Pallister

and Knight 1981). It was thrust over adjacent oceanic lithosphere soon after magmatic

formation of oceanic crust at a submarine spreading ridge and then onto the margin of

the Arabian subcontinent in the late Cretaceous (Boudier, Nicolas, and Ildefonse 1996;

Hacker 1994; Hacker, Mosenfelder, and Gnos 1996; Nicolas et al. 2000; Rioux et al. 2012,

2013; Tilton, Hopson, and Wright 1981; Warren et al. 2005).

The mantle section of the ophiolite is mainly composed of highly depleted, resid-

ual mantle peridotites (mostly harzburgites, e.g. Godard, Jousselin, and Bodinier 2000;

Hanghøj et al. 2010; Monnier et al. 2006), together with 5 to 15% dunite (Boudier and

Coleman 1981; Braun and Kelemen 2002; Coleman 1981; Collier 2012; Kelemen, Braun,
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and Hirth 2000). These peridotites, thrust toward the surface and then exposed by fault-

ing and erosion, are far from equilibrium with water and carbon dioxide. This disequi-

librium causes ubiquitous alteration. The alteration ranges from ∼ 20% serpentinization

in “fresh” rock to nearly 100% replacement of the anhydrous silicates and oxides (olivine,

pyroxenes, spinel) with hydrous minerals (mostly serpentine, but also brucite or talc),

carbonates (magnesite, dolomite, calcite, hydrous Mg carbonates), and Fe-oxides and oxy-

hydroxides (magnetite, hematite, goethite). Alteration probably occurred throughout the

history of the ophiolite, beginning near the axis of the oceanic spreading ridges where the

Samail ophiolite crust formed (e.g., Gregory and Taylor 1981), followed by “high temper-

ature” alteration in the late Cretaceous near the basal thrust where metasediments were

subducted beneath peridotite ∼ 100℃, (Falk and Kelemen 2015; Nasir et al. 2007; Stanger

1985), and continuing to the present day (Chavagnac et al. 2013; Clark and Fontes 1990;

Kelemen and Matter 2008; Kelemen et al. 2011; Mervine et al. 2014, 2015; Monnin et al.

2011; Neal and Stanger 1985; Streit, Kelemen, and Eiler 2012). Mantle peridotites of the

Samail ophiolite in Oman were exposed by sub-aerial erosion in the late Cretaceous. They

are locally capped by Late Cretaceous (Maastrichtian) laterites (Al-Khirbash 2015; Nolan

et al. 1990), and elsewhere by fluvial conglomerates rich in peridotite cobbles. This was

followed by a marine transgression, which deposited shallow marine carbonates over a

broad region, including the Qahlah, Simsina and Jafnayn formations (Nolan et al. 1990;

Wyns et al. 1992).

Outcrops of altered peridotite occur in Wadi Fins at the bottom of the water-carved

canyon (Figure 1). These peridotites are unconformably overlain by up to 1-1.5 km. of

sediment, mostly shallow water limestones, deposited from the Late Cretaceous (Maas-
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trichtian) to the Eocene (e.g. Mann, Hanna, and Nolan 1990; Racey 1995; Searle and Gra-

ham 1982; Wyns et al. 1992). Regionally, the peridotite in Wadi Fins is pervasively ser-

pentinized and crosscut by an extensive network of carbonate and serpentine-carbonate

veins.

Clastic dikes (or “Neptunian veins”) of fine-grained grey limestone intrude the peri-

dotite, tapering downward and extending∼10 m down from the unconformity (Figure 2).

The clastic dikes are best exposed on the south wall of the Wadi where they are spaced

roughly 2 to 4 meters apart. They contain angular clasts of altered peridotite, especially

near their tips. Although these dikes are almost certainly coeval with formation of the car-

bonate veins in the underlying peridotite, they are cut by a network of somewhat younger

carbonate veins.

2.3 Sample processing and analytical methods

Analyzed samples were collected during the 2013 and 2016 field seasons in Wadi Fins,

Oman (Figure 1). Twenty-three peridotite and six limestone sub-samples were chipped

using a jaw crusher and powdered using an alumina puck mill. These were used for ele-

mental and mineralogical analysis. Billets of 16 peridotite samples were sent to Spectrum

Petrographics (http://www.petrography.com/) for preparation of polished thin sections.

Powdered samples were analyzed by X-Ray diffraction (XRD), X-Ray fluorescence

(XRF) and Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES) to ob-

tain whole rock and mineralogical compositions. XRD analysis were performed using a

Rigaku DMAX-Rapid Microdiffraction system at the American Museum of Natural His-

tory (AMNH), difractograms were analyzed using JADE software to identify main min-
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erals. Major element X-Ray Flourescence and loss on ignition (LOI) analyses of the bulk

rocks for 16 peridotite samples was performed by XRF at theWashington State University

GeoAnalytical lab (https://environment.wsu.edu/facilities/geoanalytical-lab/). The rest of

the peridotite samples and the limestone samples were analyzed using an Agilent 720 Ax-

ial ICP-OES that was calibrated to natural standards (Table S1) at Lamont Doherty Earth

Observatory (LDEO) using lithium metaborate fusion and nitric acid solution. Sample

composition and analytical precision are given in table S1.

Polished thin sections of 16 samples were analyzed with a standard petrographic mi-

croscope for phase identification where possible. Nine of the sixteen were also quantita-

tively analyzed using a 5-spectrometer Cameca SX-100 microprobe at AMNH using a 10

μm beam diameter with 15 kV accelerating voltage, 10nA current and 20-30s peak time

to determine major element composition of phases using natural standards. Calibration

information is shown in Table S2.

Carbonates from carbonate-serpentine veins in seven peridotite samples were sepa-

rated from the matrix and stained with Alizarin Red S following a modified version of

Friedman’s protocol (1959) to differentiate between calcite and dolomite. Calcite min-

eral separates were crushed using a mortar and pestle to form a fine powder for clumped

isotope thermometry analysis. Powders were analyzed using a Thermo Finnegan MAT

253 configured to collect masses 44 to 49 isotopologues (cf. Eiler 2007) at Woods Hole

Oceanographic Institution. Analyses, standards and data processing for both sample and

standards were carried out following the protocols described by Huntington et al. (2009)

and Passey et al. (2010). Three different ∆47 (a measure of isotopologue 13C-16O-18O

enrichment compared to a stochastic distribution) temperatures are reported following
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calibrations by Bristow et al. (2011), Dennis & Schrag (2010), and Ghosh et al. (2006) for

comparison (Table I). All discussion is based on the Bristow et al. ∆47 calibration. Over

the analytical run standards 102-GC-AZ01 and NBS19 averaged ∆47 0.728±0.047h and

0.436±0.014h respectively. These values are either within or close to the range of the

average values reported by Dennis et al, 2011 inter-laboratory study, 0.713± 0.12h (1

S.D.) for 102-GC-AZ01 and 0.392±0.017h (1 S.D.) for NBS19. Three of these carbonate

separates were dissolved in HNO3 and analyzed for strontium isotopes (87Sr/86Sr) using

a ThermoScientific Neptune Plus multi-collector Inductively Coupled Plasma Mass Spec-

trometer (MC-ICP-MS) in static mode at LDEO, over run repeat analyses of the NBS-987

Sr-standard averaged a (87Sr/86Sr) ratio of 0.710252±0.000024, within the NIST SRM value

of 0.710248.

2.4 Results

Mineralogy and textures in Wadi Fins peridotites

All mantle peridotite samples exhibit high degrees of serpentinization. Relict olivine is

rare in thin section but appears in a few samples and even in some diffractograms (OM13-

19 and OM13-2). It represents almost 20% of the OM13-19 thin section, making this the

least altered sample analyzed for this study. All samples in the matrix have mesh textures

typical of serpentine replacing olivine (O’Hanley 1996; Wicks, Whittaker, and Zussman

1977). XRD data show that the main serpentine mineral is lizardite with minor occur-

rences of chrysotile. Relict pyroxenes are present in most thin sections and show various

degrees of alteration to serpentine. Olivines and orthopyroxenes have compositions (Ta-

bles S5 and S6) similar to those previously reported in the ophiolite (Hanghøj et al. 2010;
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Monnier et al. 2006). For samples in which the carbonate content is high enough for

XRD identification calcite is the main carbonate phase occurring mostly in veins. Sample

OM13-4 is an exception. Here, dolomite occurs in the matrix and is the most abundant

carbonate in the sample. Magnesite or brucite were not identified by XRD or microprobe

analysis in any sample.

The outcrops in Wadi Fins contain micron to centimeter scale carbonate veins as well

as composite fine-grained serpentine-carbonate veins and rare pure serpentine veins. The

alteration phases in the peridotites include matrix serpentine and carbonate-serpentine

veins. These phases are evident in the outcrops and hand samples as shown in Fig-

ure 3. While calcite is the most abundant carbonate in the veins dolomite occurs along

vein edges in close proximity with serpentine. Serpentine (XRD lizardite) in the mixed

serpentine-carbonate veins is in some cases isotropic in cross-polarized light due to its

fine-grained nature in the veins. These serpentines usually have low iron contents (XFe

(molar Fe/[Molar Fe+Mg]=3.8 mol% on average) compared to matrix serpentines with

XFe=8.6 mol% on average. Iron oxides occur in the magnesium rich serpentine veins and

reach over 50 μm in diameter. Serpentines in the matrix have iron contents similar to or

greater than relict olivine and orthopyroxene in samples OM13-2 and OM13-9 (Figure 4

and table S5 and S6). Iron oxides rarely occur far from veins in the primary serpentine

matrix.

Bulk-rock composition

Almost all Wadi Fins samples show significant enrichment in CaO from the carbonate

veins. Larger positive CaO anomalies correlate with larger negative anomalies of most
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major oxides (MgO, SiO2, FeO, Al2O3, Cr2O3). Sample bulk rock compositions are com-

pared to average Oman harzburgite (Godard, Jousselin, and Bodinier 2000; Hanghøj et al.

2010; Monnier et al. 2006) in Figure 5. MnO anomalies correlate with CaO anomalies,

because MnO is mainly hosted in carbonate veins (average MnO content in carbonate

minerals is 0.6 wt%). Calcium contents in bulk rock compositions lie in the expected

path of alteration for Oman harzburgite that has modified by addition of calcite (Figure

6). When projected from calcite the majority of samples are more silica-rich than Oman

peridotites (Figure 7). Bulk rock compositions are reported in supplementary table S3.

Carbon, oxygen and Sr isotopes ratios of carbonates veins

∆47, δ13C, δ18O and clumped isotope temperatures for 7 samples, and 87Sr/86Sr for

three of them, are reported in table 2.1. Measured ∆47 values of the calcite veins cor-

respond to precipitation temperatures between 25-60 ℃, consistent with vein formation

near the surface. δ13C and δ18O in the calcite veins measured are within the range of

observed values of Maastrichtian-Eocene sediments in the area (Figure 8) (Schlüter et al.

2008). 87Sr/86Sr ratios of the three measured samples are between 0.70778-0.70790, sim-

ilar to the Cretaceous limestones (Schlüter et al. 2008) and seawater at the Cretaceous-

Paleogene (McArthur, Howarth, and Shields 2012). This similarity suggests that alteration

occurred around this time as changes in seawater 87Sr/86Sr after the Cretaceous-Paleogene

(McArthur, Howarth, and Shields 2012) is not reflected in the carbonate veins hosted in

the peridotite.
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Bulk rock composition of overlying limestones

The limestones overlying the peridotites are fine-grained. In the unconformity, clastic

dikes or “Neptunian veins” of grey limestone intrude the peridotites and contain angular

clasts of altered peridotite. Oddly, the clastic dikes appear to root in the unconformity and

do not cut the overlying limestone in any outcrop. Above the unconformity, the first few

hundred meters of section are mainly composed of limestones. Calcium-rich dolomites

occur midsection (∼50 meters above the unconformity), changing back to limestone at

the top of the section. All samples have trace amounts of SiO2, up to 0.35 wt% with an

average of 0.13 wt% for samples within 15 meters of the unconformity. Major element

compositions of the limestones are reported in supplementary Table S4.

2.5 Reaction path model

Model Setup

The details of the alteration sequence described above were used to constrain a re-

action path model of carbonate-saturated seawater reacting with Oman peridotite using

EQ3/6 V 8.0 (Wolery and Jarek 2003). For all calculations we used the Klein et al. (2009)

EQ3/6 thermodynamic database. This database contains equilibrium constants from 0 to

400 ℃ at 50 MPa, a pressure that we consider within the range expected for the alter-

ation. The model has by three stages. In the first stage, 1 kg of simulated Cretaceous

seawater (Table II) is speciated at 25℃ using EQ3. In the second stage, seawater is heated

to 60℃ while reacting with one mole of idealized limestone in a closed system. Two ide-

alized limestone compositions were used, one with 100% calcite and a second with 99%

calcite and 1% quartz to account to for presence of chert in the Qahlah and Simsina forma-
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tions (Nolan et al. 1990). In the third stage, the resulting fluid then reacts with rock with

the initial composition of average Oman harzburgite (Hanghøj et al. 2010; Monnier et al.

2006) and dunite (Hanghøj et al. 2010) using EQ6 with special reactant mode in a titration

system at 60℃. The special reactant mode in EQ6 restricts the model to an equilibrium

system.

Secondary minerals known to form during serpentinization were allowed to precip-

itate, forming solid solutions in the third stage of the model (Supplementary Table S6).

Precipitated minerals in this stage represent the resulting mineralogy produced by the

reaction of the input fluid with Oman peridotite. Even though lizardite is the main ser-

pentine mineral in our samples, its thermodynamic properties are not well constrained, so

it is not included in the database. Instead, we used chrysotile as the main Mg-serpentine

mineral, as its thermodynamic properties are similar to lizardite (Evans 2004). Results

of the third stage are reported using mass ratios of water/rock (W/R=kg H2O/kg of rock

reacted) following literature convention (e.g. Klein and Garrido 2011; Klein et al. 2009;

Palandri and Reed 2004).

Model Results

We present the results of four model runs with varying the composition of the peri-

dotite and limestone reactants. These 4 runs are: harzburgite with calcite derived fluid,

harzburgite with calcite-quartz derived fluid, dunite with calcite derived fluid and dunite

with calcite-quartz derived fluid. Figures 9 to 12 summarize the results of these reaction

path models.

In all models, mineral appearance and disappearance proceeds in the same order in all
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models (Figure 9). Carbonate coexists with serpentine and hematite for W/R> 100 and is

the dominant phase atW/R>5000. The amount of carbonate minerals is constant along the

reaction path forW/R>100. BelowW/R of 30 carbonates are unstable and do not appear in

the equilibrium assemblage. Below W/R of 5000 serpentine becomes the dominant phase

with minor chlorite, brucite and iron oxides (hematite for W/R above 20 and magnetite

below). The amount and presence of brucite depends on the peridotite reactant. Both

dunitemodels have brucite occurring at higherW/R ratios than in harzburgites, consistent

with higher Mg/Si ratios in dunite compared to harzburgite.

The fluid composition entering the peridotite differs only in the SiO2(aq) concentration,

which is ∼5 times higher in the calcite-quartz saturated fluids compared to the calcite

saturated fluids. The evolution of the fluid composition evolution is almost identical for

the harzburgite and dunite models (Figure 10). All models show an increase in dissolved

Al resulting from a drastic increase in pH (Hitch et al. 1980; May, Helmke, and Jackson

1979; Wesolowski 1992). The pH rises to 12 in harzburgite models (Figure 11) at W/R <

100 and up to 11.5 for dunite models at W/R < 20. The increase in dissolved Al at high

pH in the models is coeval with both an increase in dissolved Si in the fluid, and steep

decreases in Mg and Fe. Fe in all models is only soluble at W/R between 20 to 200. All

models show abrupt drops in fO2 at W/R < 3000 (Figure 11) consistent with oxidation

of Fe2+ in the solid reaction products, and the production of molecular hydrogen from

serpentinization of peridotite (Frost 1985). Solid mass and volume both increase along the

entire reaction path. Mass changes in the models (Figure 12) are significant with increases

over 50%when the system precipitates carbonates at highW/R. DecreasingW/R stabilizes

the mass increases to ∼16%, mainly from water in the serpentine minerals. Solid volume
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changes follow a similar path, with significant increases at W/R >1000. Decreasing W/R

stabilizes the volume increases to ∼40%.

2.6 Discussion

The presence of peridotite laterite ∼12 km from the Wadi Fins location provides ev-

idence that the ophiolite was sub-aerially weathered in a tropical climate (Al-Khirbash

2015; Al-Khirbash et al. 2013; Alsharhan and Nasir 1996) after emplacement of the ophi-

olite onto the Arabian continental margin and erosion of the crustal section in the area.

This alteration stage seemingly limited to breccias and fluvial conglomerates along the un-

conformity inWadi Fins, was followed by amarine transgression, and deposition ofMaas-

trichtian and younger sediments – spanning the Cretaceous-Paleogene (K-Pg) boundary

– above an unconformity overlying peridotite. δ13C and δ18O in the Qahlah, and Sim-

sina and Jafnayn limestone formations (Schlüter et al. 2008) are similar to values in our

carbonate samples (Figure 8 and Table I). 87Sr/86Sr ratios are within error of the values

reported for the overlying cretaceous limestones (Schlüter et al. 2008) and values for K-Pg

boundary age seawater (McArthur, Howarth, and Shields 2012), providing evidence that

pore waters in K-Pg age limestone were the source of the fluid that serpentinized and

formed veins in the peridotite. Temperatures during alteration, estimated by clumped

isotope thermometry, were around 20-60℃. We infer that the alteration occurred at mod-

erate pressures (300-600 bars) based on limestone unit thickness estimates (Nolan et al.

1990; Racey 1995; Wyns et al. 1992). We also infer that interaction between peridotites

and fluids equilibrated with the overlying sediments formed abundant calcite-rich veins

and thus resulting in significant CaO enrichments observed in Wadi Fins.
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Isochemical serpentinization of olivine-rich rocks requires the formation of a

magnesium-rich phase, usually brucite (Evans 1977; Evans et al. 1976) or magnesite when

CO2-rich fluids are present (Kelemen et al. 2011). We interpret the absence of these min-

erals in our samples, along with higher SiO2 contents than average Oman peridotites, as

an indication of non-isochemical serpentinization in Wadi Fins.

Wadi Fins peridotites have low Al2O3/SiO2 (<0.035), similar to other depleted peri-

dotites in Oman (e.g. Godard, Jousselin, and Bodinier 2000; Hanghøj et al. 2010; Monnier

et al. 2006) with lower MgO/SiO2 ratios (Figure 13). They follow a trend parallel to the ter-

restrial geochemical fractionation array (Asimow 1999; Baker and Beckett 1999; Jagoutz

et al. 1979; Snow and Dick 1995) at lower MgO/SiO2 ratios.

MgO/SiO2 below the geochemical fractionation array are commonly interpreted as a

result of alteration processes involving magnesium leaching (Monnier et al. 2006; Snow

and Dick 1995). The much lower MgO/SiO2 in our Wadi Fins samples suggest higher de-

grees of alteration than in the regionally extensive suite of less altered peridotites studied

by Godard, Jousselin, and Bodinier 2000; Hanghøj et al. 2010 and Monnier et al. 2006. Ex-

tensive leaching of magnesium leaching would result in an appreciable drop in the Mg#

(molar Mg/(Mg+Fe)) decreasing MgO/SiO2. This is not observed in our samples. On the

contrary, several samples have bulk rock Mg# significantly higher (up to 93.3) than most

Oman peridotites (Avg Mg# 91, Max Mg# 92 e.g. Godard, Jousselin, and Bodinier 2000;

Hanghøj et al. 2010; Monnier et al. 2006), and higher than relict primary olivines and py-

roxenes in our samples, with Mg# ∼91. Higher Mg# can either be explained by removal

of iron or addition of magnesium. While we infer minor iron mobility, primarily based

on observation of iron oxides along veins, we find unlikely that major amounts of iron
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were preferentially leached to produce higher Mg#. Instead, to explain the lowMgO/SiO2

and variable Mg# in our samples, we prefer to invoke silica addition along with minor

amounts of Mg gain or loss. Serpentinization of olivine-rich rocks with addition of silica

in the fluid will proceed following the simplified reaction:

3Mg2SiO4 + 2SiO2(aq) + 4H2O = 2Mg3Si2O5(OH)4

This reaction forms serpentine without a magnesium rich phase such as brucite or

magnesite. Limestones right above the unconformity inWadi Fins contain small amounts

of silica, and chert is present in small quantities in the Qahlah and Simsina formations

(Nolan et al. 1990; Schlüter et al. 2008) providing a source of silica to the fluid. Reac-

tion path modeling of calcite-quartz derived fluids with harzburgite and dunite result in

MgO/SiO2 ratios (Figure 13) that encompass the whole range observed in Wadi Fins at

W/R between ∼3000 and 1000. In contrast, reaction modeling with fluids that were not

initially quartz-saturated does not reproduce the observed compositions of our Wadi Fins

samples; the lowest MgO/SiO2 are 1.02 and 0.90 for dunite and harzburgite respectively

at W/R ∼12,000. W/R as high as those required (∼3000 to 1000) to reproduce our sample

compositions are predicted to result in significant volume and mass increases. Such solid

volume increases represent large strains, which would have caused unrealistically high

stresses in an elastic rock matrix. Instead, the resulting elastic stresses must have been

relaxed by deformation along fractures due to tectonic stresses and/or reaction-driven

cracking (Jamtveit, Malthe-Sørenssen, and Kostenko 2008; Kelemen and Hirth 2012; Kele-

men and Matter 2008; Macdonald and Fyfe 1985; Rudge, Kelemen, and Spiegelman 2010).
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The opening of existing cracks, and/or formation of new fractures, in turn, may have

allowed these large volumes of fluid to react with the rocks.

2.7 Conclusions

Alteration of the peridotites in Wadi Fins happened in several stages. The first stage

probably began near the axis of the oceanic spreading ridge where the Samail ophiolite

crust formed (Coleman 1981; Hopson et al. 1981; Lippard, Shelton, and Gass 1986) be-

fore emplacement. After emplacement some alteration of the uppermost section under

tropical weathering conditions is indicated by the presence of the peridotite laterite in

outcrops ∼12 km to the south of the peridotite outcrops of this study (Al-Khirbash 2015;

Al-Khirbash et al. 2013; Alsharhan and Nasir 1996; Wyns et al. 1992). In our field area,

breccias and fluvial conglomerates along the unconformity represent this stage of alter-

ation. Sub-aerial weathering was followed by addition of calcium carbonate – mostly in

calcite veins – and silica – mostly in serpentine – sourced from the Qahlah and Simsina

limestone formations. This alteration took place at 25-60℃, moderate pressures (<500 bar)

and highW/R. Reaction pathmodeling reproduces themineral assemblage observed in the

Wadi Fins samples. At high W/R ratios, carbon and silica are transferred from the fluids

into the precipitated minerals. These results reproduce the observed trends in the natu-

ral samples, particularly the changes MgO/SiO2 and Mg#, and mimics the proposed later

alteration stage when large volumes of carbonate saturated-seawater circulated through

the peridotites, resulting in precipitation of carbonates and serpentine. Results are consis-

tent with previous modeling of peridotite alteration with seawater (e.g. Klein et al. 2009).

This alteration setting provides a window into the modification of peridotites by fluids
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similar to seawater at low temperatures far from oceanic spreading ridges and provides

insights on the behavior of proposed engineered mineral carbonation using seawater as

carbon bearing fluid (Kelemen and Matter 2008; Kelemen et al. 2011). In particular, chem-

ical data and modeling support the inference that solid mass and volume both increase

during low temperature alteration of peridotite, leading to large elastic stresses that must

be accommodated by deformation along fractures induced by tectonic stresses and/or

reaction-driven cracking.

References
Al-Khirbash, Salah (2015). “Genesis and mineralogical classification of Ni-laterites, Oman

Mountains.” In: Ore Geology Reviews 65, pp. 199–212. issn: 01691368. doi: 10.1016/
j.oregeorev.2014.09.022.

Al-Khirbash, Salah et al. (2013). “Rare earth element mobility during laterization of mafic
rocks of the Oman ophiolite.” In: Arabian Journal of Geosciences 7.12, pp. 5443–5454.
issn: 1866-7511. doi: 10.1007/s12517-013-1189-6.

Alsharhan, A.S. and Sobhi Nasir (1996). “Sedimentological and geochemical interpretation
of a transgressive sequence: the Late Cretaceous Qahlah Formation in the western
Oman Mountains, United Arab Emirates.” In: Sedimentary Geology 101.3-4, pp. 227–
242. issn: 00370738. doi: 10.1016/0037-0738(95)00067-4.

Alt, Jeffrey C. and Wayne C. Shanks (1998). “Sulfur in serpentinized oceanic peridotites:
Serpentinization processes and microbial sulfate reduction.” In: Journal of Geophysical
Research 103.November 2015, p. 9917. issn: 0148-0227. doi: 10.1029/98JB00576.

Alt, Jeffrey C. et al. (2013). “The role of serpentinites in cycling of carbon and sulfur:
Seafloor serpentinization and subduction metamorphism.” In: Lithos 178, pp. 40–54.
issn: 00244937. doi: 10.1016/j.lithos.2012.12.006.

Asimow, Paul D. (1999). “A model that reconciles major- and trace-element data from
abyssal peridotites.” In: Earth and Planetary Science Letters 169.3, pp. 303–319. issn:
0012821X. doi: 10.1016/S0012-821X(99)00084-9.

Bach, Wolfgang and Frieder Klein (2009). “The petrology of seafloor rodingites: Insights
from geochemical reaction path modeling.” In: Lithos 112.1-2, pp. 103–117. issn:
00244937. doi: 10.1016/j.lithos.2008.10.022.

35

http://dx.doi.org/10.1016/j.oregeorev.2014.09.022
http://dx.doi.org/10.1016/j.oregeorev.2014.09.022
http://dx.doi.org/10.1007/s12517-013-1189-6
http://dx.doi.org/10.1016/0037-0738(95)00067-4
http://dx.doi.org/10.1029/98JB00576
http://dx.doi.org/10.1016/j.lithos.2012.12.006
http://dx.doi.org/10.1016/S0012-821X(99)00084-9
http://dx.doi.org/10.1016/j.lithos.2008.10.022


Baker, Michael B. and John R Beckett (1999). “The origin of abyssal peridotites: a reinter-
pretation of constraints based on primary bulk compositions.” In: Earth and Planetary
Science Letters 171.1, pp. 49–61. issn: 0012-821X. doi: https://doi.org/10.1016/
S0012-821X(99)00130-2.

Barnes, Ivan, James R. O’Neil, and J.J Trescases (1978). “Present day serpentinization in
New Caledonia, Oman and Yugoslavia.” In: Geochimica et Cosmochimica Acta 42.1,
pp. 144–145. issn: 00167037. doi: 10.1016/0016-7037(78)90225-9.

Barnes, Jaime D. and Zachary D. Sharp (2006). “Achlorine isotope study of DSDP/ODP ser-
pentinized ultramafic rocks: Insights into the serpentinization process.” In: Chemical
Geology 228.4, pp. 246–265. issn: 00092541. doi: 10.1016/j.chemgeo.2005.10.011.

Bonatti, Enrico, James R. Lawrence, and Noris Morandi (1984). “Serpentinization of
oceanic peridotites: temperature dependence of mineralogy and boron content.” In:
Earth and Planetary Science Letters 70.1, pp. 88–94. issn: 0012821X. doi: 10.1016/
0012-821X(84)90211-5.

Boschi, Chiara et al. (2013). “Serpentinization of mantle peridotites along an uplifted litho-
spheric section, Mid Atlantic Ridge at 11◦ N.” In: Lithos 178, pp. 3–23. issn: 00244937.
doi: 10.1016/j.lithos.2013.06.003.

Boudier, Françoise and Robert G. Coleman (1981). “Cross section through the peridotite
in the Samail ophiolite, southeastern Oman Mountains.” In: Journal of Geophysical
Research: … 86.B4, p. 2573. issn: 0148-0227. doi: 10.1029/JB086iB04p02573.

Boudier, Françoise, Adolphe Nicolas, and Benoit Ildefonse (1996). “Magma chambers in
the Oman ophiolite: fed from the top and the bottom.” In: Earth and Planetary Science
Letters 144.1-2, pp. 239–250. issn: 0012821X. doi: 10.1016/0012-821X(96)00167-7.

Braun, Michael Geoffrey and Peter B. Kelemen (2002). “Dunite distribution in the
Oman Ophiolite: Implications for melt flux through porous dunite conduits.” In: Geo-
chemistry, Geophysics, Geosystems 3.11, pp. 1–21. issn: 15252027. doi: 10 . 1029 /
2001GC000289.

Bristow, Thomas F et al. (2011). “A hydrothermal origin for isotopically anomalous cap
dolostone cements from south China.” In: Nature 474.7349, pp. 68–71. issn: 1476-4687.
doi: 10.1038/nature10096.

Chavagnac, Valerie et al. (2013). “Characterization of hyperalkaline fluids produced
by low-temperature serpentinization of mantle peridotites in the Oman and Lig-
urian ophiolites.” In: Geochemistry, Geophysics, Geosystems 14.7, pp. 2496–2522. issn:
15252027. doi: 10.1002/ggge.20147.

36

http://dx.doi.org/https://doi.org/10.1016/S0012-821X(99)00130-2
http://dx.doi.org/https://doi.org/10.1016/S0012-821X(99)00130-2
http://dx.doi.org/10.1016/0016-7037(78)90225-9
http://dx.doi.org/10.1016/j.chemgeo.2005.10.011
http://dx.doi.org/10.1016/0012-821X(84)90211-5
http://dx.doi.org/10.1016/0012-821X(84)90211-5
http://dx.doi.org/10.1016/j.lithos.2013.06.003
http://dx.doi.org/10.1029/JB086iB04p02573
http://dx.doi.org/10.1016/0012-821X(96)00167-7
http://dx.doi.org/10.1029/2001GC000289
http://dx.doi.org/10.1029/2001GC000289
http://dx.doi.org/10.1038/nature10096
http://dx.doi.org/10.1002/ggge.20147


Clark, Ian D. and Jean-Charles Fontes (1990). “Paleoclimatic reconstruction in northern
Oman based on carbonates from hyperalkaline groundwaters.” In: Quaternary Re-
search 33.3, pp. 320–336. issn: 00335894. doi: 10.1016/0033-5894(90)90059-T.

Coleman, Robert G. (1977). Ophiolites. Berlin, Springer–Verlag. isbn: 3642666752.

Coleman, Robert G. (1981). “Tectonic setting for ophiolite obduction in Oman.” In: Journal
of Geophysical Research: Solid Earth 86.B4, pp. 2497–2508. issn: 0148-0227. doi: 10.
1029/JB086iB04p02497.

Coleman, Robert G. and Clifford A. Hopson (1981). “Introduction to the Oman Ophiolite
Special Issue.” In: Journal of Geophysical Research: Solid Earth 86.B4, pp. 2495–2496.
issn: 01480227. doi: 10.1029/JB086iB04p02495.

Collier, Martin Lee (2012). “Spatial-Statistical Properties of Geochemical Variability as
Constraints on Magma Transport and Evolution Processes at Ocean Ridges.” PhD the-
sis. Columbia University.

Dennis, Kate J. and Daniel P. Schrag (2010). “Clumped isotope thermometry of carbon-
atites as an indicator of diagenetic alteration.” In: Geochimica et Cosmochimica Acta
74.14, pp. 4110–4122. issn: 00167037. doi: 10.1016/j.gca.2010.04.005.

Eiler, John M. (2007). ““Clumped-isotope” geochemistry—The study of naturally-
occurring, multiply-substituted isotopologues.” In: Earth and Planetary Science Letters
262.3-4, pp. 309–327. issn: 0012821X. doi: 10.1016/j.epsl.2007.08.020.

Escartín, J., G. Hirth, and B. Evans (1997). “Effects of serpentinization on the lithospheric
strength and the style of normal faulting at slow-spreading ridges.” In: Earth and Plan-
etary Science Letters 151.3-4, pp. 181–189. issn: 0012-821X. doi: 10.1016/S0012-
821X(97)81847-X.

Evans, Bernard W. (1977). “Metamorphism of alpine peridotite and serpentinite.” In: An-
nual Reviews in Earth and Planetary Sciences, pp. 397–447. issn: 0084-6597. doi: 10.
1146/annurev.ea.05.050177.002145.

Evans, Bernard W. (2004). “The Serpentinite Multisystem Revisited: Chrysotile Is
Metastable.” In: International Geology Review 46.6, pp. 479–506. issn: 0020-6814. doi:
10.2747/0020-6814.46.6.479.

Evans, Bernard W. et al. (1976). “Stability of chrysotile and antigorite in the serpentinite
multisystem.” In: Schweizerische mineralogische und petrographische Mitteilungen 56,
pp. 79–93.

Falk, Elisabeth S. and Peter B. Kelemen (2015). “Geochemistry and petrology of listvenite
in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during

37

http://dx.doi.org/10.1016/0033-5894(90)90059-T
http://dx.doi.org/10.1029/JB086iB04p02497
http://dx.doi.org/10.1029/JB086iB04p02497
http://dx.doi.org/10.1029/JB086iB04p02495
http://dx.doi.org/10.1016/j.gca.2010.04.005
http://dx.doi.org/10.1016/j.epsl.2007.08.020
http://dx.doi.org/10.1016/S0012-821X(97)81847-X
http://dx.doi.org/10.1016/S0012-821X(97)81847-X
http://dx.doi.org/10.1146/annurev.ea.05.050177.002145
http://dx.doi.org/10.1146/annurev.ea.05.050177.002145
http://dx.doi.org/10.2747/0020-6814.46.6.479


ophiolite emplacement.” In: Geochimica et Cosmochimica Acta 160, pp. 70–90. issn:
00167037. doi: 10.1016/j.gca.2015.03.014.

Friedman, Gerald M. (1959). “Identification of Carbonate Minerals by Staining Methods.”
In: SEPM Journal of Sedimentary Research Vol. 29.1, pp. 87–97. issn: 1527-1404. doi:
10.1306/74D70894-2B21-11D7-8648000102C1865D.

Frost, Ronald B. (1985). “On the stability of sulfides, oxides, and native metals in serpen-
tinite.” In: Journal of Petrology 26.June 1983, pp. 31–63. issn: 00223530. doi: 10.1093/
petrology/26.1.31.

Früh-Green, Gretchen L. et al. (2004). “Serpentinization of oceanic peridotites: Implica-
tions for geochemical cycles and biological activity.” In: AGU Monograph. Vol. 144,
pp. 119–136. doi: 10.1029/144GM08.

Ghosh, Prosenjit et al. (2006). “13C–18O bonds in carbonate minerals: A new kind of
paleothermometer.” In: Geochimica et Cosmochimica Acta 70.6, pp. 1439–1456. issn:
00167037. doi: 10.1016/j.gca.2005.11.014.

Godard, Marguerite, David Jousselin, and Jean-Louis Bodinier (2000). “Relationships be-
tween geochemistry and structure beneath a palaeo-spreading centre: a study of the
mantle section in the Oman ophiolite.” In: Earth and Planetary Science Letters 180.1-2,
pp. 133–148. issn: 0012821X. doi: 10.1016/S0012-821X(00)00149-7.

Gregory, Robert T. and Hugh P. Taylor (1981). “An oxygen isotope profile in a section of
Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ <sup>18</sup> O
buffering of the oceans by deep (&gt;5 km) seawater-hydrothermal circulation at mid-
ocean ridges.” In: Journal of Geophysical Research: Solid Earth 86.B4, pp. 2737–2755.
issn: 01480227. doi: 10.1029/JB086iB04p02737.

Guillot, Stéphane et al. (2015). “Tectonic significance of serpentinites.” In: Tectonophysics
646, pp. 1–19. issn: 0040-1951. doi: 10.1016/J.TECTO.2015.01.020.

Hacker, Bradley R. (1994). “Rapid Emplacement of Young Oceanic Lithosphere: Argon
Geochronology of theOmanOphiolite.” In: Science 265.5178, pp. 1563–1565. issn: 0036-
8075. doi: 10.1126/science.265.5178.1563.

Hacker, Bradley R., Jed L. Mosenfelder, and E Gnos (1996). “Rapid emplacement of the
Oman ophiolite:Thermal and geochronologic constraints.” In: Tectonics 15.6, pp. 1230–
1247. issn: 02787407. doi: 10.1029/96TC01973.

Hanghøj, Karen et al. (2010). “Composition and Genesis of Depleted Mantle Peridotites
from theWadi TayinMassif, OmanOphiolite; Major and Trace Element Geochemistry,
and Os Isotope and PGE Systematics.” In: Journal of Petrology 51.1-2, pp. 201–227. issn:
0022-3530. doi: 10.1093/petrology/egp077.

38

http://dx.doi.org/10.1016/j.gca.2015.03.014
http://dx.doi.org/10.1306/74D70894-2B21-11D7-8648000102C1865D
http://dx.doi.org/10.1093/petrology/26.1.31
http://dx.doi.org/10.1093/petrology/26.1.31
http://dx.doi.org/10.1029/144GM08
http://dx.doi.org/10.1016/j.gca.2005.11.014
http://dx.doi.org/10.1016/S0012-821X(00)00149-7
http://dx.doi.org/10.1029/JB086iB04p02737
http://dx.doi.org/10.1016/J.TECTO.2015.01.020
http://dx.doi.org/10.1126/science.265.5178.1563
http://dx.doi.org/10.1029/96TC01973
http://dx.doi.org/10.1093/petrology/egp077


Hitch, B. F. et al. (1980). The solubility of (α-Al(OH)3) in 1 molal NaCl as a function of pH
and temperature. Tech. rep. Oak Ridge National Laboratory Report ORNL-5623.

Hopson, C. A. et al. (1981). “Geologic section through the Samail Ophiolite and associated
rocks along a Muscat-Ibra Transect, southeastern Oman Mountains.” In: Journal of
Geophysical Research: Solid Earth 86.B4, pp. 2527–2544. issn: 01480227. doi: 10.1029/
JB086iB04p02527.

Huntington, K W et al. (2009). “Methods and limitations of ’clumped’ CO2 isotope
(Delta47) analysis by gas-source isotope ratio mass spectrometry.” In: Journal of mass
spectrometry : JMS 44.9, pp. 1318–29. issn: 1096-9888. doi: 10.1002/jms.1614.

Jagoutz, E. et al. (1979). “The abundances of major, minor and trace elements in the earth’s
mantle as derived from primitive ultramafic nodules.” In: Proceedings of the Lunar and
Planetary Science Conference 10, pp. 2031–2050.

Jamtveit, Bjørn, Anders Malthe-Sørenssen, and Olga Kostenko (2008). “Reaction enhanced
permeability during retrogressive metamorphism.” In: Earth and Planetary Science Let-
ters 267.3, pp. 620–627. issn: 0012-821X. doi: https://doi.org/10.1016/j.epsl.
2007.12.016.

Kelemen, Peter B., Michael Geoffrey Braun, and Greg Hirth (2000). “Spatial distribution of
melt conduits in the mantle beneath oceanic spreading ridges: Observations from the
Ingalls and Oman ophiolites.” In: Geochemistry, Geophysics, Geosystems 1.7, n/a–n/a.
issn: 15252027. doi: 10.1029/1999GC000012.

Kelemen, Peter B. and Greg Hirth (2012). “Reaction-driven cracking during retrograde
metamorphism: Olivine hydration and carbonation.” In: Earth and Planetary Science
Letters 345-348, pp. 81–89. issn: 0012821X. doi: 10.1016/j.epsl.2012.06.018.

Kelemen, Peter B. and Jürg M. Matter (2008). “In situ carbonation of peridotite for CO2
storage.” In: Proceedings of the National Academy of Sciences 105.45, pp. 17295–17300.
issn: 0027-8424. doi: 10.1073/pnas.0805794105.

Kelemen, Peter B. et al. (2011). “Rates and Mechanisms of Mineral Carbonation in Peri-
dotite: Natural Processes and Recipes for Enhanced, in situ CO 2 Capture and Storage.”
In: Annual Review of Earth and Planetary Sciences 39.1, pp. 545–576. issn: 0084-6597.
doi: 10.1146/annurev-earth-092010-152509.

Klein, Frieder, Wolfgang Bach, andThomas M. McCollom (2013). “Compositional controls
on hydrogen generation during serpentinization of ultramafic rocks.” In: Lithos 178,
pp. 55–69. issn: 00244937. doi: 10.1016/j.lithos.2013.03.008.

39

http://dx.doi.org/10.1029/JB086iB04p02527
http://dx.doi.org/10.1029/JB086iB04p02527
http://dx.doi.org/10.1002/jms.1614
http://dx.doi.org/https://doi.org/10.1016/j.epsl.2007.12.016
http://dx.doi.org/https://doi.org/10.1016/j.epsl.2007.12.016
http://dx.doi.org/10.1029/1999GC000012
http://dx.doi.org/10.1016/j.epsl.2012.06.018
http://dx.doi.org/10.1073/pnas.0805794105
http://dx.doi.org/10.1146/annurev-earth-092010-152509
http://dx.doi.org/10.1016/j.lithos.2013.03.008


Klein, Frieder and Carlos J. Garrido (2011). “Thermodynamic constraints on mineral car-
bonation of serpentinized peridotite.” In: Lithos 126.3-4, pp. 147–160. issn: 00244937.
doi: 10.1016/j.lithos.2011.07.020.

Klein, Frieder et al. (2009). “Iron partitioning and hydrogen generation during serpen-
tinization of abyssal peridotites from 15◦N on the Mid-Atlantic Ridge.” In: Geochimica
et Cosmochimica Acta 73.22, pp. 6868–6893. issn: 00167037. doi: 10.1016/j.gca.
2009.08.021.

Klein, Frieder et al. (2014). “Magnetite in seafloor serpentinite—Some like it hot.” In: Ge-
ology 42, pp. 135–138. issn: 0091-7613. doi: 10.1130/g35068.1.

Lippard, S.J., A.W. Shelton, and I.G. Gass (1986). “The Ophiolite of Northern Oman.” In:
Geological Society Memoir 11.

Macdonald, A.H. and W.S. Fyfe (1985). “Rate of serpentinization in seafloor environ-
ments.” In: Tectonophysics 116.1-2, pp. 123–135. issn: 00401951. doi: 10.1016/0040-
1951(85)90225-2.

Mann, A., S. S. Hanna, and S. C. Nolan (1990). “The post-Campanian tectonic evolution of
the Central Oman Mountains: Tertiary extension of the Eastern Arabian Margin.” In:
Geological Society, London, Special Publications 49.1, pp. 549–563. issn: 0305-8719. doi:
10.1144/GSL.SP.1992.049.01.33.

May, Howard M., Philip A. Helmke, and Marion L. Jackson (1979). “Gibbsite solubility and
thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25⁇C.”
In: Geochimica et Cosmochimica Acta 43.6, pp. 861–868. issn: 00167037. doi: 10.1016/
0016-7037(79)90224-2.

McArthur, J M, R J Howarth, and G A Shields (2012). “Chapter 7 - Strontium Isotope
Stratigraphy BT - The Geologic Time Scale.” In: Boston: Elsevier, pp. 127–144. isbn:
978-0-444-59425-9. doi: http://dx.doi.org/10.1016/B978- 0- 444- 59425-
9.00007-X.

Mervine, Evelyn M. et al. (2014). “Carbonation rates of peridotite in the Samail Ophiolite,
Sultanate of Oman, constrained through 14C dating and stable isotopes.” In: Geochim-
ica et Cosmochimica Acta 126, pp. 371–397. issn: 00167037. doi: 10.1016/j.gca.
2013.11.007.

Mervine, Evelyn M. et al. (2015). “Applications and limitations of U-Th disequilibria sys-
tematics for determining ages of carbonate alterationminerals in peridotite.” In:Chem-
ical Geology 412, pp. 151–166. issn: 00092541. doi: 10.1016/j.chemgeo.2015.07.
023.

40

http://dx.doi.org/10.1016/j.lithos.2011.07.020
http://dx.doi.org/10.1016/j.gca.2009.08.021
http://dx.doi.org/10.1016/j.gca.2009.08.021
http://dx.doi.org/10.1130/g35068.1
http://dx.doi.org/10.1016/0040-1951(85)90225-2
http://dx.doi.org/10.1016/0040-1951(85)90225-2
http://dx.doi.org/10.1144/GSL.SP.1992.049.01.33
http://dx.doi.org/10.1016/0016-7037(79)90224-2
http://dx.doi.org/10.1016/0016-7037(79)90224-2
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-444-59425-9.00007-X
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-444-59425-9.00007-X
http://dx.doi.org/10.1016/j.gca.2013.11.007
http://dx.doi.org/10.1016/j.gca.2013.11.007
http://dx.doi.org/10.1016/j.chemgeo.2015.07.023
http://dx.doi.org/10.1016/j.chemgeo.2015.07.023


Monnier, Christophe et al. (2006). “Along-ridge petrological segmentation of the mantle
in the Oman ophiolite.” In: Geochemistry, Geophysics, Geosystems 7.11, n/a–n/a. issn:
15252027. doi: 10.1029/2006GC001320.

Monnin, Christophe et al. (2011). “Characterization of hyperalkaline fluids produced by
serpentinization of mantle peridotites in Oman and in Liguria (Northern Italy).” In:
Mineralog. Mag 75, p. 1490.

Nasir, Sobhi et al. (2007). “Mineralogical and geochemical characterization of listwaenite
from the Semail Ophiolite, Oman.” In: Chemie der Erde - Geochemistry 67.3, pp. 213–
228. issn: 00092819. doi: 10.1016/j.chemer.2005.01.003.

Neal, C. and G. Stanger (1985). “Past and present serpentinization of ultramafic rocks:
An example from the Semail ophiolite nappe of northern Oman.” In: The Chemistry
of Weathering. Ed. by JI Drewer. Dordrecht, Holland: D. Reidel Publishing Company,
249–275.

Nicolas, Adolphe et al. (2000). “Accretion of Oman and United Arab Emirates ophiolite–
Discussion of a new structural map.” In: Marine Geophysical Researches, pp. 147–179.
doi: 10.1023/A:1026769727917.

Nolan, S. C. et al. (1990). “Maastrichtian to early Tertiary stratigraphy and palaeogeog-
raphy of the Central and Northern Oman Mountains.” In: Geological Society, London,
Special Publications 49.1, pp. 495–519. issn: 0305-8719. doi: 10.1144/GSL.SP.1992.
049.01.31.

O’Hanley, David S. (1996). Serpentinites: Records of Tectonic and Petrological History. New
York and Oxford: Oxford University Press, p. 227. isbn: 0-19-508254-0.

Palandri, James L and Mark H Reed (2004). “Geochemical models of metasomatism in
ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chim-
ney precipitation.” In: Geochimica et Cosmochimica Acta 68.5, pp. 1115–1133. issn:
00167037. doi: 10.1016/j.gca.2003.08.006.

Pallister, JS and RJ Knight (1981). “Rare‐earth element geochemistry of the Samail Ophio-
lite near Ibra, Oman.” In: Journal of Geophysical Research: Solid … 86.B4, p. 2673. issn:
0148-0227. doi: 10.1029/JB086iB04p02673.

Passey, Benjamin H. et al. (2010). “High-temperature environments of human evolution
in East Africa based on bond ordering in paleosol carbonates.” In: Proceedings of the
National Academy of Sciences of the United States of America 107.25, pp. 11245–9. issn:
1091-6490. doi: 10.1073/pnas.1001824107.

Paukert, Amelia N. et al. (2012). “Reaction path modeling of enhanced in situ CO2 miner-
alization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate

41

http://dx.doi.org/10.1029/2006GC001320
http://dx.doi.org/10.1016/j.chemer.2005.01.003
http://dx.doi.org/10.1023/A:1026769727917
http://dx.doi.org/10.1144/GSL.SP.1992.049.01.31
http://dx.doi.org/10.1144/GSL.SP.1992.049.01.31
http://dx.doi.org/10.1016/j.gca.2003.08.006
http://dx.doi.org/10.1029/JB086iB04p02673
http://dx.doi.org/10.1073/pnas.1001824107


of Oman.” In: Chemical Geology 330-331, pp. 86–100. issn: 00092541. doi: 10.1016/
j.chemgeo.2012.08.013.

Racey, Andrew (1995). “Lithostratigraphy and Larger Foraminiferal (Nummulitid) Bios-
tratigraphy of the Tertiary of Northern Oman.” In: Micropaleontology 41, p. 1. issn:
00262803. doi: 10.2307/1485849.

Rioux, Matthew et al. (2012). “Rapid crustal accretion and magma assimilation in the
Oman-U.A.E. ophiolite: High precision U-Pb zircon geochronology of the gabbroic
crust.” In: Journal of Geophysical Research 117.B7, B07201. issn: 0148-0227. doi: 10.
1029/2012JB009273.

Rioux, Matthew et al. (2013). “Tectonic development of the Samail ophiolite: High-
precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal
growth and emplacement.” In: Journal of Geophysical Research: Solid Earth 118.5,
pp. 2085–2101. issn: 21699313. doi: 10.1002/jgrb.50139.

Rudge, John F, Peter B. Kelemen, and Marc Spiegelman (2010). “A simple model of
reaction-induced cracking applied to serpentinization and carbonation of peridotite.”
In: Earth and Planetary Science Letters 291.1, pp. 215–227. issn: 0012-821X. doi: https:
//doi.org/10.1016/j.epsl.2010.01.016.

Sánchez-Murillo, Ricardo et al. (2014). “Geochemical evidence for active tropical serpen-
tinization in the Santa Elena Ophiolite, Costa Rica: An analog of a humid early Earth?”
In: Geochemistry, Geophysics, Geosystems 15, pp. 1783–1800. issn: 15252027. doi: 10.
1002/2013GC005213.

Schlüter, M. et al. (2008). “Evolution of a Maastrichtian–Paleocene tropical shallow-water
carbonate platform (Qalhat, NE Oman).” In: Facies 54.4, pp. 513–527. issn: 0172-9179.
doi: 10.1007/s10347-008-0150-8.

Schwarzenbach, Esther M., Esteban Gazel, and Mark J. Caddick (2014). “Hydrothermal
processes in partially serpentinized peridotites from Costa Rica: evidence from native
copper and complex sulfide assemblages.” In:Contributions toMineralogy and Petrology
168. issn: 0010-7999. doi: 10.1007/s00410-014-1079-2.

Schwarzenbach, Esther M. et al. (2012). “Sulfur geochemistry of peridotite-hosted hy-
drothermal systems: Comparing the Ligurian ophiolites with oceanic serpentinites.”
In: Geochimica et Cosmochimica Acta 91, pp. 283–305. issn: 00167037. doi: 10.1016/
j.gca.2012.05.021.

Searle, Michael P. and G. M. Graham (1982). ““Oman Exotics”—Oceanic carbonate build-
ups associated with the early stages of continental rifting.” In: Geology 10.1, p. 43. issn:
0091-7613. doi: 10.1130/0091-7613(1982)10<43:OECBAW>2.0.CO;2.

42

http://dx.doi.org/10.1016/j.chemgeo.2012.08.013
http://dx.doi.org/10.1016/j.chemgeo.2012.08.013
http://dx.doi.org/10.2307/1485849
http://dx.doi.org/10.1029/2012JB009273
http://dx.doi.org/10.1029/2012JB009273
http://dx.doi.org/10.1002/jgrb.50139
http://dx.doi.org/https://doi.org/10.1016/j.epsl.2010.01.016
http://dx.doi.org/https://doi.org/10.1016/j.epsl.2010.01.016
http://dx.doi.org/10.1002/2013GC005213
http://dx.doi.org/10.1002/2013GC005213
http://dx.doi.org/10.1007/s10347-008-0150-8
http://dx.doi.org/10.1007/s00410-014-1079-2
http://dx.doi.org/10.1016/j.gca.2012.05.021
http://dx.doi.org/10.1016/j.gca.2012.05.021
http://dx.doi.org/10.1130/0091-7613(1982)10<43:OECBAW>2.0.CO;2


Seyfried,William E., D.I. Foustoukos, andQi Fu (2007). “Redox evolution andmass transfer
during serpentinization: An experimental and theoretical study at 200◦C, 500bar with
implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges.” In:
Geochimica et Cosmochimica Acta 71.15, pp. 3872–3886. issn: 00167037. doi: 10.1016/
j.gca.2007.05.015.

Snow, Jonathan E. and Henry J.B. Dick (1995). “Pervasive magnesium loss by marine
weathering of peridotite.” In: Geochimica et Cosmochimica Acta 59.20, pp. 4219–4235.
issn: 00167037. doi: 10.1016/0016-7037(95)00239-V.

Stanger, G. (1985). “Silicified serpentinite in the Semail nappe of Oman.” In: Lithos 18,
pp. 13–22. issn: 00244937. doi: 10.1016/0024-4937(85)90003-9.

Streit, Elisabeth, Peter B. Kelemen, and John Eiler (2012). “Coexisting serpentine and
quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite,
Oman.” In: Contributions to Mineralogy and Petrology 164.5, pp. 821–837. issn:
00107999. doi: 10.1007/s00410-012-0775-z.

Thompson, Geoffrey and William G. Melson (1970). “Boron contents of serpentinites and
metabasalts in the oceanic crust: Implications for the boron cycle in the oceans.” In:
Earth and Planetary Science Letters 8.1, pp. 61–65. issn: 0012821X. doi: 10 . 1016 /
0012-821X(70)90100-7.

Tilton, G. R., C. a. Hopson, and J. E. Wright (1981). “Uranium-lead isotopic ages of
the Samail Ophiolite, Oman, with applications to Tethyan ocean ridge tectonics.”
In: Journal of Geophysical Research 86.B4, p. 2763. issn: 0148-0227. doi: 10.1029/
JB086iB04p02763.

Warren, Clare J et al. (2005). “Dating the geologic history of Oman’s Semail ophiolite: in-
sights from U-Pb geochronology.” In: Contributions to Mineralogy and Petrology 150.4,
pp. 403–422. issn: 1432-0967. doi: 10.1007/s00410-005-0028-5.

Wesolowski, David J. (1992). “Aluminum speciation and equilibria in aqueous solution:
I. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4from 0 to 100◦C.” In:
Geochimica et Cosmochimica Acta 56.3, pp. 1065–1091. issn: 00167037. doi: 10.1016/
0016-7037(92)90047-M.

Wicks, Frederick J., EJW Whittaker, and J Zussman (1977). “Model for serpentine textures
after olivine.” In: Canadian mineralogist 15, pp. 446–458.

Wolery, T J and R L Jarek (2003). “EQ3/6, version 8.0—software user’s manual.” In: Civilian
Radioactive Waste Management System, Management & Operating Contractor. Sandia
National Laboratories, Albuquerque, New Mexico.

43

http://dx.doi.org/10.1016/j.gca.2007.05.015
http://dx.doi.org/10.1016/j.gca.2007.05.015
http://dx.doi.org/10.1016/0016-7037(95)00239-V
http://dx.doi.org/10.1016/0024-4937(85)90003-9
http://dx.doi.org/10.1007/s00410-012-0775-z
http://dx.doi.org/10.1016/0012-821X(70)90100-7
http://dx.doi.org/10.1016/0012-821X(70)90100-7
http://dx.doi.org/10.1029/JB086iB04p02763
http://dx.doi.org/10.1029/JB086iB04p02763
http://dx.doi.org/10.1007/s00410-005-0028-5
http://dx.doi.org/10.1016/0016-7037(92)90047-M
http://dx.doi.org/10.1016/0016-7037(92)90047-M


Wyns, R. et al. (1992). Explanatory notes to the geological map of the Tiwi Quadrangle,
Sultanate of Oman. Geoscience map, scale 1:100,000, sheet NF 40-8B. Sultanate of Oman:
Ministry of Petroleum and Minerals, Directorate General of Minerals, p. 66.

44



Figure 2.1: (Left) Map of the Samail ophiolite after Hanghøj et al. (2010). Red star shows
location of Wadi Fins. (Right) Geologic map of Wadi Fins compiled from (Wyns et al.
1992b), Google Earth data and field observations. Map area is between UTM coordinates
2,532,838 to 2,533,636 m N and 721,824 to 722,551 m E in zone 40 Q
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Figure 2.2: Clastic dike of limestone (highlighted in yellow) intruding the peridotite in
Wadi Fins. A person is shown for scale
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Figure 2.3: Examples of serpentine-carbonate veins crosscutting serpentine matrix. (a)
OM13-17A, (b) OM13-12C, (c) OM13-15 in which the prominent waxy-green vein below
coin is isotropic serpentine and (d) OM13-13. Serpentine in the veins is magnesium rich
and contains small magnetite crystals. Coin for scale (D=2.1 cm). Veins >0.5cm are com-
posite serpentine-carbonate.
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Figure 2.4: Projection of electron microprobe analysis of matrix serpentines (green), vein
serpentines (red), relict olivines (blue), and pyroxenes (orange) onto a ternary MgO-SiO2-
FeO diagram (molar proportions). All Fe as FeO.
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Figure 2.5: Major element data compared to average Oman harzburgite. Data are pro-
jected from loss-on-ignition (LOI) and the volatile-free composition is ratioed to average
Oman harzburgite (Godard et al., 2000; Hanghøj et al., 2010; Monnier et al., 2006) A value
of zero (log10 of 1) is identical in composition of average Oman harzburgite. Positive
values indicate enrichments relative to the protolith, while negative values indicate de-
pletions relative to the protolith. Red thick lines are 2σ deviations from average Oman
harzburgite average (Godard et al., 2000; Hanghøj et al., 2010; Monnier et al., 2006).

49



Figure 2.6: (Top) Volatile-free molar MgO+CaO versus molar SiO2. (Bottom) Volatile-free
molar CaO versus molar SiO2. Dashed and dotted grey lines show expected composition
if the composition of average Oman harzburgite composition is perturbed only by loss or
addition of Mg+Ca or Si. (Average harzburgite from Godard et al., 2000; Hanghøj et al.,
2010 and Monnier et al., 2006).
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Figure 2.7: Volatile-free, calcite-free MgO+FeO vs SiO2 (projected from CaO+LOI). (Aver-
age harzburgite and average dunite fromGodard et al., 2000; Hanghøj et al., 2010; Monnier
et al., 2006).
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Figure 2.8: Stable isotope δ13C vs. δ18O of Wadi Fins carbonate veins in green with range
observed in the overlying limestone units from Schlüter et al., 2008 in grey.
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Figure 2.9: Mineral reaction products for reaction path models. Top left harzburgite with
calcite-saturated fluid; top right harzburgite with calcite-quartz saturated fluid. Bottom
left dunite with calcite-saturated-fluid; bottom right dunite with calcite-quartz saturated
fluid.
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Figure 2.10: Fluid chemistry of reaction path models. Top left harzburgite with calcite-
saturated fluid; top right harzburgite with calcite-quartz-saturated fluid. Bottom left
dunite with calcite-saturated fluid; bottom right dunite with calcite-quartz saturated fluid.

54



Figure 2.11: Reaction path model oxygen fugacity and pH as a function of W/R. Top
left harzburgite with calcite-saturated fluid; top right harzburgite with calcite-quartz-
saturated fluid. Bottom left dunite with calcite-saturated fluid; bottom right dunite with
calcite-quartz-saturated fluid
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Figure 2.12: Reaction path model mass and volume changes as a function of W/R Top
left harzburgite with calcite-saturated fluid; top right harzburgite with calcite-quartz sat-
urated fluid. Bottom left dunite with calcite-saturated fluid; bottom right dunite with
calcite-quartz-saturated fluid.
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Figure 2.13: Whole rock MgO/SiO2 vs Al2O3/SiO2 for Wadi Fins samples, Oman peri-
dotites (Godard et al., 2000; Hanghøj et al., 2010; Monnier et al., 2006) and peridotite melt
residues (Asimow, 1999; Baker & Beckett, 1999). Geochemical fractionation is a linear fit
of melt residues (e.g. Jagoutz, 1979, Snow and Dick, 1995). Reaction path model results
for harzburgite and dunite protoliths are shown for reference (lines). Grey shaded poly-
gon encompass the range of model results for reaction of harzburgite and dunite with
calcite-quartz saturated fluids. Tie lines show W/R for the reaction paths.
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Table 2.2: Initial fluid composition used in the models

Component mmol/kg
Na+ 464
Cl− 546

HCO−
3 1.56

Ca2+ 69.2
Mg2+ 29.6
K+ 9.8

SiO2, aq 0.11
Fe2+ 0.0000015
Al3+ 0.000037
O2, aq 0.25
pH 7.8

Ca2+, Mg2+ and HCO−
3 from Hansen and Wollman 2003. HCO−

3 from equilibrium with
pCO2 3x present. All other from Klein et al, 2009
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3 Major element mobility during serpentinization,
oxidation and weathering of mantle peridotite at low
temperatures
This chapter has been submitted for publication in Philosophical Transactions of the Royal
Society A

Abstract

Mantle peridotite in Wadi Fins in eastern Oman exhibits three concentric alteration

zones with oxide and sulfide mineralogy recording gradients in fO2 and f S2 of more than

20 orders of magnitude over 15-20 cm. The black cores of samples (5 cm in diameter) ex-

hibit incomplete, nearly isochemical serpentinization, with relict primarymantleminerals

(olivine, opx and cpx) alongwith sulfide assemblages (pentlandite/heazlewoodite/bornite)

recording low fO2 and f S2. In addition to the black cores, two alteration zones are evident

from their coloration in outcrop and hand samples: green and red. These zones exhibit

non-isochemical alteration characterized by intergrowths of stevensite/lizardite. All three

reaction zones are cut by calcite ± serpentine veins, which are most abundant in the outer,

red zones, sometimes are flanked by narrow red and/or green zones where they cut the

black zones, and thus may be approximately coeval with all three alteration zones. These

zones record progressively higher oxygen fugacities (fO2) recorded by Ni-rich sulfides

and iron oxides/hydroxides. These alteration zones lost 20-30% of their initial magnesium

content, together with mobilization of iron over short distances from inner green zones

into outer red zones, where iron is reprecipitated in goethite intermixed with silicates

due to higher fO2. Thermodynamic modeling at 60 ℃ and 50 MPa (estimated alteration

conditions), reproduces sulfide assemblages, fO2 changes and Mg and Fe mobility.
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3.1 Introduction

Alteration of mantle peridotite is an important part of the global geochemical cycle.

Peridotite minerals, mainly olivine ((Mg,Fe)2SiO4) and pyroxenes ((Ca,Mg,Fe)2Si2O6), are

far from equilibrium in Earth’s near surface conditions, and are altered by aqueous fluids

to form hydrated silicates (serpentinization), carbonates (carbonation) and oxides. Ser-

pentinization of seafloor peridotites is a significant sink for water, carbon and sulfur (Alt

and Shanks 1998; Alt et al. 2013; Barnes and Sharp 2006). Carbonation of peridotites is

an important part of the present carbon cycle (e.g. Alt et al. 2013; Kelemen and Manning

2015; Schwarzenbach et al. 2013), and could be accelerated to achieve significant capture

and storage of anthropogenic carbon emissions (Kelemen and Matter 2008; Lackner et al.

1995; Seifritz 1990).

In many cases, serpentinization and carbonation of mantle peridotite are inferred to

be nearly isochemical, except for addition of water and carbon dioxide (e.g. Kelemen

et al. 2011; O’Hanley 1996 and references therein), though in detail there could be small

changes in major element concentrations (e.g. Malvoisin 2015). Reaction pathways for

serpentinization vary, depending on temperature, pressure, fluid composition, fluid/rock

(W/R) ratios, and the primary mineralogy of the protolith. Serpentinization at relatively

low time integrated water-rock ratios produces strongly reducing conditions (Frost 1985;

McCollom and Bach 2009; Schwarzenbach, Gazel, and Caddick 2014). The resulting fluids

are among the most reduced on Earth, saturated in metal alloys such as awaruite (Ni2Fe

to Ni3Fe), wairauite (CoFe) and native copper (Cu), and sulfides such as heazlewoodite

(Ni3S2) and polydymite (Ni3S4) (e.g. Klein et al. 2009; Schwarzenbach, Gazel, and Cad-
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dick 2014). As fluid-rock ratios increase, the alteration system becomes fluid-dominated,

resulting in more oxidizing and alkaline conditions that produce opaque mineral assem-

blages recording variable oxygen fugacity (e.g. Alt and Shanks 1998; Eckstrand 1975; Frost

1985; Klein et al. 2009; Schwarzenbach et al. 2012).

This paper describes the alteration sequence and geochemistry of a suite of pervasively

altered mantle peridotites that record variable fO2 over short distances (10-15cm) inWadi

Fins in a southeastern exposure of the Samail ophiolite in the Sultanate of Oman. We

first describe and present data on the mineralogy and chemistry observed in the Wadi

Fins rocks, and then use these data to constrain temperature, oxygen fugacity and fluid

fluxes during alteration to provide insights on pervasive alteration processes of mantle

peridotites relevant to multiple geological settings.

3.2 Geological Setting

The Samail ophiolite along the northeast coast of Oman is among the largest and best

exposed sections of oceanic crust and its underlying mantle in the world (Coleman 1977;

Lippard and Shelton 1986). It was thrust over adjacent oceanic lithosphere soon after

magmatic formation of oceanic crust at a submarine spreading ridge, and then onto the

margin of the Arabian subcontinent in the late Cretaceous (Hacker andMosenfelder 1996;

Nicolas et al. 2000; Rioux et al. 2013; Tilton, Hopson, andWright 1981; Warren et al. 2005).

The mantle section of the ophiolite is mainly composed of highly depleted, resid-

ual mantle peridotites (mostly harzburgites, e.g. (Godard, Jousselin, and Bodinier 2000;

Hanghøj et al. 2010; Monnier et al. 2006), together with 5 to 15% dunite (Boudier and

Coleman 1981; Braun and Kelemen 2002; Kelemen, Braun, and Hirth 2000), together with
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refertilized lherzolites near the basal thrust (Khedr et al. 2014). These peridotites are per-

vasively serpentinized, with serpentine (± brucite) composing ∼ 30 wt% in “fresh” rock

to nearly 100% (Boudier, Baronnet, and Mainprice 2010; Obeso and Kelemen 2018). Al-

teration occurred throughout the history of the ophiolite, beginning near the axis of the

oceanic spreading ridges where the Samail ophiolite crust formed (e.g. Gregory and Tay-

lor 1981) and continuing to the present day (e.g Clark and Fontes 1990; Kelemen and

Matter 2008; Mervine et al. 2014; Neal and Stanger 1985).

Themantle peridotites were exposed by sub-aerial erosion in the late Cretaceous. They

are locally capped by Late Cretaceous (Maastrichtian) laterites (Al-Khirbash 2015; Nolan

et al. 1990), and elsewhere by fluvial conglomerates rich in peridotite cobbles. This was

followed by a marine transgression, which deposited shallow marine carbonates over a

broad region in the Arabian peninsula, including the Qahlah, Simsina and Jafnayn forma-

tions (Nolan et al. 1990). The carbonate cover is particularly extensive in the southeastern

section of the ophiolite (Nolan et al. 1990; Schlüter et al. 2008). In this area, outcrops of

peridotite are rare and occur only on the bottom of deep canyons likeWadi Tiwi andWadi

Fins where erosion has cut down through the Late Cretaceous unconformity. InWadi Fins

(Figure 1), peridotites below the unconformity were altered at low temperatures (∼60℃

or less) and pressures (50 MPa based on thickness of the overlying sediments) (Obeso and

Kelemen 2018). Serpentinizing fluids were derived from the overlying limestones, provid-

ing a source of water, calcium, carbon and silica to the rocks, sufficient to reduce bulk rock

MgO/SiO2 ratios, and form an extensive network of carbonate and serpentine-carbonate

veins (Obeso and Kelemen 2018).
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3.3 Analytical Methods

Analyzed samples were collected during the 2013 and 2015 field seasons in Wadi Fins,

Oman (UTM 40Q 722503E 2533160N). All samples were collected from an outcrop close to

the Cretaceous unconformity (Figure 1). This outcrop exhibits concentric halos of alter-

ation with sharp oxidation gradients and an extensive network of carbonate veins (Figure

2). Hand samples were subdivided and powdered in alumina into 4 parts following the vi-

sually evident reaction fronts (Figure 2). Part 1: partially serpentinized cores (black cores);

part 2: metasomatically modified peridotite (green zones), part 3: oxidized peridotite (red

zones) and part 4: carbonate veins.

Powdered samples were analyzed by X-Ray diffraction (XRD) at Lamont Doherty

Earth Observatory using an Olympus Terra portable XRD. Diffractograms were analyzed

using Match! Software to identify main minerals.

Major element concentrations and loss on ignition (LOI) of the bulk rocks were mea-

sured at LDEO using an Agilent 720 Axial ICP-OES. Concentrations of Fe2O3 were de-

termined from ICP-OES data together with FeO concentrations determined by titration.

Trace elements were analyzed at LDEO using a VG PlasmaQuad ExCell quadrupole ICP-

MS following HNO3-HF digestion. Standards and analytical precision are given in tables

S1 (ICP-OES) and S2 (ICP-MS).

Polished thin sections were analyzed with a standard petrographic microscope for

mineral identification where possible. These thin sections were quantitatively analyzed

using a 5-spectrometer Cameca SX-100 electron microprobe (EMP) at American Museum

of Natural History (AMNH). Calibration information is reported in Table S3. For small
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opaque minerals that were impossible to identify in reflected light, chemical compositions

from EMP were essential for phase identification.

3.4 Petrology and Mineralogy

Bulk rock chemical compositions for partially serpentinized cores (black cores), meta-

somatically modified peridotite (green zones), and oxidized peridotite (red zones) are

shown in Table 1.

Black cores

The cores of samples OM15-5, OM15-6 and OM15-7 show relict primary minerals

(olivine, pyroxene and spinel) both in thin section and in difractograms, along with abun-

dant serpentine. The major element compositions of the sample cores compared to the

average (±2σ) composition of Oman harzburgite (Hanghøj et al., 2010) are shown in fig-

ure 3 using a volatile-free constant mass isocon (Grant 1986). Isocons are designed to

detect concentration changes from the original rock during metasomatism. The isocon

on these diagrams is a line that goes through the origin and through concentrations of

major/minor elements that are thought to have no relative gain or loss of mass. FeO and

SiO2 are slightly enriched in the cores (∼4% relative) close to the upper limits of natu-

ral variability (average±2σ) reported by previous studies (Godard, Jousselin, and Bodinier

2000; Hanghøj et al. 2010; Monnier et al. 2006). This enrichment is complemented by a

small depletion (∼5% relative) in MgO, with concentrations close to the lower bound of

variability. All other major elements are within expected variability (Figure 3). Most trace

elements measured are similar to the composition of highly depleted harzburgites and are

within variability (average±2σ) reported in the ophiolite (Godard, Jousselin, and Bodinier
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2000; Hanghøj et al. 2010; Monnier et al. 2006), except for Rb (∼270 ppb) with concentra-

tions approximately ten times higher than the average of published compositions (∼30

ppb).

Electron microprobe (EMP) analyses of orthopyroxene, clinopyroxene and spinel ex-

hibit small deviations from the composition of these minerals in other Oman harzbur-

gites. Both orthopyroxene and clinopyroxene have low Al and Cr concentrations as well

as low Cr (molar Cr/(Cr +Al)) compared to other Oman locations (Figure 4). Spinels have

high Mg# (molar Mg/(Mg+Fetot )) and low Cr#, with compositions toward the fertile end

of spinels observed in the ophiolite (Figure 4). Average serpentine (Mg#89.1±2.8 1σ) is

slightly enriched in iron compared to precursor olivine (average Mg#90.4±0.3) and or-

thopyroxene (average Mg#90.1±0.3) (Figure 5). paque mineralogy in the cores is domi-

nated by Cr-spinels, plus trace quantities of sulfide minerals. Iron oxides were not de-

tected in OM15-6, while in OM15-5 and OM15-7 magnetite is observed in thin section in

trace quantities. Ni-rich pentlandite with an average stoichiometry of (Fe3.1Ni5.9)S8 was

identified in all samples and is the most abundant sulfide (Figure 6) . Such high nickel con-

tents are associatedwith pentlandite/heazlewoodite assemblages (Harris andNickel 1972).

End-member heazlewoodite is observed in one sample, suggesting that intergrowths of

these two minerals are present in our samples. Multiple Cu bearing sulfides occur in the

black cores, including chalcocite (Cu2S), bornite (Cu5FeS4), and Cu-bearing pentlandites:

samaniite (Cu2Fe5Ni2S8) and sugakiite (Cu(Fe,Ni)8S8). An obvious mixing trend in Figure

6 between pentlandite and chalcocite, suggests that these minerals are finely intergrown

in these samples. Most sulfides occur along veins filled with serpentine, rather than in

spatial association with primary minerals.
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Green Zones

The transition from partially serpentinized peridotites (black cores) to the green zones

in thin section is very sharp (Figure 2), as it is in hand samples and outcrops. Primarymin-

erals are almost completely altered to serpentine. There are abundant bastites (serpentine

pseudomorphs replacing pyroxene) as well as fine-grained serpentine with characteristic

mesh textures intergrown with a fine-grained mineral with high birefringence likely talc.

Thin sections show a relatively high abundance of microcrystalline, equant to slightly

elongated diopside compared to the black cores. Diffractograms of all samples are noisy

with high backgrounds at low 2θ and some poorly-defined, broad peaks suggesting low

crystallinity (Supplementary Figure 1). A small broad peak at 8.8° 2θ in samples OM15-5

and OM15-7 and a larger peak at 6.2° in OM15-6 confirms the presence of clay minerals:

montmorillonite and stevensite (Mg-montmorillonite) coexisting with lizardite. The pro-

portions of these end-members are very uniform and close to 1:1 (Figure 7), which may

reflect alternating serpentine and stevensite layers on the scale of the unit cell (Faust and

Fahey 1962).

The bulk rock composition of the green zone samples (Figure 3 and Table 1) shows en-

richments of SiO2 (∼16%), CaO (∼150%) and Al2O3 (∼80%), and depletion of MgO (∼20%)

and FeO (∼17%), compared to the black cores, if constant, volatile-free mass is assumed.

The high abundance of diopside in thin section and the relative enrichment in CaO suggest

that some of the observed diopside is secondary in origin. Some EMP analyses of serpen-

tine are nearly stoichiometric, and with similar iron contents as serpentines in the cores

Mg (avg 88±4.5) similar to serpentines in the black cores. Several EMP analyses with low
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total oxides (73 to 88wt%) with molar (Mg+Fe)/Si close to 1 probably represent serpen-

tine intergrown stevensite. This assemblage has previously been described as “deweylite”

(Beinlich et al. 2012; Faust and Fahey 1962). Sr, Rb, and U are enriched in the green zones

by a factor of 10 compared to the black cores.

Sulfides occur in trace quantities in the green zones. The sulfide assemblages (Fig-

ure 6) have high Ni/Fe compared to those in the black cores, and have low metal/sulfur

ratios. Sulfides include godlevskite (Ni9S8), millerite (NiS), and siegenite (Ni,Co)3S4. Cu-

pentlandite and chalcopyrite (CuFeS2) are the main Cu bearing sulfides identified in the

green zones, and are in close proximity to the black cores. Heazlewoodite is not observed

in the green zones.

Red Zones

Like the transition from black cores to green zones, the transition from green to red

zones is also sharp in outcrop, hand sample and thin section (figure 2). The red, oxidized

zones are characterized by the occurrence of goethite (FeO(OH)), lizardite and stevensite

as the main minerals identified by XRD. With the assumption of constant volatile-free

mass, when compared to the black zones, bulk rock composition (Figure 3 and Table

1) does not show significant enrichments in SiO2 or CaO, unlike the green zones. The

isocon diagram does show a significant enrichment in FeO (∼50% relative) and Al2O3

(∼80% relative) and depletion of MgO (∼20% relative) compared to the black cores, if

constant, volatile-free mass is assumed. Goethite is so finely intergrown with the steven-

site/lizardite matrix that no pure microprobe analyses were obtained. Instead, analyses

form a mixing line from the stevensite/lizardite assemblages towards goethite (Figure 7).
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Serpentines in the red zones are significantly more iron rich that the cores and the green

zones (Avg Mg#74±11). Sr and Rb have an enrichment of 10x compared to the black cores,

as in the green zones. U in red zones of samples OM15-5 and OM15-7 is enriched up to

∼600x relative to the cores. Only Ni sulfides, godlevskite, millerite and siegenite, were

identified in the red zones.

Carbonate and Serpentine veins

Veins of carbonate ± serpentine are a striking feature of the outcrops (Figure 2). These

are similar to the veins described by de Obeso and Kelemen (2018), from outcrops a few

hundred meters east (downstream) from the sample locality described in this paper. The

wider carbonates veins (∼1-2 cm) have carbonate, mainly calcite, with minor dolomite

bands (∼100µm) along contacts with altered peridotite. The oxidized, red zones described

above usually surround these wider veins. Smaller (<1 cm thick) veins composed of pure

carbonate minerals (mainly calcite with minor dolomite close to contacts with peridotite)

extend from the wider veins into the green zones and less-altered black cores. The branch-

ing and cross-cutting veins form right angle intersections in outcrop, creating a pattern

of hierarchical fractures which has been associated with volume change during serpen-

tinization and carbonation (Iyer et al. 2008; Kelemen and Hirth 2012; O’Hanley 1992).

3.5 Thermodynamic modelling

Model Setup

Using the petrological and mineralogical constraints described above we used a modi-

fied version of de Obeso and Kelemen (2018) EQ3/6 model of hydrous fluids reacting with
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peridotite (Wolery and Jarek 2003). The model is run at 50 MPa and 60 ℃, the maximum

alteration temperature estimated for Wadi Fins based on clumped isotope data (Obeso

and Kelemen 2018). In addition to major oxides we included Ni, S and Cu in the model

system. For all calculations we used a modified version of Klein et al. EQ3/6 thermody-

namic database (Klein et al. 2009). We added stevensite (Mg3Si4O10(OH)2·6(H2O)) to the

database using logKs reported in Supplementary Table 9. The same database was used to

built phase diagrams for the Fe-Ni-Cu-O-S system at 60℃ using Geochemist Workbench

12.0.2. Secondary minerals allowed to precipitate along the reaction path are listed in

Supplementary Table 10.

The model has five main stages. In the first, 1 kg of simulated Cretaceous seawater

(Supplementary Table 11) is speciated at 25℃ using EQ3. In the second stage, the speci-

ated seawater is heated to 60℃ and then equilibrates with calcite and quartz in a closed

system, to approximate pore water in the SiO2-bearing limestones overlying peridotites

in the area. Assumptions regarding source fluid composition are based on the 87Sr/86Sr

of the calcite veins in our samples. 87Sr/86Sr is higher than in the limestone immediately

above the unconformity, and higher than in seawater during the time of formation of

the unconformity (Obeso and Kelemen 2018), and instead corresponds approximately to

the Sr isotope ratio in seawater at the Cretaceous-Paleocene boundary, and in overlying

limestones of that age tens of meters above the unconformity (McArthur, Howarth, and

Shields 2012; Schlüter et al. 2008) . In the third stage, the resulting fluid reacts with rock

with the composition of OM15-6 core using EQ6 with special reactant mode in a titration

system at 60℃. (We also ran models in reaction path mode, which yielded very similar re-

sults). The fourth stage models an open system in which the most evolved fluids from the

70



third stage react with secondary minerals precipitated over the reaction path, to simulate

fluids flowing through black cores and back into more altered rocks, while reacting with

the alteration phases that were precipitated along the Stage 3 reaction path. Results from

the third and fourth stages of the model are reported as a function of water-rock mass

ratios (W/R), following literature convention (Klein et al. 2009; Palandri and Reed 2004).

The evolved fluids from stage 4 are finally mixed with initial seawater in stage 5.

Model Results

The results from Stage 3 of model are shown in Figure 8. Serpentine is the most abun-

dant mineral along the entire reaction path. Fe3+ is incorporated into serpentine down to

a water rock ratio of about 4. As W/R decreases, diopside and stevensite precipitate while

some Fe2+ is incorporated into serpentine. Calcite is predicted in the equilibrium mineral

assemblage at W/R > 500, along with stevensite and serpentine. W/R < 10 is character-

ized by precipitation of serpentine, magnesite, secondary diopside and minor stevensite.

Sulfide and oxide minerals follow changing fO2 and f S2 as W/R increases (Figure 12).

At W/R > 800, sulfur is oxidized and is present as dissolved sulfate rather than sulfide

minerals, and f S2 is very low. Millerite is predicted to precipitate when W/R is between

800 and 10. Chalcopyrite forms at W/R > 3, whereas bornite is precipitated at lower W/R.

Pentlandite coexisting with heazlewoodite and bornite is replaced by awaruite at W/R

close to 1.

Fe is almost completely insoluble at high W/R, where fO2 is high. In contrast, iron

is mobile in the system at W/R between 1000 and 10, and particularly between 1000 and

100. Fe and Mg are about four orders of magnitude more soluble, and SiO2 is two orders

71



of magnitude more soluble, above W/R of 10, compared to their solubility at lower W/R.

W/R ratios below 10 are characterized by nearly constant fluid composition.

Stage 4 is characterized by the conversion of serpentine to stevensite. Up to 10% of

the Stage 3 serpentine reacts to stevensite at W/R close to 5 (Figure 10), and - compared

to the final fluid from Stage 3 - the Stage 4 fluid is enriched in Fe (16%) and Mg (64%)

and depleted in SiO2 (20%). Further reaction of the Stage 3 final fluid with stevensite

and serpentine result in formation of progressively more stevensite at the expense of

serpentine, enriching the Stage 4 mineral assemblage in SiO2 (3 µmol of serpentine per

kg of water). The final Stage 4 fluid, enriched in Fe and Mg (relative to stage 3 evolved

fluid), precipitates all its Fe as goethite when mixed with seawater in stage 5.

3.6 Discussion

Petrogenesis of the Wadi Fins protolith

Wadi Fins harzburgites are residues of partial melting and melt extraction, similar

to harzburgites from other areas of the ophiolite (Godard, Jousselin, and Bodinier 2000;

Hanghøj et al. 2010; Monnier et al. 2006) and as depleted as the most depleted abyssal

peridotites (Bodinier and Godard 2007; Dick 1989; Godard et al. 2008; Johnson and Dick

1992; Johnson, Dick, and Shimizu 1990; Niu 2004; Paulick et al. 2006). However, spinel

Cr#’s in Wadi Fins lie within the low end of the field defined by spinels from the Oman

harzburgites, some with values as low as Cr#=15 (Figure 4). Cr in opx and cpx are also

relatively low, averaging 11 in cpx and 7 in opx. By comparison, pyroxene Cr#’s in typical

Samail harzburgites range from 9 to 30 in cpx (Avg. 18) and 8 to 22 in opx (Avg. 16).

While the low Cr#’s in these minerals are similar to those in fertile basal lherzolites (11
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to 25 in spinel (Avg. 15), 8 to 11 in cpx (Avg. 9) and 6 to 11 in opx (Avg. 8)) (Khedr et al.

2014), average concentrations of Al and Cr in cpx and opx from Wadi Fins are lower than

any previously reported concentrations in Samail harzburgites (Supplementary Tables

5 and 6). Temperatures estimated using the Brey Kohler (1990) Ca in orthopyroxene

and two pyroxene thermometers, and the Witt-Eicksen Seck (1991) Al in orthopyroxene

thermometer, suggest that Wadi Fins harzburgites equilibrated at temperatures ∼800℃

(Table 2). Closure temperatures and cooling rates in harzburgites in theWadi Tayinmassif

of the Samail ophiolite, the nearest large massif to Wadi Fins, decrease systematically

with depth away from the paleo-Moho (Dygert, Kelemen, and Liang 2017; Hanghøj et

al. 2010) This observation, together with low equilibration temperatures in Wadi Fins

and low Cr, suggest that these harzburgites cooled slowly deep in the mantle section,

allowing for extensive Al transfer from pyroxenes to spinel. Growth of additional spinel

during subsolidus cooling and re-equilibration provided a sink for both Al and Cr from

pyroxenes.

Low W/R serpentinization recorded in the black cores

Serpentinization reactions combine ultramafic rocks with hydrous fluid, commonly

forming serpentine, brucite, magnetite and hydrogen (review by Moody (1976) and refer-

ences therein). However, in detail the mineral products depend on the original protolith,

water to rock ratios (W/R), temperature, pressure and fluid composition (e.g. Bach et al.

2004; Frost 1985; Frost and Beard 2007; Klein et al. 2009, 2014; Schwarzenbach, Gazel, and

Caddick 2014). At W/R ratios close to 1, Fe2+ in mantle silicates is oxidized to form mag-

netite or Fe3+-rich serpentine, producing very low oxygen fugacities (fO2) in the fluid,
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leading to dissociation of H2O to form H2 (e.g. Klein et al. 2009; Neal and Stanger 1983;

Sleep et al. 2004). While olivine is actively serpentinizing fO2 is buffered to extremely

low values such this reaction Frost and Beard 2007.

In his classic paper, Frost (1985) proposed that sulfide-oxide assemblages in Fe-Ni-

S-O-H system record the redox conditions during serpentinization. This approach was

further developed and applied by Klein and Bach (2009). More recently, Schwarzenbach

et al. (2014) added copper-bearing sulfides to constrain redox conditions in the Cu-Fe-

S-O-H system. Based on this prior work, the Fe-Ni-Cu sulfide assemblages in the cores

of Wadi Fins samples, pentlandite-heazlewoodite (Figure 6), are characteristic of serpen-

tinization at lowW/R. Stage 3 modeling predicts mineral assemblages consistent with the

sulfide assemblages in the black cores (heazlewoodite-pentlandite-bornite; Figure 9) at

W/R less than 3. Phase equilibrium constraints and model calculations indicate that these

assemblages formed at extremely low fO2, at or near the dissociation limit for H2O to H2,

together with f S2 just above the limits for stability of native metals (awaruite and cop-

per). The lack of native copper and awaruite in the cores is consistent with low alteration

temperatures, as their stability fields in fO2 vs f S2 space shift to lower fugacities at low

temperature, compared to those calculated at higher temperatures in previous studies.

Non-isochemical behavior and increased fO2 in green and red zones

Serpentinization is commonly inferred to be nearly isochemical except for the addi-

tion of water (e.g. O’Hanley 1996; Shervais, Kolesar, and Andreasen 2005 and references

therein), though this is not always accurate in detail (Malvoisin 2015; Merino 2013; Merino

and Canals 2011; Monnier et al. 2006). Addition of H2O, without substantial removal of
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other components, together with decreasing density as the mineralogy is transformed

from olivine + pyroxene to serpentine ± brucite, clays, iron oxides, requires substantial

volume increases when compared to the original rock (Coleman and Keith 1971; Mac-

donald and Fyfe 1985). Nearly isochemical alteration is inferred for the partially serpen-

tinized, black cores in Wadi Fins, because their Mg/Si/Fe ratios are similar to average

Samail harzburgites and residual peridotites worldwide (e.g. Coleman and Keith 1971;

Falk and Kelemen 2015). This inference is consistent with the results of our Stage 3 ther-

modynamic models at low W/R, which predict mineral assemblages similar to the black

cores, insignificant changes in anhydrous rock composition and volatile-free mass, to-

gether with very large increases in the solid volume.

The green and red zones in Wadi Fins correspond to a completely different alteration

process, at higherW/R.We can constrainW/R using uranium concentrations. Black cores

have U concentrations similar to Oman harzburgites. In contrast, U concentrations in-

crease dramatically, up to 10x core values in the green zones, and up to 600x core values

in the red zones (Table 1). This increase correlates with changes in Fe3+/FeTot (Figure 11).

If almost all of the U is derived from the seawater end-member (Deschamps et al. 2013),

with ∼ 3 ppb U similar to modern seawater (Owens et al., 2011), then a W/R ratio of 200

or more is necessary to enrich the red zones in Wadi Fins.

The mineralogy and compositions of the green and red zones are not that of a peri-

dotite serpentinized under nearly isochemical conditions, as shown in the isocon dia-

grams (Figure 3). These diagrams suggest pervasive metasomatism, leading to silica-rich

and iron-rich compositions in the green and red zones, respectively. This might reflect

transitional stages between partially serpentinized peridotites and laterites, such as those
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observed in Wadi Tiwi (Al-Khirbash 2015).

The proportion of SiO2 increases sharply (from 45 to 53 wt%, volatile-free) from the

black cores to the green zones, and drops back sharply in the red zones to SiO2 concentra-

tions similar to those in the black cores. On the other hand FeO concentration decreases

from the black cores to the green zones (from ∼ 9 to 7 wt%, volatile-free) and then in-

creases sharply in the oxidized, red zones (to 14 wt% volatile free). Assuming immobile

Al2O3 in the isocons for our samples results in a total loss of volatile-free mass of approx-

imately 40% relative. Such a large mass decrease is not supported by field observations or

textures at any scale, and is inconsistent with our thermodynamic modeling. Instead, as-

sumptions of constant SiO2 and constant volatile-free mass in the isocon for the red zones

yield almost identical results, suggesting that SiO2 is relatively immobile. Therefore we

favor the assumption of quasi-constant, volatile-free mass, or immobile SiO2, rather than

immobile Al2O3. The assumption of constant SiO2 yields MgO depletion of∼25% relative

in the green zones and 20% relative in the red zones, compared to the black cores. This is

consistent with our Stage 4 models, in which MgO is leached out of the rock as serpentine

reacts with final Stage 3 fluids to form stevensite.

When compared with the black zones, FeO has a depletion of ∼25% relative in the

green zones and an enrichment of ∼50% relative in the red zones. Our Stage 4 model

suggests that this may be derived from mobility of Fe. At low fO2, Fe2+ is dissolved from

the green zones, transported into the red zones, and precipitated as Fe3+ in goethite due

to increasing fO2, as fluids from the cores and green zones mix with oxidizing fluids.

Further evidence for iron mobility in Wadi Fins can be drawn from the intergrowth of

goethite with serpentine in the red zones (Figure 7), as well as the presence of iron oxides
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in the carbonate veins (E. Cooperdock, personal communication). Overall, the remobiliza-

tion of FeO and leaching of MgO represent a 9% decrease in volatile-free mass (3% mass

increase including volatiles) and a 15% increase in solid volume, compared to the protolith

represented by the black cores. For comparison a 100% serpentinized harzburgite under

isochemical conditions keeps volatile-free mass constant (∼13% mass increase from wa-

ter) and requires a ∼45% increase in solid volume (Coleman and Keith 1971). Magnesium

loss from highly altered peridotites has been previously inferred from the products of

marine weathering (Milliken, Lynch, and Seifert 1996; Snow and Dick 1995) and has been

suggested as a potential mechanism for formation of “deweylite” assemblages (Beinlich

et al. 2010).

Peridotites in this area exhibit clear signs of major element mobility during open sys-

tem weathering resulting in Mg loss and the formation of 1:1 stevensite:lizardite mixtures

in the green and red zones, coupled with nearly isochemical alteration of the black cores

that preserve partially serpentinized peridotite compositions and mineral assemblages.

Variable W/R results in significant changes in mineralogy and fO2 in different alteration

zones (Figures 9 and 12). Black cores record highly reducing conditions at W/R ∼ 1,

whereas the green and red zones record much higher W/R and fO2. This change in fO2

is evident based on equilibria involving sulfide minerals in the different zones (Figures 7)

and from the results of thermodynamic modeling (Figures 9).

3.7 Conclusions

Altered mantle peridotites in Wadi Fins contain three distinct alteration zones that

record a gradient of ∼20 orders of magnitude in fO2 and f S2 in sulfide/oxide min-

77



eralogy of over a distance of 15-20 cm. The black cores are characterized by pent-

landite/heazlewoodite/bornite assemblages, recording very low oxygen fugacities. Such

low fO2 is associated with serpentinization at lowW/R (Alt and Shanks 1998; Frost 1985).

The black cores contain relict primary mantle minerals plus alteration products associated

with low temperature, nearly isochemical serpentinization. The green zones surrounding

the black cores show pervasive alteration resulting in relatively high SiO2 concentration

and a depletion of MgO and FeO, forming mixtures of stevensite and lizardite. These mix-

tures are present in the red zones, intergrown with goethite. Thermodynamic modeling

suggests that iron andmagnesiumwere mobilized from the green zones following serpen-

tinization while reacting with reduced core fluids with iron precipitating when the fluids

become oxidized. These mass transfer reactions combine to produce a volatile-free mass

loss of 9%, together with a 15% increase in the solid volume, in the green and red zones

compared to the black cores. This volume change is significantly less than calculated for

isochemical serpentinization of harzburgite (constant volatile-free mass and 45% volume

increase). We suspect that the marked zoning seen in this area, which is unusual in the

mantle section of the Samail ophiolite, is due to the proximity of the Cretaceous uncon-

formity. The rocks we’ve studied may be viewed as transitional in some ways between

typical, partially serpentinized mantle peridotites in ophiolites and oceanic drill core, on

the one hand, and laterites on the other.
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Figure 3.1: (a) Map of the Samail ophiolite after Hanghøj et al. (2010). Red star shows
location of Wadi Fins. (b) Geologic map of Wadi Fins compiled from (Wyns et al. 1992b),
Google Earth data, and field observations. Red squaremarks location of samples described
in this study. Map area is between UTM coordinates 2,532,838 to 2,533,636 m N and
721,824 to 722,181 m E in zone 40 Q

Figure 3.2: Contacts between alteration zones in Wadi Fins, Oman. (a) Peridotite out-
crop close to the unconformity with overlying limestones, with sharp reactive fronts in
a concentric pattern, and a spatially associated carbonate vein network. Pen for scale.
(b) OM15-7 hand sample. (c) Photomicrograph of contact between core and green zone
in sample OM15-7 (d) Photomicrograph of contact between green and red zone in sam-
ple OM15-7. Photomicrographs in plain polarized light. Dashed white lines emphasize
contacts between zones.
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Figure 3.3: Isocon diagram for black cores (a) using average Oman harzburgite (Godard,
Jousselin, and Bodinier 2000; Hanghøj et al. 2010; Monnier et al. 2006) as the protolith.
Green zones (b) and red zones (c) using OM15-6 core as protolith. Elements were scaled
to plot within recommended isocon limits. From left to right: TiO2 (x100), MnO (x27),
NiO (x17) Cr2O3 (x17), Al2O3 (x12), CaO (x8), FeO* (x2), SiO2 (x0.66), MgO (x0.5). All data
are plotted on a volatile-free basis.

Figure 3.4: Primary mineral Cr# vs Mg# for Wadi Fins partially serpentinized cores and
peridotites from other areas of the ophiolite. .
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Figure 3.5: Frequency of Mg# in serpentine (blue, n=57) and olivine (red, n=103) from
partially serpentinized black cores and literature olivine data: Monnier et al. 2006 (Green,
n=171) and Hanghøj et al. 2010 (Black, n=106).
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Figure 3.6: Mole fraction ternary diagram of sulfide composition in cores (gray), green
zones (green) and red zones (red) in samples OM15-5 (circles), OM15-6 (squares) and
OM15-7 (triangles).

Figure 3.7: Mole fraction Fe-Si-Mg ternary diagram of serpentine and stevensite compo-
sitions in green zones and red zones in circles. Squares are whole rock averages (cores in
gray).
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Figure 3.8: Stage 3 model results. a) Secondary mineralogy and b) fluid composition as a
function of water/rock (W/R).

Figure 3.9: Log fO2-log f S2 diagram for calculated sulfide and oxide stabilities at 60℃ and
50 MPa in the system Fe-Ni-Cu-O-S. The phase diagram assumes H2O activity to be one.
All equilibrium constants come from a GWB database customized for sulfide, oxide and
alloy minerals constructed using the EQ3/6 database. Red arrow shows results of Stage 3
thermodynamic modeling, pointing towards lower water/rock (W/R).

91



Figure 3.10: Stage 4 model results, illustrating serpentine consumption and stevensite
precipitation as a function of water/rock (W/R). (Fe from serpentine is also converted to
magnetite in the model reaction).
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Figure 3.11: Uranium concentrations vs Fe3+/FeTot inWadi Fins peridotites. Black circles:
black cores; green squares: green zones; red circles: red zones. Symbols are larger than
analytical uncertainty. Gray square illustrates range of U concentration and Fe3+/FeTot
reported by Godard et al. (2000).
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Figure 3.12: Conceptual figure of alteration process of Wadi Fins peridotites. Seawater
infiltrates the overlying limestones (a), fluid moves through the peridotite at variable wa-
ter/rock (W/R) partially serpentinizing the rock at lowW/R (b). Reduced fluidmoves away
from the partially serpentinized peridotite forming stevensite, leaching Mg and precipi-
tating goethite upon mixture with oxidized fluid (c).
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Table 3.1: Bulk rock compositions of Wadi Fins altered peridotites

OM15-5 OM15-5 OM15-5 OM15-6 OM15-6 OM15-6 OM15-7 OM15-7 OM15-7
Detection limits Red Zone Green Zone Core Red Zone Green Zone Core Red Zone Green Zone Core

SiO2 (wt%) 0.04 39.99 44.81 41.33 39.21 45.54 43.56 38.18 46.43 42.49
TiO2 (wt%) 0.010 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01
Al2O3 (wt%) 0.09 1.40 1.58 1.13 1.65 1.63 0.98 1.32 1.68 1.12

FeO* tot (wt%) 0.07 10.71 6.05 7.67 12.28 6.15 8.25 11.35 5.94 7.82
MnO (wt%) 0.02 0.03 0.03 0.10 0.03 0.03 0.12 0.04 0.03 0.10
MgO (wt%) 0.06 29.18 28.75 39.13 28.60 29.08 39.96 28.00 28.81 37.54
CaO (wt%) 0.07 0.92 2.19 1.01 0.83 2.32 0.99 2.47 1.40 1.12
Na2O (wt%) 0.01 0.05 0.04 0.01 0.03 0.03 bdl 0.05 0.09 0.01
K2O (wt%) 0.01 0.06 0.10 0.02 0.05 0.09 bdl 0.03 0.06 0.01
Cr2O3 (wt%) 0.00 0.49 0.53 0.33 0.55 0.51 0.33 0.45 0.60 0.35
LOI (wt%) 16.91 15.77 8.55 16.74 16.14 5.92 17.1 16.31 8.23

Total 99.74 99.87 99.29 99.98 101.53 100.12 99.02 101.38 98.78
Mg# 0.83 0.89 0.90 0.81 0.89 0.90 0.81 0.90 0.90

FeO (wt%)∧ 0.1 1.9 2.4 5.3 2 1.5 5.5 1.2 1.8 5.1
Fe2O3 (wt%)‡ 9.79 4.06 2.63 11.42 5.16 3.05 11.28 4.60 3.02
Fe3+/FeTot 0.84 0.63 0.33 0.85 0.77 0.36 0.90 0.72 0.37

Cr# 0.19 0.18 0.16 0.18 0.17 0.18 0.19 0.19 0.17
OM15-5 OM15-5 OM15-5 OM15-6 OM15-6 OM15-6 OM15-7 OM15-7 OM15-7

Trace elements Detection limits Red Zone Green Zone Core Red Zone Green Zone Core Red Zone Green Zone Core
B (ppm) 1 40 38 151 39 45 117 37 37 146
Co (ppm) 8 112 133 110 98 139 114 102 138 113
Ni (ppm) 23 2591 2865 2275 2448 2889 2357 2414 3029 2322
Cu (ppm) 5 18 21 15 14 23 22 18 27 14
Zn (ppm) 3 40 48 31 44 42 32 40 44 32
Rb (ppm) 0.05 2 2 0.3 1 2 0.4 1 2 0.3
Sr (ppm) 4 118 110 14 113 132 10 129 124 15
Mo (ppb) 43 313 148 138 262 155 128 283 161 128
Cs (ppb) 5 107 97 37 99 105 38 74 79 34
Ba (ppb) 289 1591 2381 bdl 2748 3543 646 4784 4483 bdl
Gd (ppb) 12 16 19 16 19 19 bdl 14 19 12
Dy (ppb) 16 49 57 42 58 69 33 46 54 34
Er (ppb) 7 48 59 43 65 69 35 51 63 37
Tm (ppb) 9 9 11 bdl 12 13 bdl bdl 11 bdl
Yb (ppb) 22 78 94 63 95 107 52 76 92 61
Lu (ppb) 3 16 16 12 18 19 10 14 18 12
W (ppb) 12 106 32 278 39 22 16 58 13 27
Pb (ppb) 46 64 bdl 101 bdl bdl bdl bdl bdl bdl
Th (ppb) 0.27 0.35 1.41 0.52 0.37 0.93 4.19 0.38 0.31 0.29
U (ppb) 0.68 461 9 0.79 237 26 12 672 16 0.90

bdl= Below detection limits of the instrument
FeO* = Oxide total Fe, assuming oxidation state of all Fe to be 2+
∧ Determined by titration
‡ Calculated by mass balance from ICP-OES and titration data.
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4 Carbon mineralization accompanying serpentinization
in the Oman ophiolite: A magnesium isotope perspective

Abstract

Alteration of mantle peridotite in the Samail ophiolite forms secondary minerals,

mainly serpentine and Mg-rich carbonates. Magnesium accounts for approximately 25

to 30% of peridotite mass and its mobility can be used to trace this alteration. We report

the first set of Mg isotope measurements from peridotites and their alteration products

in Oman. Our results show that partially serpentinized peridotites have Mg isotope ra-

tios that are indistinguishable from the estimates for the average mantle and bulk silicate

earth (δ26Mg =-0.25‰±0.04) However, more extensive peridotite alteration leads to large

shifts in isotopic compositions. Our suite of alteration products from the mantle section

has a range of δ26Mg spanning∼4.5‰, which is over 60% of the observed range of δ26Mg

on Earth. Isochemical serpentinization at low W/R does not fractionate Mg isotopes. We

report serpentine veins with heavy δ26Mg (up to 0.96‰) and propose a mechanism for its

formation that requires highW/R and co-precipitation withMg-carbonates with light iso-

topic compositions as observed in massive veins of magnesite δ26Mg =-3.3‰ and dolomite

δ26Mg =-1.91‰. This complementary enrichment-depletion, and the finite 14C ages of the

carbonates suggest that both serpentinization and carbonation are ongoing processes dur-

ing peridotite weathering in Oman. Rates of calcite precipitation in travertines inferred

from∆26Mgcal−fl suggest that travertine formation in Oman sequesters a total of 106-107

kg CO2/yr.
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4.1 Introduction

Alteration of ultramafic rocks is ubiquitous in near surface occurrences, both on land

and below the seafloor. Mantle minerals like olivine and pyroxene are unstable at near

surface conditions and undergo hydration (serpentinization) and carbonation when flu-

ids percolate in the rocks. These reactions result in the formation of serpentine minerals,

carbonates, brucite, magnetite and other Fe-oxides and hydroxides. Serpentinization and

carbonation reactions are often nearly isochemical, apart from the addition of H2O and

CO2 (e.g., Coleman and Keith 1971) with both observations and thermodynamic modeling

revealing minor increases in major element ratios such as Si/Mg (e.g. ≤ 10% for low tem-

perature reaction with seawater, (Malvoisin 2015, Figure 3; Monnier et al. 2006; Snow and

Dick 1995). Recent studies (Obeso and Kelemen 2018, de Obeso and Kelemen, submitted)

show that depending on alteration conditions, mass transfer can lead to larger changes

in major element chemistry. In Oman, while partially serpentinized harzburgites record

a ∼ 2% decrease in MgO/SiO2 compared to comparable, fresh residual mantle peridotites

(Monnier et al. 2006), there are examples of heavily altered harzburgite that lost up to 30%

of their original Mg (de Obeso and Kelemen, submitted).

Magnesium isotope studies of peridotites show that the composition of the mantle and

bulk silicate earth (BSE) is relatively uniformwith a δ26Mg= -0.25‰±0.04 (2σ), (Teng 2017;

Teng et al. 2010). Liu et al. (2017) report δ26Mg of -0.12‰±0.13 (2σ) for altered seafloor

peridotites. There are a limited number of studies on magnesium isotope compositions

of ophiolite peridotites. Peridotites from the Purang ophiolite (Tibet) have compositions

within uncertainty of mantle compositions δ26Mg=-0.20‰±0.10 (2σ) (Su et al. 2015) while
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peridotites from the Feragen and Linnajavri ultramafic bodies have mantle-like Mg iso-

tope ratios (Beinlich et al. 2014).

Given that most peridotites have similar Mg isotope compositions, fractionation of

Mg during serpentinization and carbonation has been a topic of research in recent years,

as isotopic differences from fresh peridotite could be used to constrain alteration pro-

cesses. Prior work with natural samples concluded that serpentinization does not frac-

tionate Mg isotopes. Beinlich et al. (2014) showed that coexisting olivine and serpentine

in hydrothermally altered peridotites in three different localities in Norway have indis-

tinguishable Mg isotope ratios, and concluded that serpentinization does not fraction-

ate Mg isotopes at the inferred alteration temperature (∼275℃). They also report that

carbonation following serpentinization resulted in formation of δ26Mg-enriched talc and

δ26Mg-depleted magnesite. Liu et al. (2017) investigated a suite of abyssal peridotites and

concluded that heavy isotopic compositions in highly altered samples were a result of low

temperature formation of clay minerals rather than serpentinization.

Experimental work has produced conflicting results. Wimpenny et al. (2010) per-

formed San Carlos olivine dissolution experiments at low temperature (∼25℃). They ob-

served an initial, preferential release of light isotopes from olivine to fluid evolving to

olivine-like composition with time, and suggest that chrysotile preferentially removed

light Mg from solution. More recently Ryu et al. (2016) synthetized lizardite from solu-

tion and reported that it was enriched in heavy isotopes relative to the fluid at 90 and

250℃. Following a molecular dynamics approach Wang et al., (2019) also conclude that

lizardite crystallization preferentially removes heavy Mg from the fluid.

In this paper we analyzed magnesium isotope compositions of samples from the man-
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tle section of the Samail ophiolite in Oman. These are the first measurements of magne-

sium isotopes from the Samail ophiolite. Their variation sheds light on serpentinization

and associated carbon mineralization at low temperatures. The initial isotopic composi-

tion of Oman peridotites (average δ26Mg -0.25‰±0.14 2σ) is indistinguishable from aver-

age mantle. In some serpentine samples, this composition has been modified, suggesting

that high extents of alteration can shift δ26Mg and that there is ongoing serpentinization

during alteration of the Samail ophiolite mantle section.

4.2 Geological background and sample selection

The Samail ophiolite in eastern Oman is the best-exposed block of oceanic crust and

mantle in the world (Figure 1). The mantle section of the ophiolite is composed of highly

depleted harzburgites togetherwith∼5-15% dunite (Braun 2004; Braun andKelemen 2002;

Collier 2012). These peridotites exhibit different degrees of alteration ranging from∼30%

serpentinized in “fresh” rocks to instances of completely serpentinized (Godard, Jousselin,

and Bodinier 2000; Hanghøj et al. 2010; Monnier et al. 2006) and/or completely carbonated

peridotites (Falk and Kelemen 2015; Nasir et al. 2007; Stanger 1985). Alteration occurred

through out the history of the ophiolite, beginning near axis of the spreading center (Gre-

gory and Taylor 1981), continuing during obduction and emplacement (Falk and Kelemen

2015), and extending to the present (e.g Clark and Fontes 1990; Kelemen and Matter 2008;

Mervine et al. 2014; Monnin et al. 2011; Streit, Kelemen, and Eiler 2012).

Previous studies of the low-temperature modern alteration system in Oman propose

a three-step alteration process (e.g. Barnes, LaMarche, and Himmelberg 1967; Barnes,

O’Neil, and Trescases 1978; Chavagnac et al. 2013b; Kelemen et al. 2011; Neal and Stanger
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1985; Noël et al. 2018; Paukert et al. 2012). The first step is characterized by the formation

of Mg2+-HCO3− rich waters as meteoric waters react with peridotite near the surface.

This so-called “Type I” water percolates into the peridotite formation (Step 2) leading to

the precipitation of Mg-rich carbonates, brucite and serpentine. These reactions remove

carbon and Mg2+ from the fluid and dissolve Ca2+, as it is incompatible in the alteration

minerals. The resulting fluids, known as “Type II” waters, have low Mg and C, high Ca

and pH, and very low oxygen fugacities (Clark and Fontes 1990; Neal and Stanger 1983;

Paukert et al. 2012). The third step involves the return of these hyperalkaline “Type II”

fluids to the surface, where the disequilibrium with the atmosphere leads to rapid uptake

of atmospheric CO2 and precipitation of calcite (Chavagnac et al. 2013a; Clark and Fontes

1990; Kelemen andMatter 2008; Kelemen et al. 2011; Mervine et al. 2014; Neal and Stanger

1985; Paukert et al. 2012). Secondary minerals from the three stages have different aque-

ous Mg2+-mineral fractionation properties (Beinlich et al. 2014; Gao et al. 2018; Liu et al.

2017; Pinilla et al. 2015; Wang et al. 2019; Wimpenny et al. 2014) allowing the use of Mg

isotopes as tracers of alteration.

All samples used in this study come from the southern massifs of the ophiolite, within

its mantle section (Figure 1). Previously described samples analyzed for this study can

be separated into silicate and carbonate bearing groups. Silicate samples include rela-

tively fresh harzburgites (n=6, average ∼ 40% relict mantle minerals) and dunites (n=4,

∼23%) from Hanghøj et al. (2010), highly serpentinized harzburgites (n=2, 37 and 14%)

and dunites (n=1, 0%) from de Obeso and Kelemen (2018), serpentinized harzburgites (n=3,

∼40%), high Si harzburgite (n=3, 0%) and oxidized harzburgite (n=3, 0%) from de Obeso

and Kelemen (submitted). We also include four samples not previously described: serpen-
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tine veins (n=2), serpentinite (n=1) and a “waxy silicate vein” from a serpentinized body

with Mg/Si∼1 (n=1).

Carbonate samples include two groups: completely carbonated peridotites, also

known as listvenites, from Falk Kelemen (2015), further classified as dolomite listvenites

(n=2) andmagnesite listvenites (n=2). We also analyzedmassive carbonate veins from ser-

pentinized peridotite outcrops, further classified as magnesite veins (n=2) and dolomite

veins (n=1) (Kelemen et al. 2011). The three carbonate vein samples have 14C contents

corresponding to ages of 32ka, 37ka, and 40ka (Kelemen et al. 2011). Two travertine sam-

ples from Kelemen et al. (2011) are also included. These travertines are composed mainly

of calcite with 14C ages of 1630 and 18,450 years. We also include two carbonate vein

samples not previously described: a massive magnesite vein and a huntite vein. Major

element compositions and locations for the new samples are reported in table S1.

4.3 Methods

Samples not previously described (4 silicates and 2 carbonates) were processed in La-

mont Doherty Earth Observatory (LDEO). Samples were chipped using a jaw crusher and

powdered using an alumina puck mill. Major element analyses and loss on ignition (LOI)

of the bulk rocks was performed using lithium metaborate fusion and nitric acid solu-

tion. Analysis of these solutions used an Agilent 720 Axial ICP-OES calibrated with rock

standards (Table S2).

For Mg isotopic analyses powders of all 37 samples and three USGS rock standards

(BCR-2, BHVO-2, BIR-1A) were digested using a conventional HNO3:HF (3:1) digestion

procedure at LDEO. Sample OM17-magnesite was processed in multiple digestion batches
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to check reproducibility (n=5). Once digested, all samples were diluted to ∼5 ppm Mg in

0.2%HNO3. These solutionswere processed using aThermoDionex 5000+ ion chromatog-

raphy (IC) system at Princeton University to separate Mg from the silicate/carbonate ma-

trix. As described in more detail in Husson et al. (2015), the procedure was as follows: the

automated IC system runs samples through an in-line CS16 cation exchange column that

separates various cations and measures peak intensities using changes in conductivity.

Collection windows were specified to collect pure Mg cuts. 200 microliters (μL) of solu-

tion were run through the column. Mg cuts were dried, treated with concentrated HNO3,

re-dried and re-dissolved in 2% HNO3 for isotope analysis.

Isotopic analyses were carried out at Princeton University on a Thermo Fisher Sci-

entific Neptune Plus MC-ICP-MS. Sample-standard-sample bracketing was used to cor-

rect for instrumental mass fractionation (Galy et al. 2001) and values were normalized

to an internal standard. Magnesium isotope ratios are reported using delta notation.

Long-term external reproducibility is estimated by comparing Mg standard Cambridge-1

against DSM-3 standard. Measured δ26Mg values for Cambridge-1 yields an average of

−2.59±0.05‰ (2σ, n=7), indistinguishable from suggested value -2.623±0.030‰ (2σ) (Galy

et al. 2003; Teng et al. 2015). Reported errors for each sample depend on the number of

times the sample has been separated and analyzed. For a single separation and analysis,

we report the long-term external reproducibility of Cambridge-1 (δ26Mg 2σ=±0.09‰). For

multiple chromatographic separations and analysis (n>1) we report the standard error of

the mean (SE).
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4.4 Results

δ26Mg and δ25Mg results are presented in Table 1. All samples analyzed fall on

an isotopic mass-dependent fractionation line in three-isotope space with slope of

0.5196±0.0024 (R2=0.9992) indistinguishable from the value of 0.5210 estimated for equilib-

rium fractionation (Young and Galy 2004). Given the linear relationship in three-isotope

space, in further discussion we only use δ26Mg. The range of δ26Mg in the samples ana-

lyzed is shown in Figure 2. The observed range for samples of this study is∼4.6‰ (-3.39‰

to 1.19‰), extending over 60% of the terrestrial range (∼7.5‰, from -5.6‰ to 1.8‰) (Teng

2017).

Silicates

δ26Mg values in partially serpentinized harzburgites (-0.25‰±0.14, 2σ) and dunites (-

0.24‰±0.10, 2σ) are indistinguishable from average mantle (Figure 3). We exclude three

samples from the Wadi Fins area (OM15-5-4, OM15-6-4 and OM15-7-4), described by de

Obeso and Kelemen (submitted) from the harzburgite average as they report significant

Mg leaching from these outcrop. These samples are heavier than mantle values (aver-

age δ26Mg of -0.09‰±0.01, 2σ), and their completely hydrated (OM15-5-2, OM15-6-2 and

OM15-7-2) and oxidized (OM15-5-3, OM15-6-3 and OM15-7-3) counterparts in the same

outcrop are significantly heavier (average δ26Mg of 0.73‰±0.04 for hydrated samples and

0.86‰±0.17 for oxidized samples, 2σ). These values are the heaviest ever reported for

ultramafic rocks.

Mineral separates from veins in the Wadi Fins area are also significantly heavier than

mantle values. Two serpentine veins (OM13-17A WP and OM13-15B) have δ26Mg of
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0.45‰ and 0.96‰ respectively, and a “waxy vein” (OM15-5-5) with molar Mg/Si of 1 has

a heavier isotopic composition, δ26Mg=1.19‰.

Carbonates

Magnesite listvenites (OM09-11 and OM10-26, both with δ26Mg of -0.33‰) are within

error of mantle values suggesting nearly isochemical carbonation as inferred from major

element ratios by Falk and Kelemen (2015). Dolomite listvenites (OM10-14 and OM10-15)

are significantly lighter (δ26Mg of -1.46‰ and -0.89‰). The formation of dolomite listven-

ites is interpreted as a 1:1 Mg:Ca molar replacement (Falk and Kelemen 2015), and their

isotopic compositions suggest that heavy Mg is lost during reaction with a Ca bearing

fluid.

Twomassive magnesite veins (OM07-39, OM17Magnesite) are by far the lightest sam-

ples analyzed for this study, with δ26Mg from -3.39‰ to -3.14‰. (Five replicate analyses

of one of these veins yield an average of -3.38‰±0.02, 2σ). The dolomite (OM07-27) and

huntite (BA1B 11-2 17-27cm) veins also have light isotopic compositions compared to

mantle values (δ26Mg =-1.91‰ and δ26Mg=-3.04‰ respectively), though they are heavier

than the massive magnesites. Travertines (OM07-18 and OM07-34A) precipitated from

”Type II” waters are heavier than other carbonates, with δ26Mg of -1.14‰ and -0.89‰.

4.5 Discussion

Results from typical, partially serpentinized harzburgites and dunites (Figure 3) show

that the magnesium isotopic composition in the mantle section of the Samail ophiolite

is indistinguishable to that the Earth’s mantle and BSE (δ26Mg=0.25‰±0.04 ,Teng 2017).

Therefore any deviations from mantle values, in the more altered rocks, should be ex-
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plained by fractionation during serpentinization, carbonation and weathering of the peri-

dotites.

Isochemical serpentinization of olivine-rich rocks requires the formation of a

magnesium-rich phase, usually brucite (Evans 1977; Evans et al. 1976) or magnesite when

CO2-rich fluids are present (Frost 1985; Kelemen et al. 2011) following the simplified re-

actions:

3Mg2SiO4 + 6H2O = 2Mg3Si2O5(OH)4 +Mg(OH2)

4Mg2SiO4 + 4H2O + 2CO2 = 2Mg3Si2O5(OH)4 + 2MgCO3

These reactions conserve MgO/SiO2 of residual mantle peridotite protoliths, formed

by melting and melt extraction. All analyzed harzburgites in this study plot below the

geochemical fractionation line for the residual mantle (Asimow 1999; Baker and Beckett

1999) indicative of either Mg-loss or Si-addition during alteration (Figure 4). In order to

account for departures from the geochemical fractionation we define:

∆
(MgO

SiO2

)
=

(
− 3.15 ∗

(Al2O3

SiO2

)
sample

+ 1.12
)
+

(MgO

SiO2

)
sample

Samples with ∆(MgO/SiO2)<0.12 show δ26Mg indistinguishable from mantle values.

As ∆(MgO/(SiO2) increases, whole rocks begin to deviate to heavier Mg isotope ratios

(Figure 5). This suggests that significant Mg leaching is required to produce bulk rock

deviations from mantle isotope ratios. Serpentine veins from Wadi Fins (δ26Mg of 0.96‰
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and 0.46‰) show significant enrichments in heavy Mg isotopes. These serpentines are

depleted in Fe (Mg# 97-98) compared to ambient peridotite (Mg#90) and formed in high

water/rock pathways. They record preferential Mg mobility during alteration at tempera-

tures between 25-60℃ (Obeso and Kelemen 2018), which produced fluids with Mg isotope

ratios compositions heavier than the mantle protolith . Considering that previous studies

on partially serpentinized samples (Beinlich et al. 2014; Liu et al. 2017) did not observe

significant Mg-isotope fractionation during serpentinization, we propose a mechanism in

which the observed enrichment in the serpentine veins is related with co-precipitation of

carbonates along with serpentine, as occurs along the reaction path outlined by Barnes

and O’Neil, (1969) and modeled by subsequent workers (Bruni et al. 2002; Paukert et al.

2012).

Carbon mineralization accompanying serpentinization

Equilibrium isotope fractionation of Mg isotopes during peridotite alteration products

is temperature dependent (Li et al. 2015; Pinilla et al. 2015; Ryu et al. 2016; Schott et al.

2016; Wang et al. 2019) making temperature estimates important for understanding alter-

ation. For our calculations we used 30℃, approximately the modern day annual average

temperature in the northern Oman mountains (Weyhenmeyer et al. 2002). This tempera-

ture is consistent with other temperature constraints established in studies that described

the samples used in this study. De Obeso and Kelemen, (2018) estimated alteration in

Wadi Fins between 25-60℃ based in clumped isotope thermometry of carbonate veins in

peridotite. Carbonates in typical, partially serpentinized mantle peridotites in the Samail

ophiolite yield crystallization temperatures between 25-50℃, using δ18O exchange tem-
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peratures and clumped isotope thermometry (Kelemen et al. 2011; Streit, Kelemen, and

Eiler 2012).

Magnesium mobility has been documented in the mantle section of the Samail ophi-

olite. On average, typical partially serpentinized harzburgites might have lost up to 2%

(Monnier et al. 2006) though, alternatively, in some cases Si-gain rather than Mg-loss led

to increased Si/Mg ratios (Obeso and Kelemen 2018). Heavily weathered samples within

10 meters of a Cretaceous unconformity in Wadi Fins lost 30% of their initial Mg to the

alteration fluid (de Obeso and Kelemen, submitted). The presence of meter-wide veins

of magnesite provides more evidence of Mg-mobility (Figure 6). A significant fraction of

such magnesite veins records measureable 14C, corresponding to ages less than ∼ 50ka

(Kelemen et al. 2011; Mervine et al. 2014), indicating recent mobility.

We used the results of an EQ3/6 reaction path model (Paukert et al. 2012) to estimate

Mg isotope composition in the modern alteration system. This model has three stages.

In the first stage, rain water in equilibrium with the atmosphere infiltrates the peridotite

leading to the formation of chrysotile, calcite, hydromagnesite and magnetite. The result-

ing ”Type I” fluid has an Mg2+-HCO−
3 rich composition. In the second stage, the ”Type I”

fluid reacts with fresh peridotite isolated from the atmosphere to form magnesium-rich

carbonates, chrysotile and brucite, plus ”Type II” fluid rich in Ca2+-OH−. In the third

stage (not explicitly modeled by Paukert et al. 2012) ”Type II” fluids emerge on the sur-

face and react with atmospheric CO2 to form calcite. We used the phase proportions

produced at each stage of the model to estimate Mg isotope compositions of the fluid and

secondary minerals as reaction progresses. Using a model of assimilation and fractional

crystallization (DePaolo 1981) we estimate isotope compositions as the fluid assimilates
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mantle minerals with δ26Mg=-0.25‰ and crystallizes chrysotile, hydromagnesite and cal-

cite in the first stage, chrysotile, brucite andMg-rich carbonates (dolomite and magnesite)

in the second stage, and calcite in the third stage. We assume that the starting Mg isotope

composition of water is in equilibrium with the overlying limestones with a composi-

tion similar to the global limestone average compiled by Teng (2017), yielding an initial

δ26Mgfluid of -2.0‰. We assume that products of isochemical serpentinization do not

fractionate Mg isotopes from the fluid (α=1.0000 for chrysotile and brucite) (Beinlich et

al. 2014; Liu et al. 2017). Carbonates fractionate Mg isotopes in the model, we used a frac-

tionation factor of α=0.9990 for hydromagnesite (Shirokova et al. 2013) in the first stage.

For the second stage, we used a range of fractionation factors for magnesite and dolomite,

as reported in Table 2.

We track the fluid isotopic composition as a function of water/rock ratio (W/R). In the

open system small extents of water rock interaction (highW/R) results in an evolved fluid

that goes from its initial δ26Mg of -2‰ to a value of -0.25‰ (Figure 7). With the forma-

tion of hydromagnesite the fluid gets slightly enriched in heavy isotopes before reaching

a steady state at δ26Mg=-0.15‰ with W/R less than 100. The evolved fluid is Mg-HCO3

rich. This evolved fluid is then used as the reactant in the closed system, that runs until

pH reaches 12 (maximum pH measured in the field). We track the fluid isotopic compo-

sition as a function of water/rock ratio (W/R). This stage produces Mg- and C-depleted

waters with high pH and extremely low fO2 (Paukert et al. 2012). The reaction path

is characterized by the co-precipitation of Mg-rich carbonates (magnesite and dolomite)

and chrysotile at W/R between 100-100,000. While the system co-precipitates chrysotile

and isotopically light carbonates, Mg isotope ratios in the fluid and serpentine become
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heavier (Figure 8). Once the system becomes carbon-depleted, carbonates disappear from

the precipitating mineral assemblage and the fluid/serpentine system rapidly evolves to

mantle-like isotope ratios (Figure 8).

The evolution of Mg isotope ratios from the model is consistent with isotopic ratios

measured in our samples and could explain the presence of isotopic heavy serpentine

with pure serpentization not affecting magnesium isotope ratios as reported in previous

studies (Beinlich et al. 2014; Liu et al. 2017). Co-precipitation of serpentine and magne-

site/dolomite forms isotopically heavy fluid and serpentine compositions at high W/,R

similar to those observed in Wadi Fins serpentine veins (δ26Mg>0.5‰). Also at high W/R,

precipitated carbonates are very light, similar to those in massive carbonate veins (Figure

6). As W/R decreases (and reaction progress increases) in the model, carbonates disap-

pear from the precipitating assemblage, the fluid evolves to δ26Mg=-0.25‰, and serpen-

tine forms from fluids with this mantle-like Mg isotope ratio consistent with the values

observed in partially serpentinized harzburgites and dunites. While the carbonate and

serpentine samples in this study are not co-genetic, our measurements show that ser-

pentine and carbonates occur with magnesium isotopic ratios different from those of the

original protolith. Our proposed mechanism reproduces the observed data while staying

consistent with previous studies that concluded that serpentinization does not fractionate

Mg isotopes (Beinlich et al. 2014; Liu et al. 2017).

Massive carbonate vein samples OM07-27, OM07-39 and OM07-07 have 14C ages of

40, 32 and 37ka (Kelemen et al. 2011) respectively. Similar Mg-rich carbonate veins have

14C ages as low as 7ka ((Kelemen et al. 2011; Mervine et al. 2014). Thus, our modeling

and observations of Mg isotope variation in the Samail ophiolite is consistent with the
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inference that serpentinization occurs alongwith carbonation during ongoingweathering

of the Samail ophiolite mantle peridotites, with timescales less than or equal to the ages

of the carbonates.

In the natural system, the ”Type II” hyper-alkaline Ca-rich fluid comes in contact with

the atmosphere in springs, where it combines with CO2 from air to form extensive traver-

tine deposits (Chavagnac et al. 2013b; Clark and Fontes 1990; Kelemen and Matter 2008;

Kelemen et al. 2011; Mervine et al. 2014; Neal and Stanger 1985). The Mg isotope com-

position of travertines measured in this study are δ26Mg of -1.14‰ and -0.89‰. Our

modeling shows that, at pH 12, the fluid has an isotope ratio identical to mantle val-

ues, δ26Mg=-0.25‰. The ∆26Mgcal−fl of the travertine is lower that what expected from

equilibrium fractionation with such a fluid (∼3‰) (Li et al. 2012; Mavromatis et al. 2017;

Wang et al. 2019). Mavromatis et al. 2013 showed that ∆26Mgcal−fl is dependent on

the calcite growth rate, with ∆26Mgcal−fl decreasing with increasing growth rate. Based

on this, the observed ∆26Mgcal−fl in Oman travertines suggests calcite growth rates of

10−5 mol/m2s. Such rapid growth rates are consistent with non-equilibrium, high Mg

contents in peridotite-hosted travertines in the Samail ophiolite and other massifs (e.g

Barnes and O’Neil 1969, 1971; Chavagnac et al. 2013b; Kelemen and Matter 2008; Kele-

men et al. 2011; Streit, Kelemen, and Eiler 2012). Assuming that between 1-10% of the total

estimated travertine area in the Samail ophiolite (∼107 m2 Kelemen and Matter 2008) is

actively precipitating, this growth rate yields a total uptake of 103-104 tons atmospheric

CO2/yr, similar to previous estimates of carbon uptake to form travertine in the ophi-

olite (Kelemen and Matter 2008; Kelemen et al. 2011; Mervine et al. 2014). The whole

carbonation-serpentinization system is shown conceptually in figure 9.
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4.6 Conclusions

Dunite and harzburgites in the mantle section of the Samail ophiolite have δ26Mg in-

distinguishable from average mantle values. Serpentinization at low W/R does not frac-

tionate Mg isotopes, but deviations from mantle like δ26Mg are observed as a result of

extensive Mg leaching at higher W/R. Heavily altered peridotites recording up to 30% Mg

loss and containing secondary Mg-clay minerals have the heaviest δ26Mg ever reported

for ultramafic rocks. We propose a mechanism in which the modern alteration system

forms Mg-rich carbonates with light δ26Mg at high W/R, together with heavy δ26Mg flu-

ids and serpentine, similar to those observed in serpentine veins inWadi Fins and massive

carbonate veins in Wadi Tayin. The fact that most peridotite-hosted carbonate veins have

finite 14C ages is consistent with other observations indicating that both serpentiniza-

tion and carbonation are ongoing. The proposed mechanism can be further explored,

likely with co-genetic carbonate-serpentine veins, in the newly drilled cores from the

Oman Drilling Project. Travertine δ26Mg is heavier than expected from equilibrium frac-

tionation between calcite and fluid with mantle-like Mg isotope ratios, suggesting rapid,

disequilibrium crystallization. We infer calcite growth rates of 10−5 mol/m2s, leading to

uptake of atmospheric CO2 at a rate of 106-107 kg CO2/yr to form travertine in Oman.
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Figure 4.1: Simplified geologic map of the Samail ophiolite in Oman and the United Arab
Emirates. All samples in this study come from the southern massifs (red square) and a
small exposure beneath overlying Cretaceous to Eocene limestones atWadi Fins (red star).
Modified after Nicolas, Boudier, and France 2009
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Figure 4.2: δ26Mg composition for studied samples and selected terrestrial reservoirs
(color squares from Teng 2017). Black solid line is mantle average and dashed black lines
range of variability of mantle compositions from Teng et al. 2010 and Teng 2017
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Figure 4.3: δ26Mg vs. MgO (wt% anhydrous) for harzburgites and dunites. Black solid line
is mantle average and dashed black lines encompass the range of variability from Teng
et al. 2010 and Teng 2017
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Figure 4.4: Whole rock MgO/SiO2 vs Al2O3/SiO2. Geochemical fractionation is a linear fit
of theoretical and observed residues of mantle melting and melt extraction during adia-
batic decompression beneath oceanic spreading ridges (Asimow 1999; Baker and Beckett
1999).
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Figure 4.5: Bulk rock∆(MgO/SiO2) vs δ26Mg for Oman samples and abyssal peridotites
(Liu et al. 2017). Black solid line is mantle average and dashed black lines range of vari-
ability of mantle compositions (Teng 2017; Teng et al. 2010)

123



Figure 4.6: Massive magnesite veins with blocks of serpentinized harzburgite in the ophi-
olite (UTM 40Q E 671274 N 2536144).
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Figure 4.7: δ26Mg evolution of the fluid in the open system . Black solid line is mantle
average and dashed black lines range of variability of mantle compositions from Teng
2017; Teng et al. 2010.
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Figure 4.8: Closed system reaction path mineralogy (top left), δ26Mg of fluid and serpen-
tine (top right), magnesite (bottom left), dolomite (bottom right). Grey squares illustrate
range of sample values measured for each mineral.
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Figure 4.9: Conceptual model of Mg isotope systematics in the modern alteration system
in Oman after Dewandel et al. 2005 and Neal and Stanger 1985
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Table 4.1: Samples numbers, reference, lithology and Mg isotopic compositions

Sample Reference Lithology δ26Mg δ25Mg 2σ/2SE n
OM94-99 Hanghøj et al 2008 Dunite -0.22 -0.11 0.09 1

OM94-52D* Hanghøj et al 2008 Dunite -0.25 -0.11 0.09 1
OM94-74D Hanghøj et al 2008 Dunite -0.32 -0.15 0.09 1
OM94-110* Hanghøj et al 2008 Dunite -0.17 -0.06 0.09 1
OM94-67 Hanghøj et al 2008 Harzburgite -0.25 -0.12 0.09 1
OM94-103 Hanghøj et al 2008 Harzburgite -0.22 -0.11 0.09 1
OM94-61 Hanghøj et al 2008 Harzburgite -0.24 -0.09 0.09 1
OM94-98 Hanghøj et al 2008 Harzburgite -0.20 -0.09 0.09 1
OM94-101 Hanghøj et al 2008 Harzburgite -0.29 -0.16 0.09 1
OM94-52H Hanghøj et al 2008 Harzburgite -0.42 -0.22 0.09 1
OM13-19 De Obeso and Kelemen 2018 Harzburgite -0.17 -0.09 0.09 1
OM13-2 De Obeso and Kelemen 2018 Harzburgite -0.24 -0.14 0.09 1
OM13-4 De Obeso and Kelemen 2018 Dunite -0.24 -0.09 0.09 1
OM15-5-4 De Obeso & Kelemen submitted Harzburgite -0.10 -0.07 0.09 1
OM15-6-4 De Obeso & Kelemen submitted Harzburgite -0.09 -0.03 0.09 1
OM15-7-4 De Obeso & Kelemen submitted Harzburgite -0.09 -0.07 0.09 1
OM15-5-3 De Obeso & Kelemen submitted Oxidized harzburgite 0.94 0.49 0.09 1
OM15-6-3 De Obeso & Kelemen submitted Oxidized harzburgite 0.86 0.46 0.09 1
OM15-7-3 De Obeso & Kelemen submitted Oxidized harzburgite 0.77 0.41 0.09 1
OM15-6-2 De Obeso & Kelemen submitted Altered harzburgite 0.74 0.38 0.09 1
OM15-7-2 De Obeso & Kelemen submitted Altered harzburgite 0.74 0.40 0.09 1
OM15-5-2 De Obeso & Kelemen submitted Altered harzburgite 0.70 0.37 0.09 1
OM13-15A This Study Serpentinite 0.17 0.08 0.09 1
OM15-5-5 This Study ”Waxy” vein 1.19 0.60 0.09 1
OM13-15B This Study Serpentine vein 0.45 0.20 0.09 1

OM13-17A WP This Study Serpentine vein 0.96 0.51 0.09 1
OM09-11 Falk and Kelemen 2015 Magnesite Listvenite -0.33 -0.18 0.09 1
OM10-26 Falk and Kelemen 2015 Magnesite Listvenite -0.33 -0.16 0.09 1
OM10-14 Falk and Kelemen 2015 Dolomite Listvenite -1.46 -0.78 0.09 1
OM10-15 Falk and Kelemen 2015 Dolomite Listvenite -0.89 -0.48 0.09 1
OM07-39 Streit et al. 2012 Massive magnesite vein -3.14 -1.64 0.09 1
OM07-27 Streit et al. 2012 Massive dolomite vein -1.91 -1.02 0.09 1

OM17 Magnesite This study Massive magnesite vein -3.38 -1.77 0.01 5
OM07-18 Kelemen et al 2011 only mineralogy Travertine forming now -1.14 -0.56 0.07 2
OM07-34A Kelemen et al 2011 only mineralogy Old travertine -0.89 -0.44 0.05 2
OM07-07 Kelemen et al 2011 only mineralogy Carbonate vein -3.39 -1.75 0.09 1

BA1B 11-2 17-27 cm This study from mineralogy Huntite vein -3.04 -1.57 0.09 1

2σ=long-term external reproducibility of Cambridge-1; applied to all samples that were
run only once through column chemistry + Neptune (i.e. not replicated)
2SE=applied to samples that were replicated, that is, run through column chemistry +
Neptune more than once
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Table 4.2: Magnesium isotope fractionation factors

Reference αmgs−fluid αdol−fluid

Wang et al 2019 0.9972 0.9981
Schauble et al 2011 0.9954 0.9965

Schott et al. 2016∧/Li et al 2015 0.9979 0.9983

∧ Schott is extrapolated from batch reaction data
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Appendix A: Supplementary Figures

Supplementary figure 1. Representative XRD spectra of three alteration zones. Spectra
were processed using Match! software. Background was removed using Match! auto-
matic background removal tool for clarity.
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Appendix B: Supplementary Tables

Supplementary Tables for Chapter 2: Fluid rock interactions on residual mantle peri-

dotites overlain by shallow oceanic limestones: Insights from Wadi Fins, Sultanate of

Oman can be downloaded here

Supplementary Tables for Chapter 3: Magnesium and iron mobility during serpen-

tinization, oxidation and weathering of mantle peridotite at low temperatures: The case

of Wadi Fins, Oman can be downloaded here

Supplementary Tables for Chapter 4: Carbon mineralization accompanying serpen-

tinization in the Oman ophiolite: A magnesium isotope perspective can be downloaded

here
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