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Abstract

Glioblastomas (GBM) are highly radioresistant and lethal brain tumors. Ionizing radiation (IR)-

induced DNA double-strand breaks (DSBs) are a risk factor for the development of GBM. In this 

study, we systematically examined the contribution of IR-induced DSBs to GBM development 

using transgenic mouse models harboring brain-targeted deletions of key tumor suppressors 

frequently lost in GBM, namely Ink4a, Ink4b, Arf, and/or PTEN. Using low linear energy transfer 

(LET) X-rays to generate simple breaks or high LET Fe ions to generate complex breaks, we 

found that DSBs induce high-grade gliomas in these mice which, otherwise, do not develop 

gliomas spontaneously. Loss of Ink4a and Arf was sufficient to trigger IR-induced glioma 

development but additional loss of Ink4b significantly increased tumor incidence. We analyzed 

IR-induced tumors for copy number alterations (CNAs) to identify oncogenic changes that were 

generated and selected for as a consequence of stochastic DSB events. We found Met 

amplification to be the most significant oncogenic event in these radiation-induced gliomas. 

Importantly, Met activation resulted in expression of Sox2, a GBM cancer stem cell (CSC) 

marker, and was obligatory for tumor formation. In sum, these results indicate that radiation-
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induced DSBs cooperate with loss of Ink4 and Arf tumor suppressors to generate high-grade 

gliomas that are commonly driven by Met amplification and activation.
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Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor and is highly fatal 

despite aggressive treatment regimens that include surgical resection, radiotherapy, and 

chemotherapy (1-3). Following surgery, the residual tumor is commonly treated with 

cumulative radiation doses of 60 Gy or more. In spite of such aggressive treatment, tumor 

recurrence is quick and the relapsed tumor is highly therapy resistant. A clear understanding 

of factors contributing to glioblastoma development and recurrence is necessary for the 

formulation of effective therapeutic strategies. Exposure to ionizing radiation (IR) is the 

only known risk factor for developing these lethal brain tumors (4-9), and even low dose 

radiation exposure from CT scans has been reported to increase the risk of subsequent brain 

tumor development (10).

In order to directly examine the contribution of IR to GBM development, we intracranially 

irradiated a cohort of Nestin-Cre mice with brain-targeted deletions of Ink4a, Ink4b, Arf, 

and/or PTEN, tumor suppressor genes that are frequently lost in GBM (1-3). Two different 

types of IR, low linear energy transfer (LET) X-rays and high LET Fe ions, were used to 

induce simple and complex DNA double-strand breaks (DSBs), respectively (11-13). We 

found that exposure to IR precipitated the development of high-grade gliomas in these mice, 

with frequencies depending upon the combination of tumor suppressor gene deletion(s), as 

well as upon the radiation dose and quality. Strikingly, we found high levels of amplification 

of the Met receptor tyrosine kinase (RTK) to be the predominant genomic alteration in these 

IR-induced tumors. Interestingly, Met over-expression not only promoted tumorigenesis, but 

also conferred a stem cell phenotype via upregulation of Sox2 in these tumors.

Results and Discussion

Induction and repair of DNA double-strand breaks in the mouse brain

For this study, we used the following compound transgenic mouse lines in which GBM-

relevant tumor suppressor genes are conditionally deleted in the brain: 1) Nestin-

Cre;Ink4a/Arf+/+ (designated WT for wild type), 2) Nestin-Cre;Ink4a/Arff/f (designated 

Ink4a/Arf−/−), 3) Nestin-Cre;Ink4ab−/−;Arff/f (designated Ink4ab/Arf−/−), and 4) Nestin-

Cre;Ink4ab−/−;Arff/f;PTENf/+ (designated Ink4ab/Arf−/−;PTEN+/−) (Supplementary Table 1). 
We monitored the induction of DSBs, the most deleterious lesion inflicted by IR (14), in the 

brains of WT (Supplementary Figure S1a) and Ink4ab/Arf−/− (Figure 1a) mice that were 

intra-cranially irradiated with a single dose of 1 Gy Fe ions or 4 Gy X-rays (equitoxic doses 

based on the colony formation assay (15)). DSBs were quantified by counting γH2AX foci, 

a marker for DSBs, in brain sections at different times post-IR, as previously described (16). 
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DSBs were quantified in the two neurogenic niches, the subgranular zone (SGZ) and 

subventricular zone (SVZ) (17), as well as in the cortex and in astrocytes (GFAP-positive 

cells). At 1 hour post-IR, we observed the induction of DSBs in all regions of the WT and 

Ink4ab/Arf−/− mouse brains (Figure 1b and Supplementary Fig. 1b). By 12 hours post-IR, a 

high level of apoptosis (TUNEL positivity) was seen in the SVZ (Figure 1c and 

Supplementary Fig. 1c), along with a concomitant decrease in the number of proliferating 

(Ki67-positive) cells (Figure 1d and Supplementary Figure 1d), thus confirming the 

induction of DNA damage by both low and high LET IR. We found that DSBs induced by 

X-rays were rapidly repaired while those induced by Fe ions were persistent, as was evident 

from comparing residual breaks at 1 and 3 days post-IR (Figure 1b). Even at 1 month post-

IR, approximately 13% of Fe-irradiated cells harbored at least one γH2AX focus 

(Supplementary Fig. 1b). WT and Ink4ab/Arf−/− brains displayed similar DNA repair 

capabilities indicating that deletions of Ink4a, Ink4b, and Arf tumor suppressors did not 

affect the repair of IR-induced DSBs per se (Figure 1b).

Combined inactivation of Ink4a, Ink4b, and Arf cooperates with IR-induced DSBs to 
generate high-grade gliomas

WT, Ink4a/Arf−/−, Ink4ab/Arf−/−, and Ink4ab/Arf−/−;PTEN+/− mice, at 6-10 weeks of age, 

were irradiated intra-cranially with a single dose of 1 Gy Fe or with an equitoxic dose of 4 

Gy X-rays (Supplementary Table 1). Unlike typical mouse GBM models (1, 18), these mice 

lack a dominantly-acting oncogene and thus do not develop brain lesions spontaneously, 

except for a small percentage of Ink4ab/Arf−/−;PTEN+/− mice (Supplementary Table 1). 
Exposure to either X-rays or Fe ions resulted in brain tumors in mice with tumor suppressor 

gene deletions, but not in WT mice. Brain tumor incidence in Ink4ab/Arf−/− mice was higher 

than in Ink4a/Arf−/− mice (25% and 10%, respectively). Additional PTEN heterozygosity 

increased tumor incidence after Fe irradiation to 35% (Supplementary Table 1 and Figure 

2a). Four-fold lower doses of Fe ions compared to X-rays (1 Gy vs 4 Gy) were needed to 

achieve similar tumor frequencies. Thus, Fe ions appear to have an approximately 4-fold 

higher relative biological effectiveness (RBE) for transformation compared to X-rays, very 

similar to the RBE for cell killing in colony formation assays (15). Taken together, these 

results clearly indicate that DSBs, both simple and complex, can cooperate with deletions of 

the Ink4 and Arf genes to promote malignant transformation in the mouse brain.

All IR-induced tumors obtained were highly infiltrative, exhibiting markedly increased 

cellularity (Figure 2b), high mitotic activity, and pleomorphic nuclei, with areas of 

pseudopalisading necrosis (Figure 2c). These tumors were classified as high-grade glial 

tumors (Grade III or IV) after pathological examination, based on the World Health 

Organization classification system (1). Tumors from Ink4ab/Arf−/− mice (Figure 2d), as well 

as from other genotypes (Supplementary Figure 2), stained positive for Nestin, GFAP, NeuN 

and Olig2 to varying extents, all of which are classical human glioma markers (19). Tumors 

also showed elevated levels of phospho-Erk and phospho-Akt, indicating activation of Ras 

and Akt signaling pathways, respectively, and high numbers of Ki67-positive cells, 

indicating robust proliferation as seen in human GBM.
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IR-induced glioblastomas are characterized by a high frequency and amplitude of Met 
amplification

In order to identify genomic changes driving IR-induced gliomagenesis, we analyzed Fe-

induced tumors from Ink4ab/Arf−/− mice using array comparative genomic hybridization 

(aCGH) (Figure 3a). The data set was analyzed using the Genomic Identification of 

Significant Targets in Cancer (GISTIC) algorithm that identifies regions of copy number 

variation (CNV) that are more likely to drive cancer pathogenesis by emphasizing frequency 

of occurrence as well amplitude of the aberration (20). Upon analysis of 12 Ink4ab/Arf−/− 

tumors, we identified 76 genes with G scores >5 (Appendix). The most significant and 

frequent amplification (G score= 25.3), found present in ~42% (5/12) of tumors examined, 

localized to a small region on Chr6A2, where the RTK Met was the only gene spanned by 

the peak of the CNV (Figure 3a). The amplitude of Met amplification was high, with log2 

ratios typically above 3, implying more than 8 gene copies per cell (Figure 3b). Other RTKs 

implicated in glioma development, namely PDGFRβ and EGFR (1), were found to be 

amplified in 16.6% (2/12) and 8.3% (1/12) of tumors, respectively. Log2 ratios for these two 

genes were between 0.5 and 1, indicating low copy number amplification (Supplementary 

Figure 3a). Met amplification was largely confirmed by fluorescence in situ hybridization 

(FISH) analyses of 8 tumors that had been previously analyzed by aCGH (Supplementary 

Table 2). Amplification was predominantly in the form of extra-chromosomal double 

minutes (Figure 3c) similar to that reported for human GBM (21). In most tumors examined 

by FISH, Met amplification was uniform, with every tumor cell showing evidence of 

amplification, indicating that this was an early event in gliomagenesis in these models 

similar to that postulated for human GBM (22). A limited number of tumors derived from 

other genotypes and radiation types were also analyzed by aCGH and/or FISH and frequent 

Met amplification was observed in these IR-induced tumors (Supplementary Figure 3b and 

Supplementary Table 2). Finally, amplification correlated with robust Met expression and 

activation as confirmed by immunohistochemical staining of representative tumors with 

anti-Met and anti-phospho-Met antibodies, respectively (Figure 3d).

Met amplification in IR-induced tumors correlates with Sox2 expression and promotes 
tumorigenesis

We established ex vivo cultures from tumors obtained from X-ray or Feirradiated Ink4ab/

Arf−/− mice. However, even for tumors that were highly positive for Met, the derivative 

cultures showed barely detectable Met protein levels by Western blotting (Supplementary 

Figure 4a), indicating loss of Met double minutes due to absence of selection pressure under 

in vitro culture conditions. This phenomenon is similar to that reported for Met amplified in 

breast cancers (23), and is analogous to that seen with EGFR or EGFRvIII in human GBM 

cultures (24). We therefore re-expressed V5-tagged Met in a representative Fe-derived 

Ink4ab/Arf−/− tumor line (tumor ID#253). The Met re-expressing tumor line showed high 

levels of phosphorylated Met compared to control cells (parental tumor line expressing V5-

tagged β-Gal) (Figure 4a). A recent report highlighted a potential role for Met in maintaining 

a GBM CSC-like phenotype via up regulation of Sox2, a re-programming transcription 

factor involved in the maintenance of neural stem cells (NSC) (25). We, too, found that re-

expression of Met resulted in high levels of Sox2 expression (Figures 4a,b) and conferred an 
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ability to grow as neurospheres in serum-free NSC media (Figure 4c). Met expression also 

enhanced the ability of these cells to grow as colonies in soft agar indicating that these cells 

were highly transformed compared to the control cells (Figure 4d). Finally, to confirm the 

importance of Met in promoting tumorigenesis in our model system, we injected cells re-

expressing Met subcutaneously into nude mice. As few as 20,000 Met-expressing cells were 

sufficient to generate palpable tumors by 8 weeks indicating that these cells were highly 

tumorigenic (Figure 4e). By comparison, even 2.5 million control cells were unable to 

generate palpable tumors within this time frame. In a complementary set of experiments, we 

generated a tumor cell line with high levels of Met expression by passaging an ex vivo 

culture as an allograft (Supplementary Figure 4a). These cells showed significantly 

enhanced Sox2 expression (Supplementary Figure 4b,c) and stem cell and tumorigenic 

phenotypes (Supplementary Figure 4d,e) compared to the parental cultures (which had low 

levels of Met), and this was reversed by shRNA-mediated knockdown of Met. Importantly, 

higher levels of Sox2 expression were also seen in the radiation-induced gliomas with Met 

amplification compared to non-amplified tumors (Figure 3d).Taken together, these results 

indicate that Met amplification is important both for enhancing tumorigenicity as well as for 

promoting Sox2 expression and a CSC phenotype in the context of radiation-induced 

gliomas in these model systems.

In this study, we directly examined the role of IR-induced DSBs, in cooperation with 

existing tumor suppressor losses, in the development of high-grade gliomas using 

genetically accurate mouse GBM models. The greatest advantage of this approach is that, 

without forced expression of a dominant oncogene, it allows for the selection of genetic 

alterations arising from stochastic events that may play a crucial role in gliomagenesis. Our 

“sensitized” models, with targeted deletions of Ink4a, Ink4b, and Arf, are very appropriate 

for this study given that these loci are commonly deleted in about 50% of GBMs (26) and 

loss of these loci is suggested to be one of the earliest initiating events in gliomagenesis 

(27). Our results indicate that combined loss of these three tumor suppressors (Ink4a, Ink4b, 

and Arf), while insufficient for gliomagenesis per se, cooperate with IR-induced DSBs to 

efficiently induce high-grade gliomas. We find that the frequency of tumor formation 

depends both upon the tumor suppressor gene deletion(s) as well as upon the radiation dose 

and quality. We used two qualitatively different types of IR for this study, X- rays and Fe 

particles. While X-rays are commonly used for therapy, particle radiation is also being 

increasingly used in the clinic due to better dose distribution and higher RBE (11-13). In 

addition, heavier particles, such as Fe ions, are a common component of Galactic Cosmic 

Rays (GCR) and pose a clear cancer risk to astronauts, the magnitude of which remains to be 

quantified. We found that lower doses of Fe ions, compared to X-rays, are needed to 

generate tumors with the same frequency indicating that Fe ions have a higher transforming 

potential compared to X-rays. The higher transforming potential of Fe ions correlates with 

the slower repair of DSBs induced by these ions in vivo which is in accord with in vitro 

observations reported by us previously (15, 28). The slower repair observed with Fe ions is 

presumably due to the induction of clustered DNA damage that is inherently more difficult 

to repair (12, 13, 29) and also due to the propensity for such damage to undergo DNA end 

resection and be repaired by the slower process of homologous recombination (30-32). With 

both X-rays and Fe ions, we observed a significantly lower incidence of gliomas with loss of 
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Ink4a and Arf, compared to loss of Ink4a, Ink4b, and Arf, corroborating both our previous in 

vitro study showing that additional loss of Ink4b accompanies IR-induced transformation of 

Ink4a/Arf-null astrocytes (15) and an independent study demonstrating that Ink4b plays an 

important “backup” tumor suppressor role in the absence of Ink4a (33). Additional 

heterozygous loss of PTEN increases the frequency of brain tumors after Fe irradiation, in 

accord with the role of PTEN loss in promoting gliomagenesis in humans (1-3). Taken 

together, our results indicate that DSBs, whether simple or complex (i.e., resulting from X-

ray or Fe-irradiation), generate high-grade gliomas in these mouse models after exposure to 

an acute, clinically-relevant dose of IR, with Fe ions exhibiting at least a 4-fold higher 

transforming potential compared to X-rays.

Detailed analyses of the IR-induced tumors from Ink4ab/Arf−/− mice revealed that 

amplification of the RTK Met was strongly selected for during tumorigenesis and that Met 

expression conferred a high tumorigenic potential to the glioma cells. MET is frequently 

amplified or mutationally activated in many human cancers and triggers a diverse array of 

downstream signaling cascades that promote cell survival, growth, invasion, and metastasis 

of cancer cells (34, 35). Focal amplification of MET occurs in about 4% of human GBM 

(26). However, broad amplification of chromosome 7 (which harbors the MET gene) occurs 

in about 80% of primary GBM, and at least a third of chromosome 7 gain events are 

associated with overexpression of MET and/or its ligand HGF (20). A recent study mapping 

the evolution of glioblastomas in human patients identified MET amplification as an early 

event during gliomagenesis (22). Importantly, MET has recently been shown to be amplified 

and activated in GBM CSCs where it is involved in maintaining a stem cell-like phenotype 

by promoting the expression of re-programming transcription factors such as Nanog and 

Sox2 (25). A CSC-maintenance role for MET was bolstered by recent studies showing that 

MET amplification is a functional marker for GBM CSCs (36, 37). Our results, showing that 

Met promotes Sox2 expression and the ability of glioma cells to grow as neurospheres, 

support such a CSC-maintenance role for Met.

It has been reported that MET amplification in human tumors might be a consequence of 

DNA breakages occurring within chromosomal fragile sites (38); thus, it is conceivable that 

IR-induced DSBs might trigger MET amplification during radiotherapy of human GBM. 

Importantly, MET expression correlates with resistance to therapeutic agents (39-44) 

including IR (45). Thus, our results raise the possibility that recurrent tumors arising after 

radiotherapy might have a greater propensity for MET amplification, rendering them even 

more resistant to therapy compared to primary tumors. Indeed, in studies involving a limited 

number of matched pre- and post-irradiated (recurrent) tumor specimens, MET levels were 

found to be higher in recurrent tumors compared to the corresponding primary tumor; 

moreover, patients showing higher levels of MET induction after therapy had a significantly 

shorter median survival compared to patients with lower levels of MET induction (37, 46). 

A causal relationship between radiation and MET amplification may help explain why there 

is a lack of significant representation of GBMs showing concomitant over-expression of 

MET and Sox2 in the TCGA database where approximately 90% of the GBM specimens are 

primary tumors that did not receive radiotherapy (26). Our results, for the first time, 

demonstrate the process of radiation-induced gliomagenesis in genetically-defined mouse 

Camacho et al. Page 6

Oncogene. Author manuscript; available in PMC 2015 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GBM models and raise the possibility that Met amplification may drive glioblastoma 

development or recurrence upon exposure to IR. Taken together, these results have 

important implications not just for IR-induced gliomagenesis but also for the development 

of therapy-resistant recurrent tumors that arise after GBM radiotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Induction and repair of DSBs in the mouse brain
(a) Ink4ab/Arf −/− mice were irradiated intra-cranially with 1 Gy of Fe ions or 4 Gy of X-

rays and DNA damage examined at the indicated time points. Fe ions with a kinetic energy 

of 600 MeV/nucleon were provided by the National Aeronautics and Space Administration 

(NASA) Space Radiation Laboratory at Brookhaven National Laboratory, as described 

previously (28). X-ray irradiations were carried out using an X-RAD 320 irradiator 

(Precision X-Ray). DNA damage was visualized by staining for γH2AX (red, Millipore, 

Billerica, MA); nuclei were stained with DAPI (blue). Immunofluorescence staining of 

tissue sections was performed as described previously (16). Representative pictures of the 

cortical region are shown. Mice were obtained from the Mouse Cancer Models Consortium 

and maintained in a FVB/NJ and C57BL6 mixed background. Nestin-Cre mice (47) were 

crossed with two previously described transgenic mouse lines, Ink4a/Arf f/f harboring floxed 

Ink4a and Arf genes (48) or Ink4ab−/−;Arf f/f, harboring germline inactivation of Ink4a and 

Ink4b, and a floxed Arf gene (33). Additional PTEN heterozygosity (PTENf/+) (49) was bred 

into the Ink4ab−/−;Arff/f background. All procedures for mouse experiments were performed 

under protocols approved by the Institutional Animal Care and Use Committees of the 

University of Texas Southwestern Medical Center and the Brookhaven National Laboratory. 

(b) DNA damage was quantified in the SGZ, SVZ, and cortex by calculating the percentage 

of nuclei with at least 1 γH2AX focus (y-axis) at the indicated times post-IR (x-axis). Initial 

damage was measured at 1 hour post-IR and mice were monitored up to 1 month post-IR. 

γH2AX data (1 to72 hours post-IR) for WT (Supplementary Figure S1a) and Ink4ab/Arf −/− 
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mice are plotted together to allow direct comparisons; data for the entire one-month time 

course are shown in Supplementary Figure S1b. Note higher percentage of cells with 

γH2AX foci in Fe-irradiated brains at 3 days post-IR and no major difference in repair 

capacity between WT and Ink4ab/Arf −/− mice. n = 3 mice per time point. Error bars, S.E.M. 

p-values for X-rays vs Fe ions are: **, p = 0.0072 (SGZ of WT mice); ***, p = 0.0003 (SGZ 

of Ink4ab/Arf−/− mice); **, p = 0.0085 (SVZ of WT mice); **, p = 0.0013 (SVZ of 

Ink4ab/Arf−/− mice); **, p = 0.0025 (cortex of WT mice); *, p = 0.0371 (cortex of 

Ink4ab/Arf−/− mice). Statistical significance was calculated by performing unpaired, two 

tailed t-tests using the Graphpad Prism software package. (c) Terminal deoxyribonucleotidyl 

transferase-mediated dUTP nick end labeling (TUNEL) staining was performed on brain 

sections of Ink4ab/Arf −/− and WT (Supplementary Figure S1c) mice at 12 and 24 hours 

post-IR. Note large numbers of apoptotic cells in the SVZ at 12 hours in response to both 

Fe- and X-ray irradiation. TUNEL assay was performed according to the manufacturer’s 

instructions using FragEL DNA Fragmentation Kit with colorimetric TdT-Enzyme 

(Calbiochem, Darmstadt, Germany) to detect fragmentation of DNA associated with 

apoptosis on formalin-fixed paraffin embedded tissue sections. (d) Proliferating cells in the 

SVZ of Ink4ab/Arf −/− and WT (Supplementary Figure S1d) mice were visualized by 

staining with anti-Ki67 antibody (green; Novocastra, Wetzlar, Germany). Note loss of Ki67-

positive cells after irradiation.
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Figure 2. DSBs cooperate with tumor suppressor gene loss to generate high-grade gliomas
(a) Kaplan-Meier curves showing percentages of Fe- or X-ray-irradiated mice surviving 

without intracranial lesions for the four different genetic backgrounds. n = 40 mice per 

group (numbers in parentheses indicate total number of glioblastomas observed in each 

cohort). Note higher incidence of tumor formation in Ink4ab/Arf−/− cohort compared to 

Ink4a/Arf−/− cohort. p = 0.0270 (Mock-IR vs X-rays or Fe for Ink4a/Arf−/− mice); p = 

0.0003 (Mock-IR vs X-rays or Fe for Ink4ab/Arf−/− mice); p = 0.0013 (Mock-IR vs X-rays 

for Ink4ab/Arf−/−;PTEN+/− mice); p < 0.0001 (Mock-IR vs Fe for Ink4ab/Arf−/−;PTEN+/− 

mice). Statistical significance was calculated by the logrank test using the Graphpad Prism 

software package. Mice were monitored for up to 9 months post-IR for onset of neurological 

symptoms (seizure, ataxia, lack of clasp reflex, or lack of balance) and for additional 

symptoms such as lethargy or weight loss. Mice exhibiting these symptoms or morbidity 

were sacrificed and examined for evidence of brain tumors by serial sectioning and 

Hematoxylin and Eosin (H&E) staining. Tumor classifications were assigned by a resident 

neuropathologist. To rule out occult lesions, all brains from asymptomatic mice were 

similarly screened at end of the experimental period. (b) Representative image of a tumor-

bearing Ink4ab/Arf−/− brain at 2 months post-IR compared to a normal mock-irradiated 

brain and Hematoxylin and Eosin (H&E)-stained section of a representative Ink4ab/Arf−/− 

brain harboring a glioma. Note infiltrative nature and hypercellularity of the lesion. (c) 
Tumors were classified as high-grade gliomas based on a range of histopathological features 

including – (i) high mitotic activity (inset shows magnified view of a mitotic nucleus), (ii) 

pleomorphic nuclei, and (iii) areas with pseudopalisading necrosis. (d) Immunofluorescence 

staining of Ink4ab/Arf−/− tumors for classical human glioma markers, Nestin (BD 
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Pharmingen, San Diego, CA), GFAP (Biocare Medical, Concord, CA), NeuN (Millipore, 

Billerica, MA), and Olig2 (Millipore, Billerica, MA) was carried out as described previously 

(16). Tumors were also stained for phospho-Erk1/Erk2 (Thr202/Tyr204) (Abcam, 

Cambridge, MA), phospho-Akt (Ser473) (Abcam, Cambridge, MA), and Ki67 (Novocastra, 

Wetzlar, Germany).
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Figure 3. High frequency and amplitude of Met amplification in radiation-induced gliomas
(a) aCGH schematic of Met locus showing region of amplification (blue lines) across 12 Fe-

derived tumor samples from Ink4ab/Arf−/− mice. Asterisks (*) indicate samples where 

region of amplification spanned the entire length of the Met locus. DNA was isolated from 

frozen tissues using the DNeasy Blood and Tissue Kit (Qiagen, Germantown, MD), 

following manufacturer’s protocol. aCGH was carried out as previously described (15) and 

data analyzed using Nexus Copy Number Analysis software (Biodiscovery, El Segundo, 

CA). To identify meaningful copy number variation (CNV) events, the Genomic 

Identification of Significant Targets in Cancer (GISTIC) algorithm was used (20). This 

method calculates a statistic (G score) that takes into account frequency of the occurrence as 

well as amplitude of the aberration, and also calculates statistical significance for each 

aberration. By this method, Met amplification (G score= 25.3) was identified to be the most 

significant genomic alteration in these tumors. n = 12. (b) Representative probe view of 

chromosomal region flanking the Met locus showing log2 ratios (y-axis) of individual 

probes along the chromosome (x-axis). (c) FISH analysis showing representative radiation-

induced tumors with normal, low, and high amplification levels of Met (red). A bacterial 

artificial chromosome (BAC) clone RP23-73G15 spanning the mouse Met gene was 

obtained from Invitrogen (Carlsbad, CA). DNA isolated from the BAC clone was labeled 

with Spectrum Orange dUTP by nick translation and used in FISH. FISH was performed on 

4 μm sections prepared from formalin-fixed paraffin-embedded tissues using standard 

hybridization methods (50). Hybridization signals were analyzed on DAPI counterstained 

slides using a Nikon Eclipse epi-fluorescence microscope equipped with Applied Imaging 

CytoVision software (San Jose, CA). FISH signal scoring on tissue sections was restricted to 
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tumor areas based on H&E sections. (d) Immunohistochemical staining of 4 representative 

Met amplified tumors compared to 2 non-amplified tumors from Fe-irradiated Ink4ab/Arf−/− 

mice. Amplification of Met correlates with higher Met expression, robust activation of Met 

(phospho-Met), and increased levels of Sox2 expression. IHC was carried out using 

ImmPRESS peroxidaseconjugated secondary antibodies and the ImmPACT DAB 

peroxidase substrate (Vector Laboratories, Burlingame, CA), as specified by manufacturer. 

Antibodies used for IHC were anti-phospho-Met (Tyr1234/1235), anti-Met (Cell Signaling, 

Danvers, MA), and anti-Sox2 (Abcam, Cambridge, MA).
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Figure 4. Met expression is associated with induction of Sox2 expression and high tumorigenic 
potential
(a) Western analysis of a representative Fe-derived tumor line (parental tumor ID#253), 

deficient in Ink4a, Ink4b, and Arf, and ectopically expressing V5-tagged Met or β-Gal as 

control. Primary astrocytes from WT and Ink4ab/Arf−/− mice serve as positive and negative 

Western blotting controls, respectively. Note that overexpression and activation of Met 

correlates with induction of high levels of Sox2. Ex vivo tumor cultures were all maintained 

in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% of a fetal bovine/newborn 

calf serum mixture and penicillin/streptomycin (50 mg/ml). To generate Met-expressing 

tumor cells, Met was sequentially cloned into pLenti6.3/V5-DEST vector using the Gateway 

Cloning system (Invitrogen, Carlsbad, CA) with pBabe-puro c-Met-WT as the starting 

vector (gift from Joan Brugge; Addgene, Cambridge, MA; plasmid #17493). Virus 

production was carried out using ViraPower Lentiviral Packaging Mix (Invitrogen, 

Carlsbad, CA), as specified by manufacturer. Cells were infected with viral particles at a 

multiplicity of infection (MOI) of 2 with 4μg/ml polybrene. Cells were maintained under 

selection with 4μg/ml blasticidin. Western blotting of whole-cell extracts was performed as 

described before (16). Antibodies used were anti-actin (Sigma, St Louis, MO), anti-

phospho-Met (Tyr1234/1235), anti-Met, anti-Ink4b (Cell Signaling, Danvers, MA), anti-

Sox2 (Abcam, Cambridge, MA), anti-Ink4a, anti-Arf (Santa Cruz, Dallas, TX), and anti-V5 
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(Invitrogen, Carlsbad, CA). (b) Immunofluorescence staining of Met-expressing and control 

cells showing correlation of Met expression (red) with Sox2 (green) was carried out as 

described previously (16). Antibodies used were anti-Met (Cell Signaling, Danvers, MA) 

and anti-Sox2 (Abcam, Cambridge, MA). (c) Bright field images of cells expressing β-Gal 

or Met growing as adherent cells in full serum, or as spheres in NSC media. Cells were 

plated in NSC media at single cell dilutions in 96-well plates to assay for sphere-formation. 

The percentage of cells forming neurospheres is plotted. n = 2. Note that control cells 

(expressing β-Gal) show no growth in NSC medium. NSC medium consisted of DMEM/

Ham’s F12 50/50 mix with EGF (20ug/ml), bFGF (25ug/ml), progesterone (20ug/ml), B-27 

and insulin/transferrin-selenium supplements, doxycycline (2mg/ml), penicillin/

streptomycin (50 mg/ml) and Fungizone antimycotic. (d) Tumorigenic potential of cells was 

assessed by colony formation in soft-agar. 1×104 cells were plated in 0.6% Bacto-agar. The 

percentage of cells forming colonies is plotted.n = 2. Error bars, S.E.M. ***, p = 0.009. 

Statistical significance was calculated by performing unpaired, two tailed t-tests using the 

Graphpad Prism software package. (e) Representative image of tumor resulting from sub-

cutaneous injection of cells expressing Met at approximately 50 days post-injection. Note 

absence of tumor formation by control cells (expressing β-Gal). Cells (as indicated) were 

suspended in Hank’s Buffered Salt Solution and 2×104, 1×105, 5×105, or 2.5×106 cells were 

subcutaneously injected into the flanks of 6-week-old Nu/Nu nude mice (Charles River 

Laboratories International, Wilmington, MA). Mice were monitored daily to determine days 

to palpability. Tumor development after injection of increasing numbers of Met-expressing 

(triangles) or control cells (crosses) is plotted. Plot shows the number of cells injected (x-

axis) versus days until the resulting tumor became palpable (y-axis). Top section of plot 

shows injections that failed to form tumors up to 8 weeks. Note that 2×104 Met-expressing 

cells were sufficient to form tumors while even 2.5×106 control cells failed to form tumors 

within 8 weeks.

Camacho et al. Page 17

Oncogene. Author manuscript; available in PMC 2015 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


