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Abstract
Regional Geographies of Extreme Heat

Colin S. Raymond

Shaped by countless influences from the atmosphere, biosphere, hydrosphere, and
anthroposphere acting across a wide spectrum of spatiotemporal scales, spatial variations in
climate are ubiquitous. Meanwhile, the warming signal from anthropogenically elevated
greenhouse-gas concentrations is emerging as an overriding determinant for more and more
aspects of the climate system, extreme heat among them. In this dissertation, I explore the
interaction of these two effects, and the implications of the patterns they create.

A key finding is that rapid increases in extreme heat are already occurring, by some metrics
having already doubled in the past 40 years, and further nonlinear increases are expected. Another
is the strong dependence of extreme heat-humidity combinations on atmospheric moisture,
creating subseasonal and interannual patterns dictated by the principal source of regional warm-
season moisture — pre-monsoonal advection in some cases, local evapotranspiration in others.
These relationships lead to the demonstrated potential for improvements in predictive power, on
the basis of sea-surface temperatures and other canonical modes of large-scale climate variability.

In contrast to this overall confidence in current temporal patterns and long-term
projections, I show that extreme heat at small spatial scales is much more poorly characterized in
gridded products, and that these biases are especially acute along coastlines. While summer
daytime temperature differences between the shoreline of the Northeast U.S. and locations 60 km
inland are often 5°C or more, I find that recent high-resolution downscaled Earth-system models

typically represent no more than 25% of this difference. Across the globe, ERA-Interim reanalysis



similarly underestimates extreme humid heat by >3°C, a highly significant margin given the large
sensitivity of health and economic impacts to marginal changes in the most extreme conditions. |
find that these biases propagate into projections, and their importance is also amplified by the large
populations living in the affected areas.

Rapid mean warming is pushing the climate system to more and more frequently include
extreme heat-humidity combinations beyond that which the human species has likely ever
experienced. Such conditions, which had not been previously reported in weather-station data, are
described in detail and some of the associated characteristics examined. Several channels of
analysis highlight that these events are driven primarily by rising sea-surface temperatures in
shallow subtropical gulfs, and the subsequent impingement of marine air on the coastline. Given
the severity of potential impacts on infrastructure and agriculture, and the size of the populations
exposed, this result underscores that major research and adaptation efforts are needed to avoid
calamitous outcomes from the emergence of extreme heat-humidity combinations too severe to
tolerate in the absence of artificial cooling.

This dissertation discusses strategies for advancing knowledge of extreme heat’s natural
variations and its behavior under climate change, in order to design metrics, models,
methodologies, and presentation types such that essential findings are translated into tangible
action in the most effective way possible. Sustained and integrated efforts are necessary to
transition to a climate-system management style encompassing more foresight than the effectively
unplanned experiment which has been pursued so far, and which has already exacerbated extreme

heat events so much.
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Tw>=33°C, and there is geographical consistency as to where these hotspot regions are located.
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Introduction

Many lines of evidence converge on the conclusion that the heat extremes of the coming
decades and centuries will be ever more severe than those of the past. These include robust
observed increases of heat extremes in recent decades (Russo et al., 2017; Meehl et al., 2009) and
a wide variety of modeling studies (Sillmann et al., 2013; Kharin et al., 2013). In the global sum,
heat extremes are closely correlated with global mean temperature (Argiieso et al., 2016), and
paleoclimatic evidence for the latter suggests that current temperatures are already higher than any
observed in the Holocene (Marsicek et al., 2018).

As global mean temperatures continue to increase, heat extremes and their impacts rise at
an even faster rate, a consequence of extreme-value statistics whose ultimate expression is
modulated by a web of feedbacks involving atmospheric dynamics, ecological responses,
anthropogenic land-use decisions, and economic and social behaviors (Lhotka et al., 2018; Mora
et al., 2017; Coumou et al., 2014; Argiieso et al., 2014). This complexity means that, beneath the
facade of a strong and easily predictable net response of extreme heat to global-mean warming,
there remains much to discover about the changing behavior of heat extremes of particular kinds,
in particular locations, and under particular conditions. The impacts of extreme heat on agriculture,
health, productivity, and the environment, combined with the growing wealth and
interconnectedness of the global population, mean that adapting successfully to the future requires
a detailed understanding of the hazards presented by extreme heat, where they will be located, and
when they can be expected.

This dissertation focuses on advancing the state of knowledge for extreme heat at regional
and subregional scales, and especially the overlap of extreme temperatures with extreme humidity.

In examining essential scientific questions, the dissertation builds thematically from the areas



closest to existing literature — in Chapter 1, I add to the body of work on extreme-temperature
projections by conducting an observational validation along coastlines — to progress to the frontier
area of extreme-humid-heat intensity and spatiotemporal characteristics in Chapter 2, and then it
goes further (in Chapter 3) to consider the warming rate and impacts of the globally-most-severe
humid heat. Consequently, the chapters are arranged to first highlight contributions in more-
established fields, and then to follow an argumentative arc which leads toward research in the most
cutting-edge and still-uncertain areas concerning extreme humid heat. The conclusions that I draw
throughout the dissertation are applicable both to historical climate variability and to future-21%'-

century climates defined by the overriding influence of anthropogenic warming.

Regional Geographic Effects on Extreme Heat

From the tropics to the high mid-latitudes, extreme heat nearly always requires a persistent
anticyclonic circulation that suppresses convection and precipitation, and which increases
temperatures through a combination of insolation, warm-air advection, and adiabatic warming
(Perkins, 2015). Underneath this basic picture, however, differences between and within regions
affect the expression of extreme heat on multiple scales. Such differences include predominantly
geographic factors such as terrain, water bodies, land use and land cover, and preceding land-
surface conditions, as well as predominantly atmospheric factors such as monsoons and blocked
anticyclones (Alvarez-Castro et al., 2018; Vogel et al., 2017; Loikith and Broccoli, 2012;
Diffenbaugh, 2009). For example, foehn winds often lead to short-term temperature spikes, while
coastlines generate sea breezes which moderate extreme heat on a diurnal basis (Takane and
Kusaka, 2011; Arritt, 1993); similarly, built environments tend to increase ambient temperatures,

while vegetation and irrigation cool them via a Bowen-ratio effect (Zhao et al., 2018; Mueller et



al., 2016). Each of these phenomena is better understood on a theoretical level than an empirical
one, and is more readily evaluated in models than in observations. As a result, empirical estimates
of the net effects of regional factors, and their associated feedbacks, on modulating extreme heat
are in their infancy. Descriptions of the mechanisms by which they do so, such as identification
and quantification of particular dynamical or thermodynamic interactions, are similarly weakly
developed.

An especially important type of regional feedback is land-atmosphere interactions, which
are known to significantly increase extreme temperatures when soil moisture is low (Donat et al.,
2017; Herold et al., 2016; Perkins, 2015) and to decrease extreme temperatures when
evapotranspiration is high (Mueller et al., 2016). Such effects are felt across all timescales, from
diurnal temperature variations to millennial averages (Christidis et al., 2013), and in fact in some
places have thus far outweighed the effects of increasing greenhouse-gas concentrations (Alter et
al., 2018). Much ongoing work is aimed at further quantifying the contingent nature of these and
other feedbacks, made difficult in many cases by their specific regional or local characteristics, or
by their evolution in response to rapidly changing conditions (such as deforestation or the melting
of Arctic sea ice).

Sea-surface-temperature [SST] patterns provide a major predictive element for extreme
heat through both their facilitation of particular large-scale circulation patterns and through their
more local land-sea contrast effects, both of which are highly region-specific (Perkins, 2015;
Hoerling et al., 2014; Feudale and Shukla, 2011; Kenyon and Hegerl, 2008). As an example of the
hemispheric-scale teleconnections that they foster, SSTs in the central Pacific are linked with
eastern-U.S. heat waves through Rossby wave trains (McKinnon et al., 2016), while SSTs in the

western Pacific are linked with California heat waves through a similar mechanism (Lee and



Grotjahn, 2019). In both cases, the effects are highly dependent both on the geographic locations
of the SST anomalies and those of the extreme heat under consideration. At a smaller spatial scale,
SSTs significantly reduce temperatures along the shoreline in many regions, including California
(Lebassi et al., 2009). However, the limited number and non-comprehensive scope of current
studies of SST-extreme heat relationships leaves in question both the importance of various multi-
scale mechanisms, and the sensitivity of the relationships to conditions both within and beyond

the observed historical climate range.

Extreme-Heat Impacts

Across the globe, health effects of extreme heat are large and robust (Gasparrini et al.,
2015). At the highest temperatures, the sensitivity of negative health outcomes (including
mortality) to marginal temperature increases becomes exponential (Petkova et al., 2014; Anderson
and Bell, 2009). Consequently, significant differences in health effects occur in response to minor
variations in ambient conditions across neighborhoods (Schinasi et al., 2018; Hass et al., 2016;
Rosenthal et al., 2014), as well as between urban and rural areas (Wouters et al., 2017). The
impacts of a severe event, especially one of unprecedented magnitude for a region, can rank among
the most damaging natural disasters of any kind. The 2003 European and 2010 Russian heat wave
each have been implicated in more than 5,000 (and up to 75,000) deaths (Barriopedro et al., 2011;
Robine et al., 2008). Recent studies have been able to attribute double-digit-percentage increases
in observed extreme-heat mortality in certain events to 20%-century global-mean warming
(Mitchell et al., 2016). At the same time, there is substantial evidence of the human body’s
physiological adaptation capabilities with respect to extreme heat: for example, less mortality

occurs later in the summer and in hotter regions (Anderson and Bell, 2011), and on balance



populations have become more resilient to given levels of extreme heat over time (Bobb et al.,
2014). The ways in which these forces interact have not been fully ascertained for either historical
or future conditions.

Urban heat islands [UHIs] result from heat generation and trapping within cities, and from
the partitioning of this heat into sensible rather than latent forms (Argiieso et al., 2014; Kanda,
2007). Typical UHI magnitude is 1-4°C (McCarthy et al., 2010), and interaction effects between
heat waves and UHI in the mid-latitudes increase urban temperatures by an additional 0.5-2.0°C
compared to non-heat-wave UHI (Zhao et al., 2018; Oleson et al., 2015). Furthermore, urban
extreme heat is a growing challenge, with annual maximum temperatures increasing about 0.3°C
per decade in megacities compared to 0.2°C globally (Papalexiou et al., 2018; Mishra et al., 2015).
The combination of growing wealth and continuing urbanization, mapped onto existing UHIs, will
cause air-conditioning waste heat to drive very rapid increases in future cooling demand (Argiieso
etal., 2015; Davis and Gertler, 2015; Kolokotroni et al. 2012). This will amount to a key emerging
source of greenhouse-gas emissions, a budgetary strain (particularly on the developing world), and
a deterioration in livability for low-income households (Quinn et al., 2014). Consequently, the
primary avenue for mitigating the health impacts of an ever-hotter climate comprises behavioral
and technological changes that risk exacerbating wealth-based effects of climate change (Dell et
al., 2012).

Labor studies have shown that temperatures above approximately 30°C cause exponential
decreases in productivity, particularly in sectors involving significant amounts of outdoor
exposure, such as agriculture, mining, and construction (Hsiang et al., 2014; Zivin and Neidell,
2014). Predominantly intellectual work is also affected, with cognition negatively affected among

soldiers in one case study (Radakovic et al., 2007). The combined effect of decreases in labor



productivity and decreases in agricultural yields could reduce economic output in tropical and
subtropical developing countries by generally 25%, and up to 75%, by 2100 under an unmitigated
climate-change scenario (Burke et al., 2015). Even developed countries in the historical period
have seen non-negligible gross-domestic-product losses as a result of extreme heat (Zander et al.,
2015).

Extreme heat is also correlated with other natural and quasi-natural hazards such as severe
air-pollution episodes and increased probability of power failures (Schnell and Prather, 2017,
Chapman et al. 2013), and extreme heat can affect key infrastructure like water supply and power
grids; natural resources like forests; and societies writ large through economic instability and
migration (Bartos and Chester, 2015; AghaKouchak et al., 2014; Mueller et al., 2014; Chapman et
al., 2013). Increasing extreme heat is expected to substantially reduce overall agricultural yields
in the 21% century, though with large variations by crop type, as well as negatively affect livestock
health (Morignat et al., 2014). Combined with increasing food demand, these relationships are
expected to severely stress global food networks in the coming decades if major adaptation steps
are not taken (Porter et al., 2014; Battisti and Naylor, 2009). On a global level, the physical-science
aspects of these extreme-heat corollaries are now fairly well understood, whereas the regional
details and the social and political aspects remain opaque, particularly when multiple interacting

elements of the climate system are at work.

Extreme Humid Heat
Commonly measured by wet-bulb temperature, wet-bulb globe temperature, or heat-stress
metrics (Davis et al., 2016), extreme humid heat is the co-occurrence of high levels of both

temperature and moisture. Humidity levels are a key factor in human health and comfort,



particularly during extreme events (Davis et al., 2016; Pal and Eltahir, 2016; Sherwood and Huber,
2010), and consequently also affect broad societal- and economic-relevant metrics like labor
productivity, energy demand, and migration (Davis and Gertler, 2015; Mueller et al., 2014; Dunne
etal., 2013). Extreme humid heat can cause major societal impacts across the low- and mid-latitude

regions of the world (Gasparrini et al., 2015), and has been implicated in recent severe mortality
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Figure 0.1: Global number of annual-average exceedances of a wet-bulb temperature of 27°C in
6-hourly ERA-Interim data, averaged over 1979-2017. Values are typically largest in coastal areas
of the subtropics, as well as in South Asia. From Raymond, Matthews, Horton, (2019), in review.

events such as the 2015 South Asian heat wave (Wehner et al., 2016). The largest impacts occur
where large and socioeconomically vulnerable populations reside (Mora et al., 2017; Coffel et al.,
2017; Horton et al., 2016; Rosenthal et al., 2014; Dunne et al., 2013; Miller et al., 2008).
Approximately 35% of the global population (2.7 billion people) experience a daily maximum
wet-bulb temperature of 27°C or warmer — ‘strong’ heat stress that occurs less than once per year

in most of the United States, and that is closely tied to significantly elevated mortality (Matthews,



2018) — at least annually, and 7 million people in South Asia and the Persian Gulf shoreline suffer
these conditions more than 100 times per year (Figure 0.1).

Extreme humid heat has seen little study on the level of specific regions, individual events,
or the complex interactions with social, cultural, and economic factors that ultimately determine
its impacts. The existing literature can be categorized into global-scale overviews, often theoretical
and/or model-based (Matthews, 2018; Knutson and Ploshay, 2016; Fischer and Knutti, 2013); case

studies, often targeted at developing statistics for specific regions (Im et al., 2017; Pal and Eltahir,

1995 Maximum Tw, Midwest U.S.

28 TW

Figure 0.2: Maximum wet-bulb temperature observed during the 1995 Midwest-U.S. heat wave,
calculated at hourly temporal resolution from weather stations in the NCEI Integrated Surface
Database. Intra-regional variations in maximum wet-bulb temperature, resulting from unobserved
local fluctuations in moisture, are on the order of 2-3°C.

2016); and epidemiological or occupational-health analyses, often designed for a small area or

specific purpose (Kjellstrom et al., 2016; Parsons, 2006; Sawka et al., 2003). The global-scale

overviews have established that due to simultaneous increases in dry-bulb temperature and specific



humidity, extreme humid heat will increase rapidly and with greater spatial consistency than will
either of its constituent variables (Russo et al., 2017; Fischer and Knutti, 2013).

The existence of large spatiotemporal variations in both observational studies (Hass et al.,
2016; Kunkel et al., 1996) and in models (Pal and Eltahir, 2016) underscores the difficulty in
identifying and constraining the decisive subregional factors. The well-documented 1995
Midwest-U.S. heat wave, for instance, contained variations in peak wet-bulb temperature on the
order of 5°C over scales of less than 100 km, despite the flat terrain and relatively uniform land
cover (Figure 0.2), emphasizing the importance of typically unobserved local perturbations to the
background meteorological conditions. Case studies in the literature have discovered several
important attributes of extreme humid heat in South Asia and the Middle East: its close association
with high sea-surface temperatures (Schir, 2016), and its approach (in brief instances) of the
human physiological survivability limit (Im et al., 2017; Pal and Eltahir, 2016), as discussed in
more detail in Chapter 3. Trends over the historical period in these globally hottest regions have
not previously been examined due to questions about the reliability of local weather-station data

and the relative shortness of their period of record.

Overview of Chapters

In Chapter 1, I quantify the reduction of extreme heat in coastal areas of the eastern United
States, evaluate the performance of two ensembles of downscaled Earth System Models in
representing this reduction, and consider the implications for existing projections of coastal
extreme heat.

In Chapter 2, I add moisture to the analysis and consider how patterns of extreme humid

heat differ from those of extreme dry-bulb heat. I investigate the physical mechanisms that shape



extreme heat-humidity combinations, with a particular focus on explaining geographic and
seasonal variability.

In Chapter 3, I examine recent values and trends of extreme humid heat, discovering
observations that are closer to the human physiological survivability limit than previously reported,
and present evidence for the systematic and significant underestimation of these very highest
values by standard gridded products.

Lastly, I conclude with a summary of the principal themes, a contextualization of the
results, and a description of important future topics of study for which this dissertation has laid the

groundwork.

10



Chapter 1: Small-scale patterns of extreme heat in coastal environments

Raymond, C., and Mankin, J. S. Coastal moderation of extreme heat in the eastern United
States. In second-stage review at Geophys. Res. Lett.

Introduction

Extreme heat varies substantially on spatiotemporal scales finer than those regularly
represented by global or even regional climate models. Variations in land-cover type, differences
between thermal characteristics of land and water, and anthropogenic waste heat can all cause
certain locations to experience especially marked complexity in their spatial patterns of extreme
heat (Hass et al., 2016; Loikith and Broccoli, 2012). These mechanisms — acting at spatial scales
of ~100 km or smaller, and temporal scales of ~1 day or shorter — have in many cases been studied
only sparingly, even though they often play a crucial role in heat extremes (Lebassi et al., 2009;
Diffenbaugh, 2009; Hall et al., 2008; Seneviratne et al., 2006; Diffenbaugh et al., 2005).

Such fine-scale interactions prevail in coastal areas, which frequently experience warm-
season daytime cooling relative to nearby inland areas. If the coastal-inland temperature difference
is large enough and conditions are otherwise favorable, this cooling can be directly related to a
well-defined sea breeze, but it has been observed in the absence of a sea breeze as well (Meir et
al., 2013; Lebassi-Habtezion et al., 2011). As a result, hot summer days in the eastern U.S. are
typically cooler near the coast, with major implications for population exposure to extreme heat.
Previous studies have noted the importance of ‘coastal cooling’ for ameliorating heat and pollution
(Clemesha et al., 2018; Melecio-Vazquez et al., 2018; Meir et al., 2013), and have found large

regional heterogeneity in projected future changes in coastal cooling (Zhao et al., 2011).
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However, comprehensive studies of the characteristics of this coastal cooling are lacking.
This may be because suitable datasets are not readily available: the cooling exists on too small of
a scale to be easily captured by climate models, and it is also difficult to assess using weather
stations, due to a patchy observational network. Much recent work on temperature extremes in the
U.S. has used Earth System Models [ESMs] or reanalysis datasets that are too spatially coarse to
resolve coast-to-inland temperature gradients and the coastal-cooling phenomenon (Papalexiou et
al., 2018; Ashfaq et al., 2016; Wuebbles et al., 2015; Thibeault and Seth, 2014); the studies that
do use high-resolution gridded products typically take a broader view in their analysis (Zobel et
al., 2018; Gao et al., 2012). In a world where heat extremes are rapidly increasing (Horton et al.,
2016), and where complex interacting atmospheric and marine processes make regional
generalizations and comparisons difficult (Lebassi et al., 2009), comprehensively understanding
and quantifying coastal moderation of extreme heat on a region-specific basis is crucial in order to
better evaluate how strong projected increases in extreme heat and its impacts will be manifested
(Zobel et al., 2017; Ning et al., 2015; Thibeault & Seth, 2014; Gao et al., 2012). Accurate
assessment of the spatial footprint of future heat extremes is essential to local- and regional-scale
efforts to manage heat exposure and its risks, as this knowledge enables financial, educational,
medical, and other resources to be allocated precisely according to need.

In this chapter, I illustrate how current heat extremes are moderated by marine influences
along the coastlines of the eastern U.S., and demonstrate that even high-resolution gridded
products are unable to represent these effects, causing them to suffer substantial biases for
societally relevant metrics such as population exposure to extreme heat. In turn, this situation
results in considerable overestimation of extreme heat for coastal and near-coastal areas in future

projections. I then analyze regional patterns of coastal cooling over the recent historical record to
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position my consideration of how projections of future heat extremes may be biased due to the
model challenges I describe. This chapter considers temperature exclusively, in line with the bulk
of the heat-health literature (Mitchell et al., 2016; Gasparrini et al., 2015); subsequent chapters add
in humidity, which in combination with temperature is more highly correlated with health

outcomes (Davis et al., 2016).

Region Coastal Gridpts | Regional Hot Days | Mean Intensity (C) | Mean Distance (km)
Northern New England 95 561 4.52 (1.81-7.36) 38.7
New Jersey and Delmarva 49 529 2.69 (0.49-5.35) 30.2
Carolinas and Georgia 116 540 2.24 (0.31-4.44) 32.0
Florida Peninsula, Atl Coast 105 462 2.07 (0.34-4.04) 29.7
Florida Peninsula, Gulf Coast 59 484 1.88 (0.35-3.91) 28.5
Central Gulf Coast 182 458 2.42 (0.52-4.61) 34.9
Texas 104 404 3.69 (1.29-6.55) 40.5

Table 1.1: (Columns 1 and 2) The number of coastal grid points and regional hot days resulting
from the PRISM analysis. The total number of points comprising each regional distribution is thus
the product of these two columns. (Columns 3 and 4) Summary of the means of the coastal-cooling
intensity and distance calculations discussed in the text. Intensity ranges span the 5th-95th
percentiles of the distribution, making the cooling significant based on a two-tailed t-test. From
Raymond and Mankin (2019), in review.

LOCA
Model Native Lat Res | Native Lon Res
CanESM2 2.79 2.81
CCSM4 0.94 1.25
CESM1(CAM5) 0.94 1.25
CMCC-CM 0.75 0.75
CNRM-CM5 1.40 1.41
CSIRO-Mk3.6.0 1.87 1.88
EC-EARTH 1.12 1.12
GFDL-ESM2M 2.02 2.50
GISS-E2-H 2.00 2.50
HadGEM2-ES 1.25 1.88
IPSL-CM5A-MR 1.27 2.50
MIROC5 1.40 1.41
MRI-CGCM3 1.12 1.13
NorESM1-M 1.89 2.50
Zobel et al. 2017
Model Native Lat Res | Native Lon Res
WCNB (CCSM4) 0.94 1.25
WCB (CCSM4) 0.94 1.25
WGNN (GFDL-ESM2G) 2.02 2.00
WGN (GFDL-ESM2G) 2.02 2.00
WH (HadGEM2-ES) 1.25 1.88

Table 1.2: Models comprising the LOCA and Zobel ensembles. For the Zobel models,
abbreviations match those of the authors, with ‘NB’ (‘B’) suffixes referring to non-bias-corrected
(bias-corrected) products and 'NN' ('N') suffixes referring to non-nudged (nudged) products. From
Raymond and Mankin (2019), in review.
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Data and Methods

Here, I primarily use historical daily-maximum temperature data for 1981-2015 from the

4-km-resolution Parameter Regression on Independent Slopes Model [PRISM] (Daly et al., 2008).

PRISM takes weather-station data as input and processes it using terrain- and coast-aware

statistical approaches to produce a best-estimate gridded product (Daly et al., 2003). In the eastern

U.S., PRISM employs a coastal-advection model that assumes a grid point’s coastal influence is a

simple function of distance from the coast, with bays and inlets treated as transition zones and

terrain effects assumed negligible. Previous case studies have demonstrated that 4-km-resolution
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Figure 1.1: Schematic illustration of the definitions of coastal-cooling intensity and distance. Blue,
red, and black colors represent three hypothetical coast-to-inland regional-average profiles of
daily-maximum temperature, with horizontal (vertical) bars indicating the calculated coastal-
cooling intensity (distance). The blue profile shows a case where the cooling extends to where the
profile flattens; red, a deep infiltration of coastal cooling; black, a near-coastal fluctuation of small
enough scale that we assume coastal cooling is responsible for the continued increase in
temperature beyond. From Raymond and Mankin (2019), in review.
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gridded data matches well against weather stations (Lebassi-Habtezion et al., 2011; Novak and
Colle, 2006), a validation that I also perform using stations from the Global Surface Hourly and
Global Historical Climatology Network-Daily datasets (Menne et al., 2012). Regional-scale
analyses are conducted for the seven eastern-U.S. regions listed in Table 1.1.

Model data, both historical simulations and future projections, come from two ensembles
of daily-resolution downscaled ESMs (Table 1.2). From the Localized Constructed Analogs
[LOCA] project (Pierce et al., 2015; Pierce et al., 2014), I use a statistically-downscaled (~6-km-
resolution) 14-ESM ensemble of historical runs (1981-2005) and future projections for the high-
emissions RCP8.5 scenario (2075-2099) (Meinshausen et al., 2011). From a dataset produced by
Zobel et al. [2017, 2018], I use an ensemble of five ESM model variants dynamically downscaled
with the Weather Research and Forecasting model to ~10-km resolution [hereafter referred to as
Zobel]. These data are for 1995-2004 (historical) and 2085-2094 (future, RCP8.5). The two
ensembles are some of the only high-resolution multi-decadal simulations spanning the entire
eastern U.S., a spatial comprehensiveness that enables estimation of the degree to which
downscaled products overstate coastal extreme heat in both current and future climates. A critical
element in coastal extreme heat is sea-surface temperatures (Diffenbaugh et al., 2007), which in
both ensembles are not downscaled and are therefore of coarser resolution than the land data.
Biases in coastal extreme heat that I find consequently motivate efforts to improve the
representation of coastal waters in models and reanalysis products.

Within each of the seven regions, grid points are aggregated based on their distance from
the model-defined coastline. To ensure the accuracy of comparisons among the various resolutions
of gridded products, I focus the analysis on sections of coastline lacking bays or estuaries larger

than 50 km in width, and where coastal weather stations face the open ocean, as indicated by the
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heavy black line in Figure 1.2. This approach avoids the problem of different representations of
bays and estuaries among ESMs, and the complexity of weather conditions that is often associated
with these features (Novak and Colle, 2006). Terrain concerns also motivate the restriction of the

study area to the eastern U.S., where terrain variations are small within 100 km of the coast.
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Figure 1.2: (Central map) Land-sea contrast on extreme-heat days in each region (shading). Stars
indicate locations of inland (red) and coastal (blue) stations used as verification for each region,
with coastal stations offset for visibility. A strong latitudinal correlation is apparent. (a-g) Top
panels illustrate the range of coastal-cooling intensities associated with each characteristic coastal-
cooling distance bin, while bottom panels illustrate the probability distribution of each coastal-
cooling distance, with red lines indicating the mean of the distance distribution. Insets are quantile-
quantile plots comparing the coastal-cooling intensity as calculated from the plotted stations
(abscissa) with that calculated from the nearest grid points in the PRISM dataset (ordinate),
validating the use of PRISM in the analysis. The broad similarity of the coastal-cooling distance
distributions among regions stands in contrast to the marked variations in coastal-cooling intensity.
From Raymond and Mankin (2019), in review.

For each section of coastline I define an ‘inland’ area located 60 km away from the coast,
perpendicular to the local coastline direction. This 60-km distance is far enough inland to be

beyond the typical reach of daytime coastal effects, such as sea breezes, coastal clouds, or
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precipitation (Hu and Xue, 2016; Finkele, 1998), and small enough that differences due to
synoptic-scale weather conditions are minimized. Due to their complexity and small scale, I focus
on the combined long-term-average temperature impacts of these coastal-cooling effects rather

than attempting to disentangle the contributions of specific processes on specific days. Daily
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Figure 1.3: Correlation between mean land-sea contrast on regional hot days (ordinate) and mean
corresponding coastal cooling (abscissa). Colors represent regions, for which the seasonal
evolution of monthly averages from May to September is indicated by the arrows. As noted in the
text, the correlation across all regions and months is 0.67, or 0.88 excluding Texas. This strong
correlation indicates that land-sea contrast is a good proxy for coastal-cooling intensity, in both a
regional and a seasonal sense. From Raymond and Mankin (2019), in review.

maximum temperature at 60 km inland is assumed to represent a counterfactual case for the coast
— that is, what temperatures would have been there if not for cooling effects — and the extreme
rarity of sea breezes reaching that far inland supports the assertion that few if any inland hot days
are affected by coastal cooling. Areas with rolling topography or significant variations in land

cover may have consistent local temperature variation that is unaccounted for here, although such

variation would be smoothed out and diluted in the regional average. Similarly, urban heat islands

17



are not explicitly addressed, but their relatively small fraction of total land area limits the impact
of this simplification.
I define ‘hot days’ as the top decile of PRISM daily maximum temperature in May-

September, based on a daily grid point climatology temporally smoothed with a Gaussian
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Figure 1.4: For each of the seven eastern-U.S. coastal regions, the complete distribution of
differences between inland and coastal regional-average daily-maximum temperature in PRISM
on regional hot days (left, top 10%) and all other days (right, bottom 90%). Green squares indicate
the mean of differences between the two inland-coastal station pairs for each region, whose
locations are shown in Figure 1.2. This figure shows in more detail the inter-regional differences
in mean coastal-cooling intensity, as well as the even larger spread when considering individual
days. The agreement between the PRISM mean and the station-sample mean gives confidence that
the center of the distribution, at least, is well-represented by PRISM. From Raymond and Mankin
(2019), in review.

filter, a common method for avoiding spurious day-to-day variations (Freychet et al., 2018).
Statistics are averaged across months to gain statistical power, and because subseasonal differences

within each region, though significant, are not so large as to obscure the fundamental picture with
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respect to spatial patterns or future changes (Figure 1.3). A set of hot days is computed for each of
the seven regions, defining 'regional hot days' as those for which at least 50% of regional inland
grid points are individually experiencing a hot day, following the methodology of Smith et al.
[2013]. The number of regional hot days varies slightly by region as a function of the spatial
correlation among its constituent grid points. Averaging over many grid points and hot days (Table
1.1) allows me to draw robust statistical conclusions about coastal ventilation of extreme heat.

For each regional hot day, I define ‘coastal cooling’ as proportional to the difference in
daily maximum temperature between a 3-grid-point average along the coast and a 3-grid-point
average 60 km inland. The coast-to-inland temperature profile over this 60-km distance can be
non-monotonic (Figure 1.1), making it helpful to choose a percentage of the coast-to-inland
temperature difference that characterizes the distance over which the coastal cooling is primarily
expressed. To obtain a (c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>