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ABSTRACT 

 

Design of functional materials from molecular building blocks 

 

Anastasia Voevodin 

 

This dissertation is a summary of my research developing the synthesis and assembly of 

functional materials from nanoscale building blocks and studying their emergent properties. 

Chapter 1 introduces superatoms as exciting atomically precise supramolecular building 

blocks for materials design. Bottom-up assembly of these superatoms into materials with increased 

dimensionality (0D, 1D, 2D, and 3D) offers exciting opportunities to create novel solid-state 

compounds with tailored functions for widespread technological applications. I review recent 

advances to assemble superatomic materials and focus on assemblies from metal chalcogenide 

clusters and fullerenes. In subsequent chapters, I employ several of these nanoscale superatoms as 

the precursors to functional materials. 

 Chapter 2 describes the synthesis and structural characterization of a hybrid solid-state 

compound assembled from two building blocks: a nickel telluride superatom and an endohedral 

fullerene. Although a varied library of binary superatomic solids has been assembled from 

fullerenes, this is the first demonstration of a superatomic assembly using an endohedral fullerene 

as a building block. Lu3N@C80 fullerenes are dimerized in this new solid-state compound with an 

unpreceded orientation of the encapsulated metal nitride cluster. I explore the structural 

characterization of this material supported with computational evidence to explain the dimerization 

and orientation of the endohedral fullerenes.  



In Chapter 3 I begin to detail my exploration into assembling superatoms at micro and 

meso-scales –which will be the focus of Chapters 3-5. Polymers offer attractive mechanical and 

self-assembly properties that when combined with the attractive redox, optical, and magnetic 

properties of molecular clusters, these materials chart new paths to developing advanced materials 

and technologies. Chapter 3 describes charge transfer interactions between perylene diimide and 

cobalt telluride superatoms that drive the assembly of a solid-state compound from these two 

building blocks and inspired the design of a diblock copolymer template.  

Chapters 4 and 5 detail the synthesis and characterization of a polymer with functionalized 

cobalt selenide side units. I describe a cationic homopolymer in Chapter 4 and diblock copolymer 

in Chapter 5 synthesized from ring opening polymerization of norbornene-derived monomers. 

Chapter 4 describes potential applications of the homopolymer system such as thin film 

fabrication. Chapter 5 discusses the self-assembly of the redox-active diblock copolymer into 

cross-linkable vesicle structures that can encapsulate molecular cargo.   

Finally, in Chapter 6 I introduce a new molecular building block to form gold metal surface 

bonds. Bisaminocyclopropenylidenes (BACs) are a class of carbenes that, much like N-

heterocyclic carbenes, have been widely employed for catalysis but have yet to be explored for 

materials design. This chapter describes the structure and binding orientation of a BAC on an 

Au(111) surface. 

Each of these chapters illustrates how the synthetic flexibility of molecular building blocks 

enables the design of functional materials with tunable properties. 
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Chapter 1  

Introduction to superatomic solids in materials science 

 

1.0 Preface  

 

This chapter has been modified from a manuscript in preparation by Anastasia Voevodin, 

Evan Doud, Taylor Hochuli, Anouck Champsaur, Xavier Roy, and Colin Nuckolls to be published 

as an invited review in Nature Reviews Materials. 

1.0.1 Overview 

 

Crystalline solids are the foundation of countless technologies, from solar cells to lithium ion 

batteries to quantum computers. Harnessing the unique functions of such materials requires an 

ability to precisely control or tune their properties. As an example, most modern electronic devices 

(e.g. computers, cellphones) are based upon our ability to tune the electrical behavior of silicon by 

introducing small amounts of impurities in the crystalline lattice without changing its overall 

structure. The Periodic Table of the elements contains 82 stable, non-radioactive, fundamental 

atomic building blocks that can be used to assemble crystalline materials. Each atom has a set of 

intrinsic characteristics that governs whether it can bond with other atoms and what structures they 

will form. This is the foundation of solid-state chemistry. While the fundamental characteristics 

are intrinsic to each element, the atom itself cannot be altered. This presents an immense challenge 
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for the design of materials with tunable properties because substituting one type of atom for 

another often leads to wholly new structures with different properties.  

The ability to tailor the properties of crystalline solids, by controlling their structures and 

compositions at the atomic level presents unique opportunities for the development of new 

functional materials by design and the discovery of novel phenomena. Crystalline solids are 

typically synthesized from elemental and polyatomic precursors though high temperature reactions 

that intrinsically produce thermodynamically stable compounds. This process inhibits the creation 

of metastable structures and leaves little room for rational tuning of the materials and their 

properties. Within this context, assembling hierarchical materials from preformed nanoscale 

building blocks with well-controlled and tunable properties offers significant benefits over 

traditional solid-state reactions. One of the key challenges in this approach is to design building 

blocks that combine both atomic precision and synthetic flexibility. Nanocrystals, for instance, 

have remarkably tunable compositions and thus have useful electronic and optoelectronic 

properties, but they are polydisperse and have ill-defined surface chemistry, creating challenges in 

understanding and controlling the structure-properties relationships of the resulting solids. 

Clusters are collections of atoms intermediate in size between a molecule and a bulk solid. 

Certain clusters adopt structural motifs that confer unique stability and enable the constituent 

atoms to behave as single units exhibiting collective behaviors. By combining atomic precision, 

synthetic flexibility and tunable properties, such clusters have emerged as exciting building blocks 

(or “superatoms”) for materials design. These include noble metal “magic number” clusters, metal 

chalcogenide molecular clusters, fullerenes, Zintl ions, and boron/silicon/aluminum clusters. 

Many of these building blocks are stabilized with capping ligands that can act as barriers to limit 
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interactions between cluster cores. These ligands are important in that they direct self-assembly 

and control coupling between clusters. Theoretical studies of select atomic clusters (e.g., Al13
–) 

have shown that their electronic structures resemble that of traditional atoms, with delocalized 

cluster-based s-, p-, and d-like orbitals. These clusters were originally named “superatoms”, but 

the term has since then been applied more widely to clusters whose behaviors mimic those of 

traditional atoms. For this dissertation, I will apply the more inclusive definition of superatoms to 

refer to the group of atomically precise and synthetically tunable metal chalcogenide clusters.  

Figure 1.1 illustrates the general vision of accessing desired materials properties from 

superatomic solids by employing a bottom-up synthetic approach to judiciously synthesize tunable 

superatoms and control their assembly into higher dimensional structures. Recent excellent  

Figure 1.1 Achieving assemblies of superatomic materials is enabled by the tunable synthesis of 

the individual superatoms which enable control of the composition, shape, and size of the building 

blocks and thus effect their material’s properties. Several synthetic strategies have been developed 

for the assembly of mono-component and multi-component superatomic materials using covalent 

bonding, fusion, coordination frameworks, charge transfer and molecular recognition motifs by 

functionalization of the superatoms’ ligands. These assemblies have enhanced electronic coupling 

resulting in the emergence of tunable materials properties with enhanced redox activity, new 

magnetic, electronic, and thermal transport behaviors. 



4 

 

reviews by Khanna1 and Jena2 explore the detailed theoretical work on superatoms3 that highlight 

the unique potential of their emergent properties.  

 

1.1 Strategies for the synthesis of superatoms 

 

The creation of superatomic crystals begins with the design and synthesis of superatomic 

building blocks capable of assembling together while maintaining their individual structure. The 

synthesis of metallic clusters and transition metal chalcogenide molecular clusters has been 

extensively reviewed.4-6 In this section, I will highlight three general synthetic strategies (gas phase 

synthesis, solution phase synthesis, and excision from solid state compounds) to form molecular 

clusters used in creating cluster-assembled materials and discuss their isolated properties. These 

general synthetic approaches are highlighted in Figure 1.2.  

Gas Phase Synthesis.  

 

Superatoms were originally discovered in gas phase experiments. References to the formation 

of atomic aggregates date back to the 1930s but the systematic study of clusters in mass 

spectrometer began in earnest in the 1970s and 1980s. The concept of superatoms was originally 

theoretically proposed by Khanna and Jena7 and first reported experimentally by Casselman and 

co-workers for Al clusters produced in the gas phase8. Beyond Al clusters, many other types of 

magic size clusters can be produced by laser induced vaporization of metal substrates or other 

vaporization methods, and detected by mass spectroscopy.9-11 This approach presents two major 

limitations: the clusters are typically unstable and highly reactive when removed from the vacuum 

environment, and the amount of cluster produced is generally too small to be used as building 

block for creating solid state materials.  
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Long12 and co-workers developed a modified gas phase method to prepare transition metal 

chalcogenide clusters that could be handled outside the vacuum chamber by evaporating bulk 

binary compounds within a partial vacuum containing vapors of a capping ligands. One key 

limitation of this method is that it produces many different clusters, which need to be separated 

and characterized individually, resulting in very low yields for any superatom. 

Solution phase synthesis.  

 

Solution phase synthesis is the most widely used and efficient approach to prepare noble metal 

and metal chalcogenide molecular clusters with varied structures.4-5, 13 For noble metals, the 

synthesis of their clusters has been reviewed extensively.14-16 For metal chalcogenide clusters, 

Dance and Fisher5 classify the most common strategies to synthesize them in two categories: i) 

association of ions, and ii) reaction of a metal atom precursor with a chalcogen atom precursor.  

In the first approach, a Mn+ ion is reacted with an E2- source under conditions that result in the 

formation of a cluster.5 The synthesis of the magnetic cluster [Fe6S8(PEt3)6][BPh4]2
17 is an 

archetypical example: Fe(BF4)2.6H2O is reacted with bubbling H2S through the solution that 

contains excess of PEt3. Upon addition of NaBPh4, black crystals of [Fe6S8(PEt3)6][BPh4]2 form. 

A modified strategy, primarily developed by Fenske, reacts trialkyl silyl chalcogenide reagents 

with metal halide to eliminate trialkyl silyl halides and form metal-chalcogen bonds. The use of 

trialkyl silyl chalcogenide reagents is a preferred approach due to their ease of handling over 

gaseous reagents as well as the facile removal of the trialkyl silyl halides.  

The second approach to synthesize metal chalcogenide superatoms combines a reactive source 

of metal [functionally, a metal(0)] with a reactive source of chalcogen (typically a phosphine 

chalcogenide).5 The quintessential example of this approach was pioneered by Steigerwald and 
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co-workers18 in the synthesis of Ni9Te6(PEt3)8, which is obtained by combining Ni(COD)2, TePEt3, 

and PEt3 in a 1:1:1 molar ratio in toluene.  

Excision from solid state compounds.  

 

Several bulk solids have identifiable superatoms as their fundamental structural units, 

which can be excised from the lattice. These materials are typically second and third row early 

transition metal chalcogenides or halide such as Re6E8X2,
19-21 Mo6E8,

22-23 and Li2Nb6X16 [E = S, 

Se, Te, and X = Cl, Br, I].24-25 Excision typically involves heating the solid with excess capping 

ligand (e.g., cyanide, hydroxide, halide) that then coordinates the excised clusters to stabilize the 

core. These capping ligands can then be substituted with a variety of organic molecules.  
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Figure 1.2. (a, b, c) Schematics of three methods of superatom synthesis described in the sections 

above (d) Changes in the cyclic voltammetry measured redox events of a family of “M6E8(PR3)6” 

superatoms illustrating the tunability by varying superatom core composition. Energy levels are 

adapted from previously published data.26-29 

 

1.2 Isolated properties of superatoms overview 

 

The properties of atomic solids are determined by their constituent atoms and similarly, 

superatomic materials have collective properties that result from the constituent superatoms and 

their interactions in the solid state. The choice of superatoms is thus critical in the design of these 

materials. Unlike isolated atoms which have fixed properties, the properties of superatoms can be 

tuned in several ways (constituent atoms, ligand shell, etc.) which allows for the tuning of the 

properties of superatomic crystals. In the following sections, I will describe several properties 
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relevant to materials design (electrochemical, magnetic, optical) and how those properties can be 

precisely controlled in superatoms.  

Electronic properties of isolated superatoms.  

 

Bonding within the cluster core produces a highly delocalized electronic structure,30 

providing the reversible electron transfer ability. The composition and structure of the core dictates 

the electrochemical properties. Metal chalcogenide clusters are typically electron rich with 

oxidation potentials that can rival alkali metals. Other artificial atoms such as Fe8O4(pz)12Cl4 (pz 

= pyrazolate anion, C3H3N2
-) and Al13

– are excellent electron acceptors.  

 The electrochemical properties of clusters can also be fine-tuned through rational design 

of the ligand shell. Varying the capping ligand on the core can modulate the potentials at which 

the reversible redox processes occur. When capped with strong -donor ligands such as trialkyl 

phosphines, metal chalcogenide building blocks are electron-rich. By replacing some of these 

phosphines with weaker -donor or -acceptor ones, one can effectively and precisely shift the 

oxidation potential. Khanna recently published calculations on Ni9Te6(PEt3)8 showing that the 

ionization energy increases by ~2.5 V when PEt3 ligands are removed from the core, and by an 

additional ~0.4 V when CO ligands are subsequently attached.31Furthermore, the tunable effects 

of the ligand shell on the electrochemical properties of the hexanuclear cobalt sulfide superatoms 

was demonstrated both theoretically and experimentally.32 A series of Co6S8(PEt3)6–x(CO)x (x = 1 

– 3) superatoms were synthesized and anion photoelectron spectroscopy was used to probe their 

electron affinity and electronic structures. It was found that increasing the degree of carbonylation 

of the superatom produced superatoms with higher electron affinities, agreeing with the previous 

calculations presented above.32 
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 The examples above highlight the electrochemical flexibility of superatoms. An additional 

dimension of tunability emerges by adding multiple types of metal atoms to the cores. For example, 

the Long group modified the redox behavior of the Re6Se8 core by replacing one of the metal atoms 

with Os.33 

Magnetic properties of isolated superatoms.  

 

The traditional metallic superatoms first described by Khanna and Jena7 have closed shell 

electronic structures and are thus of limited used for their magnetic properties. Many theoretical 

studies suggest that magnetic metallic clusters could be produced by incorporating transition metal 

or rare earth metal atoms into the core of a diamagnetic cluster or by assembling the cluster entirely 

from magnetic elements.34-37 This attractive concept lacks experimental demonstrations because 

such magnetic superatoms are too unstable to be used as building blocks.38-40  

In addition to metallic properties, a wide range of magnetic states are experimentally accessible 

in binary superatoms.41 Metal oxide clusters often exhibit large spin states resulting from the 

coupling of the metal spins through superexchange.42 Heavier chalcogens can also promote strong 

magnetic coupling, leading to ferromagnetic or antiferromagnetic ground states.43 A few 

theoretical studies have begun to explore how the complex relationship between superatom 

composition, structure and charge state, and the resulting magnetic behavior. For example, one 

such study recently demonstrated the theoretical magnetic tunability of the superatom 

Ni9Te6(PR3)8.
31  

In a strategy related to that for magnetic metallic superatoms, new magnetic metal 

chalcogenide superatoms can be created by varying the core electron count via metal atom 
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substitution. For instance, replacing one Re atom in the diamagnetic core of Re6Se8 with Os 

produces a S = ½ core.33 

Optical properties in isolated superatoms.  

 

The optical properties of superatoms have received widespread attention ever since the 

octahedral Re6Q8 and Mo6X8 families were first shown to exhibit intense and long-lived 

photoemission. These superatoms are particularly attractive building blocks because their emission 

energy can be tuned by modifying the composition or charge of the core, or substituting their 

capping ligands.44-46 In a recent development, non-centrosymmetric Sn4S6 superatoms were used 

to create a spectrally broadband and highly directional warm-white-light emitter that is driven by 

an inexpensive, low-power continuous-wave infrared laser diode.47 

1.3 Introduction to monocomponent superatomic assemblies. 

 

Until recently, superatoms have been used infrequently as building blocks to create solid 

state materials.3, 48 In the past few years, however, superatomic crystals have received much 

attention, resulting in materials with broader compositions, structures and properties. For this 

introduction, we will classify the superatomic crystals based on the number of heterogeneous 

components that make up the assembly. Monocomponent compounds have one type of superatom 

while multicomponent compounds contain more than one type of superatom. Both types of 

superatomic crystals can exhibit collective properties due to inter-superatom coupling in the solid 

state. The following sections review synthetic methods to assemble superatomic crystals and 

discuss the relationship between the structure and properties of the materials.  



11 

 

Monocomponent superatomic crystals display properties that that depend not only on the 

identity of the superatom but also how these superatoms are arranged in a lattice and how they 

couple to each other.  

Ligand Interactions. 

 

Capping ligands on the superatoms can direct the assembly of the superatomic crystals and 

can influence the resulting collective properties. In a recent report, Li and co-workers49 installed 

two 1,1-bis(diphenylphosphino)methane (PCP) ligand on Au21 which act as “hooks” to link 

neighboring superatoms together through π–π and π–anion interactions. This ligand modification 

allows for the formation of 1D nanofibrils that further assemble into a 3D superatomic crystal. 

This process results in a material with tunable electrical conductivity: by changing the counterions 

used in the assembly, the electrical conductivity can be modulated by over two orders of 

magnitude. 

Ligands with functional groups can engage into specific inter-superatom interactions. In 

one illustrative study, p-mercaptobenzoic acid (p-MBA) ligands were used to assemble the silver 

superatoms (Na4Ag44(p-MBA)30) into a crystalline structure held together by H-bonds.50 These 

interactions lead to a cooperative, chiral mechanical response in which the clusters rotate in concert 

in the same direction when an external pressure is applied to the crystal, akin to meshing gears 

rotating.  

Covalent union of superatoms. 

 

While engineering superatoms with ligands that direct the formation of superatomic 

crystals can be a powerful tool, it is of limited use. It can be difficult to predict and finely control, 

and it leads to structures with weak inter-superatom coupling. Developing the chemistry to make 
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discreet oligomers from superatoms is a necessary first step to creating extended assemblies of 

covalently linked superatoms. Providing stability and solution processability, the capping ligands 

on the surface atoms of superatoms are also the entry point forming inner-sphere bonds.  

A promising strategy to control the coordination spheres of superatoms was recently 

developed to yield site-differentiated superatoms in octahedral metal chalcogenide, M6E8, clusters. 

By using ligands that can be selectively dissociated or exchanged, this approach can be used to 

form discrete oligomers or dimensionally controlled polymers of superatoms. Figure 1.3 illustrates 

two strategies for the formation of discrete oligomers: the core of the site-differentiated superatoms 

can be connected either by bridging linkers formed with reactive capping ligands (e.g. -NH2, -

COOH, -RNC, olefins) or by direct fusion of the cores upon removal of the reactive ligand. Both 

methods require a site-differentiated superatom with at least one unique chemically reactive ligand 

for modification. The next few sections will detail the formation and properties of the bridged and 

fused dimers and oligomers of metal chalcogenide superatoms. I will then introduce my work on 

templating of superatoms into polymer materials using the reaction chemistry developed to form 

oligomers of superatoms. 

Site-differentiated superatoms. 

 

A powerful approach to create oligomers of superatoms is to design the building blocks 

with differentiated sites, which can be selectively modified, dissociated or substituted post-

synthesis. Figure 1.3 presents examples how such building blocks can be used to form dimers of 

superatoms. Site-differentiated superatoms can be prepared by installing inert ligands at certain 

positions on a preformed core or by synthesizing the cores with both inert and labile ligands.  
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The first approach is exemplified by the synthesis of [Re6E8(PR3)n(X(6-n)]
(n-4)+ superatoms, 

which are prepared from [Re6E8X6]
3–/4– 51 by substituting some of the halide ligands with various 

phosphines PR3. Labile acetonitrile ligands can then be installed on the core to form site-

differentiated clusters such as [Re6Se8(PR3)4(MeCN)2]
2+.52 These clusters have been used as 

building blocks for the creation of a variety of oligomers and supramolecular arrays via ligand 

substitution with bridging 4,4’-bipyridine (Figure 1.3a)53-54. 
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Figure 1.3. (a) Synthetic strategy for the formation of a bridged dimer a with a 

[Re6Se8(PEt3)4(MeCN)2]
2+ building block cluster and 4,4’-dipyridyl bridging ligand, and with (b) 

a Co6Se8(PEt3)5(CO) building block cluster and a 1,4-phenylene diisocyanide bridging ligand. 

(c) Synthesis of fused dimer with a Co6Se8(PEt3)5(CO) building block cluster and 

trimethylsilyldiazomethane.54-56 (d) Cyclic voltammograms comparing the electrochemical 

properties of cobalt-selenide superatom building blocks, including the monomeric clusters of 

Co6Se8(PEt3)5(CO) and Co6Se8(PEt3)6  unit, and two oligomeric species: the isonitrile-bridged 

dimer and the fused dimer. The red arrow shows the effective bandgap as estimated from CV and 

the blue arrow shows the ∆E1/2 for both dimer species.  
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The second approach is exemplified by the carbonylated superatoms Co6Se8(CO)x(PEt3)6-

x.
55 The important finding that enabled isolation of these site-differentiated clusters was that an 

excess of elemental Se in combination with Co2(CO)8 and a phosphine yields a distribution of 

carbonylated products that can be easily separated by traditional silica gel chromatography or 

fractional crystallization. The CO group is a synthetically useful handle that can be easily 

manipulated. The Co6Se8 cores can be dimerized by replacing the CO with a rigid ditopic linker, 

1,4-phenylene diisocyanide (CNC6H4NC), shown in Figure 1.3b. This bridging strategy gives rise 

to a diversity of superatom dimer structures simply by varying the linking group and allows weakly 

coupled dimers to be studied. This approach has been championed as a breakthrough in 

nanoscience.57  

Fused dimers.  

 

While the ligand-bridging strategy allows superatom dimers to be studied in the weakly 

coupled limit, fusing them together leads to much stronger inter-superatom coupling. Until 

recently, there were only a few examples of discrete superatom fusion and these existing strategies 

are not generalizable.58-61 Dr. Anouck Champsaur (former graduate student of Professor Colin 

Nuckolls group) developed a novel chemical transformation to covalently expand the Co6Se8 core 

to a Co12Se16 core through direct fusion.56 The key intermediate is obtained in one step, in high 

yield, from a carbonylated cluster and contains a carbene ligand that acts as a bifunctional 

protecting group for the Se and Co atoms involved in the subsequent fusion shown in Figure 1.3c.  

Electrochemical properties of Co6Se8 dimers.  

 

The electrochemical properties of Co6Se8 dimers depends on the type of inter-superatom 

linkage, as illustrated in Figure 1.3d. Both the Co6Se8(PEt3)6 and Co6Se8(CO)(PEt3)5 superatoms 
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exhibit three reversible one-electron redox transformations. The carbonyl ligand on the site-

differentiated core, however, shifts the energy levels so that the charge states 0 to 3+ and 1– to 2+ 

are accessible for Co6Se8(PEt3)6 and Co6Se8(CO)(PEt3)5, respectively. Three redox couples are also 

observed for the diisonitrile-bridged dimer (BD) Co12Se16(PEt3)10(CNC6H4NC) synthesized from 

Co6Se8(CO)(PEt3)5 precursors. The three redox couples come from the additive shuttling of two 

electrons with each redox event resulting in double number of electrons being shuttled. The fused 

dimer (FD) of Co12Se12(PEt3)10, however, displays a drastically different redox behavior: the cyclic 

voltammogram shows five distinct and reversible one-electron events giving access to the 1– to 

5+ charge states. Accessing more redox states and thus enhancing the electrochemical activity of 

this 1D structure is a result of the direct coupling of superatomic cores. 

Higher order oligomers and dendrimers. 

 

One-dimensional (1D) structures can be prepared via stepwise ligand substitution of zero-

dimensional (0D) superatomic units. For instance, trimers of Co6Se8 are prepared by reacting 

trans-Co6Se8(CNC6H4NC)2(PEt3)4 (formed from trans-Co6Se8(CO)2(PEt3)4) with two site-

differentiated Co6Se8(CO)(PEt3)5 units to link them together via photodissociation of the CO 

ligand.55 This is a general strategy that is currently being explored to make 1D wires with a 

diversity of core structures.  

In Figure 1.4, we present an oligomer as another type of 1D nanostructure created from 

superatoms: a metallodendrimer array. Zheng and co-workers synthesized the oligomer62-63 by 

reacting six equivalents of the site-differentiated unit [Re6Se8(PEt3)5(L)]2+ (L is a ditopic bipyridyl 

ligand) with one equivalent of [Re6Se8(MeCN)6]
2+. The labile acetonitrile ligand is substituted 

with the pyridine group, leading to coupling of the superatomic units.  
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Diblock copolymer containing superatoms. 

 

My initial aim was to develop a strategy to expand the assembly of superatoms beyond 

crystals and into mesoscale structures using a polymer template. In Chapter 2, I will discuss my 

initial attempts of using charge transfer interactions between cobalt telluride superatoms and block 

copolymers with pendant perylene diimide molecules to access mesoscale assemblies of 

superatoms. The synthetic strategy developed by Anouck Champsaur and Alexandra Velian 

(former Nuckolls’ group members) to prepare and functionalize the site-differentiated 

Co6Se8CO(PEt3)5 cluster55 enabled the covalent functionalization of the cobalt selenide superatom 

Figure 1.4. Coordinating frameworks are formed through ligand interactions of superatoms 

which are 0D structures using hydrogen and covalent bonding and metal coordination to form 

1D dimers55, trimers55, and oligomers54. The 1D structures can be further extended to form 2D 

assemblies such as the Kagome lattice64, redox-active nanosheets65, and woven molecular 

cloth66. 3D assemblies can also be formed using coordination frameworks and examples of this 

type include a superatomic “MOF”65 and superexpanded Prussian Blue structures25. 
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onto a polymer backbone. Using this site-differentiated cluster, I was sought to synthesize and 

self-assemble a diblock copolymer containing pendant cobalt selenide superatoms.67 Chapter 4 

will detail my research on the synthesis, assembly, and properties of a diblock copolymer with 

pendant cobalt selenide clusters that self-assembles into vesicles. 

1.4. Multicomponent superatomic crystals 

 

Achieving enhanced coupling between superatomic building blocks is not limited to 

synthesis of extended materials through covalent bonding in 1D nanostructures. Two dimensional 

(2D) and three dimensional (3D) multicomponent solids were inspired by earlier examples of 

inorganic-organic multicomponent solids having hierarchical order. The cyanide-functionalized 

cluster [Re6Se8(CN)6]
4– was used by Batail and co-workers as a building block to create the 

inorganic-organic hybrid material (EDT-TTF-CONH2)6[Re6Se8(CN)6] (EDT-TTF-CONH2 = 

amide-functionalized ethylenedithiotetrathiafulvalene) with a Kagome lattice shown in the 2D 

panel of Figure 1.4 that exhibits metallic electrical transport.64, 66 A series of other atomically 

precise clusters with M6E8 motifs have been reported to have charge transfer interactions with 

organic molecules such as TTF, TCNQ or other inorganic clusters yielding interesting conductivity 

behavior in assembled solids.61, 68-73 In Chapter 2, I will introduce a new binary superatomic ionic 

solid [Co6Te8(PEt3)6][C5-CN2-PDI] whose assembly was driven by the transfer of electrons from 

electron-rich cobalt telluride superatom to the perylene diimide acceptor molecule. 

Building on this foundation of inorganic-organic superatomic materials, metal 

chalcogenide molecular building blocks have been assembled with fullerenes into binary 

superatomic crystals74 held together by charge transfer interactions. This initial discovery was led 

by my advisor, Professor Xavier Roy while under the guidance of Professor Colin Nuckolls and 
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Dr. Michael Steigerwald. Since then, an entire library of multicomponent superatomic solids 

(several highlighted in Figures 1.5-7) has since been synthesized by members of both Nuckolls 

and Roy groups. In addition to exploiting inter-superatom charge transfer to drive the assembly of 

the materials, superatoms have been functionalized with capping ligands capable of molecular 

recognition.  

In the past few years, there has also been exciting new direction of synthesizing 2D and 

3D superatomic coordination structures by harnessing the utility of the ligands of metal 

chalcogenide superatoms. For example, octahedral superatoms functionalized with cyanide 

ligands, [M6E8(CN)6]
n– (M = Re, Mo, W; E = S, Se, Te) and [M6Cl12(CN)6]

n– (M = Nb, Ta), have 

been used to replace the traditional atomic building block [Fe(CN)6]
4– to form cluster-expanded 

PB analogs66, 75-76 and more exotic superatom-based PB frameworks can also be produced.76 Metal 

organic framework (MOF) synthetic strategies have been applied to create 2D and 3D frameworks 

from preformed carboxylic acid-functionalized Co6Se8 superatoms66 that react with Zn2+ ions to 

form a crystalline superatomic molecular framework with carboxylate-zinc-carboxylate nodes. 

Another example, is the use of electrocrystallization to oxidize trans-Co6Se8(CNC6H4NC)2(PEt3)4 

in the presence of shape complementary anionic template (Mo6O19
2-) to yield covalent 2D 

interwoven superatom polymer strands (see 2D panel in Figure 1.4)66 .  

Fullerene-based superatomic crystals from charge transfer assembly. 

 

Superatoms can be electron rich or electron poor, depending on their core composition and 

capping ligands. By combining superatoms with complementary redox characteristics in solution, 

one can assemble superatomic crystals via charge transfer as illustrated in Figure 1.5a. The 

synthetic strategy employs an electron rich superatom (e.g., Co6Te8(PEt3)6, Ni9Te6(PEt3)8) that 
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transfers charge to an electron accepting unit (e.g., C60) to produce binary ionic compounds whose 

structures are characterized by single crystal x-ray diffraction (SCXRD). 

 

Figure 1.5. (a) General synthetic strategy in which an electron transfer occurs between an electron 

rich superatom to and electron poor one for assembly into binary three dimensional solids. (b,c,d) 

Multicomponent superatomic assemblies with C60 are shown in (b)74, (c)81, and (d)82. Ligands have 

been omitted for clarity. (b) Thermal conductivity of C60, Co6E8(PEt3)6, and [Co6E8(PEt3)6][C60]2 

solids where E = S, Se, or Te. (c) Effect on the electrical conductivity upon intercalation of 

increasing amounts of x = TCNE in [Co6Te8(P
nPre)6][C60]2[TCNE]x. (d) Zero field cooled (ZFC) 

and field cooled (FC) traces of [Ni9Te6(PEt3)8][C60] indicating long-range ferromagnetic 

ordering74. 



21 

 

Superatomic crystals assembled from C60. 

 

Being good electron acceptors with complementary size and shape, C60 fullerenes are 

attractive superatomic building blocks to create superatomic crystals from electron rich metal 

chalcogenide clusters. The reaction of Co6Se8(PEt3)6, Cr6Te8(PEt3)6 and Ni9Te6(PEt3)8 in toluene 

with C60 forms the solids [Co6Se8(PEt3)][C60]2, [Cr6Te8(PEt3)6][C60]2 and [Ni9Te6(PEt3)8][C60].
74, 

81 The structure of the binary superatomic solids mimicks the packing of traditional binary ionic 

compounds: [Co6Se8(PEt3)][C60]2 and [Cr6Te8(PEt3)6][C60]2 adopt the CdI2 structure while the 

[Ni9Te6(PEt3)8][C60] crystallizes as the NaCl rock-salt lattice (Figure 1.5b). 

More complex structures can be assembled by modifying the superatoms. One example is 

the superatom Co6Te8(P
nPr3)6, which crystallizes with three C60 fullerenes to form the layered 

compound [Co6Te8(P
nPr3)6][C60]3

83 (Figure 1.5b). Another example is the trinuclear nickel 

superatoms [Ni3X2(dppm)3] (X = I, Te; dppm= 1,1-Bis(diphenylphosphino)methane), which form 

the binary solids [Ni3X2(dppm)3][C60]
84.  

In all of these examples of superatomic crystals, the internal structures of the constituent 

clusters remain unchanged, resulting in atomically precise solids. Electron transfer produces 

superatoms whose charge states can be determined using a combination of spectroscopy and 

crystallography. The superatom Co6Te8(P
nPr3)6, for instance, donates one electron, which is shared 

among the three fullerenes, resulting in the charge states: [Co6Te8(P
nPr3)6

+][C60
1/3−]3

83. 

Collective propeties in C60-based superatomic crystals. 

 

Fullerenes are unique building blocks due to their exposed spherical -surface capable of 

electronic coupling in all directions. Such interactions have enabled the emergence of numerous 

collective properties in superatomic crystals as a result of the unique complementarity in the size, 
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structure and redox of fullerenes and superatoms. This section will highlight some of the exciting 

emergent materials’ properties that have been characterized in superatom-fullerene assemblies.  

Electrical and optical conductivity properties. 

 

Superatomic crystal assembled from C60 typically exhibit good electrical conductivity. The 

close packing of superatoms and C60 produces electrically activated transport behavior with the 

majority carriers being electrons transferred from the inorganic superatom to the fullerenes 

sublattice. Depending on the building blocks and the structure of the material, the room 

temperature conductivity and activation energy can range from 8 x 10-5 to 0.1 S/m, and 100 to 400 

meV,3, 74, 84 respectively.  

Intercalation. 

 

Evan O’Brien (former graduate student of Roy group) recently led the discovery83 that the 

intercalation of redox active guests into the lattice of a superatomic crystal, [Co6Te8(P
nPr3)6][C60]3, 

can modulate the electrical and optical properties of the material while maintaining its 

superstructure. The host is a layered structure composed of alternating 2D sheets of spaced-out 

Co6Te8(P
nPr3)6 and close-packed C60 with an overall charge state [Co6Te8(P

nPr3)6
+][C60

1/3–]3. The 

pristine material can be intercalated with tetracyanoethylene (TCNE) in a single-crystal-to-single 

crystal transformation driven by transfer of electrons from the superatoms to the redox-active 

organic guest molecule. Remarkably, the fully intercalated material, 

[Co6Te8(P
nPr3)6][C60]3[TCNE]2, has a significantly widened optical gap and its electrical 

conductivity can be modulated over 4 orders of magnitude by controlling the composition the 

relative number of TCNE inserted in the lattice.  
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Magnetism. 

 

The superatomic cluster assemblies [Co6Se8(PEt3)][C60]2, [Cr6Te8(PEt3)6][C60]2, 

[Ni9Te6(PMe3)8][C60], and [Ni9Te6(PEt3)8][C60] have all been magnetically characterized74, 82. As 

expected, the identity of the superatom used in the assembly influences the magnetic properties of 

the material. For [Co6Se8(PEt3)][C60]2, there is a temperature-independent effective magnetic 

moment, μeff = 2.7 μB and is expected due to the transfer of one electron to each of the two C60s as 

determined by Raman spectroscopy. Magnetic measurements of the [Cr6Te8(PEt3)6][C60]2 indicate 

that the presence of the CrIII atoms within the superatom result in a more complex magnetic 

behavior74.  

Magnetic measurements of both [Ni9Te6(PEt3)8][C60] and [Ni9Te6(PMe3)8][C60] reveals 

that at low temperatures, a spontaneous ferromagnetic ordering occurs. [Ni9Te6(PMe3)8][C60] 

shows stronger electronic coupling than the triethyl phosphine analogue because of the decreased 

ligand shell size thus highlighting the tunability of the magnetic properties of superatomic 

assemblies. 

Thermal transport. 

 

Limited by the size of single crystals for experimental measurements and the introduction 

of inter-superatom cooperative behaviors, the analysis and prediction of emergent collective 

thermal transport behavior in superatomic materials is still in its infancy. A first study was recently 

published in a collaboration between research teams at Columbia University and Carnegie Mellon 

that evaluates the collective thermal conductivity and transport in mono-component and multi-

component superatomic assemblies81. Figure 1.5b shows the improved thermal conductivity of 

multicomponent superatomic solids assembled from Co6E8(PEt3)6 and C60 building blocks due to 
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the additional inter-superatom interactions between building blocks in comparison to the 

measurements of the unary compounds.  

Multi-component superatomic crystals can undergo phase transitions that modify the 

orientational ordering and thus inter-superatom coupling. The change in inter-superatom 

interactions alters the thermal transport behavior of the solid. [Co6Se8][C60]2 undergoes a phase 

transition around 190 K that contracts the centroid-centroid C60 distances and the multi-component 

binary solid becomes orientationally ordered81. Above 190 K, the superatomic crystal is 

orientationally disordered and scatters phonons in an amorphous-type behavior. The thermal 

conductivity in the solid is temperature-dependent below 180 K and behaves as a typical crystalline 

solid with increasing mean free path lengths with decreasing temperature as shown in Figure 1.6b. 

In comparison, the isostructural [Co6Te8][C60]2 solid continuously decreases its conductivity with 

decreasing temperature. The larger chalcogenide cluster prevents the fullerene units from being 

close enough to have the short-range anisotropic interactions that cause orientational ordering and 

the solid never undergoes a temperature-dependent phase transition. Thermal transport in 

superatomic crystals is thus dependent on the structural properties of the solids including its inter-

superatom spacing and interactions. This study suggests that by controlling the atomically precise 

ordering and coupling between building blocks, scientists can target the design of next-generation 

thermoelectric materials.  

1.5 Superatomic crystals assembled from fullerenes other than C60 

 

Replacing the C60 building block with C70 provides further opportunity to uncover novel 

structures and properties in superatomic crystals. For example, the larger and oblong C70 assembles 

with the trinuclear nickel superatoms to form [Ni3X2(dppm)3][C70]2 (X = I, Te)84. Remarkably, C70 
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dimerizes upon reduction, forming C140
2− dumbbells within the lattice (Figure 1.6c). When C70 is 

combined with Co6Te8(PEt3)6, a structure that is analogous to [Co6Te8(PEt3)6][C60]2 is obtained 

but half of the C70 units are dimerized, forming the superatomic crystal 

[Co6Te(PEt3)6][(C140)1/2(C70)].
88 The interfullerene bond within the C140

2− dimers is remarkably 

long (1.6 Å) and can be cleaved by heating the superatomic crystals, leading to coupled 

electronic/structural phase transition that produce an abrupt change in the material properties.  

Optical properties. 

 

The observed structural phase transition upon heating [Co6Te8(PEt3)6][(C70)2] material and 

cleaving the C70 dimers produces a remarkable new feature in its electronic absorption spectra88. 

The optical band gap energy of 0.4 eV is held constant across the material’s phase transitions in 

which the C70 units transform from being orientationally ordered, to dynamically disordered, to 

electronically delocalized. However, upon heating to 330 K and releasing the electrons in the inter-

fullerene bond, a new spectral feature appears at 0.1 eV attributed to a new band in the fullerene 

sublattice.  

Electrical properties. 

 

The appearance of a new spectral band in the electronic absorption spectra of the Co6Te8 

assembly is indicative of increased conductivity in the crystal caused by the electron delocalization 

on the fullerenes. The liberation of the inter-fullerene electrons increases the electrical conductivity 

from 0.1 S/m at 320 K to 10 S/m at 340 and correspondingly decreases its activation energy from 

500 to 300 meV88. As in assemblies with C60, the material is thermally activated, and conductivity 

increases exponentially with temperature. Comparatively, both of the [Ni3X2(dppm)3][C70]2 (X = 

I, Te) crystals exhibit significantly lower conductivities than its C60 analogues with values of 1.0 
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x10-5 S/m and 2.0 x10-4 and 8 x10-5 S/m for the [Ni3X2(dppm)3][C70]2 and [Ni3I2(dppm)3][C60]2 

[Ni3Te2(dppm)3][C60]2  respectively84.  

Magnetism. 

 

The electronic reconfiguration that occurs upon the cleaving of the C70 dimers in the 

Co6Te8 assembly increases the lattice spin density of the material88. At low temperatures, the 

sample behaves as expected given the diamagnetic character of both C70 and C140
2- units and the S 

= ½ magnetic ground state of Co6Te8(PEt3)6
+ and a measured XMT~0.43 cm3 mol-1K at 2K. XMT 

reaches 0.70 cm3 mol-1 K in a linear fashion upon heating from 10 to 310 K which is attributed to 

low lying magnetic states in the system. Upon generation of the C70- radical anions, the lattice spin 

density abruptly increases to 0.28 cm3 mol-1 K and the unpaired electrons in the fullerene 

sublattice experience antiferromagnetic interactions.  

Thermal behavior. 

 

Thermal conductivity (k) of the Co6Te8 assembly with C70 is significantly altered by the 

initial phase transition from a phonon crystal at low temperature when the fullerenes are 

orientationally ordered to exhibiting amorphous thermal transport behavior when the fullerenes 

freely rotate88. Above 240 K, the [Co6Te8(PEt3)6][C70]2 single crystals k consistently ranges from 

0.11±0.02 to 0.20±0.04 W/mK independent of temperature and upon cooling, k increases with 

decreasing temperature as the solid becomes increasingly crystalline. The increased phonon mean-

free-path reaches a maximum k value of 0.49 + 0.19 W/mK at 125 K.  
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Superatomic crystals assembled from endohedral fullerenes. 

 

Endohedral fullerenes offer the opportunity of introducing an additional level of 

compositional variety into superatomic crystal by encapsulating different clusters within the 

conjugated carbon -surface. Assembling multicomponent superatomic assemblies with 

endohedral fullerene building blocks offers exciting opportunities to observe novel electronic and 

magnetic coupling and phenomena. However, in comparison to C60 or C70, which have been widely 

used charge transfer for self-assembly, endohedral fullerenes have lower electron affinities which 

limits the selection of its redox-complimentary building block 89-91. In Chapter 3 I will discuss my 

assembly of the first superatomic crystal comprising an endohedral fullerene: 

[Ni12Te12(PEt3)8][(Lu3N@C80)2]
92. As with C70, the reduced endohedral fullerenes form dimers in 

the solid state, as illustrated in Figure 1.6.  

Figure 1.6. Superatomic assemblies with C70 of [Co6Te8(PEt3)6][C70]2 (left), 

[Ni12Te12(PEt3)8]2[Lu3N@C80]2 (middle), and [Ni3I2(dppm)3][C70]2 (right). Ligands have been 

omitted for clarity. (b) Optical band gap (left), magnetic ordering (middle) and electrical 

conductivity (right) of [Co6Te8(PEt3)6][C70]2 shown in (a) (left)84, 88, 92.  
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Superatomic crystals from inorganic building blocks. 

 

Beyond fullerenes, multicomponent superatomic assemblies can be assembled from 

electronically complementary inorganic building blocks, including metal chalcogenide, metal 

oxide and metal halide clusters. For instance, combining the electron-donating Co6Se8(PEt3)6 and 

electron-accepting Fe8O4pz12Cl4 in toluene forms black single crystals of [Co6Se8(PEt3)6] 

[Fe8O4pz12Cl4]
29 whose primitive cubic lattice can be approximated as the superatomic analog of 

the CsCl lattice. Substitution of the phosphines, halides and/or chalcogens can produce subtle 

changes to the atomic structure of the binary solids or entirely new packing structures. The 

compounds [Co6Se8(PEt3)6][Fe8O4pz12Cl4], [Co6Te8(PEt3)6][Fe8O4pz12Cl4] and 

[Co6Te8(PEt2Ph)6][Fe8O4pz12Cl4] and [Co6Te8(PEt3)6][Fe8O4pz12Br4] all form the same CsCl 

packing structure, with slight differences in the orientation of the superatoms. The material 

[Co6Te8(P
nPr3)6][Fe8O4pz12Cl4], by contrast, adopts an entirely different and highly unusual 

superstructure in which the two superatoms form alternating hexagonal close-packed layers with 

an hccc packing stacking sequence. These examples demonstrate how modification of the 

superatoms allows subtle tuning of the superstructure.  

Superatomic crystals assembled from molecular recognition. 

 

In addition to electrostatic interactions resulting from inter-superatom charge transfer, 

multicomponent crystals can be assembled using molecular recognition motifs. Figure 1.7 presents 

an example in which a superatom decorated with phenanthrene groups is used as a nanoscale 

director to form a layered van der Waals solid, which can be exfoliated, akin to conventional 

atomic van der Waals materials93. Figure 1.7a shows a side view of how the phenanthrene ligands 

on Co6Se8(PEt2phen)6 extend, rotate, and organize to form two antipodal buckybowls interacting 
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with C60 to create a dumbbell unit that templates the extended layered structure. The resulting bulk 

solid, [Co6Se8(PEt2phen)6][C60]5, contains two distinct layers: a heterogeneous cluster-fullerene in 

which each cluster is surrounded by two C60, and a homogeneous layer of close-packed neutral 

fullerenes (Figure 1.7). Unlike charge transfer assemblies, the layers in [Co6Se8(PEt2phen)6][C60]5 

are held together by relatively weak van der Waals forces. 

By analogy to graphene and transition metal dichalcogenides, single crystal of 

[Co6Se8(PEt2phen)6][C60]5 can be exfoliated to produce nanosheet materials94. To enable 

exfoliation, the structure needs to be mechanically strengthened. This is accomplished by 

photopolymerizing the close-packed 2D C60 layers within the structure. Once crosslinked the 

crystals can be dissolved in toluene to release nanosheets of the material, which can be collected 

on a substrate. Figure 1.7 shows an atomic force microscopy (AFM) image of the isolated 

nanosheet after exfoliation in toluene and deposited onto a silicon oxide substrate. The image of 5 

nm step heights of the nanosheet correspond to sandwich layers of FL/CFL/FL of the material. 

Remarkably, the exfoliated 2D photopolymerized material can be reverted to its pristine molecular 

state by thermal depolymerization at 450 K. 

Collective properties of 2D superatomic crystal. 

Assembling superatoms into synthetic 2D materials offers exciting opportunities for tuning 

the material properties through chemical design and for discovering new behaviors. As a bulk 

crystal, [Co6Se8(PEt2phen)6][C60]5 exhibits in-plane activated electrical transport behavior with an 

activation energy Ea of ∼400 meV. The optical gap of the material, estimated from electronic 

absorption spectroscopy, is ~390 meV. Upon photopolymerization and exfoliation, the nanosheets 

behave as a direct bandgap semiconductor with an optical gap of ~250 meV. This unusual 

reduction of the optical gap in the 2D limit suggests that the C60 layers in the parent structure are 
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electronically decoupled from each other. The effect is instead attributed to shorter intermolecular 

distances, resulting from the polymerization of the C60 layer. The decrease in C60–C60 distance 

enhances the coupling between C60 units and thus reduces the gap. 

  

1.6. Reduction of 3D materials to lower dimensions 

 

The focus of this introduction has been on a bottom-up approach to fabricate 1D, 2D, and 

3D superatomic coordination structures from 0D building blocks. An alternative approach is the 

atomically precise top-down reduction of 3D materials to lower 1D and 2D constituents. Interest 

in such methods has grown with the advent of 2D semiconductors that many groups currently 

target via top-down approaches. Recently, work done in a collaboration with members of Professor 

Roy, Zhu, and Batail groups accessed a 2D semiconductor material through a top-down exfoliation 

of Re6Se8 bulk material.95-96 The superatomic material is a 2D semiconductor with electronic 

bandgaps of ~1.6 eV. The Chevrel-type Re6Se8Cl2 is the first member of a 2D hierarchical 

Figure 1.7. The self-assembly of Co6Se8(PEt2Phen)6 results in the extension and rotation of 

the phenanthrene ligands forming a buckeybowl that experiences van der Waal interactions 

with the fullerene layers. The cluster is held within the dumbbell-templated cluster-fullerene 

layer surrounded by two additional C60 molecules93-94. (b) AFM image of the exfoliated 

nanosheet. Step heights of 5 nm are shown below the AFM image and correspond to a single 

sandwich layer (FL/CFL/FL) of the structure94. 
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semiconductor family. Calculations indicate that the bandgap increases from ~1.5 eV in the bulk 

to ~1.7 eV in the monolayer while remaining an indirect bandgap material. Remarkably, the 2D 

monolayers retain the crystalline [Re6Se8] structure after exfoliation and surface functionalization. 

I had the opportunity to contribute to the work in confirming the retention of the crystallinity of 

the [Re6Se8] structure after exfoliation and chemical functionalization of the surface. Figure 1.8 

shows a few of the transmission electron microscopy (TEM) images I took showing isolated 

monolayers whose selected area electron diffraction (SAED) patterns match well with the expected 

crystal structure. Further surface functionalization96 and exfoliation techniques could expose a new 

vein of research to design superatomic materials with novel electronic behaviors for functional 

applications.  

 

Figure 1.8. (a) Schematic of the surface functionalization reaction of monolayers supported on a 

substrate. Color as in Figure 1; C, gray; N, aqua. (b) Raman spectra (2000−2400 cm−1 region) of 

monolayers on sapphire substrate (green), monolayers after reaction with TMSCN (red), and 

pristine sapphire substrate exposed to TMSCN in air (blue). The signal from the sapphire 

background has been subtracted in all the spectra. (c) AFM image and (d) TEM micrograph (inset: 

corresponding SAED pattern) of monolayers after surface functionalization. 
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1.7 Future Directions 

 

The studies described here reveal the great potential for the fabrication of functional 

materials from superatomic building blocks. To date synthetic strategies to access superatoms with 

varied chemical core and ligand composition have been well explored. More recently, there has 

been a shift in focus onto the discovery of new strategies to assemble monocomponent and 

multicomponent extended materials from superatomic precursors. As new superatomic 

coordination structures are synthesized, the characterization of their emergent collective materials’ 

properties (i.e. magnetism, thermal conductivity, electron transport) is required in order to apply 

these materials in the design of new technologies. Already, there are several examples of 

synthesized superatomic assemblies whose material properties have yet to be explored. Some of 

the next steps the field will take will be the robust synthesis and characterization of these materials 

to demonstrate the tunability of emergent behaviors and potential in future applications. 

The main direction of assembling superatoms into larger materials are to enhance the 

favorable properties listed above in two ways: varying the constituent building blocks of known 

assemblies and developing new ways to assemble atomically precise clusters. There are many 

more opportunities in building superatomic functional materials through the development of new 

synthetic strategies for superatom functionalization and assembly as well as novel techniques to 

probe their resulting individual and collective properties. The ultimate vision is to develop a deep 

fundamental understanding of the individual and collective properties of atomically precise 

assemblies of superatoms. This fundamental knowledge will allow chemists to judiciously select 

the superatomic composition and assembly strategy for fabrication of the desired functional 

material.   



33 

 

1.8 References 

 

1. Claridge, S. A.; Castleman, A. W.; Khanna, S. N. et al. Cluster-Assembled Materials. ACS Nano 

2009, 3, 244-255. 

2. Jena, P.; Sun, Q., Super Atomic Clusters: Design Rules and Potential for Building Blocks of 

Materials. Chem. Rev. 2018, 118, 5755-5870. 

3. Pinkard, A.; Champsaur, A. M.; Roy, X., Molecular Clusters: Nanoscale Building Blocks for 

Solid-State Materials. Acc. Chem. Res. 2018, 51, 919-929. 

4. Steigerwald, M. L., Clusters as Small Solids. Polyhedron 1994, 13, 1245-1252. 

5. Dance, I.; Fisher, K., Metal Chalcogenide Cluster Chemistry. Prog. Inorg. Chem. 1994, 41, 637-

803. 

6. MacDonald, D. G.; Corrigan, J. F., Metal chalcogenide nanoclusters with 'tailored' surfaces via 

'designer' silylated chalcogen reagents. Philos. Trans. Royal Soc. A 2010, 368, 1455-1472. 

7. Khanna, S. N.; Jena, P., Atomic clusters: Building blocks for a class of solids. Phys Rev B 

Condens Matter 1995, 51, 13705-13716. 

8. Bergeron, D. E.; Castleman, A. W.; Morisato, T.; Khanna, S. N., Formation of Al13I-: Evidence 

for the superhalogen character of Al-13. Science 2004, 304, 84-87. 

9. Dietz, T. G.; Duncan, M. A.; Powers, D. E.; Smalley, R. E., Laser Production of Supersonic 

Metal Cluster Beams. J. Chem. Phys. 1981, 74, 6511-6512. 

10. Bondybey, V. E.; English, J. H., Laser-Induced Fluorescence of Metal-Clusters Produced by 

Laser Vaporization - Gas-Phase Spectrum of Pb-2. J. Chem. Phys. 1981, 74, 6978-6979. 

11. Knight, W. D.; Clemenger, K.; Deheer, W. A. et al. Electronic Shell Structure and Abundances 

of Sodium Clusters. Phys. Rev. Lett. 1984, 52, 2141-2143. 

12. Crawford, N. R. M.; Hee, A. G.; Long, J. R., Cluster synthesis via ligand-arrested solid growth: 

Triethylphosphine-capped fragments of binary metal chalcogenides. J. Am. Chem. Soc. 2002, 124, 

14842-14843. 

13. Fenske, D.; Ohmer, J.; Hachgenei, J.; Merzweiler, K., New Transition-Metal Clusters with 

Ligands from Main Group-5 and Group-6. Angew. Chem.-Int. Ed. 1988, 27, 1277-1296. 

14. Chakraborty, I.; Pradeep, T., Atomically Precise Clusters of Noble Metals: Emerging Link 

between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208-8271. 

15. Sokolov, M. N.; Abramov, P. A., Chalcogenide clusters of Groups 8-10 noble metals. 

Coord.Chem. Rev. 2012, 256, 1972-1991. 

16. Hidai, M.; Kuwata, S.; Mizobe, Y., Synthesis and reactivities at cubane-type sulfido clusters 

containing noble metals. Acc. Chem. Res. 2000, 33, 46-52. 

17. Cecconi, F.; Ghilardi, C. A.; Midollini, S., A Novel Paramagnetic Octahedral Iron Cluster - 

Synthesis and X-Ray Structural Characterization of [Fe6(Mu-3-S)8(Pet3)6][Bph4]2. Chem. 

Comm. 1981, 640-641. 



34 

 

18. Brennan, J. G.; Siegrist, T.; Stuczynski, S. M.; Steigerwald, M. L., The Transition from 

Molecules to Solids - Molecular Syntheses of Ni9te6(Pet3)8, Ni20te18(Pet3)12, and Nite. J. Am. 

Chem. Soc. 1989, 111, 9240-9241. 

19. Speziali, N. L.; Berger, H.; Leicht, G.; Sanjines, R.; Chapuis, G.; Levy, F., Single-Crystal 

Growth, Structure and Characterization of the Octahedral Cluster Compound Re6Se8Br2. Mater. 

Res. Bull. 1988, 23, 1597-1604. 

20. Fischer, C.; Fiechter, S.; Tributsch, H.; Reck, G.; Schultz, B., Crystal-Structure and 

Thermodynamic Analysis of the New Semiconducting Chevrel Phase Re6s8cl2. Phys. Chem. 

Chem. Phys. 1992, 96, 1652-1658. 

21. Leduc, L.; Perrin, A.; Sergent, M., The Structure of Hexarhenium Dichloride and Octaselenide, 

Re6Se8Cl2 - a Bidimensional Compound of Re6 Octahedral Clusters. Acta Crystallogr. Sec. C-

Cryst. Strct. Comm. 1983, 39, 1503-1506. 

22. Mironov, Y. V.; Virovets, A. V.; Naumov, N. G.; Ikorskii, V. N.; Fedorov, V. E., Excision of 

the {Mo6Se8} cluster core from a chevrel phase: Synthesis and properties of the first molybdenum 

octahedral cluster selenocyanide anions [Mo6Se8(CN)(6)](7-) and [Mo6Se8(CN)(6)](6-). Chem. 

Euro. 2000, 6, 1361-1365. 

23. Magliocchi, C.; Xie, X. B.; Hughbanks, T., A cyanide-bridged chain of Mo6Se8 clusters: A 

product of cyanide-melt cluster synthesis. Inorg. Chem. 2000, 39, 5000-5001. 

24. Bajan, B.; Meyer, H. J., Two-dimensional networks in the structure of Li-2[Nb6Cl16]. Z. 

Anorg. Und Allg. Chem. 1997, 623, 791-795. 

25. Zhang, J. J.; Lachgar, A., Superexpanded prussian-blue analogue with [Fe(CN)(6)](4-), 

[Nb6Cl12(CN)(6)](4-), and [Mn(salen)](+) as building units. J. Am. Chem. Soc. 2007, 129, 250-

251. 

26. Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Orlandini, A.; Zanello, P., Synthesis, properties and 

structures of the two “electron rich” cobalt-sulphur clusters [Co6(μ3-S)8(PEt3)6]1+,0. Polyhedron 

1986, 5, 2021-2031. 

27. Saito, T.; Yamamoto, N.; Nagase, T. et al. Molecular-Models of the Superconducting Chevrel 

Phases - Syntheses and Structures of [Mo6x8(Pet3)6] and [Ppn][Mo6x8(Pet3)6] (X = S, Se, Ppn 

= (Ph3p)2n). Inorg. Chem. 1990, 29, 764-770. 

28. Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Orlandini, A.; Zanello, P., Redox behaviour of the 

iron–sulphur cluster [Fe6(µ3-S)8(PEt3)6]2+. Synthesis and crystal structure of the new 

paramagnetic monopositive species [Fe6(µ3-S)8(PEt3)6]+ as its [PF6]– salt. Dalt Trans. 1987, 

831-835. 

29. Turkiewicz, A.; Paley, D. W.; Besara, T. et al. Assembling Hierarchical Cluster Solids with 

Atomic Precision. J. Am. Chem. Soc. 2014, 136, 15873-15876. 

30. Reber, A. C.; Khanna, S. N.; Castleman, A. W., Superatom compounds, clusters, and 

assemblies: Ultra alkali motifs and architectures. J. Am. Chem. Soc. 2007, 129, 10189-10194. 

31. Reber, A. C.; Chauhan, V.; Khanna, S. N., Symmetry and magnetism in Ni9Te6 clusters ligated 

by CO or phosphine ligands. J. Chem. Phys.2017, 146. 



35 

 

32. Liu, G. X.; Pinkard, A.; Ciborowski, S. M. et al. Tuning the electronic properties of 

hexanuclear cobalt sulfide superatoms via ligand substitution. Chem. Sci. 2019, 10, 1760-1766. 

33. Tulsky, E. G.; Long, J. R., Heterometal substitution in the dimensional reduction of cluster 

frameworks: Synthesis of soluble [Re6-nOSnSe8Cl6]((4-n)-) (n=1-3) cluster-containing solids. 

Inorg. Chem. 2001, 40, 6990-7002. 

34. Khanna, S. N.; Linderoth, S., Magnetic-Behavior of Clusters of Ferromagnetic Transition-

Metals. Physical Review Letters 1991, 67, 742-745. 

35. Kortus, J.; Baruah, T.; Pederson, M. R.; Ashman, C.; Khanna, S. N., Magnetic moment and 

anisotropy in FenCom clusters. Appl. Phys. Lett. 2002, 80, 4193-4195. 

36. Zhang, X. X.; Wang, Y.; Wang, H. P. et al. On the Existence of Designer Magnetic 

Superatoms. J. Am. Chem. Soc. 2013, 135, 4856-4861. 

37. Chauhan, V.; Medel, V. M.; Reveles, J. U. et al. Shell magnetism in transition metal doped 

calcium superatom. Chem. Phys. Lett. 2012, 528, 39-43. 

38. Xu, X. S.; Yin, S. Y.; Moro, R.; de Heer, W. A., Magnetic moments and adiabatic 

magnetization of free cobalt clusters. Phys. Rev. Lett. 2005, 95. 

39. Billas, I. M. L.; Chatelain, A.; Deheer, W. A., Magnetism from the Atom to the Bulk in Iron, 

Cobalt, and Nickel Clusters. Science 1994, 265, 1682-1684. 

40. Cox, A. J.; Louderback, J. G.; Bloomfield, L. A., Experimental-Observation of Magnetism in 

Rhodium Clusters. Phys. Rev. Lett. 1993, 71, 923-926. 

41. Datta, S.; Saha-Dasgupta, T., Structural, electronic and magnetic properties of transition metal 

binary alloy clusters with isoelectronic components: case study with MnmTcn, TimZrn and 

MnmRen. J. Phys. Condens. Matter 2013, 25. 

42. Gatteschi, D.; Sessoli, R., Quantum tunneling of magnetization and related phenomena in 

molecular materials. Angew. Chem. Int. Ed. Engl 2003, 42, 268-297. 

43. Bencini, A.; Midollini, S., Some Synthetic and Theoretical Aspects of the Chemistry of 

Polynuclear Transition-Metal Complexes. Coord. Chem. Rev. 1992, 120, 87-136. 

44. Cordier, S.; Grasset, F.; Molard, Y. et al. Inorganic Molybdenum Octahedral Nanosized 

Cluster Units, Versatile Functional Building Block for Nanoarchitectonics. J. Inorg. Organomet. 

Polym. Mater. 2015, 25, 189-204. 

45. Shestopalov, M. A.; Mironov, Y. V.; Brylev, K. A. et al. Cluster core controlled reactions of 

substitution of terminal bromide ligands by triphenylphosphine in octahedral rhenium 

chalcobromide complexes. J. Am. Chem. Soc. 2007, 129, 3714-3721. 

46. Kitamura, N.; Ueda, Y.; Ishizaka, S. et al. Temperature dependent emission of 

hexarhenium(III) clusters [Re-6(mu(3)-S)(8)X-6](4-) (X = Cl-, Br-, and I-): Analysis by four 

excited triplet-state sublevels. Inorg. Chem. 2005, 44, 6308-6313. 

47. Rosemann, N. W.; Eussner, J. P.; Beyer, A. et al. A highly efficient directional molecular 

white-light emitter driven by a continuous-wave laser diode. Science 2016, 352, 1301-1304. 

48. Castleman, A. W.; Khanna, S. N., Clusters, Superatoms, and Building Blocks of New 

Materials. J. Phys. Chem. C 2009, 113, 2664-2675. 



36 

 

49. Li, Q.; Russell, J. C.; Luo, T. Y.; Roy, X.; Rosi, N. L.; Zhu, Y.; Jin, R. C., Modulating the 

hierarchical fibrous assembly of Au nanoparticles with atomic precision. Nat. Comm. 2018, 9. 

50. Yoon, B.; Luedtke, W. D.; Barnett, R. N. et al. Hydrogen-bonded structure and mechanical 

chiral response of a silver nanoparticle superlattice. Nat. Mater. 2014, 13, 807-811. 

51. Long, J. R.; McCarty, L. S.; Holm, R. H., A solid-state route to molecular clusters: Access to 

the solution chemistry of [Re(6)Q(8)](2+) (Q=S, Se) core-containing clusters via dimensional 

reduction. J. Am. Chem. Soc. 1996, 118, 4603-4616. 

52. Zheng, Z. P.; Long, J. R.; Holm, R. H., A basis set of Re6Se8 cluster building blocks and 

demonstration of their linking capability: Directed synthesis of an Re12Se16 dicluster. J. Am. 

Chem. Soc. 1997, 119, 2163-2171. 

53. Roland, B. K.; Selby, H. D.; Carducci, M. D.; Zheng, Z. P., Built to order: Molecular tinkertoys 

from the [Re-6(mu(3)-Se)(8)](2+) clusters. J. Am. Chem. Soc. 2002, 124, 3222-3223. 

54. Selby, H. D.; Roland, B. K.; Zheng, Z. P., Ligand-bridged oligomeric and supramolecular 

arrays of the hexanuclear rhenium selenide clusters-exploratory synthesis, structural 

characterization, and property investigationt. Acc. Chem. Res. 2003, 36, 933-944. 

55. Champsaur, A. M.; Velian, A.; Paley, D. W.; Choi, B.; Roy, X.; Steigerwald, M. L.; Nuckolls, 

C., Building Diatomic and Triatomic Superatom Molecules. Nano Letters 2016, 16, 5273-5277. 

56. Champsaur, A. M.; Hochuli, T. J.; Paley, D. W.; Nuckolls, C.; Steigerwald, M. L., Superatom 

Fusion and the Nature of Quantum Confinement. Nano Letters 2018, 18, 4564-4569. 

57. Super-Molecules from Superatoms. Scientific American 2016, 315, 41-41. 

58. Zheng, Z. P.; Holm, R. H., Cluster condensation by thermolysis: Synthesis of a rhomb-linked 

Re12Se16 dicluster and factors relevant to the formation of the Re24Se32 tetracluster. Inorg. 

Chem. 1997, 36, 5173-5178. 

59. Amari, S.; Imoto, H.; Saito, T., Synthesis of a molybdenum cluster complex [Mo-12(mu(3)-

S)(14)(mu(4)-S)(2)(PEt3)(10)] with Chevrel phase type intercluster bondings. Chem. Lett. 1997, 

967-968. 

60. Saito, T., Group 6 Metal Chalcogenide Cluster Complexes and their Relationships to Solid-

State Cluster Compounds. Adv. Inorg. Chem. 1996; Vol. 44, pp 45-91. 

61. Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Orlandini, A., Dimerization of the Stellated 

Octahedral Unit Co6s8p6 - Synthesis and X-Ray Crystal-Structure of [Co12(Mu-3-S)14(Mu-4-

S)2(Pet3)10][Tcnq]2, Where Tcnq = Tetracyanoquinodimethane. Inorg.Chim. Acta 1993, 214, 13-

15. 

62. Roland, B. K.; Carter, C.; Zheng, Z., Routes to Metallodendrimers of the [Re6(μ3-Se)8]2+ 

Core-Containing Clusters. J. Am. Chem. Soc. 2002, 124, 6234-6235. 

63. Roland, B. K.; Flora, W. H.; Selby, H. D.; Armstrong, N. R.; Zheng, Z. P., Dendritic arrays of 

[Re-6(mu(3)-Se)(8)](2+) core-containing clusters: Exploratory synthesis and electrochemical 

studies. J. Am. Chem. Soc. 2006, 128, 6620-6625. 

64. Baudron, S. A.; Batail, P.; Coulon, C.; Clerac, R.; Canadell, E.; Laukhin, V.; Melzi, R.; 

Wzietek, P.; Jerome, D.; Auban-Senzier, P.; Ravy, S., (EDT-TTF-CONH2)(6)[Re6Se8(CN)(6)], 



37 

 

a metallic Kagome-type organic-inorganic hybrid compound: Electronic instability, molecular 

motion, and charge localization. J. Am. Chem. Soc. 2005, 127, 11785-11797. 

65. Champsaur, A. M.; Yu, J.; Roy, X.; Paley, D. W.; Steigerwald, M. L.; Nuckolls, C.; Bejger, C. 

M., Two-Dimensional Nanosheets from Redox-Active Superatoms. Acs Cent. Sci. 2017, 3, 1050-

1055. 

66. Champsaur, A. M.; Meziere, C.; Allain, M.; Paley, D. W.; Steigerwald, M. L.; Nuckolls, C.; 

Batail, P., Weaving Nanoscale Cloth through Electrostatic Templating. J. Am. Chem. Soc. 2017, 

139, 11718-11721. 

67. Voevodin, A.; Campos, L. M.; Roy, X., Multifunctional Vesicles from a Self-assembled 

Cluster-Containing Diblock Copolymer. J. Am. Chem. Soc. 2018, 140, 5607-5611. 

68. Renault, A.; Pouget, J. P.; Parkin, S. S. P.; Torrance, J. B.; Ouahab, L.; Batail, P., Evidence for 

a Spin-Peierls-Like Transition in the 1-D Organic Cation Radical Salt - Beta-(Tmtsf)2re6se5cl9. 

Mol. Cryst. Liq. Cryst. 1988, 161, 329-334. 

69. Penicaud, A.; Batail, P.; Coulon, C.; Canadell, E.; Perrin, C., Novel Redox Properties of the 

Paramagnetic Hexanuclear Niobium Cluster Halide Nb6cl18(3-) and the Preparation, Structures, 

and Conducting and Magnetic-Properties of Its One-Dimensional Mixed-Valence 

Tetramethyltetra(Selena and Thia)Fulvalenium Salts - [Tmtsf and Tmttf]5[Nb6cl18].(Ch2cl2)0.5. 

Chem. Mat. 1990, 2, 123-132. 

70. Baird, P.; Bandy, J. A.; Green, M. L. H. et al. Charge-Transfer Salts Formed from Redox-

Active Cubane Cluster Cations (M4(Eta-C5H4R)4(Mu-3-E)4)N+ (M = Cr, Fe or Mo E = S or Se) 

and Various Anions. Dalt. Trans. 1991, 2377-2393. 

71. Allen, D. P.; Bottomley, F.; Day, R. W.; Decken, A.; Sanchez, V.; Summers, D. A.; Thompson, 

R. C., Organometallic oxides: Oxidation of the cubane [(eta-C5R5)Cr(mu(3)-O)](4) and the 

structures and magnetic properties of the salts {[(eta-C5R5)Cr(mu(3)-O)](4)}{tcnq} and {[(eta-

C5R5)Cr(mu(3)-O)](4)}{BF4}. Organometallics 2001, 20, 1840-1848. 

72. Feliz, M.; Llusar, R.; Uriel, S.; Vicent, C.; Coronado, E.; Gomez-Garcia, C. I., Cubane-type 

Mo3CoS4 molecular clusters with three different metal electron populations: Structure, reactivity 

and their use in the synthesis of hybrid charge-transfer salts. Chem. Euro. J. 2004, 10, 4308-4314. 

73. Karadas, F.; Avendano, C.; Hilfiger, M. G.; Prosvirin, A. V.; Dunbar, K. R., Use of a rhenium 

cyanide nanomagnet as a building block for new clusters and extended networks. Dalt. Trans. 

2010, 39, 4968-4977. 

74. Roy, X.; Lee, C. H.; Crowther, A. C.; Schenck, C. L.; Besara, T.; Lalancette, R. A.; Siegrist, 

T.; Stephens, P. W.; Brus, L. E.; Kim, P.; Steigerwald, M. L.; Nuckolls, C., Nanoscale Atoms in 

Solid-State Chemistry. Science 2013, 341, 157-160. 

75. Shores, M. P.; Beauvais, L. G.; Long, J. R., Cluster-expanded Prussian blue analogues. J. Am. 

Chem. Soc. 1999, 121, 775-779. 

76. Beauvais, L. G.; Shores, M. P.; Long, J. R., Cyano-bridged Re(6)Q(8) (Q = S, Se) cluster-

metal framework solids: A new class of porous materials. Chem. Mat. 1998, 10, 3783-+. 

77. Tulsky, E. G.; Crawford, N. R. M.; Baudron, S. A.; Batail, P.; Long, J. R., Cluster-to-metal 

magnetic coupling: Synthesis and characterization of 25-electron [Re6-nOSnSe8(CN)(6)]((5-n)-) 



38 

 

(n=1, 2) clusters and {Re6-nOSnSe8[CNCu(Me(6)tren)](6)}(9+) (n=0, 1, 2) assemblies. J. Am. 

Chem. Soc. 2003, 125, 15543-15553. 

78. Nguyen, H. L.; Gandara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M., A 

Titanium-Organic Framework as an Exemplar of Combining the Chemistry of Metal- and 

Covalent-Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 4330-4333. 

79. Feng, D. W.; Wang, K. C.; Wei, Z. W. et al. Kinetically tuned dimensional augmentation as a 

versatile synthetic route towards robust metal-organic frameworks. Nat. Comm. 2014, 5. 

80. Wang, K. C.; Feng, D. W.; Liu, T. F. et al. A Series of Highly Stable Mesoporous 

Metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 2014, 136, 13983-13986. 

81. Ong, W. L.; O'Brien, E. S.; Dougherty, P. S. M.; Paley, D. W.; Higgs, C. F.; McGaughey, A. 

J. H.; Malen, J. A.; Roy, X., Orientational order controls crystalline and amorphous thermal 

transport in superatomic crystals. Nat. Mater. 2017, 16, 83-88. 

82. Lee, C. H.; Liu, L.; Bejger, C.; Turkiewicz, A. et al. Ferromagnetic Ordering in Superatomic 

Solids. J. Am. Chem. Soc. 2014, 136, 16926-16931. 

83. O'Brien, E. S.; Trinh, M. T.; Kann, R. L.; Chen, J. et al. Single-crystal-to-single-crystal 

intercalation of a low-bandgap superatomic crystal. Nat. Chem. 2017, 9, 1170-1174. 

84. Shott, J. L.; Freeman, M. B.; Saleh, N. A.; Jones, D. S.; Paley, D. W.; Bejger, C., Ball and 

Socket Assembly of Binary Superatomic Solids Containing Trinuclear Nickel Cluster Cations and 

Fulleride Anions. Inorg. Chem. 2017, 56, 10984-10990. 

85. Cahill, D. G.; Ford, W. K.; Goodson, K. E.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Merlin, 

R.; Sr, P., Nanoscale thermal transport. J. App. Phys. 2003, 93, 793-818. 

86. Cahill, D. G.; Braun, P. V.; Chen, G. et al. Nanoscale thermal transport. II. 2003-2012. App. 

Phys. Rev. 2014, 1. 

87. Kaiser, J.; Feng, T.; Maassen, J.; Wang, X.; Ruan, X.; Lundstrom, M., Thermal transport at the 

nanoscale: A Fourier's law vs. phonon Boltzmann equation study. J. App.Phys. 2017, 121. 

88. O’Brien, E. S.; Russell, J. C.; Bartnof, M. et al. Spontaneous Electronic Band Formation and 

Switchable Behaviors in a Phase-Rich Superatomic Crystal. J. Am. Chem. Soc. 2018, 140, 15601-

15605. 

89. Chaur, M. N.; Melin, F.; Ortiz, A. L.; Echegoyen, L., Chemical, Electrochemical, and 

Structural Properties of Endohedral Metallofullerenes. Angew. Chem. Int. Ed. Engl 2009, 48, 7514-

7538. 

90. Ueno, H.; Aoyagi, S.; Yamazaki, Y.; Ohkubo, K. et al. Electrochemical reduction of cationic 

Li+ @C-60 to neutral Li+@C-60(center dot-): isolation and characterisation of endohedral [60] 

fulleride. Chem. Sci. 2016, 7, 5770-5774. 

91. Popov, A. A.; Dunsch, L., Electrochemistry In Cavea: Endohedral Redox Reactions of 

Encaged Species in Fullerenes. J. Phys. Chem. Lett. 2011, 2, 786-794. 

92. Voevodin, A.; Abella, L.; Castro, E.; Paley, D. W.; Campos, L. M.; Rodriguez-Fortea, A.; 

Poblet, J. M.; Echegoyen, L.; Roy, X., Dimerization of Endohedral Fullerene in a Superatomic 

Crystal. Chem. Eur. J. 2017, 23, 13305-13308. 



39 

 

93. Choi, B.; Yu, J.; Paley, D. W.; Trinh, M. T. et al. van der Waals Solids from Self-Assembled 

Nanoscale Building Blocks. Nano Letters 2016, 16, 1445-1449. 

94. Lee, K. H.; Choi, B.; Plante, I. J. L.; Paley, M. V. et al. Two-Dimensional Fullerene Assembly 

from an Exfoliated van der Waals Template. Angew. Chem. Int. Ed. Engl. 2018, 57, 6125-6129. 

95. Zhong, X.; Lee, K.; Choi, B.; Meggiolaro, D. et al. Superatomic Two-Dimensional 

Semiconductor. Nano Letters 2018, 18, 1483-1488. 

96. Choi, B.; Lee, K.; Voevodin, A.; Wang, J. et al. Two-Dimensional Hierarchical Semiconductor 

with Addressable Surfaces. J. Am. Chem. Soc. 2018. 

 

  



40 

 

Chapter 2  

Dimerization of endohedral fullerene in a superatomic crystal 

 

2.0 Preface 

 

Significant portions of this chapter are adapted from publication on this research entitled 

Dimerization of Endohedral Fullerene in a Superatomic Crystal by Anastasia Voevodin, Laura 

Abella, Edison Castro, Daniel W. Paley, Luis M. Campos, Antonio Rodriguez-Fortea, Josep M. 

Poblet, Luis Echegoyen, and Xavier Roy published in Chemistry: A European Journal, 2017, 23, 

13305-13308.1 This research was an international collaboration with Prof. Luis Echegoyen’s group 

of University of Texas, El Paso and Prof. Josep Poblet of Universitat Rovira I Virgili in Tarragona, 

Spain. I carried out the synthesis of the nickel telluride cluster and superatomic crystal. Edison 

Castro of Prof. Luis Echegoyen’s group synthesized the endohedral fullerenes. Antonio 

Rodriguez-Fortea, and Laura Abella of Prof. Josep Poblet’s group carried out the theoretical 

calculations. Dan Paley performed single crystal refinement. 

2.1 Introduction 

 

The assembly of solid-state materials from molecular building blocks offers significant 

benefits over traditional solid-state reactions; the synthetic flexibility of the building blocks 

enables the development of functional materials with tunable properties. Building blocks can be 

chosen based on their redox or shape-complimentary features.  
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Fullerenes are attractive building blocks as electron acceptors, and their spherical pi-

surface enables electronic coupling in all directions. Such electronic interactions in fullerene-based 

materials have enabled the emergence of remarkable collective properties such as ferromagnetism 

and superconductivity.2,3 Building on this foundation, our team has been developing a new class 

of solid state materials4 assembled from electronically and structurally complementary molecular 

clusters. These materials, which we term superatomic crystals,4–8 provide a bridge between 

traditional semiconductors, molecular solids, and nanocrystal arrays by combining tunability and 

atomic precision. Fullerenes have been particularly useful to produce collective properties in 

superatomic crystals, including ferromagnetic ordering,9 coherent thermal transport10 and 

semiconducting behavior.4 Many of these properties are described in further detail in Chapter 1 of 

this thesis.  

 The synthetic flexibility of molecular clusters offers the possibility to create whole families 

of multifunctional materials by varying the constitution of the superatomic building blocks. By 

contrast, the use of fullerenes has been, by and large, restricted to C60 and C70. Endohedral 

fullerenes present the added benefit of varying the composition of the encapsulated guest while 

maintaining the advantageous properties of the carbon pi-surface.11–13 These compounds have been 

explored as MRI contrast reagents, electron acceptors for photovoltaic cells, and single molecule 

magnets.14–16 Within the large family of endohedral fullerenes, metal nitride cluster fullerenes 

M3N@C80 stand out due to their compositional diversity and relatively high synthetic yields.16–18  

 In this chapter we will discuss a new multicomponent superatomic crystal assembled from 

Lu3N@C80 and a Ni9Te12(PEt3)12 building blocks. 
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Here we report on a new material, [Ni12Te12(PEt3)8]2[(Lu3N@C80)2], which we discovered 

during our initial exploration of the reaction involving Ni9Te6(PEt3)8 and Lu3N@C80. Using single 

crystal x-ray diffraction (SCXRD), we find that the anionic Lu3N@C80 fullerenes form dimers in 

this crystal. The triangular planar Lu3N clusters inside the dimerized C80 cages are coplanar and 

collinear with the bridging C–C single bond and point at each other. This observation contrasts 

with theoretical calculations19 and a recent experimental report of [(Sc3N@C80)2]
2– dimers in 

which the clusters point away from each other.20 To understand this unusual orientation, we 

complement our experimental results with density functional theory (DFT) calculations. Our 

results chart a clear path to assembling novel superatomic crystals from endohedral fullerenes.  

 When compared to C60 or C70, M3N@C80 have lower electron affinity.12,21,22 This presents 

an additional challenge for their assembly into superatomic crystals via charge transfer. To 

overcome this challenge, our initial plan was to react Lu3N@C80 with Ni9Te6(PEt3)8, a building 

block with a high ionization energy.23  

 Black crystals are obtained at the interface of two solutions containing Ni9Te6(PEt3)8 and 

Lu3N@C80 dissolved in mixtures of quinoline and toluene kept at –35 °C for seven days. SCXRD 

reveals that the solid is a 1:1 stoichiometric combination of a new cluster, Ni12Te12(PEt3)8, and 

Lu3N@C80. Refinement of the crystallographic data indicates that Lu3N@C80 forms dimers and 

the stoichiometry of the compound is [Ni12Te12(PEt3)8]2[(Lu3N@C80)2]. Based on previous work 

on superatomic crystals,23 fullerene dimers18,24 and endohedral fullerene dimers,11,24 we can assign 

the following charges to the building blocks: [Ni12Te12(PEt3)8] and the dimer [(Lu3N@C80)2] bear 

1+ and 2– charges, respectively. DFT calculations presented below agree with this assignment.  
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Figure 2.1 shows the molecular structures of Ni12Te12(PEt3)8 and the dianionic 

[(Lu3N@C80)2]
2– dimer. The cluster Ni9Te6(PEt3)8 has been shown to reorganize in solution25 and 

under our reaction conditions, it produces Ni12Te12(PEt3)8 (Figure 2.1a,b). Figure 2.1b shows the 

structure of Ni12Te12(PEt3)8 which can be viewed as two highly distorted octahedra of Ni, with 

each octahedron having one interstitial Ni atom in the middle and sharing one vertex across the 

two (Figure 2.1b). The Te atoms adopt different coordination modes, bridging 3 or 4 Ni atoms. 

Phosphine ligands cap the surface Ni atoms, except for the bridging Ni atoms, which have a 

distorted tetrahedral geometry. A nickel selenide cluster with an analogous core composition, 

Figure 2.1. SCXRD molecular structure of (a) Ni12Te12(PEt3)8. (b) Structure of the Ni framework 

with distorted octahedra sharing a vertex. The Ni-Ni bonds are added to highlight the shape of the 

octahedra. (c) [(Lu3N@C80)2] dimer, and (d) Lu3N@C80 highlighting the THJ (yellow) of the inter-

cage bonded carbon (red). Color code: C, black; N, blue; Lu, green; Ni, red; Te, teal and P, orange. 

Ethyl groups on the phosphines are removed from (a) to clarify the view. 
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Ni12Se12(PEt3)6, was previously reported by Fenske and Ohmer26 but the trioctahedral core of this 

compound is entirely different from the distorted structure of Ni12Te12(PEt3)8 reported here. 

2.3 Structural details of the Lu3N@C80 

 

The interesting result is that Lu3N@C80 is dimerized in the solid state, presumably because 

of the electron transfer from the electron-rich superatom (Figure 2.1c). Single-bonded dimers have 

been observed for reduced C60 and C70, and suggested both theoretically19 and spectroscopically27 

for endohedral fullerenes. Konarev and co-workers recently reported the first crystallographic 

evidence of dimerization of [Sc3N@C80]
– upon reduction with sodium fluorenone ketyl.20 The 

Sc3N@C80 dimer structure features significant disorder of the cages, the inter-cage C–C bond and 

the cluster but the orientation of the Sc3N cluster with respect to the inter-cage C–C bond is clear 

and in agreement with theory: the triangular planar Sc3N clusters are close to collinear with the 

bridging C–C single bond, and point away from each other.  

The fully ordered structure for the [(Lu3N@C80)2]
2– dimer differs significantly from that of 

[(Sc3N@C80)2]
2–.20 While the inter-cage C–C bond length (1.66(6) Å) for [(Lu3N@C80)2]

2– is 

comparable to that for [(Sc3N@C80)2]
2–, it selectively links the hexagon-hexagon-hexagon 

junctions (THJ) of neighboring C80 cages (Figure 2.1b). This contrasts with the [(Sc3N@C80)2]
2– 

structure, in which the fullerene dimer is disordered over three positions including a mixture of 

THJ and PHHJ dimers. More remarkably, one N–Lu bond for each Lu3N cluster is perfectly 

collinear with the inter-cage C–C bond and point directly at the other Lu3N cluster. While the C80 

cages are fully ordered at 100 K, the Lu3N clusters are disordered over three rotational orientations 

around the axis passing through the inter-cage C–C bond. The distance between the central N atom 

and the Lu atom closest to the inter-cage C–C bond (2.06(2) Å) is slightly elongated, when 
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compared to the other Lu–N bonds (2.009(19)-2.03(3) Å). The Lu–N–Lu angles are close to the 

ideal 120°, ranging from 117.4(9)° to 122.4(9)° and the Lu3N cluster is almost completely flat, 

with the central N atom protruding from the trimetallic plane by at most 0.039(14) Å. 

Figure 2.2a shows the extended packing of [Ni12Te12(PEt3)8]2[(Lu3N@C80)2], which can be 

visualized as the superatomic structural analogue of the binary atomic compound rubidium 

peroxide, Rb2O2. Figure 2.2b compares both structures. We present schematic views of the 

superatomic crystal in which a dummy atom is positioned at the center of each building block (blue 

represents Lu3N@C80 and red represents Ni12Te12(PEt3)8). As with the peroxide dianion [O2]
2–, 

pairs of blue atoms are linked together to represent the [(Lu3N@C80)2]
2– dimers. The packing 

structures of Rb2O2 is presented looking down all three crystallographic axes, along with views 

showing the same orientations for the superatomic crystal. The superstructure of 

Ni12Te12(PEt3)8]2[(Lu3N@C80)2] presents a small distortion of the idealized Rb2O2 packing 

resulting from a tilt of the dimer with respect to the b-axis. 
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Figure 2.2. (a) Crystal packing of [Ni12Te12(PEt3)8]2[Lu3N@C80]2. Color code: C, black; N, blue; Lu, 

green; Ni, red; and Te, teal. The phosphines on the cluster and three quinoline molecules per formula 

unit are removed to clarify the view. (b) Schematic views comparing the packing of 

[Ni12Te12(PEt3)8]2[(Lu3N@C80)2] and Rb2O2. Ni12Te12(PEt3)8 and Lu3N@C80 are represented by blue 

and red dummy atoms positioned at the center of each building block, respectively. Pairs of blue atoms 

are linked together to denote the [(Lu3N@C80)2]
2– dimer and the peroxide dianion [O2]

2–. 
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2.4 Explaining the orientation of Lu3N clusters within [Lu3N@C80]2  

 

The relative orientation of the cluster within the dimer is unexpected. In fact, the question 

of the relative orientation of the cluster upon exohedral functionalization has received little 

attention in the literature. To study this question, we performed DFT calculations for a series of 

M3N@C80: Lu3N@C80, Sc3N@C80 and Y3N@C80. Table 2.1 contains the computed energy of each 

inter-cluster orientation upon exohedral dimerization through THJ and PHHJ junctions.  

Table 2.1. Relative energies for the different isomers of [Lu3N@C80]2
2–, [Sc3N@C80]2

2–, and 

[Y3N@C80]2
2–. Energies computed at PBE/TZ2P level are in kcal·mol–1. All calculations 

correspond to orientation 2 except for the THJ isomers, which are in the orientation 1. 

Isomer [Lu3N@C80]2
2– [Sc3N@C80]2

2– [Y3N@C80]2
2– 

THJ 0.0 16.5 0.0 

PHHJ 1.1 0.0 5.3 

Mixed 0.1 1.8 3.8 

 

Figure 2.3 illustrates the two possible orientations for the M3N cluster. At the PBE/TZ2P 

level, the orientation in which the Sc3N clusters are collinear, coplanar, and pointing at each other 

in the THJ dimer (orientation 1, Figure 2.3a) is energetically disfavored by more than 10 kcal mol–

1 with respect to the opposite orientation in which the clusters point away from one another 

(orientation 2, Figure 2,3b, 2.3c). By contrast, orientation 1 is strongly favored by 4.0 kcal mol–1 

in the case of the Y3N cluster. Lu3N is the intermediate case as Lu sits between Sc and Y in terms 

of size and electronegativity. DFT calculations indicate that orientation 1, which is observed 

experimentally, is only slightly favored by 1.3 kcal mol–1 over orientation 2 (Figure 2.3b,23c). 
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We compare the energy differences for the various types of intercage bonding (i.e. THJ-

THJ, PHHJ-PHHJ and THJ-PHHJ dimers shown in Figure 2.3) to understand why, unlike what 

has been reported for [(Sc3N@C80)2]
2–, the [(Lu3N@C80)2]

2– dimer forms exclusively through the 

THJ junctions. As previously pointed out by Konarev and Popov, the energy differences between 

the THJ, PHHJ, and mixed THJ-PHHJ for the [(Sc3N@C80)2]
2–dimers computed with the PBE 

functional and using a continuum model solvent are small.20 At an analogous computational level, 

Figure 2.3. (a) and (b) Illustrations of the two possible M3N cluster orientations in endohedral 

fullerene dimers, shown here linked through THJ-THJ bond. (c) THJ-THJ bonding with Lu3N 

cluster in orientation 1 (d) PHHJ-PHHJ bonding with Lu3N cluster in orientation 2, and (e) THJ-

PHHJ mixed dimer with Lu3N cluster in orientation 2. 
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similar results are obtained for [(Lu3N@C80)2]
2–: the three dimers are found within a range of only 

1.1 kcal mol–1 shown in Figure 2.3 and Table 2.2.  

Table 2.2. Relative energies (Erel), zero-point energies (ZPE), and relative Gibbs free energies 

(Grel) at 240 K at PBE/TZ2P level. Relative energies using other density functionals, BP86/TZ2P 

and B3LYP/TZP, are included. All energies are in kcal mol–1. 

[Lu3N@C80]2
2– Erel ZPE Grel BP86/TZ2P B3LYP/TZP 

THJ 0.0 0.0 0.0 0.4 0.0 

PHHJ 1.1 0.8 2.6 0.6 2.2 

Mixed 0.1 0.8 0.9 0.0 1.0 

 

The experimentally observed THJ dimer is the lowest energy dimer for [(Lu3N@C80)2]
2–, 

with the mixed dimer almost at the same energy (0.1 kcal mol–1), followed by the symmetric PHHJ 

at 1.1 kcal mol–1. These very small energy differences conflict with our experimental observation 

that [Ni12Te12(PEt3)8]2[(Lu3N@C80)2] contains exclusively THJ-THJ dimers, hinting to additional 

contributions to the total free energy of the system such as the inclusion of the zero-point energies 

and/or the thermal and entropic contributions.  

 When these contributions are considered in the calculations, the relative free energies of 

THJ-PHHJ and PHHJ-PHHJ dimers increase compared to the THJ-THJ which becomes somewhat 

more stabilized (see Table 2.3). We have examined the effect of reaction temperature on each type 

of dimer by accounting for the zero-point energies (ZPE) and the thermal and entropic 

contributions in the calculations within the rigid rotor and harmonic oscillator (RRHO) 

approximation. The general trend is that the THJ dimer is the most abundant isomer over the whole 

temperature range analyzed here (see Table 2.3 and Figure 2.4), regardless of the density functional 

used.  
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Table 2.3. Relative energies for [Lu3N@C80]2
2– isomers. Energies in kcal mol–1 

 

 

 

 

 

 

 

[Lu3N@C80]2
2– Erel 

THJ ori1 0.0 

THJ ori2 1.3 

PHHJ ori1 21.5 

PHHJ ori2 1.1 

Mixed ori1 8.7 

Mixed ori2 0.1 

Mixed ori3 2.3 

Figure 2.4. Predicted molar fractions as a function of temperature for the three THJ, PHHJ and 

mixed dimers computed at the PBE/TZ2P level. 
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To evaluate the relevance of the stabilizing effect of the environment around the dianion 

we have represented the molecular electrostatic potential (MEP) distribution of the THJ dimer with 

and without solvent. Notice that in a continuum solvent model, both solvent and countercation 

effects are included in the calculations. In both cases, the region around the inter-cage bond has 

the highest electron density (shown in red in Figure 2.5). Figure 2.5 shows that the electron density 

at the inter-cage junction increases significantly when the solvent environment is included in the 

calculation. These results suggest that the electrostatic environment surrounding the fullerenes can 

increase the stability of the dimer system by promoting the accumulation of electron density in the 

bonding hemispheres. A similar process could be at play in [Ni12Te12(PEt3)8]2[(Lu3N@C80)2] 

crystal as the cluster cations are located near the nucleophilic regions.  

 

a 

b 

Figure 2.5. Molecular electrostatic potential distribution for the THJ dimer [(Lu3N@C80)2]
2– (a) 

with and (b) without including the environment effects. More nucleophilic regions are displayed 

in red. 
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We computed spin density distribution for the monomeric radical anion [Lu3N@C80]
– 

(calculated for both THJ and PHHJ in orientation 1). In the THJ case, the C atom at the junction 

point holds the largest spin density while that in the PHHJ has a smaller spin density (Figure 2.6) 

which is more distributed on the fullerene cage. In agreement with the spin density distribution, 

the HOMO and the LUMO of the THJ [Lu3N@C80] dimer are essentially localized on the cage, 

with the HOMO describing the bond formed between the two moieties (Figure 2.7).  

 

 

Our results demonstrate that the nature of the encapsulated metal cluster controls the 

relative stability and orientation of the dimerization product. Konarev and Popov investigated the 

(Sc3N@C80)2
2– dimer though DFT calculations and found that the energy difference between the 

THJ and PHHJ dimers is small (less than 2 kcal mol–1), in good agreement with their experimental 

observation that two types of dimers are present in the crystal structure. Our calculations agree 

well with these results and predict that the THJ dimer becomes energetically favored for 

Figure 2.6. Spin density distribution of radical anion monomer [Lu3N@C80]
– in the THJ dimer 

(left) and PHHJ dimer (right) with the cluster in orientation 1. Red arrows indicate the bonding 

carbon in formation of the dimer. 
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(Lu3N@C80)2
2– and even more so for (Y3N@C80)2

2–. The crystal structure of 

[Ni12Te12(PEt3)8]2[(Lu3N@C80)2] reported here is consistent with this first prediction. 

 

Figure 2.7. Representation of the LUMO and HOMO of the THJ [Lu3N@C80]2
2– dimer with 

Lu3N in orientation 1. 

 

2.5 Conclusion 

 

Our results demonstrate that the nature of the encapsulated metal cluster controls the 

relative stability and orientation of the dimerization product. Konarev and Popov investigated the 

(Sc3N@C80)2
2– dimer though DFT calculations and found that the energy difference between the 

THJ and PHHJ dimers is small (less than 2 kcal mol–1), in good agreement with their experimental 

observation that two types of dimers are present in the crystal structure. Our calculations agree 

well with these results and predict that the THJ dimer becomes energetically favored for 

(Lu3N@C80)2
2– and even more so for (Y3N@C80)2

2–. The crystal structure of 

[Ni12Te12(PEt3)8]2[(Lu3N@C80)2] reported here is consistent with this first prediction. 
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2.6 Synthetic Details 

 

Materials 

Ni(COD)2, tellurium powder, and Et3P were purchased from Sigma Aldrich. Dry and 

deoxygenated solvents were prepared by elution through a dual-column solvent system (MBraun 

SPS). All reactions were carried out under inert atmosphere in a nitrogen-filled glovebox. 

Ni9Te6(PEt3)8
25

 and Lu3N@C80
28 were prepared according to published protocols. 

 

Synthesis of [Ni12Te12(PEt3)8]2[(Lu3N@C80)2] 

The endohedral fullerene of Lu3N@C80 (6 mg, 4 mol) was dissolved in 6 mL of quinoline 

in a 20 mL glass vial. A solution of Ni9Te8(PEt3)6 (16 mg, 7 mol) dissolved in a mixture of toluene 

(1 mL) and quinoline (3mL) was layered on top of the Lu3N@C80 solution. The vial was placed in 

a freezer at -35 C. A black precipitate formed overnight but the solution is still dark brown. After 

7 days at -35 C, a few black crystals had formed at the interface between the Lu3N@C80 and 

Ni9Te8(PEt3)6 solutions. The solution was decanted, and the crystals were immediately collected 

and transferred to STP oil treatment (in the glovebox) for crystallography. The crystals are very 

sensitive to oxidation or desolvation and thus need to be mounted rapidly on the diffractometer 

otherwise they start changing color from black to brown in a few minutes and lose their 

crystallinity. We were not able to characterize the black powder at the bottom of the vial as it 

degrades too rapidly when we remove it from the mother liquor (presumably because of 

desolvation). 

 

2.7 Computational Details 
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All the geometries were computed using the density functional theory (DFT) methodology 

with the ADF 2016 program.35,36 The functional of Becke, Burke and Ernzerhoff (PBE) and the 

Slater TZ2P basis sets were used.37 Relativistic corrections were included by means of the zero 

order regular approximation. The inclusion of solvent effects by means of the continuous 

conductor-like screening model (COSMO) was considered.38,39 To define the cavity that surrounds 

the molecules, we use the solvent-excluding surface (SES) method and a fine tesserae. The radii 

of the atoms, which define the dimensions of the cavity surrounding the molecule, were chosen to 

be 2.27 Å for Lu, 1.55 Å for N, 1.70 Å for C, 2.00 Å for Sc and 2.19 Å for Y. The dielectric 

constant was set to 9.8 to model o-dichlorobenzene as solvent. In addition, the Grimme dispersion 

D3 BJDAMP is also included.40 Selected orientations of THJ, PHHJ and mixed were also 

calculated with ADF using the BP86, B3LYP, and PBE0 functionals. In case of hybrid 

[Lu3N@C80]2 
2– Erel THJ ori1 0.0 THJ ori2 1.3 PHHJ ori1 21.5 PHHJ ori2 1.1 Mixed ori1 8.7 

Mixed ori2 0.1 Mixed ori3 2.3 [Lu3N@C80]2 
2– Erel THJ ori1 0.0 PHHJ ori2 1.6 Mixed ori2 0.5 

S8 functional, the TZP was used as basis sets and all electrons were described by means of single 

Slater functions. Structures and some electronic data for relevant species are available in ref 15.41 

 

2.8 Single crystal x-ray diffraction of [Ni12Te12(PEt3)8]2[(Lu3N@C80)2] 

 

Data for [Ni12Te12(PEt3)8]2[(Lu3N@C80)2] was collected on an Agilent SuperNova 

diffractometer using mirror-monochromated Cu K radiation. Data collection, integration, scaling 

(ABSPACK) and absorption correction (Numeric analytical methods29) were performed in 

CrysAlisPro.30 Structure solution was performed using ShelXT.31 Subsequent refinement was 

performed by full-matrix least-squares on F2 in ShelXL.32 Olex232 was used for viewing and to 
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prepare CIF files. PLATON33 was used for twinning analysis in TwinRotMat. Disordered solvent 

molecules were modeled as rigid fragments from the Idealized Molecular Geometry Library.34  

An irregular fragment (0.09 x 0.08 x 0.03 mm) was separated carefully, mounted with STP 

oil treatment, and cooled to 100 K on the diffractometer. Complete data were collected to 0.815 

Å. The crystal was a weakly diffracting non-merohedral twin with unequal volume fractions (87:13 

in the final refinement). Twin integration was performed in CrysAlisPro and gave 67870 

reflections (41110 overlapped, 26760 isolated) with R(int) 14.5% and R(sigma) 35.4%. The 

weaker isolated reflections of the minor twin component were omitted from the refinement data.  

The structure was solved readily in P-1 using ShelXT. The endohedral fullerene was fully 

located in the initial solution, although subsequent refinement showed that the Lu3N cluster is 

disordered over three positions related by rotation around the N-Lu axis facing the C80-C80 

intercage junction. The Ni12Te12P8 cluster was also located immediately with many phosphine 

carbon atoms; the remaining phosphine C atoms were easily revealed in subsequent difference 

maps.  

Several solvent molecules were located in difference maps. One quinoline molecule was 

located readily and subsequently used as a rigid-body template to locate two additional quinolines. 

These were refined with SAME, FLAT and SIMU restraints to stabilize their geometry and ADPs. 

A toluene molecule was located with the aid of a template from the IMGL and subsequently refined 

as a rigid body. 

As expected from the weak and twinned data, the stability of the refinement was poor. All 

carbon and nitrogen atoms were refined with isotropic ADPs. All [NiPEt3] residues were made 

equivalent with SAME instructions. One PEt3 group was disordered over two positions, and 
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disorder of other phosphine groups is possible as well, but there were many spurious Fourier 

features around the Ni and Te atoms of magnitude approximately +/–2 e– Å–3 that made it 

impossible to locate additional disordered positions of PEt3 groups in difference maps. However, 

the C80 fullerene was fully ordered and could be refined with unrestrained coordinates. 

C-H hydrogens were placed in calculated positions and refined with riding coordinates and 

ADPs. The final refinement (30365 data, 798 restraints, 1040 parameters) converged with R1 (Fo 

> 4σ(Fo)) = 11.0%, wR2 = 28.4%, S = 1.01. The largest Fourier features were 2.34 and -1.80 e– 

Å–3. 
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Table 2.4. Selected crystallographic data for [Ni12Te12(PEt3)8]2[(Lu3N@C80)2] 

Compound [Ni12Te12(PEt3)8]2[(Lu3N@C80)2][quinoline]6 

Formula C162N4P8Ni12Te12Lu3H149 

MW 5160.23 

Space group P-1 

a (Å) 18.0808(9) 

b (Å) 21.7532(10) 

c (Å) 22.4086(10) 

α (°) 88.415(4) 

β (°) 66.996(5) 

γ (°) 66.089(5) 

V (Å3) 7326.5(7) 

Z 2 

ρcalc (g cm–3) 2.339 

T (K) 100 

λ (Å) 1.54184 

2θmin, 2θmax 9, 142 

Nref 69463 

R(int), R(σ) 0.145, 0.354 

μ(mm–1) 25.019 

Size (mm) .09 x .08 x .03 

Tmax, Tmin .517, .227 

Data 30365 

Restraints 798 

Parameters 1040 

R1(obs) 0.1100 

wR2(all) 0.2842 

S 1.013 

Peak, hole (e– Å–3) 2.34, 1.80 

CCDC Number 1558236 
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Chapter 3  

Towards long range ordering of superatomic solids 

3.0 Preface 

 

This chapter presents some of the initial motivations and strategies I undertook to achieve 

long range ordering of superatomic solids. Although these initial explorations were largely 

unsuccessful at fabricating extended superatomic assemblies, nevertheless they helped develop the 

foundation on which the superatom-containing polymers were built from (see Chapters 4,5). I will 

highlight some of the interesting results that were produced by these investigations. Dan Paley 

performed single crystal refinement.  

3.1 Introduction 

 

Successful crystallization of monocomponent or multicomponent superatomic materials 

can be difficult to predict and an even greater challenge is to precisely control the crystalline order 

of the nanoscale building blocks. Developing a method to construct and organize superatoms at 

multiple length scales opens new opportunities to understand the assembly’s fundamental 

materials properties that will also establish new structure-property relationships. To extend the 

assemblies of superatoms at greater length scales requires a different design strategy. My challenge 

was to design a bottom-up synthetic approach that would enable the controlled fabrication of 

superatomic assemblies beyond the nanoscale regime.  
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This aim is likened to the rapidly developing interest in creating bottom-up strategies that 

use nanoparticles as building blocks to create mesoscale assemblies.1–3 Mesoscale materials are 

considered to be materials at intermediary length scales that range from tens of nanometers to tens 

of microns. At these length scales, it is possible to gain a new understanding of how architecture 

determines performance.4–6 Achieving targeted assemblies at multiple length scales with varied 

architectures would generate new insight on the structure-property relationships of the superatomic 

assemblies and potentially reveal new applications of the functional materials. Figure 3.1 depicts 

some representative examples of nanoscale building blocks such as inorganic nanoparticles,7,8 

tethered particles,9–11 macromolecules,12,13 polymer nanoparticles,14,15 and liquid crystals16 that 

have been increasingly explored for self-assembly into mesoscale structures with potential 

functional applications and developing technologies. An exotic library of hybrid nano-objects have 

been synthesized by judicious design of some of these inorganic nanoscale building blocks that 

interact with organic components to coordinate, organize, and assemble the inorganic materials 

into higher-order structures.17  
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Our first approach to control the assembly of superatoms at microscales was to harness the 

well-studied charge-transfer capabilities of superatoms to template higher order structures. Instead 

of in-situ co-crystallization of redox-complimentary nanoscale building blocks, we sought to 

Figure 3.1. Building blocks, assembly methods, and potential applications in mesoscale polymer 

and macromolecular science. Reproduced from L. Renna, et al., “Polymer nanoparticle assemblies: 

a versatile route to functional mesostructures” Macromolecules, 2015, 48, 6353-6368.4  
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introduce a redox-complimentary polymer template. This approach was inspired by the burgeoning 

work using polymer scaffolds to template nanoparticles.18–20 Embedding building blocks such as 

nanoparticles, quantum dots, small molecules and proteins before21,22 of after19 the self-assembly 

of a polymer system creates polymeric nanocomposites. A chemist is provided with multiple ways 

to synthetically tune the self-assembly of such polymer composites such as by modifying the 

chemical composition, chain length, and assembly conditions (i.e. solvent, temperature, substrate). 

These tools control the achieved long-range order of the nanoparticles and select morphologies 

have proven superior in performance as functional materials for medical, electronic, and optical 

devices.19,23–25  

Charge-transfer interactions between electron rich superatoms and fullerenes have directed 

the assembly of a library of ionic binary superatomic solids. We considered perylene diimide (PDI) 

molecules as promising alternative n-type materials that could replace the fullerene building 

blocks. Like fullerenes, PDI molecules have been investigated as organic small molecule acceptors 

for applications in engineering solar26–29 and battery devices30. PDIs, like fullerenes, are redox-

complimentary to superatoms that are strong electron donors such as cobalt telluride clusters.31,32 

Although PDIs lack the spherical shape similarity to metal chalcogenide clusters, they can be more 

easily chemically modified than fullerenes and thus provide a greater synthetic handle for fabricate 

tunable functional materials.  

PDIs have a strong electronic absorption in the visible region and substitution of PDI 

molecules in their core positions tunes their lowest unoccupied molecular orbital (LUMO) levels.33 

In addition to their promising electronic properties, PDIs are robust molecules that are heat and air 

stable. The solubilizing imide tails of PDIs are easy to chemically modify and utilize as anchoring 

segments onto polymerizable units. Block copolymers that contain side chain units of PDIs have 
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been assembled into hierarchical microscale structures.26,34,35 Processing of PDIs either in the 

solid-state or embedded in a polymeric matrix has been extensively explored for photovoltaic and 

battery device architectures.  

It is for the synthetic and electronic properties discussed above that we pursued the 

synthesis of a polymer template with pendant PDI units to direct the self-assembly of superatoms 

into higher ordered structures. Ultimately, we were not able to create ordered assemblies of 

superatoms using this technique. Nevertheless, several interesting results emerged in its pursuit. 

For example, our initial interactions of PDI molecules with metal chalcogenide clusters resulted 

in a new binary superatomic solid [C5-PDI-CN2] [Co6Te8(PEt3)6]. 

Perhaps of even greater importance was that this initial approach to use a polymer template 

later inspired the covalent functionalization of the site-differentiated cobalt selenide superatom36 

onto a polymerizable monomer. While the cluster-containing polymers will be discussed in later 

chapters, herein I will discuss some of the insights we gained from the synthesis of a PDI-

containing diblock copolymer template.  

3.2 In-situ reduction of PDI with Co6Te8(PEt3)6  

 

The synthesis of superatomic materials that exhibit novel materials properties (i.e. electron 

transport, magnetic ordering) has been inspired by previous assembly of reactive molecules in the 

solid state. Organic-inorganic hybrid materials containing redox active metal chalcogenide centers 

with organic electroactive molecules exhibit unique electronic behavior. For example, the 

electrocrystallized material of ethylenedithio-tetrathiafulvane molecules with hexasubstituted 

metal chalcogenides forms a complex Kagome with a composition of (EDT-TTF-

CONH2)6[Re6Se8(CN)6] that has semiconducting behavior below 130 K.37 In this lattice material 
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structural transitions caused by electron instability drive the material to insulating states at low 

temperatures. A series of other atomically precise clusters with M6E8 motifs have been reported to 

have charge transfer interactions with organic molecules such as TTF, TCNQ or other inorganic 

clusters yielding interesting conductivity behavior in assembled solids.38–44  

 Motivated by the results of inorganic-organic hybrid materials built from molecular 

clusters and organic molecules, we sought to use perylene diimide (PDI) as our organic acceptor 

building block. As described in the introduction of this chapter, PDI’s have been widely explored 

as n-type molecules. PDIs are also well-known for their absorption from ~300-600 nm giving the 

molecule its signature red pigmentation –that any chemist who has worked with the molecule is 

well familiar with.33 PDIs are highly reactive and their imide groups and bay-area positions can be 

easily chemically modified. Substitution at the bay-area positions with electron withdrawing 

groups such as bromines, cyanides, or fluorines has a dramatic effect on the electronics of the 

molecule.28,45–48 Impressive functionalization of these positions is an exciting area of investigation 

that has resulted in the synthesis of cyclized macromolecules with remarkable electronic and 

photophysical properties for organic n-type electronic materials.28,49–51  

 Assembly of binary charge transfer materials can be achieved by solution-phase electron 

transfer between redox-complimentary building blocks which has resulted in the synthesis of a 

library of ionic binary superatomic solids.32 The selection of building blocks is critical to ensure 

that electrons to flow from donor to acceptor units. We chose the electron-rich Co6Te8(PEt3)6 to 

be the electron donating nanoscale building block in co-assembly with PDI.31 

Reduction of PDI can be monitored by electron absorption spectroscopy through the 

ingrowth of absorption bands between 600-900 nm indicating the presence PDI radical anion 

species after electron transfer to the molecule.47 In Figure 3.2 we see the growth of these absorption 
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bands, indicating successful reduction of PDI by Co6Te8(PEt3)6 which forms a radical anion PDI 

molecule. The absorption of the radical anion is increased by more polar solvent environments and 

by higher equivalents of the cluster species.  

To observe the reduction of PDI by cobalt telluride, we stirred PDI, functionalized with 

didecylamine solubilizing chains,26 Co6Te8(PEt3)6 in equal stoichiometries in tetrahydrofuran 

(THF), toluene, and dichloromethane (DCM) and then took the electronic absorption spectra of 

these reactions. In Figure 3.2a, we see the growth of reduced PDI between 600-800 nm only in 

solution with DCM -an observation that is consistent with studies showing the stabilization of 

charges in polar solvents.52–54 While dissolved in toluene, equal equivalents of PDI and cobalt 

telluride do not give rise to apparent charge transfer absorptions (see Figure 3.1b). However, by 

increasing the concentration of cobalt telluride superatoms in solution more PDI molecules are 

reduced and an ingrowth of absorption peaks corresponding to the charge transfer bands is 

observed. Substitution of PDI in its core positions with electron withdrawing groups such as 

fluorine or cyano groups lowers its LUMO energy level, making it easier to reduce the molecule.33 

Figure 3.1c shows the dramatic increase in the charge transfer absorptions upon stirring equal 

equivalents of Co6Te8(PEt3)6 with dicyano-PDI55 (C5-PDI-CN2) in DCM.  
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3.3 Synthesis of the superatomic crystal [Co6Te8(PEt3)6][C5-PDI-CN2] 

 

We reacted Co6Te8(PEt3)6 as shown with dicyano perylene diimide functionalized with 3-

aminopentane (C5-PDI-CN2)
55 to co-crystallize [Co6Te8(PEt3)6][C5-PDI-CN2]. Its molecular 

structure as determined by single x-ray diffraction (SCXRD) is shown in Figure 3.3(a,b). By bond 

distance analysis, the average length of Co-P bonds is 2.17(6) Å (with a range of 2.16(8)-2.17(8) 

Å) and this length indicates a 2+ oxidation state of the superatom.56 This observation confirms the 

electron charge transfer observed in the electronic absorption spectra from these complimentary 

building blocks. The sample of PDI used for co-crystallization had a mixture of the 1,6 and 1,7 

cyano-functionalized isomers. The molecular structure of the solid state material, indicates that 

both isomers crystallized in the solid state, with the crystal structure showing disorder of the two 

substitution positions in a ratio of 72:28. The majority of the disorder corresponds to the trans 

(1,7)-dicyano isomer that is shown in Figure 3.3.  

Figure 3.2.  (a) Co6Te8(PEt3)6 with equal equivalents of PDI dissolved in tetrahydrofuran (green), 

toluene (blue), and dichloromethane (red). (b) Co6Te8(PEt3)6 (green), Co6Te8(PEt3)6 and PDI with 

1:1 equivalents (blue), and Co6Te8(PEt3)6 and PDI with 4:1 (red) equivalents, respectively. All 

compounds dissolved in toluene. (c) Co6Te8(PEt3)6 (green), C5-PDI-CN2 (black), and 

Co6Te8(PEt3)6 and C5-PDI-CN2 with 1:1 molar ratio. All compounds dissolved in DCM.  

Electronic absorption spectra normalized to the absorption peak at 520 nm of Co6Te8(PEt3)6 
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Figure 3.3. (a) SCXRD molecular structure of [C5-PDI-CN2][Co6Te8(PEt3)6] and (b) a side-view 

of the packed structure. Color code: C (black), Co (dark blue), N (light blue), O (red), P (pink), 

and Te (green). Triethyl phosphine groups have been omitted for clarity in 3.3b. 

 

3.4 Design of a polymer template to direct the self-assembly of superatoms 

 

 The controlled fabrication of nanoscale structures of functional materials is essential for 

nanotechnology. The first two chapters of this thesis discuss the self-assembly of superatoms into 

solids with precise ordering of their nanoscale building blocks. Assembly of monocomponent and 

multicomponent superatomic solids has been realized by the design and selection of nanoscale 

building blocks to construct functional materials through strong inter-component interactions (i.e. 

charge transfer, van der Waals forces, covalent coupling).  

 As top-down lithographic techniques57 approach their limit for nanoscale resolution, 

bottom-up approaches that assemble functional nanoscale building blocks become increasingly 

important. Block copolymers (BCPs) are synthesized through the covalent union of chemically 

distinct homopolymers. Typically, distinct homopolymers are selected to be immiscible and have 
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complimentary physical properties that result in directed chemical self-assembly. The dissimilar 

blocks tend to phase-segregate and assemble into various structures with ordered domains as 

shown in Figure X. The targeted morphology can be selected by tuning the volume fraction of the 

blocks (fA, fB), and self-assembly conditions (i.e. solvent, temperature, external stimulus.58–60 

 

Block copolymers with perylene diimide side-chains have been studied for applications in 

self-assembly of donor-acceptor polymers26 and for device fabrication of organic electronics.34 

Figure 3.4. Different phases formed by self-assembly of coil-coil diblock copolymers in the bulk 

(when the intermolecular interaction is sufficiently large) as a function of the volume fraction of 

one of the blocks (ƒA). Other phases have also been reported for diblocks, and the phase diagrams 

of BCPs containing more than two blocks are considerably more complex. Switching out one or 

both coil blocks with a conjugated block that adopts a semi-flexible or rigid rod structure will also 

qualitatively change this phase diagram. Reproduced from I. Botiz and S.B. Darling, 

“Optoelectronics using block copolymer,” Materials Today, vol. 13, no. 5, pp. 42-51, 2010.60  
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Since Asymmetrical PDI molecules can be easily synthetized by select chemical modification of 

one of the imide tails. This asymmetrical synthetic strategy is commonly employed to functionalize 

PDI as side-chain units onto polymer backbones.  

 In our initial efforts of developing superatomic assemblies with long-range ordering at the 

mesoscale, we sought to employ a BCP containing PDI chains (BCP-PDI) that could self-assemble 

in solution and create a template for superatoms. We hypothesized that the same charge-transfer 

interactions that occurred in the solid-state, resulting in the binary superatomic solid described 

above, would direct the self-assembly of the cobalt telluride superatoms within the polymeric 

matrix.  

3.5 Synthesis and assembly of perylene diimide block copolymer 

 

 Figure 3.5 shows the two norbornene monomers with pendant perylene diimide (PDI) and 

polyethylene glycol (PEG) sidechains that were polymerized into a diblock copolymer by ring 

opening metathesis polymerization (ROMP). The PEG and PDI blocks form homopolymer chains 

linked together in the diblock copolymer that are immiscible. Physical interactions between the 

Figure 3.5. ROMP polymerization using a Grubbs III generation catalyst of norbornene 

monomers functionalized with PEG and PDI side chains to form BCP with A and B volume 

fractions of PEG and PDI respectively.  
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hydrophilic PEG and hydrophobic PDI blocks results in phase separation and by controlling the 

relative volume fractions of the blocks, a wide range of periodic morphologies should be 

accessible.61 

 We synthesized a variety of monodisperse BCPs having varying PEG lengths (n = 4, 750, 

2000) and alternated between 50:50 and 80:20 ratios of the PEG and PDI blocks, respectively. 

Unfortunately, self-assembly of the BCPs resulted in irregular morphologies and produced 

inconsistent results. A few representative examples of the morphologies that were characterized 

are presented in Figure 3.6. The transmission electron micrograph (TEMs) in Figure 3.6(a,b) is of 

a BCP with 80 units PEG (n = 4) and 20 units of PDI. The sample was assembled by dissolving 

equal amounts by weight of BCP and Co6Te8(PEt3)6 in THF and then adding an equal volume of 

water to induce self-assembly. Figure 3.6c presents the assembly in DCM/MeOH of a BCP with 

50 units of PEG (n=4) and 50 units of PDI, and Figure 3.6d presents the assembly in DCM/MeOH 

of BCP with 50:50 units of PEG:PDI but the PEG block was extended (n=750). These BCPs were 

assembled in-situ with equal amounts by weight of Co6Te8(Pet3)6. Although the assemblies 

resulted in very different features using the different solvent conditions, the features were generally 

irregular. Furthermore, later studies using the same polymer and assembly conditions failed to 

reproduce similar results. Due to these inconsistencies we decided to pursue a different synthetic 

approach for self-assembly. 
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3.6 Conclusion 

 

 The [Co6Te8(PEt3)6][C5-PDI-CN2] co-crystal is a new addition to the library of ionic binary 

superatomic solid state materials and illustrates the effective use of charge transfer to drive self-

assembly of superatomic solids. While goal in using a BCP template to access microscale 

Figure 3.6. TEM micrographs of BCPs assembled with different ratios of PEG:PDI and in 

different solvent conditions. (a) BCP having 80:20 repeat units of PEG (n=4):PDI assembled in 

THF/H2O. (b) BCP having 80:20 repeat units of PEG (n=4): PDI assembled in THF/H2O. (c) 

BCP having 50:50 repeat units of PEG (n = 4): PDI assembled in DCM/MeOH and (d) BCP 

having 50:50 repeat units of PEG (n = 750): PDI assembled in THF/H2O. All assemblies were 

carried out with the addition of Co6Te8(PEt3)6 dissolved with the BCP prior to self-assembly. The 

images show some of the irregular morphologies that were achieved by using this polymer system 

to template the superatoms.  
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assemblies of superatoms was not realized the approach of using a BCP system to form 

superatomic assemblies was born from these first attempts. Additionally, the time spent in 

experimenting with polymerization and self-assembly conditions of the BCP and learning 

characterization techniques of BCPs provided a foundation of knowledge off which future 

investigations into the synthesis, self-assembly, and characterization of the superatom-containing 

polymer was built.  

3.7 Methods 

 

NMR Spectroscopy 

1H NMR and 31P NMR spectra were recorded on a Bruker DRX400 spectrometer.  

 

Electronic Absorption Spectroscopy 

Electronic absorption spectra were recorded using a 1.0 cm quartz cell on an Agilent Technologies 

Cary 60 UV-vis spectrophotometer. 

 

Single Crystal X-Ray Diffraction.  

Crystallographic data was collected on an Agilent SuperNova diffractometer using mirror-

monochromated Cu Kα radiation.  

 

Transmission Electron Microscopy Details 

This work was performed at the Simons Electron Microscopy Center and National 

Resource for Automated Molecular Microscopy located at the New York Structural Biology 

Center, supported by grants from the Simons Foundation (SF349247), NYSTAR, and NIH 

National Institute of General Medical Sciences (GM103310). The FEI Tecnai F20 was used for 

imaging. 
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3.8 Synthetic Details 

 

Synthesis of 1 and 2 

A previously reported literature procedure was followed.62  

 

Synthesis of Perylene-3,4,9,10-tetracarboxylic di(13-decyl)imide (3).  

 

Adapted from previously reported literature procedure.26 Perylene dianhydride (6.24 

mmol), 13-decylamine (15.86 mmol), and imidazole (218 mmol), were heated under argon at 

120C for 3 hrs. Toluene (10 mL), was added, and the mixture was cooled to room temperature. 

The product was precipitated in ethanol (100 mL), filtered, washed with methanol, and dried under 

vacuum. Purification was carried out by column chromatography with 50/50 DCM/Hexanes 

mixtures to isolate the di(13-decyl)imide with an 80% yield in the first step. 

Figure 3.7. (a) Scheme of synthesis of norbornene monomer with pendant PEG chains and (b) 

synthesis of norbornene monomer with pendant PDI units. These monomers were used for the 

synthesis of the diblock copolymer. 
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The diimide (2.64 mmol), potassium hydroxide pellet (85%) (5.57 mmol), and tert-butyl 

alcohol (40 mL) were combined in a flask and refluxed at 80 oC for 40 min. Precipitation into 1 

mL acetic acid/1mL HCl(aq) gave the crude product which was extracted with DCM, washed with 

water, dried with NaSO4, filtered and dried under vacuum. Purification by column 

chromatography with 10% MeOH in DCM isolated the desired product as a red solid (95% yield).  

1H NMR (spectrum in Figure 3.8) (400 MHz, CDCl3,  ppm: 8.7 (m, 8H), 5.20 (m, 1H), 2.26 (m, 

2H), 1.90 (m, 2H), 1.32 (m, 16H), 0.86 (m, 6H). 

Synthesis of (4) 

 

Adapted from previously reported literature procedure.63 Perylene mono-imide (3) (3.87 

mmol), 6-aminohexanol (4.65 mmol), and imidazole (38.7 mmol), were added and heated to 150 

oC for 6 hours under argon. After cooling to room temperature, 50 mL of 2N HCl was added to 

the mixture. The mixture was extracted with 3x15 mL of DCM. The DCM solution was dried with 

MgSO4 and the solvent was evaporated off. The crude product was purified with silica gel 

chromatography using 5% methanol in chloroform to isolate the red solid (2.99 mmol, 77% yield).  

1H NMR (spectrum in Figure 3.9) (400 MHz, CDCl3,  ppm: 8.7 (m, 8H), 5.22 (m, 1H), 4.25 (t, 

2H), 3.69 (t, 2H), 2.27 (m, 2H), 1.86 (m, 4H), 1.65 (m, 2H), 1.52 (m, 6H), 1.30 (b, 14H), 0.86 (t, 

6H) 

Synthesis of (5) 

 

Adapted from previously reported literature procedure.64  DCM (575 mL) was added to a 

round bottom flask containing EDC-HCl (548 mg, 2.86 mmol), DMAP (63.5 mg, 0.52 mmol), (1) 

(713 mg, 2.86 mmol), and (4) (1.75 g, 2.60 mmol). The solution was stirred at room temperature 
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for 20 hrs. The reaction was concentrated by rotary evaporation and purified with silica gel 

chromatography (33% Ethyl acetate/ 66% DCM). A red solid was isolated (1.80 g, 77% yield). 

1H NMR (spectrum in Figure 3.10) (400 MHz, CDCl3,  ppm: 8.64 (m, 8H), 5.22 (m, 1H), 4.25 

(t, 2H), 3.69 (t, 2H), 2.27 (m, 2H), 1.86 (m, 4H), 1.65 (m, 2H), 1.52 (m, 6H), 1.30 (b, 14H), 0.86 

(t, 6H) 

Synthesis of C5-PDI-CN2.  

A previously reported literature procedure was followed.55  

Synthesis of Co6Te8(PEt3)6.  

A previously reported literature procedure was followed.65  

Synthesis of [C5-PDI-CN2][Co6Te8(PEt3)6]  

This synthesis was carried out in a nitrogen filled glovebox at room temperature. C5-PDI-

CN2 (10 mgs, 17.2 mol) was dissolved in 8 mLs of toluene, stirring at room temperature over an 

hour in a 20 mL scintillation vial. Co6Te8(PEt3)6 (15.7 mgs, 8.5 mmol) was dissolved in 2 mL of 

toluene. The solution of PDI was layered on top of the Co6Te8(PEt3)6 solution. Small black crystals 

formed at the bottom of the vial overnight.  

Self-Assembly of PEG:PDI BCP 

A 1mg/mL solution of a BCP with varying ratios of PEG:PDI and different lengths of PEG 

moieties was dissolved in either THF or DCM with equal weights of Co6Te8(PEt3)6. H2O or MeOH 

was added to the solution to make assemblies in THF/H2O or DCM/MeOH. The assemblies were 

carried out in scintillation vials and stirred at room temperature overnight with open caps to allow 

the lower-boiling solvent (THF or DCM) to evaporate overnight.  
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3.9 Select NMR Spectra 

 

 

Figure 3.8. 1HNMR of compound (3) taken in CDCl3 

 

 

Figure 3.9. 1HNMR of compound (4) taken in CDCl3 
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3.10 Single crystal X-ray diffraction 

 

Data for all compounds was collected on an Agilent SuperNova diffractometer using 

mirror-monochromated Cu K radiation. Data collection, integration, scaling (ABSPACK) and 

absorption correction (face-indexed Gaussian integration66 or numeric analytical methods67) were 

performed in CrysAlisPro.68 Structure solution was performed using ShelXT.69 Subsequent 

refinement was performed by full-matrix least-squares on F2 in ShelXL.70 Olex271 was used for 

viewing and to prepare CIF files. Disordered toluene was modeled as rigid fragments with 

coordinates taken from the Idealized Molecular Geometry Library.72  

Crystals were grown at room temperature by diffusion of toluene solution with PDI into 

concentrated solution of Co6Te8(PEt3)6 in toluene. The PDI molecule was disordered over two 

positions in a 72:28 ratio by a twofold rotation around the long axis of the molecule. The disorder 

Figure 3.10. 1H NMR of compound (5) taken in CDCl3 
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was modeled with standard SAME and FLAT restraints on the coordinates of the disordered nitrile 

and the adjacent two C atoms in the aromatic system. The ADPs of the minor component were 

stabilized with a RIGU restraint. Two molecules of toluene were located on inversion centers, one 

of which was additionally disordered over two independent positions. Both toluenes were modeled 

as rigid fragments with idealized geometry; the "ordered" toluene was refined with anisotropic 

ADPs restrained by RIGU while the disordered toluene was refined with isotropic ADPs. 

Overlapping ADPs of disordered atoms were stabilized with a short-range SIMU instruction. 
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Table 3.1 Selected crystallographic data of [C5-PDI-CN2][Co6Te8(PEt3)6] 

Compound [C5-PDI-CN2][Co6Te8(PEt3)6] 

Formula C86H134Co6N4O4P6Te8 

MW 2848.16 

Space group P-1 

a (Å) 12.1017(3) 

b (Å) 13.0846(3) 

c (Å) 16.6487(4) 

α (°) 110.164(2) 

β (°) 93.783(2) 

γ (°) 99.810(2) 

V (Å3) 2416.23(11) 

Z 1 

ρcalc (g cm-3) 1.957 

T (K) 100 

λ (Å) 1.54184 

2θmin, 2θmax 10, 143 

Nref 29036 

R(int), R(σ) .0572, .0526 

μ(mm-1) 27.87 

Size (mm) .27 x .10 x .04 

Tmax / Tmin 12.6 

Data 9371 

Restraints 124 

Parameters 577 

R1(obs) 0.0419 

wR2(all) 0.1111 

S 1.031 

Peak, hole (e- Å-3) 1.54, -1.51 
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Chapter 4  

Designing a superatom-containing polymer 

 

4.0 Preface  

 

This chapter presents some of the initial motivations and strategies in designing a cluster-

containing polymer. I will discuss the synthesis of a superatom-containing homopolymer and 

preliminary results in using this homopolymer to fabricate thin films. Anouck Champsaur provided 

guidance on the synthesis of the carbonylated cobalt selenide cluster1 and its reactivity for 

substitution. Dan Paley performed single crystal refinement.  

4.1 Introduction 

 

The initial attempts at using the chemical synthetic tunability of BCPs to template long 

range ordering of superatoms into targeted morphologies at the mesoscale inspired the design of a 

BCP system with covalent tethering of a superatom onto the polymer backbone. Rather than 

relying on charge transfer interactions to drive the assembly of superatoms, covalent 

functionalization provides greater synthetic control to fabricate materials having extended 

ordering. The ability to covalently functionalize a superatom onto a polymer scaffold was enabled 

by the synthesis of the reactive, photolabile, site-differentiated Co6SE8CO(PEt3)5 superatom.1 The 

photolabile CO group is a useful synthetic handle that can be easily exchanged with other reactive 

ligands including phosphines. As discussed in Chapter 1, covalent union of the superatom into 

dimers, trimers, and small oligomers is an exciting route to create extended assemblies of 
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superatoms with enhanced inter-superatom coupling.1,2 The synthetic utility of the mono-

carbonylated cobalt selenide superatom played an essential role in designing a cluster-containing 

polymer system. 

Another motivation to synthesize superatom-containing polymers is the limited library of 

metal-containing polymers reported to date. Organometallic polymers have shown potential in 

advancing technologies for sensing, catalysis, and media storage.3,4 Yet synthetic challenges such 

as polymer solubility that also make it difficult to properly characterize the materials using NMR 

and gel permeation chromatography has widely limited the compositional scope of metal-

containing polymers.3 The first report of transition metal-containing polymer contained a ferrocene 

moiety, and the library of metal-containing polymers has continued to be dominated by 

metallocene-containing polymers specifically.5 The ability to tether a multinuclear metal cluster 

to an organic polymer scaffold presents an exciting opportunity to contribute to the growth in this 

research area.  

4.2 Synthetic routes for cluster-containing homopolymer 

 

We developed two initial strategies to synthesize a homopolymer with Co6SE8 pendant 

superatoms shown in Figure 4.1.  
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In the first approach shown in Figure 4.1a, we first synthesize a ROMP polymerizable 

monomer with a pendant diphenyl phosphine oxide group. After polymerization, the diphenyl 

phosphine oxide must be reduced to the free phosphine, which is a suitable L-type ligand for the 

photolabile Co6Se8CO(PEt3)5 cluster. Disassociation of the CO group occurs upon exposure of the 

cluster to UV light at room temperature, and the site-differentiated superatom can then bind to the 

pendant free phosphines. The post-polymerization functionalization approach is attractive because 

it is possible to fully characterize the polymer’s molecular weight and dispersity by gel permeation 

chromatography (GPC) and NMR, prior to the covalent attachment of the cluster. Once the 

superatom-containing polymer is formed, characterization of the polymer properties by traditional 

polymer characterization techniques can be quite challenging due to solubility challenges and the 

Figure 4.1. Two approaches for the synthesis of a superatom-containing polymer. In (a) a 

phosphine oxide monomer is the ROMP polymerizable precursor and in (b) a superatom-

containing monomer (SCM) is first synthesized prior to ROMP polymerization.  
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cluster-polymer’s composition as compared to the GPC’s polystyrene standards that are used for 

calibration of the instrument. 

 In the second approach shown in Figure 4.1b, a similar phosphine monomer is first 

synthesized, but the pendant phosphine is not oxidized. The Co6Se8(PEt3)5 cluster is attached to 

the monomer after which it is polymerized under ROMP conditions. In both synthetic approaches, 

the superatom is oxidized to 1+ with a PF6 counterion. The oxidized cluster is air stable which 

enables easy handling and purification of the monomers and polymers on the benchtop. A 

remarkable advantage of this is the ability to use traditional silica-gel chromatography to purify 

the superatom-containing monomer (SCM) prior to polymerization. Purification of the cationic 

monomer removes any unfunctionalized monomers and cluster and ensures that every unit in the 

polymer is bound to a pendant cobalt selenide cluster.  

 The post-polymerization approach first synthesizes a new phosphorus containing polymer. 

There has been considerable interest in the synthesis of dendrimers and polymers having donor 

ligands like phosphorus in their scaffold in order to tether transition metals onto support 

materials.6–9 Incorporation of phosphorus units into extended matrices has potential to design 

efficient functional materials for metal catalysis. The challenge encountered in the post-

polymerization approach was achieving complete reduction of the phosphine oxide after 

polymerization -a necessary step for association of the pendant diphenyl phosphine with the cobalt 

selenide superatom.  

4.3 Synthesis of ROMP polymerizable superatom-containing monomer 
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 Figure 4.2 illustrates our synthetic strategy to prepare a polymerizable superatom-

containing monomer (SCM). The monomer was synthesized by treating a norbornene dicarboxylic 

acid anhydride derivative with 3-(diphenylphosphino)-1-propylamine. This formed a ROMP 

polymerizable norbornene monomer with a pendant diphenyl phosphine which was then coupled 

to the molecular cluster Co6Se8(PEt3)5 through coordination of the free phosphine to the inorganic 

core. The coupling occurred under UV photolytic conditions with the cationic 

[Co6Se8(CO)(PEt3)5][PF6] during which the photolabile CO ligand on the cluster was substituted 

with diphenyl phosphine. The substitution reaction is monitored by infrared (IR) spectroscopy by 

monitoring the disappearance of the CO stretching mode at 1968 cm-1. IR traces of both the crude  

 

The cationic cluster is air-stable enabling purification of the monomer by traditional silica 

gel chromatography. With long enough reaction time (24-48 hr) the substitution of the CO cluster 

is quantitative. To expediate the reaction time, excess diphenyl phosphine monomer was added, 

and silica gel chromatography removed excess unfunctionalized diphenyl phosphine norbornene 

monomer and cluster. The substituted monomer was crystallized by diffusing hexanes into a 

dichloromethane (DCM) solution of the compound.  

Figure 4.2. Synthesis of SCM and its polymerization to form superatom-containing homopolymer 

(SHP). 
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Figure 4.4 presents the crystal structure of SCM as determined by single crystal x-ray 

diffraction (SCXRD). The core of the cluster is an octahedron of Co atoms, concentric with a cube 

of Se atoms. Five Co atoms are capped with PEt3 and the sixth Co is bonded to the diphenyl 

phosphine connecting the norbornene unit. SCM crystallizes with a single PF6
– anion.  

The molecular structure underscores the size difference between the norbornene and the 

pendent cluster units, highlighting the limited space available to bind to the ROMP catalyst during 

polymerization. By comparison, typical metal-containing monomers (e.g., monomers with a 

Figure 4.3. IR spectra of crude mixture of [Co6Se8CO(PEt3)5][PF6] and diphenyl phosphine 

monomer before UV-irradiation (0h, black) monitoring the CO stretch at 1968 cm-1 which 

disappears after 24h of irradiation (red). 
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pendent metallocene group) are much less sterically hindered.5,10 Full crystallographic details are 

included in the synthetic methods at the end of Chapter 4.  

  

A cluster-containing homopolymer (SHP) was synthesized by ROMP in dichloromethane, 

using Grubbs catalyst 3rd generation. Stoichiometric ratios of the monomer: catalyst was varied. 

With high feed ratios of the monomer (>50:1 monomer:GIII), the resulting cationic polymer was 

highly insoluble in almost all solvents (i.e. dimmethylformamide, dichloromethane, chloroform, 

methanol). Relatively short SHPs with n=25 chain lengths were synthesized and were soluble 

enough for characterization. Figure 4.5 shows the 1H NMR spectra of SCM and SHP, respectively. 

The broad peaks below 0 ppm come from the PEt3 on the cationic paramagnetic cluster. The key 

feature that identifies the ring opening metathesis polymerization is the disappearance of the 

Figure 4.4. Molecular structure of SCM, as determined by SCXRD. Color code: C, black; N, 

light blue; O, red; Se, green; Co, blue; P, yellow; F, purple. 
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vinylic protons on the norbornene rings which appear at 6.3 ppm in the monomer. The 

disappearance of the vinylic peak at 6.3 ppm and the appearance of two resonances at 5.5 and 5.7 

ppm indicates the formation of the ring opened norbornene backbone polymer.  

Gel permeation chromatography (GPC) characterization of metal-containing polymers is 

challenging due to solubility and interactions between metals and the column during analysis. 

Furthermore, molecular weight as determined by GPC is not an appropriate characterization 

method for such exotic polymers, as the polymer’s molecular structure is strikingly different from 

that of the polystyrene standards used for GPC calibration. These challenges make it difficult to 

accurately determine the molecular weight of our cluster-containing polymer. In Chapter 5, I will 

Figure 4.5. (a) 1H NMR spectrum of SCM, taken in CDCl3. Norbornene vinyl peaks are 

highlighted with red circles. (b) 1H NMR spectrum of SHP, taken in CDCl3. Backbone polymer 

peaks are identified in red circles.  
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discuss an approach that we used to determine the molecular weight of the cluster-containing 

diblock polymer that incorporates both 1H NMR and GPC analysis. 

4.4 Fabrication of thin films using layer-by-layer (LBL) deposition 

 

Thus far, the discussion has widely focused on using the cluster-containing block 

copolymer to achieve long-range ordering of the superatoms at the nano and microscale. Chapter 

5 will continue discussion on the self-assembly behavior of the cluster-containing diblock polymer 

synthesis introduced here. Despite some of the solubility challenges in working with SHP, there 

are several potential applications of the SHP as a functional nanomaterial.  

Over the past few decades, there has been increasing interest in controlling the 

characteristics of functional materials at the nanoscale such as size, shape, morphology, and 

composition to tune the emergent optical, electrical, mechanical, and other physiochemical 

properties. Self-assembled monolayers (SAMs) have emerged as an increasingly researched area 

to fabricate ordered monolayers. Achieving high-coverage SAMs remains a technological 

challenge that often requires pre-treatment of the substrate with strongly binding molecules (i.e. 

thiols) prior to deposition. New techniques such as chemical vapor deposition (CVD), polymer 

grafting, and pulsed-laser ablation have been developed, but these technologies are limited by 

substrate selection and deposited material. Several of the afore mentioned techniques also require 

expensive and tedious protocols. 

By contrast, Layer-by-layer (LBL) assembly of thin films is a remarkably simple bottom-

up technology that can employed on variety of substrates to fabricate thin films with various 

compositions.11,12 . LBL assembly is a cyclical process that builds alternating layers of oppositely 

charged materials. The cyclical methodology adsorbs the first material onto the substrate during 
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immersion or spin-coating, excess of the material is washed, and then adsorption of the oppositely 

charged material occurs. The amount of adsorbed material onto the substrate can be tuned by 

altering the adsorption time, dissolving solvent, and oppositely charged materials. Thin films 

fabricated using LBL have been used in various applications including catalysis, optics, energy, 

membranes, and biomedicine.11 The simplicity and versatility of this thin film technique is 

attractive for fabrication of thin films with controlled thickness and morphology onto various 

substrates with direct applications in various fields. 

 Having synthesized the cationic SHP, we used the LBL technique to fabricate thin films. 

Using the immersion technique, we alternated dipping a glass substrate into solutions of positively 

charged cluster-containing polymer and of negatively charged poly(styrenesulfonate) (PSS). 

Figure 4.6 presents an image of three different glass substrates that have been immersed in 

alternating solutions of PSS and either the oxidized cobalt selenide cluster, SCM, or SHP. The 

substrates have all been immersed 10 times in PSS and 10 times in the solutions of the cobalt 

selenide, SCM, or SHP (20 minutes per immersion) and washed and dried in between soaks. It is 

visibly apparent that there is significant more buildup of layers on the substrate dipped in SHP 

than the glass slides with layers of the cationic cluster or SCM. 

We monitored the absorption of the polymer onto the glass using solid-state UV-Vis 

absorption. Figure 4.6c and 4.6d show the electronic absorption of alternating layers of PSS and 

SHP. The first layer corresponds to 1 PSS and 0 layers of SHP or cluster. It is apparent that the 

SHP had significant more adsorption onto the glass substrate in comparison to that of the cluster. 

By taking the maximum absorption peak at 364 nm, we plot the adsorption of the glass slide after 

buildup of PSS:SHP and PSS:[Co6Se8(PEt3)][PF6]. The first layer corresponds to an initial layer 

of PSS on the substrate (1 PSS: 0 SHP) and subsequent even number of layers correspond to equal  
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layers of PSS and SHP or cluster (i.e. 2 layers = 1 PSS: 1 SHP). As shown in Figure 4.6b, a 

significant increase in absorption was observed after building up 4 layers of SHP:PSS each (8 

layers total). Furthermore, absorption dropped after each deposition of PSS layer on top of the 

Figure 4.6. (a) Layer by layer assembly of PSS and SHP onto a glass substrate by alternating 

immersions of the glass substrate into solutions of PSS and SHP. The glass was washed in between 

soaks with polymers. (b) Photograph of glass substrates after 10 immersions of PSS and oxidized 

cobalt selenide cluster (left), SCM (middle) and SHP (right). (c) Solid-state electronic absorption 

spectra of 1,5, and 9 layers of PSS and oxidized cobalt selenide cluster and 1,5, and 9 layers of PSS 

and SHP. (d) Plot of electronic absorption at 364 nm of LBL assembly of PSS:SHP and PSS:Co6Se8 

after each immersion in PSS and SHP or cluster. Layer 1 was immersion into PSS, and the layers 

with even numbers (i.e. 2,4,6) correspond to equal layers of PSS:SHP or PSS:Co6Se8.  
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SHP layer. Immersion of the glass slide in solution with oxidized cluster showed very limited layer 

buildup of the material as seen visibly by eye on the glass substrates and by tracking the electronic 

absorption of the substrate.  

 We performed the same LBL process of PSS:SHP onto a silicon wafer that we imaged 

using atomic force microscopy (AFM). Figure 4.7 presents AFM images of a silicon wafer 

substrate built up with 5 layers of PSS and 5 layers of SHP. The films are relatively smooth having 

a height differential of less than 2 nm and roughness average (Ra) of 0.150 nm across the image of 

Figure 4.7(b).  

 

The functionalization of the cluster onto a polymer backbone enabled its adsorption onto 

glass and is one example of the additional processing power that the polymer system provides. As 

another example, we used the same LBL procedure to deposit layers of PSS and SHP onto carbon 

foam. Carbon foam has attracted much research interest as a substrate for electrodes because of its 

high surface area, stability, flexibility, and high electronic and thermal conductivity.13,14 We 

followed a similar LBL strategy to build up layers of the superatomic material onto nitrogen-doped  

Figure 4.7. AFM images of LBL assembly on silicon wafer with 5 layers of PSS and 5 layers of 

SHP deposited. 
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carbon foam.13 The carbon foam shown in the scanning electron microscope (SEM) image in 

Figure 4.8a was prepared by carbonizing commercially available melamine foam (a Mr. Clean 

Magic Eraser® was purchased at the local grocery store) under a constant stream of nitrogen. SEM 

Figure 4.8. SEM images of LBL assembly of PSS:SHP onto carbon substrate. (a) shows the 

carbonized melamine foam and (b) has EDS mapping showing strong signals for carbon, oxygen, 

and sodium. (c) is SEM image with EDS mapping of carbon foam substrate with 6 layers of PSS 

and SHP. EDS mapping traces carbon (red), selenium (green), and cobalt (blue) along the porous 

substrate. (d) shows the corresponding EDS spectrum which picks up addition signals of cobalt and 

selenium after LBL assembly.  
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and EDS mapping in Figure 4.8(c,d) after depositing 6 PSS and 6 SHP layers confirms that the 

SHP adsorbed onto the carbon foam.  

This promising result of LBL assembly of a cluster-containing homopolymer opens new 

opportunities to functionalize thin films of superatomic solids onto various substrate surfaces. The 

ability to control the deposition of layers of superatoms onto materials with high surface areas 

could open new opportunities for further chemical transformations, functionalization, and 

applications in surface mediated catalysis.  

4.5 Conclusion 

 We have developed the first polymerizable superatom-containing monomer and 

homopolymer. The tethering of this molecular cluster onto a norbornene moiety charts new 

opportunities for the development of functional materials with high processability that can be 

easily modified. In the following chapter we will extend this synthesis of the homopolymer to the 

block copolymer system and demonstrate some of the remarkable assembly and electrochemical 

properties of this polymer system. Here we have described some preliminary results in using the 

superatom-containing homopolymer for the fabrication of thin films on various substrates.  

4.6 Methods 

 

Column Chromatography.  

Chromatography was performed using a Teledyne Isco Combiflash Rf200 and Redisep Rf Silica 

columns.  

NMR Spectroscopy. 

1H NMR and 31P NMR spectra were recorded on a Bruker DRX400 spectrometer.  

Electronic Absorption Spectroscopy. 
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Electronic absorption spectra were recorded using a 1.0 cm quartz cell on an Agilent 

Technologies Cary 60 UV-vis spectrophotometer. 

Infrared (IR) Spectroscopy.  

IR spectra were recorded on a Perkin Elmer Spectrum Two LITA FT-IR.  

Photochemical Substitution.  

The photochemical reactor lamp was purchased from Hanovia Specialty lighting LLC. The 

lamp is a medium-pressure mercury lamp emitting 200-400 nm broadband radiation. The lamp 

was placed inside a quartz jacket, with cooling water circulating throughout to maintain the 

reactions at ambient temperature.  

Atomic Force Microscopy (AFM).  

AFM images were acquired in PeakForce QNM tapping mode using a Bruker Dimension 

FastScan AFM.  

Single Crystal X-Ray Diffraction.  

Crystallographic data was collected on an Agilent SuperNova diffractometer using mirror-

monochromated Cu Kα radiation.  

 

4.7 Synthetic Details 

 

Synthesis of exo-N-3-diphenylphosphine-norbornene-5,6-dicarboximide. 

 

This compound was prepared using a modified protocol.15 The compound (3-

aminopropyl)diphenyl phosphine (3.00 g, 12.33 mmol) and cis-5-norbornene-exo-2,3-

dicarboxylic anhydride (1.56 g, 9.50 mmol) were loaded in a 100 mL Schlenk flask. Toluene (130 

mL) was added to the flask which was then transferred to a Schlenk line under N2. The flask was 
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fitted with a flame-dried Dean-Stark trap under nitrogen and connected to flame-dried reflux 

condenser. The reaction was heated to reflux for 24 h under N2. The solution was then concentrated 

in vacuo, by passing through a short silica plug using ethyl acetate/hexanes. The solvent was 

evaporated from the collected fractions, yielding a pale yellow solid (3.17 g, 86% yield).  

1H NMR (Figure 4.9) (400 MHz, CDCl3,  ppm): 7.30-7.47 (m, 10H), 6.30 (s, 2H), 3.60 (t, 2H), 

3.27 (s, 2H), 2.68 (s, 2H), 2.05 (m, 2H), 1.73 (m, 2H), 1.50 (d, 1H), 1.20 (d, 1H).  

31P NMR (Figure 4.10) (161.9 MHz, CDCl3,  ppm): -16 ppm 

Synthesis of phosphine oxide monomer. 

This compound was prepared by oxidation of the phosphine monomer (3.17 g) using excess 

30% H2O2 (20 mLs) over 3 hrs. The compound was extracted dichloromethane, washed with water, 

and dried with magnesium sulfate. The solution was concentrated in vacuo. The purified product 

was isolated with silica gel chromatography (50% Ethyl Acetate/ 50% hexanes and dried in vacuo 

to achieve a white solid (3.13 g, 95% yield).  

1H NMR (Figure 4.11) (400 MHz, CDCl3,  ppm): 7.74 (m, 4H), 7.52 (m, 6H), 6.30 (s, 2H), 3.60 

(t, 2H), 3.27 (t, 2H), 2.68 (t, 2H), 2.30 (m, 2H), 1.91 (m, 2H), 1.64 (d, 1H), 1.19 (d, 1H). 

31P NMR (Figure 4.12) (161.9 MHz, CDCl3,  ppm): 31 ppm 

Synthesis of phosphine oxide homopolymer. 

GIII (24.4 mol, 24 mL) was dissolved in THF. Phosphine oxide monomer (990 mgs, 2.4 

mmol) was dissolved in 24.4 mL of THF. GIII was added to monomer solution and the reaction 

flask was stirred for 6 h. The homopolymer was quenched with excess ethyl vinyl ether. The 

solvent was evaporated in vacuo, redissolved in DCM, and precipitated with cold hexanes followed 

by precipitation into THF. A pale-yellow solid was collected (800 mgs).  
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1H NMR (Figure 4.13) (400 MHz, CDCl3,  ppm): Broadened peaks are all attributed to the 

phosphine oxide monomer. The appearance of two new peaks appear at 5.45 and 5.70 ppm 

(corresponding to the ring-opened norbornene) and the complete disappearance of the peak at 6.3 

ppm indicates complete polymerization.  

31P NMR (Figure 4.14) (161.9 MHz, CDCl3,  ppm): 32 ppm 

Layer-by-layer deposition details. 

 A solution of 5 mg/ml of SHP, [Co6Se8(PEt3)6][PF6], and SCM was stirred at room 

temperature overnight. An ITO glass substrate was cleaned by sonicating for 30 minutes in acetone 

and isopropanol before drying under nitrogen stream. A polyethylene imine monolayer was first 

prepared by immersing the glass substrate in 1% solution of poly(ethylene imine) PEI (25 000) for 

30 minutes to form an initial polyelectrolyte monolayer and was then washed with water, acetone, 

and dried under vacuum. After this initial layer, we count the first layer to be the first time the 

substrates were immersed in poly(sodium 4-styrenesulfonate) solution (MW = 70,000, 30 wt% in 

H2O) for 30 minutes, washed with water, acetone, and dried under vacuum. The second layer was 

built from immersion in solutions of 5 mg/mL of SHP, [Co6Se8(PEt3)6][PF6], or SCM dissolved in 

DMF. The glass substrates were washed with DMF, water, acetone and dried under vacuum in 

between layers.  

 

4.8 NMR Spectra 
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Figure 4.9. 1H NMR of phosphine monomer taken in CDCl3. 

 

Figure 4.10. 31P NMR spectrum of phosphine monomer. 
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Figure 4.11. 1H NMR spectrum of phosphine oxide monomer taken in CDCl3.  

 

Figure 4.12. 31P NMR spectrum of phosphine oxide monomer. 

 

Figure 4.13. 1H NMR of phosphine oxide polymer taken in CDCl3.  
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Figure 4.14. 31P NMR of phosphine oxide polymer. 

 

4.9 Crystallographic Details 

Data was collected on an Agilent SuperNova diffractometer using mirror-monochromated 

Cu K radiation. Data collection, integration, scaling (ABSPACK) and absorption correction 

(face-indexed Gaussian integration16 or numeric analytical methods17) were performed in 

CrysAlisPro.18 Structure solution was performed using ShelXT.19 Subsequent refinement was 

performed by full-matrix least-squares on F2 in ShelXL.19 Olex220 was used for viewing and to 

prepare CIF files. ORTEP graphics were prepared in CrystalMaker.21 Thermal ellipsoids are 

rendered at the 50% probability level.  

Crystals were grown at room temperature by slow diffusion of hexanes into a concentrated 

solution of SCM in dichloromethane. Black crystals were obtained after 24 hours. The solution 

was decanted, and the crystals were used directly for crystallography.  

An irregular fragment (0.28 x 0.14 x 0.05 mm) was separated carefully, mounted with 

Paratone oil, and cooled to 100 K on the diffractometer. The crystal appeared to be monoclinic, 

and complete data for the Laue group were collected to 0.8 Å resolution. 44055 reflections were 
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collected (15331 unique, 11404 observed) with R(int) 8.1% and R(sigma) 10.0% after Gaussian 

absorption and beam profile correction (Tmin .130).  

The space group was assigned as P21/c based on the systematic absences. The structure 

solved readily in ShelXT with 1 molecule in the asymmetric unit. The heavy atoms (Co, Se, P) 

and most C atoms were located in the initial solution. Two triethyl phosphine groups were each 

disordered over two positions, which were modeled with SAME restraints on their atomic 

positions and RIGU restraints on their displacement parameters. The hexafluorophosphate anion 

was disordered over two positions, which were restrained to approximate octahedral symmetry 

with the use of floating DFIX restraints on the P-F and F-F distances. (The average P-F distance 

refined to approximately 1.59 Å.) Finally, two molecules of dichloromethane were identified in 

the asymmetric unit, disordered over two and four positions respectively. All dichloromethanes 

were restrained to similar geometry using SAME restraints. The molecule that was disordered over 

four positions was modeled with isotropic ADPs; all other atoms were modeled with anisotropic 

ADPs. Overlapping ADPs of disordered atoms were made similar with a short-range SIMU 

instruction. Hydrogen atoms were placed in calculated positions and refined with riding 

coordinates and ADPs. 
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Table 4.1. Select crystallographic data of SCM.  

Compound SCM 

Formula C56H103NO2F6P7Co6Se8Cl4 

MW 2280.24 

Space group P21/c 

a (Å) 13.6351(3) 

b (Å) 23.0852(7) 

c (Å) 25.6213(5) 

α (°) 90 

β (°) 90.584(2) 

γ (°) 90 

V (Å3) 8064.4(3) 

Z 4 

ρcalc (g cm-3) 1.878 

T (K) 100 

λ (Å) 1.54184 

2θmin, 2θmax 7, 146 

Nref 44055 

R(int), R(σ) .0817, .1000 

μ(mm-1) 16.536 

Size (mm) .28 x .14 x .05 

Tmax, Tmin 1, .13 

Data 15331 

Restraints 541 

Parameters 1043 

R1(obs) 0.0566 

wR2(all) 0.1525 

S 1.023 

Peak, hole (e- Å-3) 1.09, -0.86 
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Chapter 5  

Multifunctional vesicles from a self-assembled superatom-containing 

diblock copolymer 

 

5.0 Preface 

 

Significant portions of this chapter are adapted from the publication on this research 

entitled Multifunctional Vesicles from a Self-Assembled Cluster-containing Diblock Copolymer by 

Anastasia Voevodin, Luis Campos, and Xavier Roy published in Journal of American Chemical 

Society, 2018, 140 (16), pp 5607-5611.1 Anouck Champsaur provided guidance on the synthesis 

of the carbonylated cobalt selenide superatom and its reactivity for substitution.2 Dan Paley 

performed single crystal refinement. Grisha Etkin and Dan Paley assisted with the gel permeation 

chromatography. I synthesized all materials and performed SEM, AFM, and TEM imaging.  

5.1 Introduction 

 

Materials that combine the attractive mechanical properties and processability of polymers, 

with the optical, electronic and magnetic properties of inorganic compounds are of great scientific 

interest for the design of functional devices.3–7 In this context, metal-containing polymers have 

received widespread attention for applications in light-harvesting and light-emitting devices, 

nanoelectronics, nanopatterning and sensing.8,9 Metal-containing block copolymers capable of 
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self-assembly have also been used as templates to create unique inorganic nano- and 

mesostructures.10,11 While the vast majority of metal-containing polymers comprise a single metal 

atom per repeating unit,12,13 the integration of complex multinuclear metal components (e.g., 

molecular clusters) into well-defined macromolecular systems remains a major synthetic 

challenge.3,12 Nonetheless, in the past decades, a select number of research groups have reported 

homopolymers13,14 and a few block copolymers14–17 containing simple transition metal carbonyl 

clusters18,19 which have been used to fabricate striking metal nanostructures.20–22 

Metal chalcogenide molecular clusters are particularly attractive functional units23–25 to 

incorporate into macromolecular systems. They offer unique and exciting opportunities for tunable 

multi-electron redox processes, luminescence, magnetism and catalysis.2,24–27 The design of such 

cluster-containing polymers, however, is complicated by the multiple non-differentiated sites for 

ligand attachment on the cluster surface, leading to the formation of cross-linked networks.28–30 

Though Zheng and co-workers have exploited the multiple coordination sites on the Re6Se8 cluster 

core to synthesize a dendrimer with six arms,31 creating well defined linear polymer chains with 

metal chalcogenide clusters on every repeating unit has remained a challenge. 

Here we report the synthesis and self-assembly of the first diblock copolymer containing 

the redox-active cluster Co6Se8 in one of the blocks. The multifunctional diblock copolymer (SC-

BCP) is prepared by sequential polymerization of a photoactive monomer (M1) and a cluster-

containing monomer (SCM), the latter prepared by substituting a polymerizable group for CO on 

the photolabile differentially-functionalized cluster Co6Se8(PEt3)5(CO).  

This synthetic approach creates high molecular weight diblock copolymers with low 

dispersity index. Remarkably, we show that the multiple redox states of the cluster are reversibly 

accessible in this system. Moreover, by self-assembling the diblock copolymer, we can shut down 



114 

 

the electron transfer process to the redox-active cluster. In the charged state, the polymer self-

assembles into vesicles and we demonstrate that methylene blue can be encapsulated inside these 

vesicles whose walls can be crosslinked to retain the molecular cargo.  

5.2 Synthesis of a cluster-containing diblock copolymer 

 

 Figure 5.1a presents our synthetic strategy to prepare the multifunctional SC-BCP 

via sequential ring-opening metathesis polymerization (ROMP) of M1 and SCM. For both 

monomers, we use polymerizable norbornene moieties to form the backbone. M1 is prepared by 

first reacting cis-5-norbornene-exo-2,3-dicarboxylic anhydride with 6-amino-1-hexanol to form 

the norbornene dicarboximide with a pendent hydroxyl, which is then coupled with cinnamic acid 

via esterification to append the photoactive cinnamoyl group.  

 

SCM is obtained by first treating the same norbornene dicarboxylic anhydride derivative 

with 3-(diphenylphosphino)-1-propylamine to append a diphenyl phosphine, and then coupling the 

Figure 5.1. (a) Synthesis of SCM and SC-BCP. (b) Molecular structure of SCM, as determined 

by SCXRD. Color code: C, black; N, light blue; O, red; Se, green; Co, blue; P, yellow; F, 

purple. 
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resulting norbornene dicarboximide to the molecular cluster Co6Se8(PEt3)5 by coordinating the 

pendent phosphine to the inorganic core. The coupling reaction is performed under UV photolytic 

conditions using the cationic cluster [Co6Se8(CO)(PEt3)5][PF6] and an excess of the norbornene-

bearing phosphine pro-ligand. The synthesis of [Co6Se8(CO)(PEt3)5][PF6] was recently reported 

by Champsaur et al.2 Briefly, it is prepared by reacting Co2(CO)8 with an excess of Se and PEt3 to 

form Co6Se8(CO)x(PEt3)6-x. [Co6Se8(CO)(PEt3)5][PF6] is then isolated from a silica column after 

treatment with TBAPF6. Under UV irradiation, the photolabile CO ligand is substituted with the 

phosphine. The substitution reaction is monitored by IR spectroscopy by following the 

disappearance of the CO stretching mode at 1968 cm–1.2  

While the neutral cluster Co6Se8(CO)(PEt3)5 can also be used for the coupling reaction, the 

cationic compound is stable under ambient conditions, facilitating purification and handling. After 

complete disappearance of the CO stretch, SCM is purified by column chromatography to remove 

excess pro-ligand and then crystallized by diffusing hexanes into a dichloromethane (DCM) 

Figure 5.2. FTIR spectra of M1 (red) and SCM (black). 
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solution of the compound. A Fourier-transformed infrared spectroscopy (FTIR) spectra of both M1 

and SCM is shown in Figure 5.2.  

 

Figure 5.1b)presents the crystal structure of SCM, as determined by single crystal x-ray 

diffraction (SCXRD). This molecular structure was first introduced in Chapter 4 where its 

structural details are further explained. In brief here, we find it remarkable that despite the size 

difference between the norbornene moiety and superatom, polymerization under ROMP conditions 

with a Grubbs III catalyst of this monomer is successful. Full crystallographic details are included 

in Chapter 4.  

SC-BCP is synthesized by sequential ROMP of M1 and SCM in dichloromethane (DCM), 

using Grubbs catalyst 3rd generation. The stoichiometric ratio of the components in the reaction is 

150 M1:50 SCM:1 catalyst. The polymerization is stopped with the addition of ethyl vinyl ether, 

and SC-BCP is precipitated with hexanes and washed with toluene to remove any remaining 

monomer. Figure 4.3 a,b shows the 1H NMR spectra of SCM and SC-BCP, respectively. The full 

spectrum of SC-BCP, (see Figure 4.22) is broad and complex but all the peaks derive from M1 or 

SCM. The broad peaks below 0 ppm come from the PEt3 on the cationic paramagnetic cluster. In 

addition to the broadness of the spectrum, there are a few key features that verify the ring opening 

metathesis polymerization. The peak at 6.3 ppm, corresponding to the vinylic protons on the 

norbornene rings, is present in the 1H NMR spectra of M1 and SCM but is absent in that of SC-

SC-BCP. Instead, two resonances at 5.5 and 5.7 ppm are present in the SC-BCP spectrum, 

indicating the formation of the norbornene ring-opened polymer backbone. The M1:SCM 

stoichiometric ratio in the polymer can be estimated from the integration of the peaks at ~6.4 and 

~7.2 ppm (shown in Figure 5.3 as blue and green circles, respectively). These peaks correspond to 
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the M1 cinnamoyl vinylic protons and one set of phenyl protons on SCM, respectively. The 

M1:SCM ratio calculated from the 1H NMR spectrum of SC-BCP is 3.3:1, in good agreement with 

the 3:1 stoichiometric ratio introduced in the reaction.  

 

 

Figure 5.3. (a) 1H NMR spectrum of SCM in the range 5.3-8.0 ppm, taken in CDCl3. Norbornene 

vinyl peaks are highlighted with red circles (b) 1H NMR spectrum of SC-BCP in the range 5.3-

8.0 ppm, taken in CDCl3. One set of SCM diphenyl phosphine protons are identified by green 

circles, set of cinnamoyl’s vinylic protons identified with blue circle, and backbone polymer 

peaks identified in red circles  
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5.3 Determination of molecular weight and dispersity of SC-BCP 

Determining the molecular weight of SC-BCP is challenging because of its limited 

solubility in many solvents, its strong tendency to self-assemble (discussed later in section 5.4), 

and the presence of charged clusters tethered to one of the blocks. To get an estimate of the 

molecular weight, we take a small aliquot from the M1 polymerization (i.e., just before the addition 

of SCM), and measure its molecular weight using gel permeation chromatography (GPC) with 

polystyrene standard. We then use the ratio obtained from the 1H NMR spectrum to infer the SC-

BCP molecular weight, Mw ∼ 155 000 g/mol (details in the). GPC is also used to assess the 

dispersity of the polymer: Figure 5.14 shows the unimodal gel permeation chromatogram of SC-

BCP in N,N-dimethylformamide (DMF) with 0.1% LiBr. The shape of the peak in the 

chromatogram indicates a narrow dispersity index, Đ ∼ 1.2. 

5.4 Self-assembly of SC-BCP  

Composed of two blocks with vastly different solubility properties, SC-BCP is an 

amphiphile that should readily self-assemble in solution. Using a mixed-solvent system of 

tetrahydrofuran (THF) and water (as the minor solvent), we observe the formation of synthetic 

vesicles, sometimes called polymersomes (Figure 5.4a). Figure 5.4(b,c) displays scanning electron 
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microscopy (SEM) and transmission electron microscopy (TEM) images of the vesicles obtained 

in a 90:10 v/v THF:water mixture.  

 

Additional micrographs as well as atomic force microscopy (AFM) images are presented 

in Figures 5.5-5.7. The spherical structures typically range from 500 nm to 2 m in diameter. We 

note that chemical staining is not required for TEM imaging due to the presence of the metal 

Figure 5.4. (a) Schematic of SC-BCP self-assembly into vesicles. The cinnamoyl block is shown 

in green and the cluster is shown in blue, with its counter ion in pink. Dissolved SC-BCP can 

reversibly access three redox states, but self-assembled SC-BCP is no longer redox active. (b) SEM 

image of SC-BCP vesicles assembled in a 90:10 THF:H2O solvent mixture. (c) TEM image of SC-

BCP vesicles assembled in the same conditions. Inset: TEM image showing the hollowness of the 

vesicles. 
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chalcogenide cluster in one of the blocks. The hollowness of the structures is evident in the inset 

of Figure 5.4c. Moreover, small indentations (or dimples) are visible on the particles, presumably 

a result of the partial collapse of the vesicular walls as solvent evaporates from the hollow cores. 

Based on the high solubility of the cinnamoyl block, and the insolubility of the cluster-containing 

block in THF, we hypothesize that the vesicular wall is an inverse bilayer in which the cationic 

cluster block is sandwiched between hydrophobic cinnamoyl segments (Figure 5.4a). Presumably, 

the water preferentially migrates to the ionic inner-wall to swell the shell and decrease the 

curvature. Indeed, much smaller particles with more irregular morphologies are obtained when dry 

THF is used for the assembly (Figure 5.5e-f).  

 

Figure 5.5. (a-c) SEM images of SC-BCP vesicles assembled in a 90:10 v/v THF: H2O solvent 

mixture. (d-f) SEM images of SC-BCP assembled in THF showing irregular morphology.  
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5.5 Electrochemistry of BCP 

The cluster Co6Se8 is capable of reversible multiple electron redox processes, opening the 

door to the creation of polymeric systems in which each repeating unit can access three or more 

charge states. While multiple redox states can be accessed in metallocenes using unusually harsh 

conditions,32–34 to the best of our knowledge such behavior has never been observed in a polymeric 

system. 

Figure 5.6. TEM micrographs of SC-BCP vesicles assembled in 90:10 v/v THF:H2O solvent 

mixture. 

Figure 5.7. 3D AFM image of the SC-BCP vesicles on a Si wafer 
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To examine the electrochemical behavior of the tethered Co6Se8 core, we performed cyclic 

voltammetry on SCM and SC-BCP in DMF with 0.1 M tetrabutylammonium hexafluorophosphate 

(TBAPF6) supporting electrolyte. The cyclic voltammograms in Figure 4.8(a,b) are qualitatively 

similar, showing two reversible redox processes at E1/2 ~ –0.8 and –0.2 V versus 

ferrocene/ferrocenium (Fc/Fc+). These two redox couples correspond to the 0/1+ and 1+/2+ 

transformations, respectively. We note that the current measured at the SC-BCP 1+/2+ redox 

couple is smaller than that at the 0/1+ redox couple. This is presumably due to the lower solubility 

of the polymer in the higher charge state, as well as the increased driving force for self-assembly, 

which will decrease both diffusion to the electrode surface and electron transfer. These results 

demonstrate that SC-BCP can access three charge states: neutral, 1+ and 2+. Based on previous 

electrochemical studies of the Co6Se8 cluster,2 we expect that even more charge states can be 

accessed; however, the poor solubility of the diblock copolymer in the 3+ state prevents us from 

measuring reversible waves. 

Figure 5.8. Cyclic voltammograms (CV) of (a) SCM and (b) SC-BCP showing three reversible redox 

states assigned to neutral, 1+, and 2+. CVs are taken in DMF with 0.1 M TBAPF6 and referenced 

Fc/Fc+ redox couple. 
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Increasing the scan rate from 10 mV/s to 100 mV/s broadens the observed two redox 

couples shown in Figure 4.9(a). Remarkably, no redox peaks are observed in the cyclic 

voltammogram of the SC-BCP after self-assembly into vesicles in THF/H2O (Figure 5.9b); 

presumably the assembly segregates the redox-active clusters inside the walls of the vesicles, 

which are covered with an insulating shell that inhibits electron transfer.  

 

 

Figure 5.9. Cyclic voltammograms of (a) SC-BCP in DMF at 10 (red), 25 (black), 50 (green), and 100 

(blue) mV/s scan rates and (b) of SC-BCP assembled in THF. CVs are taken with 0.1 M TBAPF6 and 

referenced Fc/Fc+ redox couple. 
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5.6 Crosslinking of vesicle walls  

The SC-BCP vesicular walls can be crosslinked by irradiating the assemblies with >300 

nm light, which drives the 2+2 cycloaddition of the cinnamoyl group (Figure 5.10a).30–32 Cross-

linking is monitored by IR spectroscopy (Figure 5.10(b,c)). Prior to crosslinking, the IR spectrum 

of the vesicles features distinct peaks for M1 at 1632 and 978 cm–1, corresponding to the stretching 

frequency of the cinnamoyl vinylic C=C group.33 An additional peak of M1 at 1690 cm–1, 

corresponding to the phenyl on the cinnamoyl group, overlaps with the aromatic stretches of SCM 

(at 1700 cm–1) arising from the diphenyl phosphine moiety. After irradiating the self-assembled 

SC-BCP (XBCP), the peaks at ~1700, 1632, and 978 cm-1 broaden and decrease in intensity, 

consistent with conversion of the cinnamoyls to cyclobutane dimers.30–32 We note that the expected 

shift of the cinnamoyl 1690 cm–1 peak upon dimerization is obscured by the overlap with SCM. 

Figure 5.10. (a) Crosslinking of SC-BCP to XBCP upon exposure to 400-500 nm light forming a 

2+2 cycloaddition across SC-BCP chains (b) FTIR monitoring of crosslinking after 0 (black), 8 

(green), and 24 hours (red) and (c) normalized transmission to monitor the vibrational changes at 

1700 and 1020 cm-1. 
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While the cluster absorbs some of the 400-500 nm light, both UV–Vis and IR indicate that it 

remains intact (see Figures 5.10, 5.11). 

5.7 Encapsulation of small molecules within vesicles 

We also demonstrate the use of these vesicles as containers by encapsulating the molecular 

dye methylene blue (MB) illustrated in Figure 5.11. To load the vesicles, an aqueous solution of 

MB is added to a THF solution of SC-BCP to give a 90:10 v/v THF:water solvent mixture. Under 

these conditions, MB is soluble and SC-BCP self-assembles into vesicles over a period of ~12 h, 

trapping MB molecules inside the solvent-filled core. Next, we irradiate the solution with 400-500 

nm light for 24 h to crosslink the vesicles, then add DCM to the solution and finally repeatedly 

wash the organic phase with water, until no blue color is present in the aqueous phase. 

This process of dispersing the vesicles into DCM and then extracting the aqueous phase 

collapses the containers. Figure 5.11(c,d) shows the morphology of the collapsed vesicles 

assembled without and with encapsulated MB, respectively. For comparison, the insets show the 

spherical morphology of the same vesicles drop cast from the THF/water solvent mixture.  
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The solution-phase electronic absorption spectra of the vesicles with and without 

encapsulated MB show broad absorption features between 300 and 500 nm, corresponding to the 

Co6Se8 core. The BCP-MB spectrum contains two additional optical transitions in the range 580-

700 nm, which can be attributed to MB. When compared to MB in solution, the MB peaks in the 

BCP-MB spectrum are broadened. This is consistent with previous reports of MB encapsulation 

into polymer containers.34 Irradiating the vesicles crosslinks the walls and diminishes the amount 

Figure 5.11. (a) Schematic of the encapsulation of MB in SC-BCP vesicles. Cross-linking of the outer 

cinnamoyl shell upon irradiation with 300-400 nm light is followed by extraction of excess MB with 

successive water washes. The optical images show the DCM solution of BCP-MB with water layer 

on top. (b) Electronic absorption spectra of SCM, and SC-BCP dissolved in DMF and assembled in 

THF. (c) SEM image of collapsed SC-BCP vesicles, obtained when DCM is added to the THF/H2O 

solution and the water is removed. The inset shows an intact vesicle before transfer to DCM and 

removal of H2O. (d) SEM image of collapsed BCP-MB vesicles after extraction of excess MB with 

H2O. The inset shows an intact vesicle before transfer to DCM and extraction of MB with H2O. The 

crystals in the inset are from excess MB not encapsulated in the containers. (e) Normalized electronic 

absorption spectra of MB, SC-BCP, and XBCP-MB in DCM 
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of MB released from the container during the washing. Figure 5.12 illustrates this point: the MB 

concentration in the aqueous wash is visibly lower when the vesicles are crosslinked.  

 

5.8 Conclusion 

By tethering a molecular cluster to a norbornene moiety, we have designed a new redox-

active monomer that can be combined with a photo-crosslinkable segment to create a 

multifunctional diblock copolymer. The molecular cluster provides unique access to three 

reversible charged states in DMF. In THF, the diblock copolymer self-assembles into vesicles when 

the cluster is in the 1+ charge state. The formation of these self-assembled structures segregates 

the redox-active clusters inside the walls and inhibits electron transfer. Moreover, the vesicles can 

be used as containers to encapsulate molecular cargo such as methylene blue. By exploiting the 

Figure 5.12. (a) Extraction of non-encapsulated MB with distilled water in crosslinked (XBCP-

MB) and not crosslinked (SC-BCP-MB) samples. (b) Comparison of the aqueous phase 

containing the extracted non-encapsulated MB. The solution for the non-crosslinked vesicles 

(SC-BCP-MB) visibly contains more MB than that of the crosslinked vesicles (XBCP-MB). 
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photoreactivity of the cinnamoyl group incorporated in the hydrophobic block, we can crosslink 

the walls of the vesicles. The integration of molecular clusters into well-defined block copolymers 

offers exciting possibilities to develop multifunctional assemblies for applications in catalysis, 

electrochemistry and biomedicine. In addition, this cluster-containing polymer could be used to 

direct the hierarchical assembly of novel metal chalcogenide mesostructures.  
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5.9 Materials and Methods 

Unless otherwise noted, all reactions were performed in a nitrogen atmosphere using 

standard Schlenk techniques or in a nitrogen-filled glovebox. Triethyl phosphine (99%) was 

purchased from Sigma-Aldrich. Selenium and dicobalt octacarbonyl (stabilized with 1-5% hexane) 

were obtained from STREM Chemicals. All other reagents were purchased from Sigma-Aldrich. 

Chemicals were used without further purification. Dry and deoxygenated solvents were prepared 

by elution through a dual-column solvent system (MBraun SPS). Deuterated solvents used for 

NMR spectroscopy were purchased from Cambridge Isotope Laboratories, Inc. 

Column Chromatography.  

Chromatography was performed using a Teledyne Isco Combiflash Rf200 and Redisep Rf 

Silica columns.  

NMR Spectroscopy  

1H NMR and 31P NMR spectra were recorded on a Bruker DRX400 spectrometer.  

Electronic Absorption Spectroscopy 

Electronic absorption spectra were recorded using a 1.0 cm quartz cell on an Agilent 

Technologies Cary 60 UV-vis spectrophotometer. 

Infrared (IR) Spectroscopy 

 IR spectra were recorded on a Perkin Elmer Spectrum Two LITA FT-IR.  

Cyclic Voltammetry 

Cyclic voltammetry was performed using a CH166 electrochemical potentiostat using a 

glassy carbon electrode as the working electrode, and Pt electrodes as both reference and counter 
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electrodes. SC-BCP voltammograms were collected in both N,N-dimethylformamide and 

tetrahydrofuran. 

Photochemical Substitution 

The photochemical reactor lamp was purchased from Hanovia Specialty lighting LLC. The 

lamp is a medium-pressure mercury lamp emitting 200-400 nm broadband radiation. The lamp 

was placed inside a quartz jacket, with cooling water circulating throughout to maintain the 

reactions at ambient temperature.  

Crosslinking 

 Crosslinking was carried out using a Kessil H150 LED Blue Grow Light emitting 400-500 

nm light.  

Gel Permeation Chromatography (GPC) 

GPC run in THF was collected on a Waters 1515 Isocratic HPLC Pump with a Waters 2414 

Refractive Index Detector, Waters 2998 Photoiode Array Detector, and a Waters 2707 

Autosampler. GPC run in DMF was collected on an Agilent Technologies 1260 Infinity 

instrument.  

Transmission Electron Microscopy (TEM) 

TEM images were obtained on a FEI TALOS F200X instrument using holey carbon grids.  

Scanning Electron Microscopy (SEM). SEM images were obtained on a Zeiss SIGMA VP 

instrument equipped with a Schottky Thermal Emission Type electron gun.  

Atomic Force Microscopy (AFM).  
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AFM images were acquired in PeakForce QNM tapping mode using a Bruker Dimension 

FastScan AFM.  

Single Crystal X-Ray Diffraction. 

 Crystallographic data was collected on an Agilent SuperNova diffractometer using mirror-

monochromated Cu Kα radiation.  

5.10 Synthetic Details 

Synthesis of M1 precursor (M1-P): 

M1-P  was synthesized following a reported literature procedure.35 

  

 

Synthesis of M1:  

M1 was synthesized using a modified literature procedure.36 A 100 mL Schlenk flask was 

loaded with M1-P (2.00 g, 9.04 mmol) and placed under N2. Dichloromethane (20 mL) was added 

followed by N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (2.17 g, 11.32 mmol) and dimethylaminopyridine (0.09 g, 0.76 

mmol). Trans-cinnamic acid (1.36 g, 9.18 mmol) was dissolved in ~5 mL 

dichloromethane and quickly added to the reaction flask using a syringe 

needle. The reaction was stirred at room temperature for 8 h. The reaction 

mixture was transferred to a separatory funnel, washed with water (2 x 40 

mL) and dried over MgSO4. The pale-yellow oil was purified by silica gel chromatography (1:3 

Ethyl Acetate/Hexanes) and concentrated in vacuo to yield a white solid (2.40 g, 6.83 mmol, 76% 

yield).  
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1H NMR (spectrum in Figure 5.15) (400 MHz, CDCl3,  ppm): 7.70 (d, 1H), 7.56 (s, 2H), 1.41 (s, 

2H), 6.45 (d, 1H), 6.30 (s, 2H), 4.21 (t, 2H), 3.50 (t, 2H), 3.30 (t, 2H), 1.8-1.2 (m, 8H), 1.25 (d, 

1H) 

Synthesis of [Co6Se8(CO)(PEt3)5][PF6]:  

The mono-carbonylated cluster [Co6Se8(CO)(PEt3)5][PF6] was prepared according to a 

literature procedure.2  

Synthesis of exo-N-3-diphenylphosphine-norbornene-5,6-dicarboximide (PM):  

This compound was prepared using a modified protocol.37 Synthetic details, 1H 

NMR and 31P NMR are presented in Chapter 4.  

 

 

 

Synthesis of SCM: 

Exo-N-3-diphenylphosphine-norbornene-5,6,-dicarboxmide (PM) (125 mg, 0.32 mmol) 

and [Co6Se8(CO)(PEt3)5][PF6] (491 mg, 0.28 mmol) were loaded into a 20 mL scintillation vial. 

Tetrahydrofuran (10 mL) was added and the solution was stirred for 10 min. The solution was 

capped with a septum and transferred out of the glovebox and irradiated 

with a mercury lamp for 24 h. The reaction was monitored by IR for the 

disappearance of the broad CO peak at 1960-1970 cm-1. After complete 

conversion, the reaction mixture was concentrated in vacuo. The product 

was purified by column chromatography with 1:1 ethyl acetate: hexanes. 

A brown solid was recovered after evaporating the solvent from the dark 

brown band fraction (402 mg, 68% yield). 
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1H NMR (spectrum in Figure 5.16) (400 MHz, CDCl3,  ppm):3 7.60 (m, 2H), 7.17 (m, 4H), 7.02 

(m, 4H), 6.30 (s, 2H), 3.50 (s, 2H), 3.27 (s, 2H), 2.66 (s, 2H), 2.07 (m, 2H), 1.2-1.7 (4H) 0.50 (9H, 

b), 0.30 (36H, b), -0.41 (b, 6H), -0.65 (b, 24H).  

31P NMR: (spectrum in Figure 5.17) (161.9 MHz, CDCl3,  ppm): -144.36 (1JP,F = 712 Hz) 

Additional peaks found in the 1HNMR and 31PNMR spectra are attributed to excess tetra butyl 

ammonium hexafluorophosphate and residual solvent.  

Preparation of Grubbs III catalyst:  

Grubbs catalyst generation III (GIII) was prepared from commercially available Grubbs catalyst 

generation II following a literature procedure.38  

1H NMR: (spectrum in Figure. 5.18) (400 MHz, CDCl3,  ppm)5: 8.67 (s, 2H), 

7.87 (s, 2H), 7.67 (d, 3H), 7.50 (m, 2H), 7.29 (s, 3H), 7.10 (m, 4H), 6.98 (s, 

2H), 6.78 (s, 2H), 4.14 (d, 4H), 2.68 (s, 6H), 2.30 (m, 12H) 

Synthesis of SC-BCP:  

A stock solution of GIII in THF (5 mg/mL) was prepared. M1 (37.5 mg, 106.8 mol) was dissolved 

in 5 ml THF. 104 l (0.7 mol) of GIII stock solution was added to the M1 solution.  

After 10 min, 0.3 ml was syringed from the polymerization reaction 

for GPC analysis of the M1 homopolymer (HP). A solution of SCM 

(75 mg, 35.6 mol) in 2 mL of THF was added to the reaction vial 

and the polymerization reaction was stirred for 16 h at room 

temperature. The diblock copolymer was quenched with excess 

ethyl vinyl ether. The solvent was evaporated in vacuo; the solid was redissolved in 
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dichloromethane and precipitated with cold hexanes. The solid was then washed with toluene and 

dried in vacuo. A brown solid was obtained (24 mg).  

1H NMR of HP (spectrum in Figure 5.19) (400 MHz, CDCl3): Broadened peaks are all attributed 

to M1. The ratio of either vinylic protons at 5.3 and 5.75 ppm (corresponding to the ring opened 

norbornene) to the cinnamoyl vinylic proton at 6.45 ppm is 1. This indicates that all the M1 present 

in the sample is polymerized. This is further supported by the complete disappearance of the peak 

at 6.3 ppm, which corresponds to the closed norbornene backbone.  

1H NMR of SC-BCP: (spectrum in Figure 5.20) (400 MHz, CDCl3): All peaks can be attributed to 

M1 or SCM. The M1 cinnamoyl peak at 6.45 ppm is set at an integration value of 150 based on 

the feed ratio. Using this integration base value, the peak at 7.17 ppm (corresponding to two 

protons on each phenyl rings of SCM) integrates to 182. The M1:SCM ratio in SC-BCP is therefore 

150:(182/4) = 3.3:1, in good agreement with the feed ratio. 

5.11 Gel Permeation Chromatography Spectra and Details 

Analysis of HP:  

GPC was performed with a THF solution of HP. The GPC was calibrated with polystyrene 

standards. The trace shown is from the UV signal at 254 nm.  

Analysis of SC-BCP:  

GPC was performed with DMF solution of SC-BCP, with 0.1% LiBr. The GPC was 

calibrated with PEG-PEO standards. The trace shown is from the UV signal at 300 nm.  
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Table 5.1. Dispersity of HP and SC-BCP determined by GPC taken in THF and DMF, 

respectively. 

Compound Dispersity (Đ) 

HP 1.2 

SC-BCP 1.2 

 

 

Figure 5.13. GPC chromatogram of HP in THF. 
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Determination of SC-BCP Molecular Weight (Mw):  

GPC analysis of HP gives a Mw of ~55, 216 g/mol, which is in good agreement with the 

ideal Mw of ~52,710 g/mol based on a 150:1 M1:GIII feed ratio. GPC analysis cannot be used to 

directly measure Mw for SC-BCP because it has a very different structure, composition, charge, 

solvation properties and interactions with the column than those of the PEG-PEO standard.  

The Mw of SC-BCP is estimated from the ratio M1:SCM determined by 1H NMR. The Mw 

of HP 55,216 g/mol determined by GPC indicates an average of ~157 M1 repeat units per chain. 

Using the M1:SCM ratio (3.3:1), we find that polymer chains on average contain 48 SCM repeat 

units, giving a Mw 101,307 g/mol for the segment. The combined molecular weight for SC-BCP is 

156,523 g/mol, only slightly smaller than the expected Mw of 158,238 g/mol. 

The GPC of SC-BCP is used to estimate a dispersity index Đ ~1.2, unchanged from that of HP. 

 

 

Figure 5.14. GPC chromatogram of SC-BCP in DMF with 0.1% LiBr. 
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5.12 Self-Assembly Details 

Self-Assembly of SC-BCP:  

A 90:10 solvent mixture of anhydrous THF: distilled H2O was added to SC-BCP (3 mg) 

in a 3 ml scintillation vial. The solution was stirred at room temperature for ~16 hours.  

Self-Assembly of BCP-MB: A stock solution of methylene blue (MB) in distilled water (5 mg/ml) 

was prepared. The stock MB solution (0.2 ml) was added to a solution of SC-BCP (6 mg) in dry 

THF (1.8 ml). The resulting blue solution was stirred at room temperature for 16 h. Half of this 

solution was transferred to a 1cm quartz cuvette and irradiated with blue light for crosslinking to 

give XBCP-MB.  

Preparation of XBCP and XBCP-MB:  

Solutions of self-assembled vesicles in THF were transferred to a 1 cm quartz cuvette. The 

cuvette was irradiated with a Kessil H150 LED blue lamp. Aliquots were syringed at regular 

intervals for IR and UV-Vis and electronic absorption characterization. 

Extraction of non-encapsulated MB: Dichloromethane (1ml) was added to the vials containing the 

solutions of XBCP-MB and SC-BCP-MB in THF. Distilled water (2 ml) was added to the vials 

and the mixture were stirred at room temperature for 15 minutes. Water containing excess MB was 

removed. The extraction was repeated until no blue color was observed in the aqueous layer.  
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5.13 NMR Spectra 

 

Figure 5.15. 1H NMR spectrum of M1 in CDCl3. 

 

Figure 5.16. 1H NMR spectrum of SCM in CDCl3. 
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Figure 5.17. 31P NMR spectrum of SCM in CDCl3. The broad peak for the phosphine on the 

neutral cluster is typically found at ~60 ppm. It disappears when the cluster is oxidized and 

becomes paramagnetic, as in SCM. 

 

Figure 5.18. 1 H NMR spectrum of GIII in CDCl3. 
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Figure 5.19. 1H NMR spectrum of HP taken in CDCl3. 

 

Figure 5.20. 1H NMR spectrum of SC-BCP in CDCl3. 
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Chapter 6  

Surface binding of bisaminocyclopropenylidenes (BACs) on Au(111) 

 

6.0 Preface 

 

 This chapter is adapted from a manuscript in preparation for publication of this research by 

Anastasia Voevodin, Evan Doud, Rachel Starr, Yaping Zang, Giacomo Lovat, Gregor Kladnik, 

Enrique Montes, Percy Zahl, Hector Vazquez, Latha Venkataraman, and Xavier Roy. Hector 

Vazquez and Enrique Montes at Institute of Physics, Academy of Sciences of the Czech Republic 

performed the computational work. Percy Zahl from the Center for Functional Nanomaterials at 

Brookhaven National Laboratory performed the single molecule imaging using STM-AFM with 

assistance from Yaping Zang (a post-doc in Prof. Latha Venkataraman’s group at Columbia 

University). Prof. Latha Venkataraman, Giacomo Lovat, and Gregor Kladnik performed the 

NEXAFS measurements at the Elettra Synchotron Trieste in Italy. Dan Paley performed single 

crystal refinement. Evan Doud prepared the NiBr2(PPh2)2 complex. I synthesized the BAC 

molecules and assisted with sample preparation for STM-AFM imaging. 

6.1 Introduction 

 

 Cyclopropene chemistry has attracted interest from theoretical and experimental chemists 

because of its unique reactivity as the smallest unsaturated cyclic molecule.1 The cyclopropenium 

ion is the smallest of the Huckel aromatic systems and has been widely explored for its synthetic 

utility in aromatic cation based catalysis.2–4 Cyclopropenylidene5,6 is the smallest aromatic carbene 

wherein one of the atoms in the three-membered ring is a divalent carbon and it is amongst the 
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most studied compounds in the carbocyclic family. This class of carbenes has been widely 

explored in theoretical7 and experimental studies as potential ligands for transition metals in 

preparation of synthetic catalysts. For example, several monomeric and dimeric palladium(II) 

complexes have been studied for their catalytic abilities in Suzuki8, Heck9, and C-N10,9 coupling 

reactions. Bis(amino)cyclopropenylidenes (BACs) are a sub-class of cyclopropenylidenes where 

two of the ring’s carbons are bonded to amino groups rather than alkanes. BACs were first isolated 

on the benchtop by Bertrand and co-workers in 2006.11–13 Despite their instability in air, these 

molecules which behave as strong -donors, stabilized by nitrogens’ -donation, are kinetically 

and thermally stable14,15 making them attractive targets as catalysts in organic synthetic reactions. 

The small steric properties of the molecule enable metal centers to accommodate multiple BAC 

ligands such as in substitution of triphenylphosphine, TMEDA, and COD ligands for BACs.16  

BACs reactivity and use in catalysis is often compared to that of the more widely studied 

N-heterocyclic carbenes (NHCs) that are capable of binding to practically all transition metals. 

Like BACs, NHCs are a class of stable singlet carbenes, however these molecules have the divalent 

carbon atom bonded directly to the nitrogen substituents whereas in BACs the nitrogen substituents 

are one carbon atom further removed from the central carbene.17 The difference in proximity of 

the stabilizing nitrogen atoms in NHCs vs BACs has pronounced effects on the carbene’s reactivity 

and bonding capabilities to metals. Although both classes of carbenes bind strongly to metals by 

sigma-donation and have unique electronic structures,5,18 NHCs have thus far attracted 

significantly more interest as exciting prospects for surface functionalization to target applications 

in selective heterogeneous catalysis,19 nanotechnology,19–21 and sensing.20,22,23 Developing these 

technologies relies on the ability of electron-transport across the carbene-electrode interface which 

is dependent on the extent of coupling between metal surface and carbene molecule.  
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Although carbenes have been predominately explored for their use in catalysis of chemical 

reactions, NHCs have been recently introduced as exceptional molecules for the functionalization 

of gold surfaces. NHCs were reported to form ultra-stable bonds with gold atoms on Au(111) 

surfaces to form self-assembled monolayers (SAMs).22,24 The binding orientation and related 

conductivity through the NHCs at the carbene-electrode junction was modified by varying the 

composition of the alkyl groups that are bound to the nitrogen atoms.25,26 These recent initial 

explorations into the use of NHCs to form molecule-electrode interfaces offers new opportunities 

for the design of nanoscale electronic devices. The related class of carbenes, BACs to the best of 

our knowledge yet to be explored for their comparative potential as molecules for surface 

functionalization and design of molecule-electrode contacts.  

Herein we use introduce BACs as a new molecule for surface gold functionalization. 

Beginning with the cyclopropenium cation, we report an efficient synthetic method to deposit pure 

BACs onto an Au(111) surface. We use synchrotron radiation to perform high-resolution X-ray 

photoelectron spectroscopy (HR-XPS) and near-edge X-ray photoelectron spectroscopy 

(NEXAFS), high-resolution scanning tunneling and atomic force microscopy (HR-STM/AFM), 

and combine these results with density functional theory (DFT) calculations to establish a detailed 

picture of the geometry and bonding of BACs onto Au(111) in ultra-high vacuum (UHV). HR-

XPS combined with NEXAFS data provides chemically sensitive information on the core-level 

electron binding energies from the BAC-Au interactions to determine both the composition and 

orientation of the surface-bound molecules. HR-STM/AFM imaging and DFT calculations 

confirm the observations from HR-XPS and NEXAFS measurements to provide a fuller 

understanding of the first report of BACs bound to Au(111) surfaces. We also report a new 

transition metal complex of bis-adduct of BACs onto a nickel complex using the same 
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carbonylated BAC precursor that is used for surface deposition onto gold. This study extends the 

library of molecules capable of surface functionalization onto gold and compares the binding 

motif, orientation and strength to that of previously reported surface metal NHC-Au bonds. It 

further shows how thermal annealing of surface-bound BACs results in the reorganization of the 

BACs on the gold surface. 

6.2 Synthesis of BAC-CO2 

 

A bis(diisopropylamino)cyclopropenylidene sodium tetrafluoroborate carbene salt (BAC-

BF4) was prepared following previously reported procedures.12 The free carbene was generated by 

deprotonation of bis(diisopropylamino)cyclopropenium salt with KHMDS (KHMDS = potassium 

bis(trimethylsilyl)amide) at low temperature in diethyl ether to form the free carbene (see Figure 

6.1). The BAC-CO2 adduct was made by removal of the diethyl ether solvent, re-dissolving the 

free carbene in hexanes, and bubbling carbon dioxide while stirring at room temperature.27 An 

insoluble white BAC-CO2 precipitate was visibly formed and isolated by removal of the solvent 

and purified with subsequent washes in hexanes. The BAC-CO2 adduct has been previously 

reported,27 but it has yet to be used as the precursor in forming transition metal complexes. Unlike 

the free BAC, the CO2 adduct is relatively air stable allowing it to be a stable precursor for facile 

synthetic strategies.  
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Figure 6.1. (a) Synthesis of Ni(BAC)2Br2 and its molecular structure as determine by single crystal 

x-ray diffraction. Color code: C, black; N, blue; Br, red; N, blue; Ni, green. Thermal ellipsoids are 

set at 50%. (b) Images showing the change in color from green to orange of after substitution of 

the triphenylphosphine ligands for BACs on the nickel complex.  

 

As an exploratory reaction, the CO2-adduct (BAC-CO2) was reacted with 

dibromobis(triphenylphosphine)nickel(II) in dry toluene and heated to 110 C overnight. As seen 

in Figure 6.1b, the starting green solution turned to a bright orange color after reaching 100oC and 

was left overnight after which it was observed that the orange color had deepened, and the 

insoluble white precipitate disappeared. Orange crystals were grown and isolated of the complex 

and its molecular structure was determined using single X-ray diffraction (SCXRD) presented in 

Figure 6.1a. The structure shows the substitution of the triphenylphosphine ligands by the free 

BAC carbene that is formed after decarbonylation of the BAC-CO2 precursor which occurs around 

100C. The bis-adduct of the BACs forms a square planar complex with Br-Ni-BAC angles 

measuring at 88.06 and 91.94. The bond lengths in the BAC ring are slightly different, with the 

C2-C3 bond being about 0.02 Å (1.374 Å) shorter than the C1-C2 (1.392 Å) and C1-C3 (1.389 Å). 

Accordingly, the bond angles in the three-membered ring vary slightly as listed in Table 6.1. The 

bond lengths and angles in our nickel complex match well with previously reported bond lengths 

of BACs on transition metal complexes.16  
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Table 6.1. Bond lengths and angles of the BAC ring in [NiBr2(BAC)2] 

Bond Bond Length Angle  

C1-C2 1.392 Å C1-C2-C3 60.3 

C1-C3 1.389 Å C1-C3-C2 60.5 

C2-C3 1.374 Å C2-C1-C3 59.2 

C1-Ni 1.896 Å   

 

Transition metal complexes featuring similar dimeric bonding of BAC onto the metal have 

been previously reported and their synthesis directly used the free carbene.16,28 While the free 

carbene is highly reactive, it is also fairly unstable and care must be taken to ensure the molecule 

does not  oxidize, decompose, or form other side products during synthesis. Using the BAC-CO2 

complex as the precursor eliminates the need to further purify the product and is an efficient 

reaction to generate transition metal complexes from air-stable precursors.  

6.3 Surface functionalization of BACs on Au(111) surfaces 

 

  

Figure 6.2. Deposition of BACs onto gold surfaces that occurs upon heating BAC-CO2 under 

ultra-high vacuum in the presence of the gold substrate.  
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To prepare thin films of the cyclopropenylidene carbene onto Au(111) surfaces, a vacuum 

deposition method was used similar to that employed for the deposition of NHCs onto Au(111) 

surfaces.25 Shown in Figure 6.3a, a sub-monolayer of BACs was prepared in UHV via thermal 

decomposition. In brief, a substrate with Au(111) deposited on mica was placed into a quartz tube 

on one end while at the opposite end of the tube, a small sample of BAC-CO2 was placed. The tube 

was connected to the UHV and placed into a tube furnace. The furnace was heated to 110 C 

overnight after which the BAC-CO2 had disappeared. AFM images of the monolayer on the 

Au(111) surfaces in Figure 6.3b shows a drastic change in the surface roughness of the gold 

plateaus on the substrate after deposition. 

 

Figure 6.3. (a) Schematic showing the set-up for depositing BACs onto a gold surface under 

vacuum. The BAC-CO2 was placed opposite of an annealed Au(111) substrate in a quartz tube 

which was connected to a turbo pump. The tube was heated to 110 overnight. (b) AFM images of 

clean annealed Au(111) on mica seen on the left before BAC deposition, and after deposition 

(middle and right) having greater surface roughness as compared to the clean gold substrate.  
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6.4 Determining the orientation of surface bound BAC 

 

A similar procedure was performed in UHV via thermal decomposition/sublimation of 

BAC-CO2 precursors onto a gold surface for NEXAFS and XPS measurements in a similar 

methodology as previously performed with NHC-CO2 precursors.25 Briefly, the precursors are 

placed in a Pyrex cell and connected to the pre-chamber through a leak valve. The cell is evacuated, 

heated to 110 C and the carbene is introduced as a vapor into a pre-chamber containing a clean 

Au(111) crystal that was also heated to 110 C. After deposition, X-ray photoelectron (XPS) 

results confirm the precursors have lost their CO2 moieties by measuring the O 1s spectrum (see 

Figure 6.4). While the signals indicate the presence of carbon and nitrogen, there is no oxygen 1 s 

signal detected confirming successful thermal decomposition of the BAC-CO2 molecule.  

 

Figure 6.4. XPS O 1s, N 1s, C 1s, and Au 4f of BAC on Au(111). The XPS spectra shows no 

detection of oxygen on the sample, indicating complete decarboxylation of BAC-CO2 after 

deposition. 

 

Previous studies on the binding modes of NHCs onto gold surfaces have used NEXAFS 

and STM to determine the binding orientation of the free carbenes.25 We have similarly explored 

the binding orientation of the cyclopropenylidene carbene on a gold surface. Our studies with BAC 



152 

 

indicate a different binding orientation and strength in comparison to that of the NHCs. NEXAFS 

results indicate the orientation of the BAC relative to the Au(111) surface normal (defined as the 

tilt angle theta in Fig. 6.1). Figure 6.5a shows the NEXAFS spectra collected at the N K-edge with 

the electric field of the incident photons perpendicular (p-polarization) and parallel (s-polarization) 

to the surface for BAC. In Figure 6.5a we see that upon first deposition, two N 1s features are 

observed at 399 and 403 eV in both the s- and p-polarized orientations with little dichroism. The 

appearance of these features in both orientations indicate that the molecule is initially lying at an 

intermediate angle relative to the surface. After flash annealing of the sample at 155 C, the 

dichroism is remarkably enhanced. The p-polarized X-rays show a merged peak of the two N 1s 

features into a single strong peak while the s-polarized shows no absorption of the irradiation. The 

enhanced dichroism following annealing of the sample is indicative of the molecule adopting 

relatively flat orientation onto the gold surface at an angle of ~26 degrees relative to the plane of 

the surface. In the case of the NHC carbenes, the intensity of the dichroism varied with variation 

of the alkyl substituents. In the case of NHCs with diisopropyl alkyl groups, the steric bulk of the 

groups forced the binding of the NHC carbene into a vertical orientation. For BACs the one-atom 

removal of the diisopropyl group from the cyclopropene ring, allows the relaxation of the molecule 

to lie flat onto the gold surface.  
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Another remarkable difference in the binding of the BAC (compared to that of the NHC 

adduct) is the absence of gold adatom formation with BACs. The XPS signal of the Au 4f core 

levels (Figure 6.6b) shows no satellite peaks indicative of adatom formation even after flash 

annealing the samples. The lack of adatom formation seen in the XPS spectra corroborates the 

observation that the BAC molecule lies relatively flat on the gold surface as shown in the NEXAFS 

spectra in Figure 6.6. NHCs show adatom formation upon binding to the gold surface after 

deposition and suggests that BAC-Au interface interactions are relatively weaker than those of 

NHC-Au.  

Figure 6.5. NEXAFS spectra collected of the carbon (a,c) and nitrogen (b,d) 1s with s and p 

polarizations shown in red and black traces, respectively. Top spectra (a,b) are measurements of 

the sample as deposited and bottom spectra (c,d) are after flash annealing of the sample to 150 C. 

Magic angle computed from dichroism in spectra is shown in (c,d)  
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Figure 6.6. (a) XPS spectra of the N 1s (a) and Au 4f (b) signals after deposition (black), after 

flash annealing to 155 C (red) and 200 C (green).  

 

A lack of screening related shifts of BE bands in the XPS after annealing suggest that thick 

layers on top of the gold surface were not formed. Additionally, after annealing, both the C 1s and 

N 1s signals show desorption related changes: the C 1s signal has a lower binding energy (BE) 

peak at 285.2 eV which remains constant after annealing, while the higher BE component at 286.0 

eV is reduced. Upon flash annealing to 155 and 200 C the intensity of the N 1s drops while the 

Au 4f satellites increase as more molecules are desorbed on the surface. 

6.5 Single Molecule Imaging of BAC on Au(111) 

 

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are key tools 

for characterization in nanoscience. High resolution STM (HR-STM) imaging at low temperature 

can provide submolecular imaging of atomic and electronic structures of single molecules on 

surfaces. Single molecule imaging using HR-STM has widely been limited to that of planar 
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molecules such as aromatic pentacene systems.29 The relatively flat three-membered ring of the 

BAC gave us the opportunity to use HR-STM/AFM to image the binding of our BAC onto a gold 

surface.  

Preparation of the sample was carried out as before: a small sample of BAC-CO2 was 

deposited under UHV onto an annealed Au(111) surface that was attached to a thermocouple which 

was raised to 400 meV. A significant drop in pressure was quickly observed during deposition,  

 

Figure 6.7. (a) STM image of BAC deposited onto gold substrate and a high-resolution AFM 

image in (b) of a single BAC molecule. (c) and (d) are STM images taken after flash annealing of 

the sample.  
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presumably indicating the thermal decomposition of the CO2 moiety on the precursor. After 

stabilization of the vacuum, low-temperature STM and AFM imaging was carried out on the 

sample.  

STM imaging of the deposited sample indicates a sub-monolayer deposition of the 

molecule suitable for targeting single molecule images. In Figure 6.7a we see several molecules 

having asymmetrical features. The triangular molecules generally have two higher-energy lobes 

and one lower energy feature as is more apparent in Figure 6.7b. Presumably the higher-energy 

lobes can be matched the bulky diisopropyl groups of the BAC molecule giving the molecule its 

asymmetric appearance. 

Low-temperature AFM imaging was carried out on some of the single molecules. Figure 

6.6c shows the AFM image of a single molecule BAC on the gold surface. The AFM image 

matches the flat orientation observed in the NEXAFS measurement. The skeleton of the bulky 

diisopropyl groups forms a U-type image with the corners of the U matching each of the four 

central carbons on the diisopropyl groups. Taking a line cut across the back of the single molecule 

Figure 6.8. A line cut across the single molecule image of the BAC showing the feature heights 

of the two sides of the molecule. Measuring across this line cut gives a distance of roughly 4 Å, 

which corresponds to the N-N distance as measured from the BAC adduct on the nickel complex.  
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image as shown in Figure 6.8, the molecule measures roughly 4 Å across the two high-profile 

features. This measured distance matches with the N-N distance of 3.72 Å determined from the 

molecular structure of the NiBr2(BAC)2 complex described above. The three-membered ring is 

ostensibly hidden underneath the bulky alkyl groups, as is expected upon a somewhat planar 

orientation of the molecule to the gold surface.  

A flash annealing of the molecule in the STM-AFM setup was carried out by raising the 

temperature to 110 oC for a few seconds. After re-stabilization of the low-temperature STM/AFM 

setup, AFM and STM imaging was attempted again. Remarkably, the flash annealing had a drastic 

effect on the arrangement of the molecules on the gold surface. After annealing, the molecules 

became mobile and primarily moved to the herringbone edges between the hcp and fcc domains 

and along the step edges of the Au(111) surface (Figure 6.8 c,d). This mobility upon annealing has 

been previously observed in AFM imaging of molecules along the surface.30 The elbows of the 

gold herringbone structure stabilize the trapped molecules and provide a lowest-energy position 

for the mobile BACs. The weak binding of the molecules on the gold surface initially that was 

indicated by the lack of adatom formation and increased desorption after flash annealing in XPS 

measurements, ostensibly supports the ability of the molecules to become mobile and rearrange to 

lowest-energy positions on the gold surface after thermal treatment. Unfortunately, after annealing 

the high-resolution imaging of the molecules became impossible as the molecules continuously 

stuck to the STM tip during scanning.  

6.6 Computational Studies  

 

We perform DFT-based atomistic calculations to quantify the impact of the BAC structure 

and determine the strength of the BAC-Au interaction. We have considered two adsorption models 
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for the molecules, a single BAC molecule adsorbed either on a pristine Au(111) surface or an Au 

adatom in a hollow site of the Au(111) surface. Geometry optimization calculations are performed 

using the SIESTA code,31 considering an exchange correlation functional to account for Van der 

Waals interactions. The surface is modeled using a 3-layer Au(111) slab comprising 5×5 surface 

unit cells. The binding energy (BE) is defined as the difference between the energy of the combined 

system and the sum of the energies for each component separately. The tilt angle (ϴ) between the 

Figure 6.9. (a) Variation of the binding energy of BAC molecule adsorbed on either Au adatom and 

Au(111) surface. (b) Illustrative representation of tilt angle ϴ and structures on their most stable 

conformation, BAC molecule adsorbed on Au adatom and Au(111) surface, ϴ ~ 60deg and ϴ ~ 40deg, 

respectively. (c) Simulated AFM image of BAC molecule adsorbed on Au adatom on its more stable 

conformation. (d) Plane-averaged charge density difference of BAC (left) and NHC (right) with 

passivated side groups bound to a single Au atom. 
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plane of the molecule and the vector normal to it is constrained by fixing the relative position of 

the atoms in the central ring of the BAC molecule (one C and two N) without restricting their 

displacement as a rigid unit. 

The variation of the BE as a function of the tilt angle is presented in Figure 6.9a, and in 

Figure 6.9b we present a representative plot that illustrates the way in which the tilt angle is 

determined, and the way BAC is adsorbed on an Au adatom and on the Au(111) surface for their 

most stable conformations, with tilt angles of ϴ ~ 60 deg and ϴ ~ 40 deg, respectively. The binding 

energy for the molecule adsorbed on an Au adatom is -2.87 eV, more than 1 eV larger than when 

the molecule is absorbed on the flat Au(111) surface (-1.65 eV). The stronger binding of the 

molecule on an Au adatom results in a stronger donor-acceptor bond resulting in a shorter BAC-

Au bond length when the molecule of 2.07 Å, as compared to adsorption on the Au(111) surface 

resulting in a BAC-Au bond length of 2.20 Å. Using the probe particle model29 we have simulated 

the AFM image of the BAC molecule adsorbed on the Au adatom in the most stable conformation 

(ϴ ~ 60 deg) and we present it in Fig. 6.9c. The simulated image compares directly with the 

experimental HR-AFM image in Figure 6.7b and 6.8 with both images having a U-type shape of 

the BAC molecule on the gold surface.  

In order to study the chemical strength of BAC molecule, we compare the binding energy 

of the BAC molecule adsorbed on an Au adatom with the adsorption energy of NHC carbene which 

was previously shown to be more energetically favorable.25 At its most stable conformation (ϴ ~ 

70 deg) the binding energy of the NHC molecule is -2.23 eV, about 0.6 eV smaller than for BAC 

molecule as seen in Figure 6.10. For small tilt angles (ϴ < 30 deg) the binding energies of both 

molecules are rather similar, while they have large differences for higher tilt angles. In general, 
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this can be attributed to the bulkier side groups of BAC molecule and its Van der Waals interaction 

with the Au surface.  

 

Figure 6.10. Comparison of binding energy for BAC and NHC molecules adsorbed on Au adatom 

as a function of tilt angle ϴ. 

 

However, the nature of the carbene central groups must play a key role for the higher 

binding energies. Therefore, we studied the charge transfer upon adsorption for BAC and NHC’s 

carbene central groups, where the bulky alkyl side groups are passivated with H atoms bonded to 

a single Au atom. The charge density difference is defined in terms of the plane-averaged 

difference between the electron density of the combined system and that of its components 

separately. For charge density difference of BAC and NHCs is plotted in Figure 6.9. Inside the 

molecule, negative charge difference corresponds to electron depletion, while positive charge 

difference corresponds to electron accumulation; which is the more evident behavior at the Au 
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atom. Therefore, molecules behave as charge donors. The net charge is calculated by integrating 

the plane-averaged charge density difference between negative infinite position to the Au-C 

midpoint, in agreement with previous works.32 BAC molecule transfers 0.18 electrons to the Au 

atom, while NHC molecule transfers 0.17 electrons to the Au atom.  

Additionally, states of BAC molecules show a stronger hybridization than NHC molecule 

to an Au adatom. In Figure 6.11 we plot the density of states projected on the atoms involved in 

bonding for BAC and NHC molecules adsorbed on Au adatom, i.e. the lower carbon atom of 

carbene ring (C1) and the Au adatom. This shows the stronger hybridization of C1 with an Au 

atom for the BAC molecule as compared to that of NHC.  

 

6.7 Conclusion 

  

The isolation of cyclopropenylidenes has been relatively recent, and this class of carbenes 

has yet to be explored for its application in materials chemistry. Inspired by recent work that 

showed NHCs as possible alternative candidates to form stable molecule-gold bonds, we carried 

Figure 6.11. Density of states projected on atoms involved on binding for BAC and NHC 

molecules adsorbed on Au adatom. 
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out an initial exploration into the ability of BACs to bind to gold surfaces. By combining high 

resolution X-ray photoelectron spectroscopy, high resolution atomic force and scanning tunneling 

microscopy, and computational modeling, this work is the first demonstration of binding BACs to 

metal surfaces. Through our studies we can determine the adsorption energy, molecular 

orientation, and metal surface structure in a sub-monolayer of deposited BAC molecules. We show 

that BACs with diisopropyl moieties adopt a relatively flat geometry on gold surfaces and form 

weaker bonds with gold atoms on the surface. We expect that future investigations with modified 

alkyl substituents on the BAC molecules could indicate new binding motifs and interactions with 

Au surfaces.  

6.8 Methods 

 

NMR Spectroscopy. 

 1H NMR and 31P NMR spectra were recorded on a Bruker DRX400 spectrometer.  

Atomic Force Microscopy (AFM). 

 AFM images were acquired in PeakForce QNM tapping mode using a Bruker Dimension 

FastScan AFM.  

Single Crystal X-Ray Diffraction.  

Crystallographic data was collected on an Agilent SuperNova diffractometer using mirror-

monochromated Cu Kα radiation.  

Scanning Tunneling Microscopy and Atomic Force Microscopy. 

 HR-STM/AFM images were acquired at Brookhaven National Laboratories at the Center 

for Functional Nanomaterials using a customized Createc low-temperature UHV scanning 

tunneling and atomic force microscope (NC-AFM/STM). Sample NC-AFM data (frequency shift) 
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of custom designed precursors molecules which were surface synthesized into GNR assemblies. 

Data acquired using GXSM-3.0 + SR-MK3-A810/PLL operating a modified CREATEC based 

LT-STM/AFM in force detection mode, constant height operation at approx. 70pm oscillation 

amplitude using a Q-Plus (TM Franz J. Giessibl) Sensor @29.84kHz and a "magic" functionalized 

tip not to be disclosed here. Sample preparation chamber equipped with liquid helium cooled 

manipulator and low-energy electron diffraction. Fast exchange deposition source port, various 

gas and molecule dosing options "in-situ" at low temperature. 

6.9 Synthetic Details 

 

Synthesis of BAC-BF4:  

A previously reported literature was followed.12  

Synthesis of BAC-CO2:  

A previously reported literature procedure was followed.27  

Synthesis of [NiBr2(BAC)2]:  

In a nitrogen-filled glovebox, BAC-CO2 (40 mgs, 0.142 mmol) was added to a solution of 

NiBr2(PPh3)2 (53 mgs, 0.071 mmol) in 20 mL of toluene in a pressure vessel. The reaction was 

heated to 110 oC overnight. Upon heating to 100oC, a change in color from green to orange was 

observed and the insoluble BAC-CO2 compound began to dissolve into solution. The reaction was 

cooled to room temperature and the solvent was removed under vacuum. The product was re-

dissolved (~3 mL) and layered with hexanes. After several days, several long needle-type crystals 

had formed. The solution was decanted, and the crystals were collected and transferred to STP oil 

treatment for crystallography.  

6.10 Computational Details 
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We use SIESTA to simulate the adsorption of BAC and NHC on Au(111) surface. We 

use an exchange correlation functional that accounts for the Van der Waals iteration. All 

structures were fully relaxed until the Hellmann-Feynman forces are smaller than 0.02 eV/Å and 

the energies calculated on a 2×2×1 Monkhorst pack grid. Adsorption relaxation were performed 

using a 3-layer Au(111) slab with 5×5 surface unit cells. The pristine surface and surface with an 

Au adatom were first optimized prior to optimizing the adsorption of molecules. The tilt angle is 

defined with the plane of central carbine ring and its normal vector. The tilt angle is constrained 

by fixing the relative position of the atoms in the central carbine ring of the without restricting 

their displacement as a rigid unit. Initially the molecules are relaxed without its side groups, in 

order to allow a faster movement on central carbene ring, following the side groups are added 

and the system is relaxed, always keeping the last two Au(111) constrained in position. The 

binding energy is calculated as the difference between the energy of the combined system and 

the sum of the energies for each component separately were the use of ghost atoms is employed. 

We show the comparison of binding energy between BAC molecule and NHC, both 

adsorbed on an Au adatom. 

6.11 Single crystal X-ray diffraction  

 

Data for all compounds was collected on an Agilent SuperNova diffractometer using 

mirror-monochromated Cu K radiation. Data collection, integration, scaling (ABSPACK) and 

absorption correction (face-indexed Gaussian integration33 or numeric analytical methods34) were 

performed in CrysAlisPro.35 Structure solution was performed using ShelXT.36 Subsequent 

refinement was performed by full-matrix least-squares on F2 in ShelXL.37 Olex238 was used for 
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viewing and to prepare CIF files. Disordered toluene was modeled as rigid fragments with 

coordinates taken from the Idealized Molecular Geometry Library.39 

 The refinement was routine and all non-H atoms were refined with anistropic ADPs and 

no restraints. C-H hydrogens were placed in calculated positions and refined with riding 

coordinates and ADPs. 
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6.10. Selected Crystallographic Data  

 

Table 6.2. Selected crystallographic data for [NiBr2(BAC)2] 

Compound NiBr2(BAC)2 

Formula C30H56Br2N4Ni 

MW 691.31 

Space group P21/n 

a (Å) 9.52430(10) 

b (Å) 11.77890(10) 

c (Å) 15.2851(2) 

α (°) 90 

β (°) 104.9470(10) 

γ (°) 90 

V (Å3) 1656.75(3) 

Z 2 

ρcalc (g cm-3) 1.386 

T (K) 100 

λ (Å) 1.54184 

2θmin, 2θmax 10, 146 

Nref 17679 

R(int), R(σ) .0203, .0150 

μ(mm-1) 3.837 

Size (mm) .25 x .09 x .07 

Tmax / Tmin 2.5 

Data 3309 

Restraints 0 

Parameters 177 

R1(obs) 0.0201 

wR2(all) 0.0519 

S 1.072 

Peak, hole (e- Å-3) 0.37, -0.20 
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