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ABSTRACT

Functional data analytics for wearable device and

neuroscience data

Julia Wrobel

This thesis uses methods from functional data analysis (FDA) to solve problems from three sci-

entific areas of study. While the areas of application are quite distinct, the common thread of

functional data analysis ties them together. The first chapter describes interactive open-source

software for explaining and disseminating results of functional analyses. Chapters two and three

use curve alignment, or registration, to solve common problems in accelerometry and neuroimag-

ing, respectively. The final chapter introduces a novel regression method for modeling functional

outcomes that are trajectories over time.

The first chapter of this thesis details a software package for interactively visualizing functional

data analyses. The software is designed to work for a wide range of datasets and several types

of analyses. This chapter describes that software and provides an overview of FDA in different

contexts. The second chapter introduces a framework for curve alignment, or registration, of

exponential family functional data. The approach distinguishes itself from previous registration

methods in its ability to handle dense binary observations with computational efficiency. Motivation

comes from the Baltimore Longitudinal Study on Aging, in which accelerometer data provides

valuable insights into the timing of sedentary behavior. The third chapter takes lessons learned

about curve registration from the second chapter and use them to develop methods in an entirely

new context: large multisite brain imaging studies. Scanner effects in multisite imaging studies

are non-biological variability due to technical differences across sites and scanner hardware. This

method identifies and removes scanner effects by registering cumulative distribution functions of

image intensities values. In the final chapter the focus shifts from curve registration to regression.

Described within this chapter is an entirely new nonlinear regression framework that draws from

both functional data analysis and systems of ordinary equations. This model is motivated by the



neurobiology of skilled movement, and was developed to capture the relationship between neural

activity and arm movement in mice.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Functional data analysis (FDA) has become a popular and useful framework for applications in

which the unit of measurement is a function, curve or image. The basic unit of observation is the

curve Yi(t) for i ∈ . . . , I, where i denotes the index for a particular curve, and t is the domain of

the function Y . This thesis comes in four parts, each with different objectives and motivations.

The common theme is that some part of the problem can be conceptualized using a functional data

framework, and this work leverages that structure to answer scientific questions.

The focus of the first chapter is an open-source software package, refund.shiny, that enables

interactive visualization of the results of functional data analyses. Although there are established

graphics that accompany the most common functional data analyses, generating these graphics

for each dataset and analysis can be cumbersome and time consuming. Often, the barriers to

visualization inhibit useful exploratory data analyses and prevent the development of intuition for

a method and its application to a particular dataset. The refund.shiny package was developed to

address these issues for several of the most common functional data analyses. After conducting an

analysis, the plot shiny() function is used to generate an interactive visualization environment

that contains several distinct graphics, many of which are updated in response to user input.
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These visualizations reduce the burden of exploratory analyses and can serve as a useful tool for

the communication of results to non-statisticians.

The second chapter introduces a novel method for registration, or separating amplitude and

phase variability in exponential family functional data, which is motivated by accelerometer data

from the Baltimore Longitudinal Study on Aging. For this chapter, the curve Yi(t) is a 24-hour ac-

tivity profile, where t is time and each i is a subject. Our method alternates between two steps: the

first uses generalized functional principal components analysis to calculate template functions, and

the second estimates smooth warping functions that map observed curves to templates. Existing

approaches to registration have primarily focused on continuous functional observations, and the

few approaches for discrete functional data require a pre-smoothing step; these methods are fre-

quently computationally intensive. In contrast, we focus on the likelihood of the observed data and

avoid the need for preprocessing, and we implement both steps of our algorithm in a computation-

ally efficient way. We analyze binary functional data with observations each minute over 24 hours

for 592 participants, where values represent activity and inactivity. Diurnal patterns of activity are

obscured due to misalignment in the original data but are clear after curves are aligned. Simula-

tions designed to mimic the application indicate that the proposed methods outperform competing

approaches in terms of estimation accuracy and computational efficiency.

The third chapter uses registration in brain imaging to solve a common problem in multisite

studies. For this application, the Yi(t) are not the images themselves, but distribution functions

of image voxel intensity values. The domain t is intensity, and each i is an image. In multisite

neuroimaging studies there is often unwanted technical variation across scanners and sites. These

“scanner effects” can hinder detection of biological features of interest, produce inconsistent results,

and lead to spurious associations. We assess scanner effects in two brain magnetic resonance imaging

(MRI) studies where subjects were measured on multiple scanners within a short time frame, so
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that one could assume any differences between images were due to technical rather than biological

effects. We propose mica (multisite image harmonization by CDF alignment), a tool to harmonize

images taken on different scanners by identifying and removing within-subject scanner effects. Our

goals in the present study were to (1) establish a method that removes scanner effects by leveraging

multiple scans collected on the same subject, and, building on this, (2) develop a technique to

quantify scanner effects in large multisite trials so these can be reduced as a preprocessing step.

We found that unharmonized images were highly variable across site and scanner type, and our

method effectively removed this variability by warping intensity distributions. We further studied

the ability to predict intensity harmonization results for a scan taken on an existing subject at a

new site using cross-validation.

The final chapter combines a dynamical systems approach, where inputs and outputs continu-

ously evolve over time, with concepts from functional regression. The chapter introduces a nonlinear

regression model for understanding the dynamics in an experiment where the outcome data are

repeated observations of trajectories. Each Yi(t) is a single trajectory from experimental trial i,

measured over time t. Our work is motivated by data from an experiment exploring the relationship

between neural firing rates and hand trajectories of mice performing a reaching task while under

neurological assessment. The result is the flode (functional linear ordinary differential equation)

model, a functional regression model which is also a first-order differential equation. This models

how neural activity in the motor cortex of the brain changes the position and velocity of the paw

over time as it makes a reaching motion. Simulations indicate that our method performs well under

several conditions, and outperforms a more traditional functional regression model.
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Chapter 2

Interactive graphics for FDA

2.1 Introduction

Conceptually, FDA leverages the underlying data structure, often temporal or spatial, to improve

understanding of patterns and variation. A wide array of tools have been developed for the func-

tional data setting, for example, functional principal components analysis (FPCA) and regression

models using functional responses [Ramsay and Silverman, 2005; Morris, 2015; Sørensen et al.,

2013]. The basic unit of observation is the curve Yi(t) for subjects i ∈ . . . , I in the cross-sectional

setting and Yij(t) for subject i at visit j ∈ . . . , Ji for the multilevel or longitudinal structure. Meth-

ods for functional data are typically presented in terms of continuous functions, but in practice

data are observed on a discrete grid that may be sparse or dense at the subject level and that may

be the same across subjects or irregular.

Many methods for FDA have standard visualization approaches that clarify the results of anal-

yses; examples include scree plots for FPCA and coefficient function plots for function on scalar

regression. Clear visualizations aid in exploratory analysis and help to communicate results to

non-statistical collaborators. However, creating useful plots is often time consuming and must be

repeated each time a model is changed, and no software currently exists to facilitate this process.
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The refund.shiny package [Goldsmith and Wrobel, 2015] creates interactive visualizations for

functional data analyses, allowing researchers to create common graphics for standard analyses with

just a few lines of code. Currently, refund.shiny builds plots for functional principal components

analysis (FPCA), multilevel FPCA (MFPCA), time-varying FPCA (TFPCA), and function-on-

scalar regression (FoSR). The workflow separates analysis and visualization steps: analyses are

performed by functions in the refund package [Crainiceanu et al., 2015] and interactive visualiza-

tions are generated by the plot shiny() function in the refund.shiny package. Changes to the

analysis – increasing the number of retained principal components, for example, or augmenting a

regression model with new predictors – are easily incorporated into the graphical interface. User

interaction with the displayed graphics facilitates comparisons and streamlines navigation between

visualizations.

We illustrate the tools in refund.shiny using a single dataset, which we describe briefly here.

The diffusion tensor imaging (DTI) dataset available in the refund package includes cerebral white

matter tracts for multiple sclerosis patients and healthy controls. White matter tracts are collections

of axons, the projections of neurons that transmit electrical signals that are coated by a fatty

substance called myelin [Goldsmith et al., 2011, 2012]. DTI is a magnetic resonance imaging

modality that measures diffusion of water in the brain; because water movement is restricted

in white matter fibers, DTI allows the quantification of white matter tract integrity. The DTI

dataset contains tract profiles – continuous summaries of tract properties along their major axis

– for 142 subjects across multiple visits, with a median of 4 scans per subject. The dataset

includes tract profiles for several tracts, the PASAT score (a continuous variable that indicates

brain reactivity and attention span), subject sex, subject ID, visit number, and time of visit [Strauss

et al., 2006]. Because we observe tract profiles for each subject over time, the DTI dataset is a

functional dataset with longitudinal structure; in order to use the same dataset across examples
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we sometimes neglect this structure or subset the data. The following code can be used to install

refund and refund.shiny and load the DTI data:

> install.packages("refund.shiny")

> library(refund.shiny)

> library(refund)

> data(DTI)

Sections 2.2, 2.3, 2.4, and 2.5 each provide a brief methodological overview of an analysis tech-

nique for FDA and describe the corresponding interactive visualization tools in the refund.shiny

package. Section 2.6 details the structure of the refund.shiny package. We close in section 2.7

with a discussion.

2.2 Functional Principal Components Analysis

We start with functional principal components analysis (FPCA), one of the most common ex-

ploratory tools for functional datasets.

2.2.1 FPCA Model

FPCA characterizes modes of variability by decomposing functional observations into population

level basis functions and subject-specific scores [Ramsay and Silverman, 2005]. The basis functions

have a clear interpretation, analogous to that of PCA: the first basis function explains the largest

direction of variation, and each subsequent basis function describes less. The FPCA model is

typically written

Yi(t) = µ(t) +
K∑

k=1

cikψk(t) + ǫi(t) (2.1)
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where µ(t) is the population mean, ψk(t) are a set of orthonormal population-level basis functions,

cik are subject-specific scores with mean zero and variance λk, and ǫi(t) are residual curves. Es-

timated basis functions ψ̂1(t), ψ̂2(t), . . . , ψ̂K(t) and corresponding variances λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂K

are obtained from a truncated Karhunen-Loève decomposition of the sample covariance Σ̂(s, t) =

Ĉov(Yi(s), Yi(t)). In practice, the covariance Σ̂(s, t) is often smoothed using a bivariate smoother

that omits entries on the main diagonal to avoid a “nugget effect” attributable to measurement

error, and scores are estimated in a mixed model framework [Yao et al., 2005]. The truncation

lag K is often chosen so that the resulting approximation accounts for at least 95% of observed

variance.

2.2.2 Graphics for FPCA

Our example uses the fpca.sc() function from the refund package. Several other implementations

of FPCA are available in refund, including fpca.face(), fpca.ssvd(), and fpca2s(), all of which

are compatible with refund.shiny. The number of functional principal components (FPCs) is

chosen by percent variance explained, with the default set to 99 percent. See ?plot shiny for

examples.

Graphics for FPCA are implemented by the code below:

> fit.fpca = fpca.sc(Y = DTI$cca)

> plot_shiny(obj = fit.fpca)

Executing this code produces a user interface with five tabs. The first tab shows µ̂(t)±

√
λ̂kψ̂k(t),

and includes a drop-down menu through which the user can select k (an example for a similar tab,

based on multilevel data, is shown if Section 2.3). The second tab presents static scree plots of

the eigenvalues λ̂k and the percent variance explained by each eigenvalue. The third tab shows

µ̂(t)+
∑K

k=1 ckψ̂k(t), and includes slider bars through which the values of ck can be set; adjusting the
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sliders allows the user to see a fitted curve for a hypothetical subject with the selected combination

of scores. The fourth tab allows users to assess quality-of-fit by plotting fitted and observed values

for any subject in the dataset.

Figure 2.1: Screenshot showing tab 5 of the interactive graphics for FPCA. A scatterplot of FPC

loadings ĉik against ĉik′ is shown in the upper plot, and k and k′ are selected using drop-down

menus at the left. The lower plot shows fitted curves for all subjects. In the scatterplot, a subset

of estimated loadings can be selected by clicking-and-dragging to create a blue box; blue curves in

the plot of fitted values correspond to selected points in upper plot.

The fifth tab for the interactive graphic produced by the code above is shown as a static plot

in Figure 2.1. A scatterplot of estimated FPC loadings ĉik against ĉik′ is shown in the upper plot,

and k and k′ are selected using drop-down menus at the left. The lower plot shows fitted curves for

all subjects. In the scatterplot, a subset of FPC loadings can be selected by clicking-and-dragging

to create a blue box; blue curves in the plot of fitted values correspond to selected subjects in
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upper plot. In Figure 2.1 the first and second FPCs are selected for the x and y axes of the score

plot, respectively, and several subjects that have negative values for FPC 1 are highlighted. Fitted

values for these subjects are clustered at the top of the y-axis, indicating that the first FPC largely

represents a vertical shift from the mean. A working example of refund.shiny for FPCA on a

different dataset is available at https://jeff-goldsmith.shinyapps.io/FPCA.

2.3 Multilevel Functional Principal Components Analysis

Multilevel functional principal components analysis (MFPCA) extends the ideas of FPCA to func-

tional data with a multilevel structure.

2.3.1 MFPCA Model

Multilevel functional data are increasingly common in practice; in the case of our DTI exam-

ple, this structure arises from multiple clinical visits made by each subject. MFPCA models the

within-subject correlation induced by repeated measures as well as the between-subject correlation

modeled by classic FPCA. This leads to a two-level FPC decomposition, where level 1 concerns

subject-specific effects and level 2 concerns visit-specific effects. Population-level basis functions

and subject-specific scores are calculated for both levels [Di et al., 2009, 2014]. The MFPCA model

is:

Yij(t) = µ(t) + ηj(t) +

K1∑

k1=1

c
(1)
ik ψ

(1)
k (t) +

K2∑

k2=1

c
(2)
ijkψ

(2)
k (t) + ǫij(t) (2.2)

where µ(t) is the population mean, ηj(t) is the visit-specific shift from the overall mean, ψ
(1)
k (t) and

ψ
(2)
k (t) are the eigenfunctions for levels 1 and 2, respectively, and c

(1)
ik and c

(2)
ijk are the subject-specific

and subject-visit-specific scores. Often, visit-specific means ηj(t) are not of interest and can be omit-

ted from the model. Estimation for MFPCA extends the approach for FPCA: estimated between-

and within-covariances Σ̂(1)(s, t) = Ĉov(Yij(s), Yij′(t)) for j 6= j′ and Σ̂(2)(s, t) = Ĉov(Yij(s), Yij(t))

https://jeff-goldsmith.shinyapps.io/FPCA
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are derived from the observed data, smoothed, and decomposed to obtain eigenfunctions and values.

Given these objects, scores are estimated in a mixed-model framework.

2.3.2 Graphics for MFPCA

MFPCA is implemented in the mfpca.sc() function from the refund package. By default, mfpca.sc

does not calculate visit-means, but they can be calculated by specifying the mfpca.sc() argument

twoway = TRUE.

Graphics for MFPCA are implemented by the code below:

> Y = DTI$cca

> id = DTI$ID

> fit.mfpca = mfpca.sc(Y = Y, id = id, twoway = FALSE)

> plot_shiny(fit.mfpca)

This code produces an interface with five tabs, which is similar to the interface for FPCA but

includes features unique to multilevel analyses. Tabs 1, 2, 3, and 5 for MFPCA are µ̂(t) ±
√
λ̂
(L)
kL

ψ̂
(L)
kL

(t), static scree plots of the estimated eigenvalues λ̂
(L)
kL

, µ̂(t) +
∑KL

kL=1 c
(L)
kL
ψ̂
(L)
kL

(t), and

scatterplots of FPC scores (similar to Figure 2.1), respectively. These mirror the tabs for FPCA

and include inset sub-tabs to toggle between level, L, to display results for level 1 or level 2. The

fourth tab plots fitted and observed values for any user-selected subject in the dataset; the user can

display all visits for the selected subject or choose a subset of visits. The first tab for the interactive

visualization produced by the code above is displayed in Figure 2.2, and shows µ̂(t)±

√
λ̂
(1)
2 ψ̂

(1)
2 (t).

2.4 Time-varying Functional Principal Component Analysis

Time-varying functional principal components analysis (TFPCA) is developed to model functional

data that are repeatedly observed from each of many subjects at multiple occasions, often their
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Figure 2.2: Screenshot showing tab 1 of the interactive graphic for MFPCA. The plot at right

shows µ̂(t)±
√
λ̂
(L)
kL
ψ̂
(L)
kL

(t); kL is chosen by the drop-down menu in at left, and the user can switch

between level L by clicking Level 1 or Level 2 inset tabs at the top left.

clinical visits. In contrast to MFPCA, TFPCA accounts for actual time of visit Tij at which a

functional object Yij(·) is recorded, which allows us to study the dynamic behavior of the underlying

true process, and make a time-specific prediction a trajectory at an unobserved visit time [Park and

Staicu, 2015]. Other available modeling methods for longitudinal functional data that incorporate

actual visit times Tij include Greven et al. [2010] and Chen and Müller [2012].

2.4.1 TFPCA Model

TFPCA [Park and Staicu, 2015] models longitudinal functional data in two steps; first it uses

FPCA to extract low dimensional features of the data and then it studies the dynamic behavior

by modeling estimated FPC loadings obtained from the first step. The TFPCA model is given as

follows:

Yij(t) = µ(t, Tij) +

K∑

k=1

cik(Tij)ψk(t) + ǫij(t), (2.3)

where µ(t, Tij) is the population mean function that is assumed to be smooth over t and Tij , ψk(t)

are eigenfunctions that are invariant to visit time Tij , cik(Tij) are corresponding FPC loadings
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with mean zero and variance λk, and ǫij(t) are residual curves. Scores cik(tij) are uncorrelated

over i but correlated over j. To estimate the components of the TFPCA model, we first estimate

the mean surface µ(t, Tij) using a bivariate smoother. Given this mean, we perform a “marginal“

FPCA, estimating both basis functions and curve-specific scores, and then model the longitudinal

dynamics of estimated scores ĉik(Tij) over observation times Tij using linear random effects models

or FPCA. By modeling these longitudinal dynamics, the time-varying coefficient function cik(·) can

be used to predict scores at any longitudinal time T and, as a result, to predict the full response

trajectory Yi(·, T ).

2.4.2 Graphics for TFPCA

TFPCA is implemented in the fpca.lfda() function in the refund package. In Section 2.4.1, we

have used t to denote the functional argument for consistency with the rest of the paper; however

to maintain consistency with the notations used in Park and Staicu [2015], plot_shiny() function

for TFPCA uses s to denote the functional argument and T to denote the longitudinal time.

Graphics for TFPCA are implemented by the code below:

> MS <- subset(DTI, case ==1)

> index.na <- which(is.na(MS$cca))

> Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]

> id <- MS$ID

> visit.index <- MS$visit

> visit.time <- MS$visit.time/max(MS$visit.time)

> fit.tfpca <- fpca.lfda(Y = Y, subject.index = id,

+ visit.index = visit.index, obsT = visit.time,

+ LongiModel.method = ‘lme’)

> plot_shiny(fit.tfpca)

The code produces an interface with two tabs. Tab 1 shows exploratory plots and includes three

inset sub-tabs. The first sub-tab plots the observed curves for any user-selected subject, and

includes options to display the observed curves of all subjects in the background and to display the
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estimated pointwise mean curve, denoted by m(t). The second sub-tab allows the user to see the

longitudinal changes of the observed curves for a user-selected subject i; a slider bar animates the

subject’s visit times and highlights the corresponding observed curve in the plot. The last sub-tab

shows two plots of the actual visit times Tij : the bottom plot presents static histogram of visit

times of all subjects, while the top plot presents all of observed visit times on a horizontal line to

help visualize the sparsity of the longitudinal sampling.

Tab 2 shows estimated model components and predictions, and includes 8 inset sub-tabs. Sub-

tabs 1 and 2 present static images of the estimated mean surface µ̂(t, T ) and estimated marginal

covariance Σ̂(t, t′). Sub-tabs 3, 4, and 5 illustrate the first step of estimation, and plot estimates

of eigenfunctions ψ̂k(t), m(t)± 2

√
λ̂kψ̂k(t), and static scree plots of the estimated eigenvalues λ̂k,

respectively. Sub-tab 6 shows the estimated covariance of the time-varying FPC loadings cik(·)

for user specified k. Sub-tab 7 shows the prediction of the time-varying basis coefficient cik(T )

for any user-selected subject i and component k; it also has an option of displaying predicted

values of cik(T ) for all subjects in the background. Lastly, sub-tab 8 shows the prediction of a full

response trajectory Yi(·, T ) for user-selected subject i in animation with change of values across 21

equi-spaced grid of points of T in the range of observed visit times of all subjects.

2.5 Function-on-Scalar Regression

In many cases, a length p vector of scalar covariates xi = [xi1, . . . , xip] is observed in addition to

the function Yi(t). In these situations, it is often of interest to model the conditional expectation

of the functional response as it depends on the scalar predictors; indeed, this problem has been the

focus of a large literature [Brumback and Rice, 1998; Guo, 2002; Morris et al., 2003; Morris and

Carroll, 2006; Reiss et al., 2010; Scheipl et al., 2015; Goldsmith and Kitago, 2015; Goldsmith et al.,

2015].
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2.5.1 FoSR Model

The most common function-on-scalar regression model is

Yi(t) = β0(t) +

p∑

k=1

xikβk(t) + ǫi(t) (2.4)

where the βk(t) are fixed effects associated with scalar covariates and the ǫi(t) are residual curves.

The coefficients βk(t) are interpreted analogously to coefficients in a (non-functional) multiple linear

regression – as the expected change in response for each one unit change in the predictor – with the

exception that they, like the outcome, are defined over t. Many estimation and inferential strategies

are available for model (2.4); a popular approach is to expand coefficients βk(t) using a spline basis,

which allows one to recast (2.4) as a traditional linear regression model and focus estimation on a

vector of unknown spline coefficients. Our example uses the bayes fosr() function in the refund

package, which uses a rich cubic B-spline basis and estimates spline coefficients in a Bayesian

framework with priors specified to enforce smoothness in the resulting coefficient functions. Both

a Gibbs sampler and a computationally efficient variational approximation are available in refund.

2.5.2 Graphics for FoSR

Graphics for FoSR are implemented by the code below:

> DTI = DTI[complete.cases(DTI),]

> fit.fosr = bayes_fosr(cca ~ pasat + sex, data = DTI)

> plot_shiny(fit.fosr)

This code produces a interface with four tabs, each showing plots associated with model 2.4. The

first tab is a plot of the observed data with the option to color curves by a user-selected covariate;

this builds intuition analogously to scatterplots for non-functional regression. The second tab shows

β̂0(t) +
∑p

k=1 xkβ̂k(t), where values of xk can bet set by slider bars for continuous covariates or
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drop-down menus for categorical covariates; adjusting the sliders or drop-down menus shows the

estimated conditional expectation for a specified predictor vector. The third tab, illustrated in

Figure 2.3, shows estimated coefficient functions β̂k(t) with pointwise confidence intervals for the

covariate xk selected in a drop-down menu. The fourth tab is a plot of the residual curves ǫ̂i(t) and

allows for identification of median and outlying curves by band depth [Lopez-Pintado and Romo,

2009; Sun and Genton, 2011; Sun et al., 2012]; the user can also choose to ’rainbowize by depth’,

which colors the curves from the median outward based on depth.

Figure 2.3: Screenshot showing tab 3 of the interactive graphic for FoSR. The plot shows the

estimated coefficient function β̂k(t) for the selected covariate xk with pointwise confidence intervals.

2.6 Code Structure of the refund.shiny Package

We now briefly describe the code infrastructure used to create the refund.shiny package.

As indicated in the introduction, the workflow separates visualization from analysis using the

following workflow. First, one analyzes a dataset using a function in the refund package. The

functions in refund take discretely observed functional data as input, perform an analysis, and

return an object whose class corresponds to the method used. For example, the fpca.sc function

return as object of class fpca and the bayes.fosr function returns an object of class fosr. The
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primary function in refund.shiny, plot shiny, is a generic function whose behavior depends on

the class of the object passed as an argument. Because of this structure, the user experience is

uniform across a variety of analyses; this also suggests a development strategy for the addition of

interactive graphics as new analysis techniques become available. Lastly, by separating the analysis

and visualization steps, it is possible for analysis functions developed outside of the refund package

to return objects of a defined class and thereby take advantage of the plotting capabilities we

describe.

The interactive graphics in the refund.shiny are built on RStudio’s R package shiny [RStudio

Inc., 2015], which significantly reduces the barriers to producing webpage-style representations of

analysis results in R. Other examples of interactive graphics that utilize the shiny framework are

shinyMethyl [Fortin et al., 2014] for visualization of high-dimensional genomic data and shinystan

[Stan Development Team, 2015] for exploring Bayesian models fit using Markov Chain Monte Carlo.

In refund.shiny the plots within tabs are produced using ggplot2 [Wickham and Chang, 2015];

it is possible to export each plot as a PDF or to save the corresponding ggplot object to the user’s

R workspace for further manipulation.

2.7 Concluding Remarks

Visualization has long been acknowledged as a central tool in data analysis. For functional datasets,

the need for useful graphics is compounded: data are inherently complex, high-dimensional and

structured. Although a robust literature for functional data exists and many methods have stan-

dard graphical representations, the creation of these graphics is often time consuming. The

refund.shiny package was developed to ease this process by producing a visualization frame-

work for several common functional data analyses. By leveraging new tools for interactivity,

refund.shiny responds to user input and actions and, in so doing, can build intuition for analyses
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in both statisticians and practitioners. The interfaces produced by refund.shiny using the shiny

framework are web applications, rendered locally by a web browser. These applications can be

hosted publicly and may, in the spirit of “visuanimations“ [Genton et al., 2015], be included as

important parts of scientific papers and reports.

We use an analytic workflow that separates modeling from visualization. Doing so allows several

methods and implementations to take advantage of the same visualization software; as an example,

fpca.sc(), fpca.face(), fpca.ssvd(), and fpca2s() implement different methods for FPCA

but are all compatible with plot shiny(). This produces an intuitive user experience and leaves

open the possibility for future approaches to FPCA or FoSR to use the refund.shiny package

for visualization with minimal effort. Similarly, this workflow is amenable to the development of

interactive visualizations for additional functional data analyses in future iterations of the package.
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Chapter 3

Registration for exponential family

functional data

3.1 Introduction

In the most common setting for functional data analysis, the basic unit of observation is the real-

valued curve Yi(t) for subjects i ∈ 1, . . . , N . More recently, there has been interest in exponential

family functional data, where Yi(t) comes from a non-Gaussian distribution; it is typically assumed

that Yi(t) has a smooth and continuous latent mean, µi(t) = E[Yi(t)]. Our motivation is the

study of activity and inactivity using data collected with accelerometers, a setting with binary

functional data. Figure 3.1 shows binary curves Yi(t) for two participants taking the value 1 when

the participant is active and 0 when the participant is inactive. A solid curve shows an estimate

of the smooth latent mean µi(t), interpreted as the probability the subject will be active at each

minute in the 24 hours of observation. Other recent examples of non-Gaussian functional data

include agricultural studies on the feeding behavior of pigs, spectral backscatter from long range

infrared light detection, and longitudinal studies of drug use [Gertheiss et al., 2015; Serban et al.,

2013; Huang et al., 2014a].



CHAPTER 3. REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 19

Figure 3.1: Points are binary curves for two subjects from the BLSA data before registration, where

values of 1 and 0 represent activity and inactivity, respectively. The solid curves are estimates of

the latent probability of activity, µi(t), and are fit for each subject using kernel smoothers.

Functional data often include both phase displacement, the misalignment of major features

shared across curves, and amplitude variability. The process underlying phase variation may itself

be of interest; additionally, when the interest is primarily in the amplitude variation, phase vari-

ation can artificially distort analyses of amplitude and mask the shared data structure. Methods

for curve registration, which transform functional data to align features, are focused on addressing

the problem of phase variation. The goal of registration is to warp the functional domain, which

we will refer to as time, so that phase variation is minimized and the major features of the curves

are aligned. This process necessitates a distinction between chronological time (t∗i ), which is the

originally observed time for each subject, and internal time (t), which is the unobserved time on

which major features are aligned across subjects (chronological and internal time are often referred

to in the functional data literature as clock and system time, respectively). Stated differently,
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internal time is the true but unknown time over which aligned curves are generated and chrono-

logical time is the shifted time on which misaligned curves are observed. The registration problem

amounts to recovering the subject-specific warping functions hi : t 7→ t∗i which map internal time

to chronological time. Inverse warping functions h−1
i (t∗i ) can then be used to obtain aligned curves

Yi(t) from observed data Yi(t
∗
i ). To emphasize the conceptual difference between chronological and

internal times, we index t∗i by subject but do not index t.

We are interested in registering actigraphy data that comes from the Baltimore Longitudinal

Study of Aging. The BLSA is an observational study of healthy aging and included an accelerom-

eter for monitoring activity [Schrack et al., 2014]. Our dataset includes 592 people, for whom

accelerometer observations are gathered over 24 hours in one-minute epochs giving chronological

times on equally spaced grids of length 1440. We are especially interested in activity and inac-

tivity, defined using a threshold of raw accelerometer observations, as both low activity levels and

excessive sedentary behavior have been associated with poor health outcomes. Moreover, there is

a growing research interest in understanding temporal/diurnal patterns of accumulation of seden-

tary time [Diaz et al., 2017; Martin et al., 2014]. However, those analyses typically report diurnal

averages that ignore the differences between subject specific wake time and mix together amplitude

and phase.

The left panel of Figure 3.2 shows observed binary curves against chronological time. In this

plot subjects appear in rows, with active and inactive minutes shown in dark and light shades,

respectively. This figure clearly shows the variability in the timing of inactivity across subjects,

who may start or end the day at different times, and may accrue inactive minutes in sedentary

bouts at different times. Such misalignment attenuates the diurnal patterns of activity that we

believe to be present based on the naturally occurring circadian rhythm. The right panel of Figure

3.2 shows estimates of the unregistered mean µi(t
∗
i ) obtained using a Gaussian kernel smoother;
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these smooths illustrate the phase misalignment across subjects. The shift in timing of activity and

inactivity is also seen in Figure 3.1. Specifically, the subject in the top row wakes up early, has a

peak of activity, and then has a low activity level for the rest of the day, while the subject below

has a similar but shifted pattern of behavior.

Figure 3.2: Plots of the unregistered data for 592 subjects at all 1440 minutes observed. At left is a

lasagna plot, where row is the binary curve for a single subject and inactive and active observations

are colored in light and dark shades, respectively. The rows are sorted by age, so that youngest

subjects are at the bottom of the plot and oldest subjects are at the top. At right are smoothed

curves for each subject, fit using kernel smoothers.

We propose novel methods for the registration of exponential family functional data, with

emphasis on binary curves. Due to data size computational efficiency is critical, and we take this

into consideration at each step of our method development. Section 3.2 provides a review of relevant

literature on registration and exponential-family functional principal components analysis; Section

3.3 details our methods; Section 3.4 shows simulation results, and Section 3.5 applies our method



CHAPTER 3. REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 22

to the BLSA data. We conclude with a discussion in Section 3.6.

3.2 Literature Review

Our method draws on two distinct bodies of work in functional data analysis, which we review

below. First, in 3.2.1, we review curve registration; this literature is primarily focused on Gaussian

curves, with relatively little existing work for non-Gaussian curves. Then, in 3.2.2, we give an

overview of exponential family FPCA, which is itself a relatively new area of interest in functional

data analysis.

3.2.1 Registration

Several approaches for registering functional data have been proposed; we review these briefly,

and suggest Marron et al. [2015] for a more detailed overview. Early approaches include dynamic

time warping and landmark registration; for some time, however, template registration methods

have been preferred. Template registration aligns each curve to a template curve by optimizing an

objective function. This approach necessitates choosing the template, the objective function, and

the optimization approach.

A common approach to template registration uses functional principal component analysis

(FPCA) to select the template [Kneip and Ramsay, 2008]. First these methods estimate the

template, and then estimate the warping functions for a given template; these steps are iterated

until convergence. Warping functions are estimated using a sum of squared errors approach, often

penalized to enforce smoothness. There is a large registration literature operating under and ex-

panding this framework, including Sangalli et al. [2010] and Hadjipantelis et al. [2015]. Intuitively,

functional principal components describe the main directions of variation in a set of curves, making

FPCA a natural tool for identifying the features to which data is registered.
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Srivastava et al. [2011] introduce a metric for calculating warping functions based on the Fisher-

Rao distance. They calculate a Karcher mean template and define a square root slope function

transform (SRSF) of the observed curves. Minimizing the L2 norm between two SRSFs is equivalent

to minimizing their Fisher-Rao distance. Since the SRSF uses the derivative of the observed curve,

the data to be registered are required to be smooth. The Fisher-Rao metric has been the basis

for several recent approaches to registration, some which compute parameter values using dynamic

programming [Srivastava et al., 2011; Wu and Srivastava, 2014], and others which use Riemannian

optimization [Huang et al., 2014b]. Many of the SRSF-based approaches are implemented in the

fdasrvf package [Tucker, 2017].

Although most work in registration has focused on continuous data, there are two recent ex-

ceptions. Wu and Srivastava [2014] apply the SRSF approach to binary functional data by pre-

smoothing data with a Gaussian kernel and registering the resulting smooth curves. Panaretos and

Zemel [2016] present a theoretical framework for separation of amplitude and phase variation of

random point processes. The authors formalize a set of regularity conditions for warping functions

that includes smoothness, proximity to the identity map, and unbiasedness, and establish a set of

nonparametric estimators. However, since these estimators register the unobserved probabilities

of the point processes, the authors also begin by smoothing binary curves using kernel density

estimation.

In contrast to previous literature on registration we develop an approach that can be applied to

continuous and discrete data and does not require presmoothing. We also emphasize computational

efficiency, an important matter given our high-dimensional data application.
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3.2.2 FPCA for exponential family curves

Functional principal components analysis is popular for identifying modes of variation in functional

data. The most common approaches to FPCA decompose the variance-covariance matrix of de-

meaned functional observations; see Yao et al. [2005] or Goldsmith et al. [2013] for details on

this approach. Hall et al. [2008] adapted the methods in Yao et al. [2005] for binary functional

data by positing a smooth latent Gaussian process and then estimating and decomposing the

covariance of this process. Serban et al. [2013] refined and extended this approach by improving

approximations in the estimation procedure, increasing accuracy for rare events, and allowing

spatial structures. However, as demonstrated in Gertheiss et al. [2017], the adaptation of Yao et

al. [2005] to exponential family data has an inherent bias due to reliance on a marginal rather than

conditional mean estimate.

Probabilistic FPCA is an appealing alternative to the covariance smoothing approach. This

framework conceptualizes PCA as a likelihood-based model, can be approached from a Bayesian

perspective, and easily accounts for sparse or irregular data. Tipping and Bishop [1999] introduce

probabilistic PCA, and a related approach is used by James et al. [2000] for functional data. van der

Linde [2008] extends probabilistic FPCA to binary and count data through a Taylor-approximated

likelihood function, while Goldsmith et al. [2015] uses a fully Bayesian parameter specification

for generalized FPCA and function-on-scalar regression. Because these approaches often relate

the expected value of observed data to a smooth latent process through a link function, they are

referred to as methods for generalized FPCA or GFPCA. Because all parameters are estimated

simultaneously rather than sequentially, the probabilistic framework avoids the bias inherent in the

covariance decomposition approach.

Our contributions to this literature focus on improving accuracy and efficiency for binary FPCA
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by estimating parameters in a probabilistic framework using a novel variational EM algorithm. To

do this, we adapt the approach developed by Jaakkola and Jordan [1997] for logistic regression,

which has since been extended to (non-functional) binary PCA [Tipping, 1999] and multi-level

PCA [Yue, 2016]. These methods rely on a variational approximation to the Bernoulli likelihood

that is a true lower bound and allows for closed form updates of parameters. In contrast to van der

Linde [2008], which uses a second-order Taylor expansion of the log likelihood to approximate a

lower bound to the true distribution, our variational approximation is a true lower bound. While

our method is optimized for binary data, similar derivations are possible for functional data from

other exponential family distributions.

Consistent with this literature modeling exponential family curves, we assume a latent Gaussian

process (LGP) generative model for our exponential family functional data. The LGP model

assumes an unobserved smooth mean curve that serves as a “functional” natural parameter for the

corresponding exponential family and from which the observed exponential family functional data

is stochastically generated. In the case of binary data, the latent process is an unobserved smooth

probability curve.

3.3 Methods

We first introduce the conceptual framework for our approach. Our goal is to estimate inverse

warping functions h−1
i which map unregistered chronological time t∗i to registered internal time

t such that h−1
i (t∗i ) = t. Then for subject i, the unregistered and registered response curves

are Yi(t
∗
i ) and Yi(t) = Yi

{
h−1
i (t∗i )

}
, respectively. Without loss of generality, we assume both t∗

and t are on [0, 1]. We require that functions h−1
i are monotonically increasing and satisfy the

endpoint constraints h−1
i (0) = 0 and h−1

i (1) = 1. Notationally, we combine warping functions with
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exponential family GFPCA through the following:

E

[
Yi

{
h−1
i (t∗i )

}
|ci, h

−1
i

]
= µi(t)

g {µi(t)} = α(t) +
K∑

k=1

cikψk(t).

(3.1)

The aligned response curves Yi
{
h−1
i (t∗i )

}
for each t∗i ∈ [0, 1] arise from the canonical exponential

family of distributions with density

P
[
Yi

{
h−1
i (t∗i )

}
|µi(t)

]
= exp

{(
Yi{h

−1
i (t∗i )}g{µi(t)} − b [g{µi(t)}]

)
/ϕ+ c[Yi{h

−1
i (t∗i )}, ϕ]

}
(3.2)

where E
[
Yi{h

−1
i (t∗i )}|µi(t)

]
= µi(t) = b′ [g{µi(t)}], V ar

[
Yi{h

−1
i (t∗i )}|µi(t)

]
= b′′ [g{µi(t)}]ϕ, and

ϕ is the dispersion parameter. The subject-specific means µi(t) implicitly condition on parameters

in model (3.1) and are used as templates in our warping step. Through link function g, the µi(t)

are related to a linear predictor containing the population level mean α(t) and a linear combination

of population level basis functions ψ(t) and subject-specific score vectors ci ∼ N(0, IK×K). This

formulation assumes that registered curves can be decomposed using GFPCA and, in doing so,

places both registration and GFPCA in a single model.

Our estimation method is based on model (3.1) and alternates between the following steps:

1. Subject-specific means µi(t) are estimated via probabilistic GFPCA, conditional on the cur-

rent estimate of inverse warping functions h−1
i (t∗i ).

2. Inverse warping functions h−1
i are estimated by maximizing the log likelihood of the expo-

nential family distribution under monotonicity and endpoint constraints on hi, conditional

on the current estimate of µi.

We iterate between steps (1) and (2) until curves are aligned.

Similar registration approaches for continuous-valued response curves have used the squared

error loss for optimizing warping functions which, in a Gaussian setting, is equivalent to maximizing



CHAPTER 3. REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 27

the likelihood function. However, our likelihood-based approach, which registers non-Gaussian data

by extending the exponential-family framework, is novel. In contrast to registration methods for

discrete functional data, we register observed binary curves using smooth templates rather than

aligning pre-smoothed functional data. Because our application has 592 subjects measured at 1440

time points each, computational efficiency is critical. To this end we develop a novel fast approach

to binary FPCA in Step 1, which we describe in Section 3.3.1, and optimize speed in estimating

warping functions in Step 2, which we describe in Section 3.3.2.

3.3.1 Binary FPCA

We first detail our novel EM approach to binary FPCA. Model (3.1) provides a conceptual frame-

work, assuming that each curve Yi(t) is evaluated over internal time t ∈ [0, 1]. In practice,

data for subject i is observed on the discrete grid, ti = {ti1, . . . , tiDi
}, which may be irregular

across subjects, and therefore (in contrast to t) is indexed by subject. Functions indexed by

the vector ti are Di × 1 vectors of those functions evaluated on the observed time points (e.g.

Yi(ti) = [Yi(ti1), . . . , Yi(tiDi
)]T and ψk(ti) = [ψk(ti1), . . . , ψk(tiDi

)]T ). The population level mean

α(t) and principal components ψk(t), 1 ≤ k ≤ K, are expanded using a fixed B-spline basis,

Θφ(t), of Kφ basis functions θ1(t), . . . , θKφ
(t). Let Θφ(ti) be the Di ×Kφ B-spline matrix evalu-

ated at ti and a 1 × Kφ vector when evaluated at a single point tij ; then α(ti) = Θφ(ti)αΘ and

Ψ(ti) = [ψ1(ti), . . . , ψK(ti)] = Θφ(ti)ΨΘ where the vector αΘ and matrix ΨΘ of size Kφ × K

contain the spline coefficients for the mean and principal components, respectively. Observed on

the discrete grid ti, the linear predictor in (3.1) becomes

g{µi(ti)} = Θφ(ti) (αΘ +ΨΘci) . (3.3)

We estimate parameters in model (3.3) using an EM algorithm that incorporates a variational

approximation. We assume ci ∼MVN(0, I). For the binary case that is our main interest, g(·) is
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the logit function, for each point on the grid for the ith subject, Yi(tij) ∼ Bernoulli(µi(tij)) where

µi(tij) = P (Yi(tij) = 1|ci). It is convenient to rewrite the probability density function as

P {Yi(tij)|ci} = g−1

[
{2Yi(tij)− 1}{Θφ(tij) (αΘ +ΨΘci)}

]
, (3.4)

so that the full unobserved joint likelihood for the observations and score vectors is

L(Y , c) ∝
I∏

i=1

Di∏

j=1

g−1

[
{2Yi(tij)− 1}{Θφ(tij) (αΘ +ΨΘci)}

]
×

I∏

i=1

exp

(
−
cTi ci

2

)
. (3.5)

Let scalar Ai(tij) = Θφ(tij) (αΘ +ΨΘci) and λ(z) = 0.5−g−1(z)
2z . A variational approximation to

(3.4), based on the approximation in Jaakkola and Jordan [1997], is

P̃{Yi(tij)|ci, ξi(tij)} = g−1{ξi(tij)}

× exp

[
{2Yi(tij)− 1}Ai(tij)− ξi(tij)

2

+ λ {ξi(tij)}
{
Ai(tij)

2 − ξi(tij)
2
} ]

and is further discussed in Web Appendix A. The resulting variational joint likelihood is

L̃(Y , c) ∝
I∏

i=1

Di∏

j=1

P̃

{
Yi(tij)|ci, ξi(tij)

}
×

I∏

i=1

exp

(
−
cTi ci

2

)
. (3.6)

We use an EM algorithm to obtain parameter estimates from (3.6) by (i) finding the posterior

distribution of the scores; (ii) maximizing L̃(Y , c) with respect to ξ; and (iii) maximizing the

variational likelihood with respect to αΘ and ΨΘ. These three steps are described in Sections

3.3.1.1, 3.3.1.2, and 3.3.1.3; more details and simulations comparing to other GFPCA methods

are given in the Appendix. A solution is attained when the squared difference between parameter

estimates and their previous solution become arbitrarily small.
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3.3.1.1 Calculating posterior scores

The posterior scores for each subject, derived via Bayes’ rule, follow a multivariate normal distri-

bution ci|Yi(ti), ξi(ti) ∼MVN(mi,Ci) with:

Ci =

(
IK×K − 2ΨT

ΘΘφ(ti)
Tdiag[λ{ξi(ti)}]Θφ(ti)ΨΘ

)−1

and

mi = Ci

(
ΨT

ΘΘφ(ti)
T {Yi(ti)−

1

2
}+ 2ΨT

ΘΘφ(ti)
Tdiag[λ{ξi(ti)}]Θφ(ti)αΘ

)

where ξi(ti) is a vector of length Di and diag[λ{ξi(ti)}] is a Di ×Di diagonal matrix.

3.3.1.2 Maximizing L̃(Y , c) with respect to ξ

We maximize the variational likelihood with respect to ξ2i , obtaining

ξ̂i(tij)
2 = E

P̃post

{
Ai(tij)

2
}

= αT
ΘΘφ(tij)

TΘφ(tij)αΘ + 2αT
ΘΘφ(tij)

TΘφ(tij)ΨΘmi

+ tr
{
ΨT

ΘΘφ(tij)
TΘφ(tij)ΨΘCi

}
+mT

i Ψ
T
ΘΘφ(tij)

TΘφ(tij)ΨΘmi

where the expectation is taken with respect to the posterior distribution P̃ {ci|Yi(ti), ξi(ti)}, using

estimates of αΘ and ΨΘ from the previous iteration.

3.3.1.3 Maximizing L̃(Y , c) with respect to αΘ and ΨΘ

In this step we jointly estimate vectors of spline coefficients, which distinguishes our approach

from previous binary PCA techniques and which entails additional complexity in the derivation of

updates. The introduction of the spline basis and associated coefficients lowers the dimensionality

of the estimation problem and enforces smoothness of the resulting µ̂i(t).

In order to obtain updates for our population-level basis coefficients, we introduce a new repre-

sentation of the model which is mathematically equivalent to the parameterization in model (3.4)
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and easier to maximize. Let si = (cTi , 1)
T of dimension (K +1)× 1 and Φ = (ΨT

Θ,αΘ)
T of dimen-

sion (K+1)×Kφ, and vec(Φ) be a vectorized version of Φ with dimension Kφ(K+1)×1. We can

rewrite Ai(ti) as Ai(ti) = Θφ(ti)(αΘ +ΨΘci) = (Θφ(ti) ⊗ s
T
i )vec(Φ), where ⊗ is the Kronecker

product. Maximizing the variational log-likelihood in this reparameterized form gives updates

vec(Φ̂) = −

(∑
i 2Θφ(ti)

Tdiag[λ{ξi(ti)}]Θφ(ti) ⊗ ŝis
T
i )

)−1[∑
i

{
Yi(ti)−

1
2

}T
{
Θφ(ti)⊗ ŝi

T
}]

,

where ŝi = (mT
i , 1)

T and

ŝis
T
i =


Ci +mim

T
i mi

mT
i 1




.

The first K rows of vecΦ̂ are the K columns of Ψ̂Θ, and the last Kφ rows are µ̂Θ.

3.3.2 Binary Registration

We now turn to the second step in our iterative algorithm, in which warping functions are esti-

mated for each subject conditionally on the target function µi(t). Conceptually, our approach is to

maximize the exponential family likelihood function given by integrating the density in equation

(3.2) over time. We maximize with respect to the inverse warping function h−1
i (t∗i ), subject to the

constraint that h−1
i (t∗i ) is monotonic with endpoints fixed at the minimum and maximum of our

domain. For binary data we maximize the Bernoulli log-likelihood

l(h−1
i ;Yi, µi) =

∫ (
Yi(t

∗
i ) logµi

{
h−1
i (t∗i )

}
+ {1− Yi(t

∗
i )} log

[
1− µi{h

−1
i (t∗i )}

])
. (3.7)

Again, functions are observed on a discrete grid in practice, and we differentiate between subject-

specific finite grids for chronological time t∗i = {t∗i1, ..., t
∗
iDi

} and internal time ti = {ti1, ..., tiDi
}.

Using notation similar to Section 3.3.1, we let Yi(t
∗
i ) , Yi(ti), and h

−1
i (t∗i ) be Di × 1 vectors cor-

responding to observed responses, registered responses, and inverse warping functions, respec-

tively. We expand h−1
i (t∗i ) using a B-spline basis, Θh(t

∗
i ), of dimension Di ×Kh to take the form
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h−1
i (t∗i ) = Θh(t

∗
i )βi = ti. The Kh × 1 vector of spline coefficients βi allows us to express h−1

i (t∗i ),

and is the target of our estimation problem. We estimate βi separately for each subject using

constrained optimization and loop over subjects.

We modify the conceptual likelihood in equation (3.7) to incorporate the spline basis expansion

of h−1 and to express data over the observed finite grid, which yields

l {βi;Yi(t
∗
i ), µi(·)} ∝

Di∑

j=1

(
Yi(t

∗
ij) logµi{Θh(t

∗
ij)βi}+ {1− Yi(t

∗
ij)} log

[
1− µi{Θh(t

∗
ij)βi}

])
. (3.8)

Recall that µi(·) from (3.3) is the subject-specific mean found in the FPCA step. Estimates

are constrained to be monotonic with fixed endpoints. The constraints ensure that our resulting

estimates for t are monotonic and span the desired domain. We implement these constraints using

linear constraint matrices, which we provide in Appendix A. The constrained optimization can be

made more efficient with an analytic form of the gradient. The gradient for the general exponential

family case and for the Bernoulli loss in particular also appear in Appendix A.

3.3.3 Implementation

Our methods are implemented in R and are publicly available on GitHub as part of the registr

package [Wrobel et al., 2018]. For Step 1, binary FPCA is custom-written with a C++ backend for

estimation. For Step 2, we implement linearly constrained optimization with the constrOptim()

function, which uses an adaptive barrier algorithm to minimize an objective function subject to

linear inequality constraints. If an analytic gradient of the objective function is not provided,

then Nelder-Mead optimization is used, otherwise BFGS, a gradient descent algorithm, is used.

By implementing an analytic gradient we improve accuracy and computational efficiency of our

estimation.

Though our simulated and real data examples are observed on a dense regular grid, the registr

package handles both sparse and irregular functional data. For visualizing results, registr is
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compatible with refund.shiny, an R package that produces interactive graphics for functional

data analyses [Wrobel et al., 2016].

3.4 Simulations

We assess the accuracy and computational efficiency of our method using data simulated to mimic

our motivating study, and compare to competing approaches described below.

3.4.1 Simulation Design

Binary functions in simulated datasets are designed to exhibit a circadian rhythm, so that simulated

participants are more likely to be inactive at the beginning and end of the domain (“day”) and

more likely to be active in the middle of the day. Overall activity levels vary across simulated

participants, as do the timing of the active period. Participants exhibit two main active periods

separated by a dip, which is consistent with the BLSA data.

We first generate a grid of chronological times t∗i , which is equally spaced and shared across

subjects. We generate inverse warping functions h−1
i (t∗i ) using a B-spline basis with 3 degrees of

freedom; coefficients are chosen from a uniform(0,1) distribution and placed in increasing order

to ensure monotonically increasing warping functions. The internal times ti for each subject are

obtained by evaluating the inverse warping functions at t∗i . We simulate latent probability curves

over internal time, µi(ti), from the model

E {Yi(ti)|ci} = µi(ti)

g {µi(ti)} = α(ti) + ci × ψ(ti)

(3.9)

where α(ti) and ψ(ti) are constructed using a B-spline basis and ci
i.i.d
∼ N(0, 1). For each tij ∈

i, j = 1, . . . , Di, binary observations Yi(tij) are sampled independently over j from a Bernoulli

distribution with µ(tij).
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Unregistered data Yi(t
∗), observed over the grid t∗i , are defined by the warping functions hi(ti).

Figure 3.3 shows an example of a single simulated dataset, including latent probability curves on

both t∗i and t (first row, first and second columns) and observed binary data (second row, first and

second columns).

We evaluate the performance of our algorithm as a function of sample size and grid length.

We simulate 25 datasets for each combination of sample sizes (50, 100, and 200) and grid lengths

(taking values 100, 200, 400). For each dataset we apply the methods in Section 5.2, denoted registr

in text and figures below, setting Kφ = 9, Kh = 3, and using 1 FPC.

To provide a frame of reference we compare our approach with two approaches based on the

SRSF framework, both of which are implemented in the time warping() function in the fdasrvf

package [Tucker, 2017]. Both implementations use smoothed versions of the binary data but use

different optimization methods. The first uses dynamic programming, which is the default opti-

mization choice for the fdasrvf software, and is denoted svrf-dp in text and figures below. The

second uses Riemannian optimization and is denoted svrf-ro. For both competing approaches, ob-

served binary data was smoothed using a box filter, which is built into the fdasrvf software. The

number of box filter passes is a tuning parameter that must be selected, and we found that the

overall registration results were sensitive to this choice. We considered several values (25, 50, 100,

200, and 400); in the following we use 200 passes, which generally lead to better performance in

our simulations.

Methods are compared in terms of estimation accuracy and computation time, with accuracy

quantified using mean integrated squared error (MISE). For each subject, integrated squared error

calculations are made comparing the estimated inverse warping functions for each method, ĥ−1
i (t∗i ),

to the true inverse warping functions h−1
i (t∗i ) such that ISE =

∫ 1
0

{
h−1
i (t∗i )− ĥ−1

i (t∗i )
}2
dti. MISE

is then the average of ISEs across subjects. A sensitivity analysis of our method’s performance
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across values of Kφ and Kh is given in the Appendix.

3.4.2 Simulation Results

Figure 3.3 shows a simulated dataset with 100 subjects observed over a grid with 200 time points.

From left to right, columns show observed (unregistered) data; data observed on the true internal

time t; and data aligned using the registr method, the srvf-dp method, and the srvf-ro method. The

top row shows the latent mean curves, the middle row shows plots of observed binary data, and the

bottom row shows inverse warping functions using true internal time t and estimated internal times

t̂registr, t̂svrf−dp, and t̂svrf−ro. The latent probability curves illustrate the structure of the simulated

data and the relative magnitudes of phase and amplitude variability. Binary curves illustrate the

observed data, and include two periods of higher activity for each subject.

The results for registr in this example are encouraging, both for the latent curves and for the

binary activity data in that phase variation is largely removed. Some amount of misalignment re-

mains, which is attributable to the inherent sampling variability introduced when binary points are

generated from the latent probabilities. The srvf-dp method also works reasonably well, although

visual inspection of the probability curves and binary data suggests somewhat poorer alignment.

The srvf-ro method has poorest alignment, although it also performs reasonably well and captures

the major features in the data.

Figure 3.4 summarizes results across simulated datasets at different sample sizes and grid

lengths; for reference, the data in Figure 3.3 has a median MISE for the registr method rela-

tive to other datasets generated with 100 subjects and 200 time points. The columns of Figure 3.4,

from left to right, show results for datasets with 50, 100, and 200 subjects, respectively, and grid

lengths of 100, 200, and 400 are shown within each panel. The top row shows box plots of MISE

and the bottom row shows median computation times. Across all settings, registr outperforms both
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srvf-dp and srvf-ro methods in terms of the MISE; this is consistent with observations in Figure

3.3. With respect to computation time, although the methods are similar for small sample sizes

and grid lengths, registr and srvf-ro scale as these increase, while the burden grows dramatically

for srvf-dp.

3.5 Analysis

We now apply our method described in Section 5.2 to the BLSA data. These data contain 592

subjects with activity counts every minute over 24 hours, for a total of 1440 measurements per

subject. BLSA participants wore the accelerometer for 5 days; we average across these days to

establish a typical diurnal pattern for each participant, and then threshold the result at values of

10 counts per minute to obtain the binary activity curve to be registered. We fix the dimensions

of the B-spline basis functions to Kφ = 8 and Kh = 4 and number of FPCs to K = 2. Total

computation time was 17 minutes. In the following, we discuss registered activity profiles using

language that refers to times of day. However, it is important to remember throughout this Section

that registered curves are observed on internal time rather than chronological time, and times of

day are person-specific in that sense.

Figure 3.5 shows the registered curves from the BLSA dataset, which can be compared with

the observed data in Figure 3.2. After registration, there are two clear activity peaks: people tend

to be active for an extended period of time after they wake up; this period is followed by a mid-day

dip in activity, and a second, smaller, period of activity in the afternoon and evening. Figure 3.6

emphasizes this point, and the effect of registration, by plotting the subjects from Figure 3.1 after

registration. The data for these two subjects are more closely aligned, as are the latent probabilities

curves estimated from the aligned data. The left panel of Figure 3.5 shows the inverse warping

functions which transform the BLSA data from the unregistered to the registered space.



CHAPTER 3. REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 36

The results of the applying the registration method to these data are consistent with expecta-

tions, in that the diurnal activity pattern observed across subjects after registration contains both

morning and afternoon active periods and a period of relative inactivity around lunchtime. These

results also emphasize the importance of assessing and removing phase variability in studies of daily

activity patterns. The existence and number of “chronotypes”, or subjects who intrinsically prefer

certain hours of the day (like the colloquial night owls or early birds), is the subject of intense

debate in the circadian rhythm literature [Adan et al., 2012]. Aligning observed activity data as a

processing step may help inform this debate, and our results are consistent with the existence of

distinct chronotypes in this population. The supplementary materials contain additional analysis

results for the registration of data from each day of the week separately. These results are similar

to those presented in this Section.

3.6 Discussion

We present a novel approach to curve registration for functional data from exponential family

distributions which avoids the need for pre-smoothing, and our attention to computational efficiency

is necessitated by our data. Simulations suggest our approach compares favorably to competing

methods in the settings we examined. Our scientific results are plausible and meaningful in the

context of activity measurement. Finally, our code for registration and binary probabilistic FPCA

is publicly available in the registr package.

Our approach assumes exponential family functional data is generated from a latent Gaussian

process. While this is a common modeling choice for binary functional data that works well in

practice, it may not provide a suitable framework for theoretical considerations in which the grid

size goes to infinity. Possible future work building on Descary and Panaretos [2016], which considers

modeling continuous functional data with both low rank structure and local correlation in the



CHAPTER 3. REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 37

Gaussian setting, may provide a scientifically meaningful way forward but is beyond our current

scope.

Though registr outperformed the SRSF-based approaches in our simulations, we expect that

the SRSF method will be better suited to some cases including, potentially, smooth Gaussian

curves. Indeed, when curves are absolutely continuous SRSF has the added theoretical benefits of

translation and scale invariance and consistency of the warping procedure. For discrete data or

noisy Gaussian data, where a smoothing parameter must be chosen before applying SRSF methods,

it is unclear if any method will be uniformly superior and we recommend considering multiple

approaches to registration.

Because of the nature of our application, we optimize performance for registering binary curves.

While our method can be applied to functional data from any exponential family, one will not reap

the computational benefits we highlight here without at least some additional work optimizing

the FPCA algorithm for additional distributions; computationally efficient implementations for the

Poisson distribution will be relevant for studies using accelerometer data. For our application,

we chose to threshold activity count data and register the resulting binary curves, which aligned

general patterns of activity and inactivity. Though we could have chosen to register the raw counts

using a Poisson distribution, exploratory analyses suggested that aligning raw activity counts may

be overly influenced by extreme values.

Though we focus on amplitude alignment for this paper, the inverse warping functions con-

tain information on phase variation and are potential analysis objects for future scientific work.

Subsequent analyses will examine whether aligned data are more clearly affected by covariates like

age and sex, and how the phase alignment relates to these covariates. Finally, we note that our

emphasis has been on the temporal structure of inactivity, and additional work to connect these

results with the accrual of sedentary minutes in bouts is needed.



CHAPTER 3. REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 38

Figure 3.3: For top and center rows, from left to right we have: unregistered curves, curves registered

using true inverse warping functions, curves registered using registr method, curves registered using

fdasrvf method with dynamic programming optimization, curves registered using fdasrvf method

with Riemannian optimization. The top row shows the true latent probability curves which are

used to generate the binary curves but not used to estimate warping since they are unknown in a

real data application. The middle row shows the binary curves as a heatmap-style plot, as in Figure

3.2. The bottom row shows the true, registr method, fdasrvf method with dynamic programming,

and fdasrvf method with Riemannian optimization inverse warping functions.



CHAPTER 3. REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 39

Figure 3.4: This figure shows mean integrated squared errors (top row) and median computation

times (bottom row) for registr (darkest shade), srvf-dp (medium shade), and srvf-ro (lightest shade)

methods across varying sample sizes and grid lengths. The columns, from left to right, show sample

sizes 50, 100, and 200, respectively. Within each panel we compare grid lengths of 100, 200, and

400.
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Figure 3.5: Plots of the registered BLSA data. Left panel shows inverse warping functions from

alignment of the data; center panel shows a plot of the aligned binary data; and right panel shows

smooths of the aligned data. See Figure 3.2 for the unregistered data.

Figure 3.6: These are binary curves for the same two subjects from the BLSA data as in Figure

3.1 but now the curves are registered. Here the lines represent estimates of the latent probability

that come from our binary FPCA algorithm.
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Chapter 4

Intensity warping for multisite MRI

harmonization

4.1 Introduction

Medical imaging has become an established practice in clinical studies and medical research, leading

to situations where images must be compared across site locations, scanners, or scanner types.

Upgrades in scanner technology within a site may render old data not comparable to data collected

on a newer machine, and this presents challenges in studies where acquisition techniques change

over time. Multisite studies have become common as well; examples include large neuroimaging

studies such as the Alzheimer’s Disease Neuroimaging Initiative [Mueller et al., 2005] and the

Human Connectome Project [Van Essen et al., 2013], as well as targeted clinical trials studying

multiple sclerosis (MS) interventions such as Kappos et al. [2006] and Hauser et al. [2017].

Measurement across multiple sites and scanners introduces unwanted technical variability in

the images [Schnack et al., 2004]. Going forward we will refer to technical artifacts introduced

across either sites or scanners as “scanner effects.” Scanner effects in imaging studies can reduce

power to detect true differences across images and distort downstream measurements of regional
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volumes, brain lesions, and other biological features of interest [Schnack et al., 2010; Jovicich et

al., 2013; Cannon et al., 2014; Keshavan et al., 2016; Schwartz et al., 2019]. In structural magnetic

resonance imaging (MRI) studies, detection of scanner effects is particularly challenging because

images are collected in arbitrary units of voxel intensity; as a result, raw MRI intensities are often

not comparable across study visits even within the same subject and scanner. We refer to unwanted

technical variability within the same scanner and subject that are due to arbitrary unit intensity

values as “intensity unit effects.” Though often conflated, intensity unit effects and scanner effects

are distinct sources of unwanted technical variation and should be treated separately. We refer to

methods intended to address intensity unit effects as “normalization” methods to distinguish them

from methods intended to reduce scanner effects, which we term “harmonization” methods. Both

scanner effects and intensity unit effects are present in multisite MRI studies, and in practice they

can be challenging to separate.

Scanner effects can be due to differences in scanner hardware, scanner software, scan acquisition

protocol, or other unknown sources. When present, images collected at different sites may have sys-

tematically different distributions of intensity values. For example, Shinohara et al. [2017] showed

substantial differences in volumetrics across sites and scanner types even for a single, biologically

stable subject measured under standardized protocols at the same field strength on platforms pro-

duced by the same vendor. The left panel of Figure 4.1 shows smoothed PDFs of intensity values

for this single subject, who was scanned twice at each of seven sites across the U.S. Large scanner

effects are evident; smaller but visible differences within site show that intensity unit effects are

present as well. In subsequent analyses, scanner effects produced inconsistent measurements of MS

lesion volume both when lesions were segmented manually or by a variety of automated software

pipelines [Shinohara et al., 2017] .

The issue of arbitrary units has long been recognized and is the subject of a large literature
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Figure 4.1: Smoothed PDFs of voxel intensities for scan-rescan data across seven sites in the NAIMS

pilot study: Brigham and Women’s Hospital (Brigham), Cedars-Sinai, Johns Hopkins University

(JHU), National Institutes of Health (NIH), Oregon Health & Sciences University (OHSU), Uni-

versity of California San Francisco (UCSF), and Yale University (Yale). Left panel shows raw voxel

intensities; right panel shows densities after mica harmonization and White Stripe normalization.

At each site two scans were collected; a 1 or 2 after site name indicates the first or second scan,

respectively.

on intensity normalization [Nyúl et al., 1999; Shinohara et al., 2011, 2014; Ghassemi et al., 2015].

Intensity normalization methods facilitate comparability across subjects measured on the same

scanner and standardize voxel intensity values; for a review of several methods see Shah et al. [2011].

Histogram matching is an early approach that aligns densities of voxel intensities to quantiles of an

image template constructed from several control subjects. Though popular, histogram matching

often fails to preserve biological characteristics of individual scans and removes useful information

regarding variation among subjects. Shinohara et al. [2014] formalized the principles of image

normalization and introduced the White Stripe method. White Stripe normalizes images using

patches of normal appearing white matter (NAWM), so that rescaled intensity values are biologically
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interpretable as units of NAWM.White Stripe can effectively normalize white matter across subjects

and is a useful preprocessing step for automated lesion segmentation in MS [Sweeney et al., 2013b,a;

Valcarcel et al., 2018], but technical variability can remain in the gray matter.

Unlike intensity normalization methods, which target intensity unit effects, harmonization meth-

ods aim to reduce scanner effects so that downstream analyses are more comparable across sites and

scanners [Fortin et al., 2017; Yu et al., 2018]. Fortin et al. [2018] described a voxel-wise regression

method, based on tools from genomics, that harmonizes cortical thickness measurements from MRI

scans. This method succeeds in removing scanner effects for measurements extracted from each

image; in contrast, our goal in the present study was to develop an effective harmonization method

that can be applied to the entire brain. Similar tools from genomics are used to correct for scanner

effects in multisite diffusion tensor imaging data [Fortin et al., 2017] and multisite functional MRI

data [Yu et al., 2018]. However, these harmonization methods require spatial registration to a pop-

ulation template, which can lower image resolution and make it challenging to detect important

disease features such as MS lesions. Ideally, an all-purpose harmonization method would remove

scanner effects from the whole brain without requiring that all subjects be spatially registered to

the same template image.

In the past, “normalization” has been used to simultaneously address the problems we charac-

terize as unit and scanner effects, although these are more correctly viewed as distinct problems.

As a result, intensity normalization techniques such as histogram matching and White Stripe are

often used to address harmonization issues [Schnack et al., 2004; Shinohara et al., 2014; Fortin et

al., 2016]. Unlike harmonization techniques mentioned previously, these normalization techniques

can be applied to the whole brain, do not require spatial registration, and reduce intensity unit

effects. When scanner effects are due to the same voxel intensity transformations used to reduce

unit effects, the normalization techniques will reduce scanner effects as well. However, often they
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fail to reduce much of the variability across sites, especially when large nonlinear scanner effects are

present. Additionally, histogram matching normalizes voxel intensities across images at the cost of

removing biological variability across subjects which can distort structures and mask inter-subject

differences of interest.

Here, we introduce a new image intensity harmonization framework for multisite studies. We

use data in which a subject was scanned on multiple scanners closely enough in time that any

image differences can be attributed to differences across acquisition platforms (scanner effects)

rather than biological effects. Our objectives in this study were to (1) establish a method that

removes scanner effects by leveraging multiple scans collected on the same subject, and, building

on this, (2) develop a technique to estimate scanner effects in large multisite trials so these can be

reduced with preprocessing steps. The first objective establishes a framework for understanding

harmonization, and the second relates to the practical use of this framework in multisite studies.

We propose multisite image harmonization by CDF alignment (mica), which harmonizes images

by aligning cumulative distribution functions (CDFs) of voxel intensities. Our approach estimates

nonlinear, monotonically increasing transformations of the voxel intensity values in one scan such

that the resulting intensity CDF perfectly matches the intensity CDF from a second (“target”) scan.

CDFs can be perfectly aligned using standard approaches to curve registration in the functional

data analysis literature [Srivastava et al., 2011; Tucker et al., 2013; Wrobel et al., 2018]. Although

these intensity transformations, called warping functions, are defined using CDFs, they can be

applied to voxel-level intensity values to produce a harmonized image. For a subject measured on

different scanners in close succession, this allows us to identify and remove scanner effects; mappings

established in this way can be used to reduce the impact of scanner effects in multisite studies.

We outline our harmonization approach using two data sets with distinct but related problems.

The North American Imaging in Multiple Sclerosis (NAIMS) pilot study [Shinohara et al., 2017;
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Dworkin et al., 2018; Oh et al., 2018; Papinutto et al., 2018; Schwartz et al., 2019] found large

scanner effects in a single subject with biologically stable MS, and we use these data to show that

mica can reduce technical variability across sites while preserving the ability to detect MS lesions.

A second study, which we refer to as the trio2prisma study, scanned ten healthy subjects on two

different machines and found systematic nonlinear differences between the scanners. We used mica

to harmonize images from the first scanner so that they are comparable to images collected on

the second scanner; this demonstrates how our method can be used to create a mapping between

scanners, and that scanner effects can be removed when data are available from both scanners for

all subjects. Since scan-rescan data are often only available for a subset of study subjects, we also

employed a leave-one-scan-out cross-validation approach to assess the utility of our harmonization

method in this common setting. For both studies, we used mica to understand and, to the extent

possible, remove scanner variability. We paired our method with White Stripe to remove intensity

unit effects as well as scanner effects, though other intensity normalization methods could be used

instead.

In the next section, we describe our data and the mica methodology. We then present the

results of our technique in different settings, followed by a discussion.

4.2 Materials and Methods

4.2.1 Data and processing

4.2.1.1 NAIMS dataset

The NAIMS steering committee developed a brain MRI protocol relevant to MS lesion quantification

[Shinohara et al., 2017]. Using this protocol, two scans were collected at each of seven sites across

the United States on a 45-year-old man with clinically stable relapsing-remitting MS. All scans
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were performed on 3T Siemens scanners (four Skyra, two TimTrio, and one Verio). At each site,

scan-rescan imaging was performed on the same day, with the subject exiting the machine between

scans. The participant was also assessed at the beginning and end of the study on the same scanner

to confirm disease stability by clinical and MRI measures .

Each image was bias-corrected using the N4 inhomogeneity correction algorithm [Tustison et al.,

2010], then brain extraction was performed using the FSL BET skull-stripping algorithm [Smith,

2002]. After performing mica harmonization as described in Section (4.2.2), T1-weighted (T1-w)

and fluid attenuated inversion recovery (FLAIR) images were White Stripe normalized [Shinohara,

R T and Muschelli, J, 2018] to remove intensity unit effects and enable automated MS lesion

detection using the MIMoSA [Valcarcel et al., 2018] software pipeline.

4.2.1.2 trio2prisma dataset

The trio2prisma data were collected from ten healthy subjects ages 19 to 29 at the University of

Pennsylvania. For each subject, brain MRI scans were obtained on both a Siemens Trio machine

and a Prisma scanner. Scans were performed between 2 and 11 days apart for each subject (mean

4.2 days), a time window in which we expect no significant structural changes in the brain. We

focused on T1-w images for the trio2prisma data, though our method can be applied to other

modalities as well. Images were bias-corrected, skull-stripped, and White Stripe normalized using

the same algorithms described for the NAIMS data. Because normalization methods have often

been used for harmonization in the past, we comparedmica to White Stripe and histogram matching

normalization. To assess method performance on this data, we compared white and gray matter

segmentations for mica-harmonized images to White Stripe and histogram matching normalized

images. All white and gray matter segmentations were obtained using multi-atlas Joint Label

Fusion [Wang et al., 2013].
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Figure 4.2: Harmonization pipeline. Raw images are N4 bias-corrected, skull-stripped, voxel inten-

sities are converted to CDFs, CDFs are aligned by warping intensity values. The transformation

of intensity values that produces this alignment is called a warping function, and the nonlinear

transformation is applied to the raw images to produce harmonized images.

4.2.2 Methodology

Our framework for image harmonization uses non-linear transformations of image intensity values

to remove scanner effects. The transformations were calculated by aligning distribution functions

of intensity values. For a particular imaging modality (for example, T1-w), Yijk(v) represents

the intensity at a given voxel v for scan j of subject i measured at site k. Then fijk(x) and

Fijk(x) represent the probability density function (PDF) and CDF, respectively, for the voxel

intensities of image Yijk measured over intensities x. Within each subject we assumed variability in

voxel intensities across visits j and sites k is due to scanner and intensity unit effects rather than

biological change, and that non-biological differences could be removed by aligning all CDFs for

the ith subject to a subject-specific “template CDF,” Fit(x), for template t; template choices for
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our motivating studies are described below.

For image Yijk we estimate the nonlinear monotonic transformation of the intensity values, or

warping function, h−1
ijk(x) = x̃, which aligns the CDF Fijk(x) to its template via

Fijk

{
h−1
ijk(x)

}
= Fijk(x̃) = Fit(x). (4.1)

After alignment, the CDF of the original images becomes identical to the CDF of the template.

For this reason, we use the notation Fit(x) to represent the mica-harmonized CDF as well as the

template for alignment. We further denote fijk

{
h−1
ijk(x)

}
= fit(x) and Yit(v) to be the mica-

harmonized PDFs and images, respectively. The aligned PDFs, fit(x), can be recovered from

CDFs by differentiation. The warping functions h−1
ijk(x) = x̃ define a new intensity value, x̃, for

each original intensity value in x. Since each Yijk(v) is a voxel intensity in x, harmonized images Yit

take values in x̃ and are obtained by h−1
ijk {Yijk(v)} = Yit(v). Figure (4.2) shows a schematic of this

process: images were bias corrected and skull-stripped, voxel-intensities were converted to CDFs,

CDFs were aligned, and warping functions from CDF alignment were used to generate harmonized

images.

Given this framework for quantifying scanner effects, we now address objectives (1) and (2)

stated in Section (4.1). Our first objective, to establish a method that removes scanner effects,

is illustrated using both the NAIMS and the trio2prisma data. For NAIMS data, we obtained

empirical CDFs of T1-w and FLAIR images from the NAIMS dataset. Within an imaging modality,

each CDF is given by Fijk(x), i = 1, j ∈ {1, 2}, k ∈ {1, ..., 7}. We used the Karcher mean as the

common template Fit(x) to which all CDFs within a modality are aligned, though in principle other

templates could be used. For the trio2prisma data, we obtained empirical CDFs of T1-w images.

Each CDF is given by Fijk(x), i ∈ {1, ..., 10}, j = 1, k ∈ {Trio, Prisma}. For each subject, we used

the CDF from the Prisma image, F
iPrisma(x), as the template to which we align the CDF from the
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Trio image, F
iTrio(x). Functions from the fdasrvf R package [Tucker, 2017] were used to perform

alignment.

Our second objective was to develop a technique to estimate scanner effects in large multisite

trials; to illustrate this, we used warping functions from the trio2prisma data. In such studies, most

subjects are only measured on a single scanner. At best, only a subset of subjects will have scans

collected at all locations in the study. In order to harmonize scans for all subjects in this real-world

setting, we propose to use mica to estimate warping functions for the subset of subjects who have

multiple scans, average these warping functions across subjects; and use the resulting mean to

harmonize images for subjects with only a single scan available. We assessed the performance of

this approach using leave-one-scan-out cross validation in the trio2prisma data. Specifically, we

removed the Prisma scan for one subject and computed the mica warping functions {h−1
i (x)} for

the remaining subjects. We then computed the pointwise mean of these warping functions; using

this as the warping function for the removed subject, we obtained a predicted Prisma scan from

the known Trio scan. This process was repeated for each of the ten subjects. In the subsequent

sections, scans harmonized using this leave-one-scan-out (loso) approach will be referred to below

as loso-harmonized images and Trio scans harmonized using the full data will be referred to as

mica-harmonized scans.

4.2.3 Statistical performance

All analyses were performed in the R software environment.

4.2.3.1 NAIMS data

To assess the performance of our method on the NAIMS data we quantified T2-hyperintense le-

sion volume from the 3D FLAIR and T1-w images in both the White Stripe normalized and
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mica-harmonized images using MIMoSA [Valcarcel et al., 2018] for automated lesion segmenta-

tion. Because the number and volume of lesions are important metrics for monitoring MS disease

progression [Bakshi et al., 2008] and the evaluation of therapeutic efficacy [Filippi et al., 2006],

eliminating non-biological variability in detected lesion volumes will help clinicians deliver the best

possible care to their patients.

We quantified mean and variance of lesion volumes within and across sites after applying White

Stripe alone and after applying mica followed by White Stripe.

4.2.3.2 trio2prisma data

For the trio2prisma data, we comparedmica and loso to the histogram matching algorithm proposed

by Nyúl et al. [1999], as implemented in Fortin et al. [2016]. For better performance we first removed

background voxels before running the histogram matching algorithm. To quantify performance of

the methods we computed Hellinger distance of images before and after normalization, both within

and across subjects. The Hellinger distance operates on PDFs of intensities, and its square is given

by

h2(fl, fk) =
1

2

∫ (√
fl(x)−

√
fk(x)

)2
dx (4.2)

for PDFs fl(x) and fk(x). We visualized CDFs and PDFs and calculated Hellinger distances

(Figures 4.4, 4.5, and 4.6, respectively) using images that had been mica or loso-harmonized but

not yet White Stripe normalized. This is to isolate and visualize the effects of our method. For

downstream analyses, including automated white and gray matter segmentation, we applied White

Stripe normalization to the mica and loso-harmonized images to remove any residual intensity unit

effects. We then estimated gray and white matter volumes and compare these across harmonization

methods.
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4.3 Results

For the NAIMS pilot data, we compared White Stripe normalized images to images processed using

the mica approach outlined in section (4.2.2). For the trio2prisma data, we compared four har-

monization strategies: no harmonization, histogram matching, mica, and loso. The main findings

from these comparisons are summarized in the following two sections.

4.3.1 mica reduces variation in lesion volumes across sites in the NAIMS study

Figure 4.3: Estimated T2 lesion volumes for scan-rescan pairs at each of 7 sites in the NAIMS

study. Circles indicate scan 1 and triangles indicate scan 2. Light and dark colors are volumes for

White Stripe normalized images and mica normalized images, respectively.

We mica-harmonized then White Stripe normalized the NAIMS scans, and then quantified MS

lesion volume to assess the effect of scanner variability on a common downstream analysis before

and after mica harmonization. The left panel of Figure 4.1 shows PDFs of raw voxel intensities

from the NAIMS study images, and the right panel shows PDFs of images that have been mica-

harmonized then White Stripe normalized. The raw PDFs show small differences within site, which



CHAPTER 4. INTENSITY WARPING FOR MULTISITE MRI HARMONIZATION 53

are attributable to intensity unit effects, and larger differences across site, which are attributable

to scanner effects. Scanner effects are particularly large between the UCSF site and other sites.

After mica harmonization, the images across and within site have the same distributions of voxel

intensities.

Figure 4.3 shows estimated T2-hyperintense lesion volume across sites for both White Stripe

alone and White Stripe in conjunction with mica for scan-rescan pairs across the seven NAIMS

sites. Compared to White Stripe alone, mica in conjunction with White Stripe yielded less variable

lesion volume measurements across sites (variance 11.8 ml2 vs. 17.1 ml2) and similar lesion volume

measurements within sites (variance 12.4ml2 vs. 11.9ml2). We see a larger impact across sites than

within sites, suggesting that our method decreases site-to-site variance as expected and, together

with White Stripe, performs comparably to existing methods for within site variance.

4.3.2 mica preserves variation across subjects in the trio2prisma study

An appropriate harmonization method for multisite studies should reduce variability across scanners

within the same subject but preserve biological differences across subjects. Here, we evaluate results

from the trio2prisma data with these goals in mind. We comparedmica and loso-harmonized images

to images processed by histogram matching.

Figures 4.4 and 4.5 show CDFs and PDFs, respectively, under different harmonization scenarios.

Visual inspection of intensity PDFs and CDFs in untransformed images suggests differences across

scanners: the Prisma scans tend to have lower intensity values and higher peaks than the Trio

scans. For both mica and histogram matching, within-subject technical variability is reduced

because PDFs of Trio scans and Prisma scans are aligned. mica accomplishes this by mapping the

Trio scan to the original Prisma scan, thus preserving the original features of the Prisma scans

including variability across subjects. Histogram matching must be applied to scans from both
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Figure 4.4: CDFs of intensities before and after harmonization by tissue type in the trio2prisma

study. Rows indicate tissue type, with whole brain, white matter, and gray matter shown in rows

1, 2, and 3, respectively. Columns correspond to different harmonization methods.

the Trio and Prisma scanners, and reduces within-subject variability at the expense of eliminating

desired differences across subjects. loso provides reasonable harmonization in that it maps Trio

scans into the same range of intensity values as Prisma scans, but has less accuracy in reducing

within-subject variability than mica or histogram matching. However, much of the desired across-

subject variability is retained.

We quantified the variability across subjects using the Hellinger distance from equation (4.2) on

PDFs of voxel intensities. Figure 4.6 displays boxplots of these pairwise distances for the original

Trio scans, original Prisma scans, and scans processed by histogram matching, loso, and mica. The
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Figure 4.5: Smoothed PDFs of intensities before and after harmonization by tissue type in the

trio2prisma study. Rows indicate tissue type, with whole brain, white matter, and gray matter

shown in rows 1, 2, and 3, respectively. Columns correspond to different harmonization methods.

figure is divided into distances calculated on the full skull-stripped images (left column), white

matter (middle column), and gray matter (right column). The mica-harmonized Trio scans have

similar across-subject variability to the Prisma scans. The loso scans have variability comparable to

the original Trio scans but smaller than the Prisma scans. Histogram matching virtually eliminates

inter-subject variability, including that which is presumably biological.

Figure 4.7 shows an axial slice of the Trio image for one subject from the trio2prisma dataset.

The slice is shown for raw intensity values (center), intensity values after mica harmonization

(left), and intensity values after histogram matching (right). Here, mica-harmonization brightens
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Figure 4.6: Boxplots of Hellinger distances across subjects, shaded by method. Columns show

results for full brain (left), white matter (middle), and gray matter (right).

the contrast between white and gray matter but does not distort the shape of biological features

in the tissue. Histogram matching, however, drastically changes the appearance of the image,

converting some gray matter to CSF and some white matter to gray matter.

Finally, neither harmonization nor normalization methods should bias assignment of tissue type.

After harmonization or normalization, we expect that segmentation volumes from harmonized Trio

scans should be similar to segmentation volumes from unharmonized and unnormalized (raw) Trio

scans. We estimated white and gray matter volumes on original Trio scans and after histogram

matching, White Stripe, mica followed by White Stripe, and loso followed by White Stripe. Figure

4.8 shows these volumes for each subject and tissue type. All methods have at least some difference

in segmentation volume compared to the raw data. The mica, loso, and White Stripe methods all

performed similarly, with volumes that are close to those of the raw images but slightly lower for

the gray matter and slightly higher for the white matter. Histogram matching, however, had much

lower segmentation volumes in both the gray matter and the white matter than either the raw data
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Figure 4.7: Axial slice of skull-stripped images from a single subject in the trio2prisma dataset.

Center panel shows the raw intensity values from an image collected on the Trio scanner. Left and

right panels show the same image after mica harmonization and histogram matching, respectively.

or any other method. As shown in Figure 4.7, histogram matching severely distorts the image; we

believe this distortion causes the segmentation algorithm to convert some gray matter to CSF and

some white matter to gray matter, which explains the consistently lower volumes.

4.4 Discussion

Unwanted technical variability due to scanner effects in multisite clinical trials and observational

studies is an increasingly common problem; to mitigate these scanner effects we introdce mica,

a method that harmonizes structural MRI images by defining nonlinear transformations between

CDFs of voxel intensities. To specifically target scanner effects, we developed a paradigm for

understanding scanner effects and intensity unit effects as related but distinct sources of technical

variability in MRI scans. Intensity unit effects are due to arbitrary MRI unit intensities within a

single scanner, and scanner effects are unwanted technical artifacts introduced across scanners or
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Figure 4.8: Segmented brain volume in the gray matter (left) and white matter (right) for each

trio2prisma subject across harmonization approaches. We compare no normalization or harmoniza-

tion (raw), histogram matching (hm), White Stripe normalization (ws), mica, and loso.

sites. We also distinguish between approaches targeting these sources of variability: normalization

methods address intensity unit effects, and harmonization methods, the focus of our study, address

scanner effects.

Our data came from two small studies, the NAIMS pilot study and the trio2prisma study, with

multiple images per subject taken on multiple scanners, and nonlinear scanner effects. We found

that mica reduced within-subject variability in whole brain scans as well as white and gray matter

while preserving biological variability across subjects. We also found that mica, paired with White

Stripe, enhanced reproducibility of measurements of MS lesion volume across sites.

Normalization methods such as histogram matching and White Stripe are sometimes used for

harmonization, but they are inadequate in cases where across-site differences are much larger than

those within site. Additionally, histogram matching can reduce biological variability across subjects

and White Stripe can leave residual technical variability in the gray matter. While we differentiate
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conceptually between intensity unit effects and scanner effects, we also acknowledge that in reality

these artifacts can be challenging to separate. As a result, mica is likely to remove some intensity

unit effects and intensity normalization methods are likely to remove some scanner effects when

applied separately. In particular, White Stripe alone will likely perform well as a harmonization

method when scanner effects are small, linear transformations. Histogram matching, however, is

likely to remove desired variability across subjects and bias results.

Because our method is flexible and operates on the full brain, we can map images from one

scanner to another. This mapping is only exact for a particular subject when images are available

from both scanners, which is not realistic for most studies. That said, our leave-one-scan-out anal-

ysis suggests that when systematic site differences are present, mica can help understand scanner

effects and mitigate those differences. Before conducting multisite studies, we recommend obtaining

a baseline measurement of scanner variability by having a subset of patients measured at all sites.

Our method can then be applied to all images collected to remove average scanner variability. We

acknowledge that this solution is imperfect in the sense that average scanner variability collected

from a subset of patients in a trial will not always capture the true scanner variability for each

subject. However, our simple and easy-to-apply methodology is an important step forward for an

increasingly prevalent problem. There is evidence that scanner effects may vary across covariates

such as gender and age, so extensions to mica that incorporate covariates may address some of the

issues outlined above.

4.5 Software

To enable use of mica we have written an R software package which is available for download at

https://github.com/julia-wrobel/mica.
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Chapter 5

A dynamical systems model for the

relationship between the motor cortex

and skilled movement

5.1 Introduction

Our motivating data comes from a study that collected 3D trajectories of paw position over time as

a mouse made a trained reaching motion for a food pellet; the paw reach trajectories were measured

concurrently with neural activity in the motor cortex, an area of the brain known to be important

for voluntary movement. These data were collected in an effort to understand the dynamics between

motor cortex activation and induced behavior. This is an example from the increasingly common

class of problems where outcome and responses are measured densely in parallel. For these data

streams, we want to understand the relationship between inputs and outputs that are both functions

measured on the same domain.

Recent work using these data to investigate how brain activation triggers or inhibits fine motor

control during reaches suggests that the dynamics of the arm during complex voluntary movements
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are tightly coupled to input from the motor cortex [Guo et al., 2015; Sauerbrei et al., 2018]. To

better quantify how brain activity affects current and future paw position, we need a method that

(1) allows future position to depend on past but not future neural firing rate, (2) allows future

position to be affected by initial position, (3) has parameters that model the relationship between

the paw trajectory and the brain as a dynamical system of inputs and outputs, the state of which

evolves over time, and (4) can accommodate repeated functional observations across trials. These

problems cannot be simultaneously addressed by current methods. We develop a novel regression

framework that combines ordinary differential equations (ODEs) and functional regression and is

well-suited to address the problems our data presents. This work is connected to both the ODE

and functional data analysis literatures, which we review in Sections 5.1.3 and 5.1.4, respectively.

First, in Sections 5.1.1 and 5.1.2, we describe our motivating data and model structure in more

detail.

5.1.1 Paw trajectory data

The motivating data were collected as part of a study on the specific role of the motor cortex

in enacting skilled movement, where a skilled movement is defined as a voluntary behavior that

requires coordination and precision. Several experiments from Guo et al. [2015] and Sauerbrei

et al. [2018] show that the motor cortex is necessary and sufficient for enacting a learned skill.

Specifically, the motor cortex continually generates a signal driving reach-to-grasp movements in

mice.

In the experimental framework that generated our motivating data, a single mouse was trained

to reach for a food pellet in a memorized location after hearing an auditory cue. The mouse was

fixed at the head to reduce variability in posture, the auditory cue was played, and the mouse

enacted the task of picking up its paw from a resting location to reach for and grasp the food
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pellet. Video recordings of the task completion were used to extract 3D trajectories of paw position

from lift (the point at which the paw leaves its rest position) to grasp (the point at which the

paw grasps the food pellet). Prior to experimentation a sensor array was implanted in the motor

cortex, with data processing to isolate 25 neurons. Firing rates of the 25 neurons in the motor

cortex were simultaneously recorded at a rate of 500 recordings per second to capture the animal’s

neural dynamics. This describes a single trial of the experiment, which was repeated 147 times. A

schematic of this experiment is depicted in Appendix B.

For each trial i, paw position was recorded in the x, y, and z directions over 4 seconds, result-

ing in trivariate functional observations {Y Px

i (t), Y
Py

i (t), Y Pz

i (t)}. Because we treat each direction

independently, going forward we simplify notation to Yi(t) by omitting the superscripts Px, Py,

and Pz. The auditory cue was played 0.5 seconds into the trial, on average lift occurred at 0.77

seconds, and on average grasp occurred at 0.88 seconds into the trial. For our analysis we limit the

time frame to the period 0.05 seconds before lift to 0.25 seconds after lift for each trial, and data

is linearly shifted so that the timing of lift for each trial is aligned.

The top row of Figure (5.1) shows the paw positions across trials and axes, from 0.05 seconds

before lift to 0.25 seconds after lift. Across axes, paw position at time t depends on initial paw

position at the start of the trial. The middle row of Figure (5.1) shows heat maps of the first 2

seconds of firing data for 3 of the 25 neurons, which were chosen because they are representative of

patterns seen across neurons. In figures showing neural firing, each row is a trial and each column

is a point in time; dark or light shading indicates that a neuron is off or on, respectively. After

the auditory cue at 0.5 seconds, neurons at location 2 are mildly activated, neurons at location 6

are highly activated, and neurons at location 9 become less activated. Activity within neurons was

fairly consistent across trials, but large differences are seen across neurons.

Firing rates of the 25 neurons were reduced to five dimensions using Gaussian process factor
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analysis (GPFA), a standard technique for decomposing noisy neural spiking activity into smooth

low-dimension neural trajectories [Yu et al., 2009]. From a neurobiological perspective, extracting

emergent patterns in the motor cortex using GPFA is a better way of assessing how neural activity

drives behavior than using the raw neural firing data, because it increases generalizability across

neurons and trials. From a statistical perspective, GPFA also reduces risk of collinearity when

using the neural firing rates as covariates in a regression setting.

Previous work used initial position and neural activity data to predict paw trajectories for

held-out trials. However, this work did not allow for the relationship between position and neural

activity to vary over time, and did not enhance interpretation of this system of inputs and outputs.

We describe our model below; this work introduces a novel regression method that is well-suited

to our scientific context.

5.1.2 flode model

The biological underpinnings of our data are a dynamical system where initial position and paw

are being acted on by outside forces coming from the motor cortex; these forces drive changes

in velocity of the paw which then influences position. We introduce the flode (functional linear

ordinary differential equation) model, a novel functional regression framework that represents this

neurobiological system of inputs (motor cortical activity) and outputs (paw position). The flode

model is a first-order ordinary differential equation (ODE), which allows us to incorporate how

change in paw position influences position at time t, reflecting the dynamic nature of our data. In

its differential form, our model is

y′i(t) = −αyi(t) + δi(t) + B0(t) +

P∑

p=1

Bp(t)xip(t), (5.1)

where yi(t) and y′i(t) are the paw position and first derivative of paw position (velocity) at time
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t, xip(t), p ∈ 1 . . . P are trial-specific forcing functions, and α, δi(t), and Bp(t), p ∈ 0 . . . P are

parameters to be estimated from the data. Forcing functions, analogous to covariates in a traditional

regression model, are external input forces that act on the ODE system.

This is a buffered system, meaning the response time is longer than the time interval in which

the input changes. The scalar parameter α, called the buffering parameter, indicates the amount

of buffering on the system. As α → 0, buffering increases, and the effects of forcing functions and

initial position persist in time. As α grows larger, the effects of forcing functions and initial position

becomes instantaneous. The Bp(t) are coefficient functions that measure the impact of changes in

the forcing function xip(t) on the system, interpreted as the change in paw velocity at time t,

y′i(t), given a one unit change in forcing function xip(t). B0(t) and δi(t) are the population-level

and trial-specific intercepts, respectively. The δi(t) terms capture residual within-trial correlation;

while much of fine motor control is known to be driven by the motor cortex, other brain regions

also contribute to the paw reaching motion, and the δi(t) term is intended to capture changes in

position driven by unmeasured forces.

Many systems of differential equations cannot be solved analytically, which makes traditional

statistical estimation techniques with the observed data Y as the outcome challenging. However,

the class of ODEs we consider has a solution, which we parameterize in terms of the initial value,

given by

Yi(t) = yi(0)e
−αt +

∫ t

0
e−α(t−s)δi(s)ds+

P∑

p=0

∫ t

0
e−α(t−s)Bp(s)xip(s)ds+ ǫi(t). (5.2)

We differentiate between yi(t), the true (unobserved) paw position at time t, and Yi(t), the paw

position at time t observed with measurement error ǫi(t). Thus, in model (5.2) above, we assume

the outcome Yi(t) is measured with error but depends on the true initial position yi(0).

The flode model is a first-order linear differential equation, which reflects the biological process
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that is hypothesized to generate the observed data. To familiarize readers with ordinary differential

equations and their use in statistics, we review the ODE literature in Section 5.1.3. An overview

of the functional data analysis literature dedicated to regression, provided in Section 5.1.4, is also

pertinent since the paw trajectories will be conceptualized and modeled as i.i.d. realizations of

functions that are observed over time.

5.1.3 ODEs

Systems of ordinary differential equations (ODEs) can be used to directly model the relationship

between an outcome and its derivatives, leading to widespread popularity for modeling dynamical

systems in physics, biology, neuroscience, and other disciplines. First-order ODEs, which incorpo-

rate only the first derivative of y, follow the form given in Equation (5.1), though the δi(t) term we

include is unconventional.

Equation (5.1) is also said to be a linear differential equation because its right hand side can

be written as a linear combination of y and terms that do not contain y [Tennenbaum and Pollard,

1985]. Though more complex ODEs are possible, such as those of higher order or with nonlinearity,

we believe the simpler model can capture the dynamics of our data. When analytically solvable,

most ODEs do not have a unique solution. It is therefore common, and useful for our data setting,

to solve in terms of the initial value y(0).

Most applications of ODEs in science and engineering focus on restrictive rather than general

settings, in part because parameter estimation for general models is challenging. In the past this

specificity has limited their use in statistics, but they are growing in popularity. Chen et al.

[2017] reconstructs gene regulatory networks by estimating sparse nonlinear ODEs for noisy gene

expression data, building on previous work [Lu et al., 2011; Henderson and Michailidis, 2014].

In their instant classic Dynamic Data Analysis, Ramsay and Hooker [2017] conceptualize dy-
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namical systems as data-driven statistical models. The book provides a framework for estimating

a large class of differential equations, as well as an excellent overview of ODE-based models that

expands on earlier work from Ramsay et al. [2007] for parameter estimation in nonlinear ODEs.

Separate estimation frameworks are provided for linear and nonlinear ODEs though both involve a

tradeoff between the best fit to a particular prespecified ODE and a smooth fit to the data, enforced

using B-spline expansions. While this general framework is well-suited to estimate parameters for

a single realization of an ODE, it does not accommodate multiple trials or the complexities that

arise in that case.

5.1.4 Functional regression models

Our data setting and proposed methods are also closely related to functional data analysis. In

functional data analysis, curve Yi(t) is the fundamental unit of statistical analysis [Ramsay and

Silverman, 2005], and functional analogs of univariate methods like regression, PCA, and others

build on this framework. Functional regression models capture the relationship between outcome

curves Yi(t), i ∈ 1 . . . N from N independent trials, and the covariate(s) xi, which can be scalar or

functional. In particular, function-on-function regression allows for both functional responses and

functional predictors that can be observed on different domains, and the response is related to the

predictor through integration of a coefficient surface [Ramsay and Silverman, 2005].

Some special cases of function-on-function regression include the linear functional concurrent

model [Fan and Zhang, 2008; Goldsmith and Schwartz, 2017] and the historical functional regression

model [Malfait and Ramsay, 2003]. The concurrent model uses the current value of the predictor

to measure the response at each time, but doesn’t allow the covariates to affect future values of the

response. The historical functional model allows the response at time t to be influenced only by

the predictors up to time t; this is ideal for data where the response and predictor are measured
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on the same domain, and prevents future values of the predictors from influencing the present

value of the response. Advances in functional regression and accompanying software allow for

historical functional regression models with scalar and functional covariates, as well as functional

trial-specific random effects [Scheipl et al., 2015, 2016; Crainiceanu et al., 2015]. The historical

model with trial-specific random intercept γi(t) is given by

Yi(t) = γi(t) + β0(t) +
P∑

p=1

∫ t

s=0
βp(t, s)xip(s)ds+ ǫi(t). (5.3)

Here β0(t) is the population-level intercept, and each βp(t, s) is a coefficient surface. This flexible

model is designed to handle repeated functional observations, and inclusion of the random intercept

γi(t) accounts for within-trial residual correlation in the errors after modeling the relationship

between the outcome and the covariates curves.

Conceptually both the integrated flode model in 5.2 and historical functional regression use

predictors, including their recent history, to understand current values of the response function.

Because of these high-level similarities we find it useful to compare and contrast these methods. If

we assume the surface β(t, s) from Equation (5.3) takes the form e−α(t−s)B(s) from Equation (5.2),

γi(t) = yi(0)e
−αt +

∫ t

0 e
−α(t−s)δi(s)ds, and β0(t) =

∫ t

0 e
−α(t−s)B0(s)ds, then flode can be considered

a special case of the historical functional regression model. However, the flode surface e−α(t−s)B(s)

is very restricted compared to the more general historical surface β(s, t); as a result, the historical

model is likely too flexible and may overfit data that is generated by the flode model.

These assumptions are not trivial. From a conceptual standpoint, flode introduces a new frame-

work for thinking about the relationship between inputs and outputs in an ODE system, and the

historical model does not offer this interpretation. Initial position is a crucial element of the flode

framework because it provides a specific analytic solutions to the ODE in 5.1; in contrast initial po-

sition is not a natural element of the historical model and does not have precedent in the functional
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regression literature. Explicitly incorporating initial position into a functional regression context is

both critical for our dynamical systems approach and a novel contribution in its own right. Finally,

the flode model is nonlinear in its parameter α, a development which other functional regression

methods haven’t directly addressed.

5.2 Methods

Our work introduces models (5.1) and (5.2), a novel framework for modeling functional observations

with an explicit dynamical systems interpretation.

5.2.1 Model formulation

The flode method is a system of differential equations, where equation (5.1) represents the model

on the scale of the paw velocity, and equation (5.2) on the scale of the paw position. Because

we observe paw position data rather than paw velocities, we estimate parameters using the paw

position model. However, we are interested in interpretation on the velocity scale.

In this section we explain our parameter estimation approach. The buffering parameter α will

be estimated using nonlinear least squares. Since we observe initial position with error, Yi(0), we

also need to estimate true initial position, yi(0). The random effects δi(t) and coefficient functions

Bp(t) will be expanded using B-splines. Under these conditions all parameters will be estimated

jointly using the algorithm described in Section 5.2.2.

To induce smoothness and reduce dimensionality, the trial-specific random intercepts δi(t) and

coefficient functions Bp(t) are expanded using a fixed B-spline basis, Θ(t), of Kt basis functions

θ1(t), . . . , θKt(t), such that δi(t) = Θ(t)di and Bp(t) = Θ(t)bp, where di, i ∈ 1 . . . N is a Kt × 1

vectors of spline coefficients for the random intercept of the ith trial, and bp, p ∈ 1 . . . P is a Kt× 1

vector of spline coefficients for the pth coefficient function. Using this representation each forcing
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function term becomes.

P∑

p=1

∫ t

s=0
e−α(t−s) · xip(s) · Bp(s)ds =

P∑

p=1

∫ t

s=0
e−α(t−s) · xip(s) ·Θ(s)bpds

=
∑

p

(∫ t

s=0

[
{e−α(t−s) · xip(s)} ⊗ 1TKt

]
·Θ(s)ds

)
bp

=
∑

p

x∗ip(t, α)bp

= x∗
i (t, α)b,

where ⊗ denotes the element-wise Kronecker product, and 1Kt is a length Kt column vector with

each entry equal to 1. We define x∗
i (t, α) = {x∗i1(t, α)| . . . |x

∗
iP (t, α)} and b =

(
bT1 | . . . |b

T
P

)T
. Simi-

larly, the random intercept term becomes

∫ t

s=0
e−α(t−s) · δi(s)ds =

∫ t

s=0
e−α(t−s) ·Θ(s)dids

=

[∫ t

s=0

{
e−α(t−s) ⊗ 1TKt

}
·Θ(s)ds

]
di

= D∗(t, α)di,

Finally, we define y∗i0(t, α) = yi(0)e
−αt.

Though the conceptual model is expressed over continuous time domain t, in practice, each

trajectory Yi is observed on the discrete grid, t = {t1, t2, . . . , tD}, which we assume to be equally

spaced and shared across trials. Functions Yi(t) evaluated on this grid are vectors of length D, and

D∗(t, α) and x∗ip(t, α) are D×Kt matrices. Letting Θ(t) be the D×Kt spline matrix evaluated at

t, then δi(t) = Θ(t)di and Bp(t) = Θ(t)bp. Putting these terms together and evaluating on grid t

gives the observed data model,
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Yi(t) = y∗i0(t, α) +D∗(t, α)di + x
∗
i (t, α)b+ ǫi(t). (5.4)

We use the notation g∗(t, α) above to highlight that terms x∗
i (t, α), D

∗(t, α), and y∗i0(t, α) are all

functions of both time t and the model parameter α. However, throughout this section these terms

will be used interchangeably with the terms x∗
i , D

∗, and y∗i0 for notational simplicity. Naturally,

on a discrete grid the integral defined above needs to be approximated numerically. For numeric

integration we use a Riemannian approach, but other approaches would be reasonable as well.

We assume both the spline coefficients for the trial-specific intercept, di, and the white noise,

ǫi(t), are random and have the following distributions

ǫi(t) ∼ N(0, σ2ID)

di ∼ N(0,ΣKt×Kt),

which induces a conditionally normal distribution on the observed data given the random effects,

Yi|di ∼ N
(
y∗i0 +D∗di + x

∗
i b, σ

2ID
)
.

For the purpose of the derivations below we simplify the random intercept variance to ΣKt = λIKt.

We estimate the buffering parameter α, variance parameters σ2 and λ, true initial positions

yi(0), and spline coefficients b and di using the expectation-maximization algorithm described in

below. The algorithm incorporates a nonlinear least squares step to optimize the α parameter.

5.2.2 EM algorithm for estimating fixed and random effects

We use an expectation-maximization (EM) algorithm to find the maximum likelihood estimates

(MLEs) of both fixed and random effects, following precedent from Laird and Ware [1982] for
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longitudinal data and Walker [1996] for nonlinear mixed models. Our goal is to estimate the

experiment-wide fixed effects Φ =
{
α, b, yi(0), σ

2, λ
}
and the random effect spline coefficients di.

In the M -step of the algorithm we estimate the MLE of the fixed effects when the random effects

are observed, Φ̂ = argmax
Φ

{l(Φ|Y )}, and in the E-step we get estimates for the random effects by

taking the expectation of the di under the posterior distribution of di given the data Yi.

5.2.2.1 M-step

When the random effects di are known, the MLE of Φ maximizes the joint log-likelihood

l(Φ)) = log p(Y,d;Φ)

= log p(Y |d;Φ) + log p(d;Φ)

= log p
{
Y |d;α,b, yi(0), σ

2
}
+ log p(d;λ).

This leads to the following fixed effects

α̂ = argmin
α

ǫT ǫ

b̂ =
(
x∗Tx∗

)−1
x∗T (Y − y∗0 −mD∗ < d >)

ŷi(0) =
(e−αt)T {Yi −D∗ < di > −x∗

i b}

(e−2αt)T 1D

σ̂2 =
ǫT ǫ

ND

λ̂ =

∑
i tr(< did

T
i >)

NKt

.

The notation tr(A) indicates the trace of matrix A, and 1D is a length D column vector with each
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entry equal to 1. When not indexed by i, the vectors Y and y∗0 denote length ND stacked forms of

their trial-specific length D counterparts, Yi and y
∗
i0. Similarly, d is a stacked length NKt vector,

and x∗ and mD∗ are stacked ND ×Kt matrices. The residual sum of squares, ǫT ǫ, is given by

ǫT ǫ = (Y − y∗0 +mD∗d+ x∗b)T (Y − y∗0 +mD∗d+ x∗b)

= Y TY − 2Y T (y∗0 +mD∗d+ x∗b) + y∗T0 y∗0 + 2y∗T0 (mD∗ < d > +x∗b)

+ (x∗b)T (x∗b) + 2 (x∗b)T mD∗ < d > + < dTmD∗TmD∗d > .

The notation < . . . > represents the expected values of d and dTD∗TD∗d, the estimation of which

are detailed in the E-step below.

5.2.2.2 E-step

Bayes’ rule leads to the posterior distribution of the random intercept coefficients,

di|Yi ∼ N (mi,C) ,

where

C =

{
1

λ
IKt +

D∗TD∗

σ2

}−1

,

and

mi =
CD∗T (Yi − y∗i0 − x

∗
i b)

σ2
.

Then the solutions to < di > and < dTi D
∗TD∗di > are mi and tr(D∗TD∗C) + mT

i D
∗TD∗mi,

respectively. We iterate between the M -step and the E-step to obtain a solution. The algorithm

converges when the squared difference between the current estimate of Φ̂ and its value in the

previous iteration become arbitrarily small.
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The random intercept in the flode model is included to capture residual within-trial correlation

in the paw trajectories. If one is willing to assume that the residuals are uncorrelated, then for

each trial δi(t) = 0 and the flode model simplifies, which allows parameters Φ̂ to be maximized

directly without the E-step.

5.2.3 Implementation

Our methods are implemented in R and publicly available on GitHub. We use nonlinear least squares

to estimate α, which is implemented using the optim function, which uses a golden-section search

algorithm to minimize the squared error loss in Equation 5.4.Good initialization is important for

fast convergence when using the optim function. For this reason, we recommend doing a grid search

to find a value α0 that minimizes the loss function when δi(t) = 0, and use this to initialize our

full EM algorithm. Initial position yi(0) is initialized using the observed initial position Yi(0), and

random effects δi(t) are initialized at 0.

5.3 Simulations

We assess the performance of our method using simulations designed to mimic the structure of our

motivating data. Simulated data is generated from the flode model in Equation 5.2, varying over

the true value of the α parameter to obtain simulation settings that evaluate the sensitivity of our

method as α changes.

5.3.1 Simulation design

Each simulated dataset has N = 100 univariate paw trajectories Yi(t) with a population intercept

B0(t) and one forcing function x1(t). All trials share the same equally-spaced grid, t ∈ [0, 1],

of length D = 50. To reflect how initial values vary across trials in the motivating data, for
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each trial i, initial position yi(0) is sampled from N(0, 5). The forcing function takes the form

xi1(t) = scalei × sin(πit+ shifti), where scalei and shifti are randomly-drawn, trial-specific scale

and shift parameters. Random intercepts δi(t) are constructed using 10 B-spline basis functions

Θ(t) and spline coefficients di, are drawn from di ∼ N(0, λI10), where λ = 50. Measurement errors

ǫi(t) are drawn from ǫi(t) ∼ N(0, σ2ID), where σ
2 = 0.1, an amount of residual variance which is

comparable to that seen in our motivating data.

Figure 5.2 shows three simulated datasets when α = 2, α = 6, and α = 12. The middle and

bottom rows show paw position trajectories Yi(t) and coefficient surfaces e−α(t−s)B1(s), respectively,

across α values. The top row shows (from left to right) forcing functions xi1(t) and random

intercepts on the derivative scale δi(t), which do not depend on α and are shared across these

three datasets. The middle panel highlights the buffering effect of α. When α = 2 buffering is

high, meaning initial position has a consistent effect on the overall trajectory over the time span

of the trial. When α = 12 buffering is low, and the impact of initial position and forcing functions

becomes instantaneous.

We evaluate performance of our model as a function of the buffering parameter α. For each

α ∈ (2, 4, 6, 8, 10, 12), we simulate 25 different datasets, and apply the methods described in Section

5.2 to each dataset. For model estimation we choose Kt = 10 B-spline basis functions. We initialize

α using a rough grid search over α ∈ [1, 14] to find the value of α that minimize sum of squared

error when δi(t) = 0. The true initial position yi(0) is initialized using the observed initial position

Yi(0), and random effects δi(t) are initialized at 0.

5.3.2 Comparison with historical functional regression

We compare flode to the historical functional regression model in (5.3). This model is implemented

using the pffr function from the refund package in R [Crainiceanu et al., 2015], and is denoted fhist
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in text and figures below. Comparisons between flode and fhist are made based on recovery of the

true coefficient surfaces. We define the surface from the flode model as βflode1 (s, t) = e−α(t−s)B1(s),

and compare it to fhist surface βfhist1 (s, t). Surface recovery accuracy is quantified using the inte-

grated squared error (ISE), where for flode ISE =
∫
t

∫
s

{
β1(s, t)− β̂flode1 (s, t)

}2
dsdt and for fhist

ISE =
∫
t

∫
s

{
β1(s, t)− β̂fhist1 (s, t)

}2
dsdt. We also compare flode and fhist based on recovery of

the true measurement error, σ2 = 0.1.

The buffering parameter α is an important component of the flode model but is not estimated

by the historical functional model. In figures below, in addition to comparing the performance of

flode and fhist, we also visualize how well our flode implementation recovers the true value of α

across simulation scenarios.

5.3.3 Simulation results

Figure 5.3 shows results from a single simulated dataset with α = 6 and 100 trials. From top

to bottom, rows show observed (gray) and fitted (red) values, true (gray) and estimated (red)

random effects on the data scale, and coefficient surfaces. The top and middle rows show results

for fhist (left column) and flode (right column), while the bottom row shows the fhist, flode, and

true surfaces, respectively. For this simulated dataset, both flode and fhist produce reasonable

results for the fitted values. However, it is clear from the random effects and coefficient surfaces

that flode and fhist are estimating these overall fits in different ways, and that flode is recovering

the true surface values.

Figure 5.4 summarizes results for flode and fhist across datasets generated using different values

of α. The left panel shows log ISE, and the right panel shows estimated measurement errors σ̂2flode

and σ̂2fhist. Across values of α, flode outperforms fhist in terms of the ISE, which is consistent with

observations in Figure 5.3. At low values of α, the difference in performance between the methods
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is smaller, and ISE variability for flode is high when α = 2. Measurement error is slightly biased

away from the true value σ2 = 0.1 for both models, though the bias is larger for the fhist model

across values of α. The flode model is slightly overfitting the data, while fhist underfits the data.

Figure 5.5 shows estimated values α̂ (top row) and random effects variance λ̂ (bottom row) from

flode across datasets with different true values of α. Our flode implementation recovers close to the

true value of α, though values are slightly biased towards zero for datasets with higher true values

of α. Our estimates for λ are also slightly biased towards zero, an effect which is also pronounced

for higher true values of α. Though not shown, the simulations described above were also performed

at the increased sample size of N = 200 trials. When sample size increases, the variance of α and

λ estimates decreases, the algorithm converges in fewer iterations, and ISE values are lower.

5.4 Data Analysis

In this section, we apply the methods described in Section 5.2 to the mouse paw trajectory data

introduced in Section 5.1.1. Our dataset consists of 147 paw trajectory trials from a single mouse,

where each trajectory was collected under the same experimental conditions. Accompanying paw

trajectories are measurements of brain activity in the motor cortex, as summarized by GPFA [Yu et

al., 2009], for a total of 5 forcing functions. Position and neural activity were recorded concurrently

at a rate of 500 measurements per second. We restrict our analysis to the period just before lift

(when the paw leaves a resting location) to just after grasp (when the paw grasps a food pellet).

Because grasp occurred at different times across trials, we linearly interpolate the data to an even

grid of length D = 50 that is shared across trials.

We present a univariate analysis of the trajectories in the x, y, and z directions. For each axis,

we set the number of B-spline bases to Kt = 10 and fit the flode model in (5.2). The parameter α

was initialized by doing a grid search over values in [2, 12] to find the value, α0, that minimizes the
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model when each δi(t) = 0. This α0 was then used as a starting value for the flode algorithm. The

results of this analysis are described and interpreted below.

Estimated values of the buffering parameter, are, for each axis, α̂x = 3.01, α̂y = 3.50, and

α̂z = 3.01. These values are close, indicating similar amounts of buffering across axes. For Figure

5.6, the first row shows observed (gray) and fitted (red) values for paw position. The second row

shows random effects on the derivative scale for each trial, δi(t). The third row shows these random

effects on the data scale,
∫
s
e−α(t−s)δi(s)ds. The first, second, and third columns show results for

the x, y, and z axis, respectively. The dotted line through each plot occurs at t = 0.05 seconds,

which is the time of paw lift for each trial. The fitted values are capturing the data well. The

random effects show more residual variance right after lift (during the time of the actual reach)

than in other parts of the trial, suggesting that maybe there is something driving the reaching

movement that we are not measuring.

Coefficient functions and coefficient surfaces are shown in Figures 5.7 and 5.8, respectively. For

surfaces we only show results from the x axis; results from the y and z axes followed the same

trends.

5.5 Discussion

We present flode, a nonlinear regression model that has context in both functional data analysis and

systems of ordinary differential equations. Drawing from both of these literatures is necessitated

by our application; the differential equations formulation of our model allows for an interpretation

of our paw data as trajectories whose speed and position are dynamically influenced by inputs from

the brain, and tools from functional data analysis allow us to efficiently model repeated obser-

vations that are trajectories while incorporating smoothness in the coefficient functions. Though

we are motivated by a specific application in neurobiology, our methods are general and broadly
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useful for anyone trying to study a dynamical system of inputs and outputs where the outputs are

functions over time. Our novel method compares favorably with historical functional regression in

the simulation settings we examined, and produces reasonable results for our motivating data. Our

methods are publicly available in an R package.

We believe this work is an exciting addition to a nascent field in statistics, with many possible

future directions. A study on the asymptotics of the coefficients estimated in this model so that

large sample confidence intervals and hypothesis tests can be computed would help researchers draw

inferences about the relationships between inputs and outputs of the dynamical system. Extensions

to include more complex systems of ordinary differential equations, including higher order and non-

linear ODEs would increase the flexibility of our modeling framework and allow for the study of a

larger class of repeated measurements of dynamical systems.

The flode model was developed based on our current understanding of biological processes,

and we’re working to expand that framework to include more complex inputs. For example, we

view the δi(t) term as capturing correlation due to unmeasured forces acting on the system. Prior

work suggests that this signal is coming from the thalamus and it would be useful to work with

neurobiologists to collect data and develop a model that incorporates neural information from

multiple sources within the brain, with the ultimate goal of recreating reaching movements based

only on initial position and neural activity patterns.
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Figure 5.1: Top row: Paw trajectories along x, y, and z axes for 147 trials. Middle row: neural firing

rates for 3 of the 25 neurons. Each row is a trial and each column is a point in time, and dark or

light shading indicates that a neuron is off or on, respectively, at that point in time. After auditory

cue, neurons show light activation at location 2, high activation at location 6, and dampening in

activation at location 9. Bottom row: The five factors from Gaussian process factor analysis, shown

for all 147 trials.
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Figure 5.2: This figure shows simulated data when α = 2, α = 6, and α = 12. Top row: Left column

shows forcing functions xi1(t), right column shows random effects on the paw velocity scale, δi(t).

Middle row: Observed paw positions Yi(t) for three different values of α. When α is small initial

position has a larger effect on the overall trajectory. Bottom row: Coefficient surfaces e−α(t−s)B1(s)

for three different values of α.
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Figure 5.3: Top row: Fitted values from fhist and flode. Second row: Residuals from fhist and

flode. Third row: Random intercepts from fhist and flode. Values for flode are shown on the data

scale so that they are comparable with fhist. Bottom row: Estimated surfaces from fhist and flode.

Both models run on the same dataset with α = 6 and N = 100 trials.
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Figure 5.4: Log surface errors (left panel) and estimated measurement error σ̂2 (right panel) for

flode (red) and fhist (green) across varying values of α when N = 100 trials. Dotted line in right

panel is through the true value σ2 = 0.1.
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Figure 5.5: Estimated α̂ (top row) and λ̂ (botttom row) values from flode model across simulated

datasets with different true values of α. The horizontal dotted line the the plot on the bottom row

represents the true value, λ = 50.
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Figure 5.6: This figure shows fitted values, estimated random effects, and integrated random effects

across axes for the paw data. The vertical dotted line occurs at the time of lift for each trial.
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Figure 5.7: This figure shows fitted intercept and coefficient functions across axes for the paw data.

The vertical dotted black line occurs at the point of lift.

Figure 5.8: This figure shows estimated surfaces for the x-axis of the paw data for each forcing

function. Similar results were seen for the y and z axes.
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Appendix A

Appendix to Registration for

exponential family functional data

A.1 Methods

Here we provide extra details of our methods.

A.1.1 Variational approximation to Bernoulli likelihood

Our method for binary functional principal components analysis uses a variational approximation

to the Bernoulli likelihood given in Equation (6) of our manuscript. Recall that for subject i

measured at time j observation Yi(tij) ∼ Bernoulli(µi(tij)) where µi(tij) is defined in Equation

(3). For convenience we rearrange the usual formulation of the Bernoulli distribution to get the

probability density function given in Equation (4) by

P{Yi(tij)|ci} = µi(tij)
Yi(tij){1− µi(t)}

1−Yi(tij)

= g−1{Ai(tij)}
Yi(tij)

[
1− g−1{Ai(tij)}

]1−Yi(tij)

= g−1 [{2Yi(tij)− 1}Ai(tij)]
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where Ai(tij) = Θφ(tij) (αΘ +ΨΘci). Equality holds in the last step because observations are

limited to {0, 1} and when g is the logit function g−1(−z) = 1− g−1(z).

We use the variational approximation for logistic regression outlined by Jaakkola and Jordan

[1997] and extended to binary PCA by Tipping and Bishop [1999], with additional basis expansion

Θφ(tij) embedded in Ai(tij) to allow for a functional data framework. This approximation is a

lower bound on P{Yi(tij)|ci}, given by

P{Yi(tij)|ci} = g−1 [{2Yi(tij)− 1}Ai(tij)]

≥ g−1{ξi(tij)}

× exp

[
{2Yi(tij)− 1}Ai(tij)− ξi(tij)

2
+ λ {ξi(tij)}

{
Ai(tij)

2 − ξi(tij)
2
} ]

= P̃{Yi(tij)|ci, ξi(tij)},

where λ(z) = 0.5−g−1(z)
2z and ξi(tij) is the variational parameter. Equality of the original distribution

P{Yi(tij)|ci} and the variational distribution is attained when P̃{Yi(tij)|ci, ξi(tij)} is maximized

with respect to ξi(tij), and the value of ξi(tij) at the maximum is

{2Yi(tij)− 1}Ai(tij).

A.1.2 Updating αΘ and ΨΘ for binary FPCA

We obtain parameter updates for binary FPCA by maximizing the variational likelihood given

in Equation (7) of our manuscript. In Section (3.1.3) we obtain updates for αΘ and ΨΘ by

reparameterizing Equation (7) such that Φ = (ΨT
Θ,αΘ)

T . This reparameterization leads to the



APPENDIX A. APPENDIX TO REGISTRATION FOR EXPONENTIAL FAMILY
FUNCTIONAL DATA 103

variational log-likelihood below:

l̃(Y , c) ∝

Di∑

j=1

I∑

i=1

log P̃

{
Yi(tij)|ci, ξi(tij)

}
−
∑

i

cTi ci

∝
∑

i

[{
Yi(ti)−

1

2

}T

Ai(ti)−
1

2
ξi(ti)✶Di×1 +AT

i (ti)diag [λ {ξi(ti)}]Ai(ti)

]

∝
∑

i

{
Yi(ti)−

1

2

}T {
Θφ(ti)⊗ s

T
i

}
vec(Φ)

+
∑

i

vec(Φ)T (Θφ

{
ti)

T ⊗ si
}
diag [λ {ξi(ti)}]

{
Θφ(ti)⊗ s

T
i

}
vec(Φ).

Maximizing with respect to Φ gives estimates Φ̂.

A.1.3 Optimization constraints for the warping step

Section (3.3) refers to optimization constraints for the R function constrOptim() implemented

in the warping step of our algorithm. We constrain inverse warping function to be monotonic

with fixed endpoints, and these constraints are enforced through βi, the warping function B-spline

coefficients for each subject. To ensure that estimated inverse warping functions ĥ−1
i span the same

domain as chronological time t∗i , we fix the outer coefficients βi,1 and βi,Kh
. Thus in practice we

estimate the Kh − 2 inner spline coefficients βi,inner = (βi,2, ..., βi,Kh−1)
T .

To enforce monotonicity of the warping functions we must ensure β1 < β2 < ... < βKh−1. Using

the notation from the constrOptim() function, we define a matrix ui and a vector ci such that

ui× βi,inner − ci ≥ 0. (A.1)

This leads to a ui matrix of dimension (Kh − 1)× (Kh − 2) and a size (Kh − 1) vector, ci, that

take the forms:
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ui =

1 0 0 ... 0

−1 1 0 ... 0

0 −1 1 0

0 0 −1 1 0

0 −1 1

0 0 −1







and

ci =




0

0
...

0

−1




such that

1 0 0 ... 0

−1 1 0 ... 0

0 −1 1 0

0 0 −1 1 0

0 −1 1

0 0 −1










βi,2

βi,3
...

βi,Kh−1




−




0

0
...

0

−1




>




0
...

0

0

0




.

A.1.4 Analytic gradient for exponential family registration

For the general exponential family case, this gradient is

dl(Yi(t
∗
i ),βi)

dβi

=
1

ϕ

Di∑

j=1

{(
Yi(t

∗
ij)−b

′ [g {µi(tij)}]

)
×Θh(t

∗
ij)

TΘ′
φ{Θh(t

∗
ij)βi} (αΘ +ΨΘci)

}
, (A.2)

where Θ′
φ(ti) is a Di ×Kh matrix of first derivatives of the B-spline basis functions used to recon-

struct ti, and b
′

[
g {µi(tij)}

]
= µi(tij) = g−1

[
Θφ{Θh(t

∗
ij)βi}(αΘ +ψΘci)

]
. For the Bernoulli loss

function ϕ = 1 and g−1(z) = 1
1+e−z , so the gradient becomes

dl{Yi(t
∗
i ),βi}

dβi

=

Di∑

j=1

[(
Yi(t

∗
ij)−

1

1 + e−Θφ{Θh(t
∗

ij)βi}(αΘ+ψΘci)

)

× Θh(t
∗
ij)

TΘ′
φ{Θh(t

∗
ij)βi} (αΘ +ΨΘci)

]
.
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A.2 Simulations and analysis

Here we provide extra results from simulations and analysis of BLSA data.

A.2.1 Functional principal components for BLSA data

Figure (A.1) shows the effects of the estimated principal component basis functions for the BLSA

data after the registration process. The first principal component is a vertical shift around the

population mean, α(t), indicating a higher or lower probability of being active. More interesting is

the second principal component, which shows that some subjects have higher probability of activity

earlier in the day, while others have higher probability of activity later in the day.

Figure A.1: Estimated binary FPCA basis functions after registration process, illustrated by plot-

ting g−1

[
α(t)± ψk(t)

]
for basis functions k ∈ {1, 2}.
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A.2.2 Optimizing parameters

As a sensitivity analysis we evaluate our method as a function of parameters Kφ and Kh. We

evaluated all combinations of Kφ ∈ {5, 10, 15}, Kh ∈ {3, 4, 5, 6} and grid length D ∈ {50, 100, 200}

using the same simulation setup and performance metrics as in Section (4). Mean integrated

squared errors are given in Figure (A.2) and computation times across these simulation scenarios

are given in Figure (A.3).

Figure A.2: Parameter sensitivity across values of Kφ and Kh for registr method. Shown are

mean integrated squared error (MISE) summaries across 10 datasets for each parameter scenario.

Columns represent distinct values of Kφ and rows distinct grid lengths D.

Both MISE and computation time increase linearly with Kh. Mean integrated squared errors

decrease slightly with increasing Kφ, and computation time slightly increases with increasing Kφ.
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Figure A.3: Parameter sensitivity across values of Kφ and Kh for registr method. Shown are

boxplots of computation time (in seconds) across 10 datasets for each parameter scenario. Columns

represent distinct values of Kφ and rows distinct grid lengths D.

A.2.3 Sensitivity of BFPCA

Below we compare our binary functional principal components algorithm with that from Hall et al.

[2008]. Mean integrated squared errors are based on deviations from the population level mean.

A.2.4 Analysis of weekdays for BLSA

In our primary analysis we averaged across visits for subjects. Here we separate visits by day of

the week and look at day-specific effects. Figure (A.5) shows unregistered and registered binary

and smooth curves for each day of the week. Our algorithm consistently identifies similar patterns

across days of the week. Alignment may be slightly better on week days than weekends, which

suggests an area for future exploration.
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Figure A.4: This figure shows mean integrated squared errors (top row) and median computation

times (bottom row) for hall (in red) and registr (in green) methods across varying sample sizes

and grid lengths. The columns, from left to right, show sample sizes 50, 100, and 200, respectively.

Within each panel we compare grid lengths of 100, 200, and 400. Mean integrated squared errors

are based on deviations from the population level mean.
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Figure A.5: Analysis results for each day of the week.
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Appendix B

Appendix to A dynamical systems

model for the relationship between

the motor cortex and skilled

movement

B.1 Data collection

Here we provide additional information about the data collection process. A schematic image of

the data collection is shown in Figure B.1. The mouse is positioned at a platform with its head

fixed in place to reduce mobility, an auditory cue is triggered, and this cue is timed with the release

of a food pellet the mouse then reaches for. Cameras positioned at orthogonal angles capture the

paw position over time, and electrodes in the motor cortex capture neural activity. This describes

a single trial of the experiment, which was repeated several times.



APPENDIX B. APPENDIX TO A DYNAMICAL SYSTEMS MODEL FOR THE
RELATIONSHIP BETWEEN THE MOTOR CORTEX AND SKILLED MOVEMENT 111

Figure B.1: Experimental setup for paw trajectory data. A mouse is positioned at a platform with

its head fixed in place to reduce mobility, an auditory cue is triggered, and this cue is timed with

the release of a food pellet the mouse then reaches for. Cameras positioned at orthogonal angles

capture the paw position over time, and electrodes in the motor cortex capture neural activity.


