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ABSTRACT

Essays in Experimental Economics

Jeremy Ward

This dissertation comprises three essays in experimental economics. The first inves-

tigates the extent of strategic behaviour in jury voting models. Existing experimental

evidence in jury voting models shows subjects largely act in accordance with theo-

retical predictions, implying that they have the insight to condition their votes upon

their own pivotality. The experiment presented here tests the extent of these abilities,

finding that a large portion of subjects behave consistently with such insight in the

face of several variations on the basic jury voting game, but largely fail to do so in

another, perhaps due to the difficulty of extracting informational implications from

counterintuitive strategies.

The second investigates the extent to which hypothetical thinking - the ability

to condition upon and extract information from hypothetical events - persists across

different strategic environments. Two games of considerable interest in the experimental

literature - jury voting games and common value auctions - each contain the feature that

a sophisticated player can simplify the problem by conditioning upon a hypothetical

event - pivotality and winning the auction, respectively - and extract from it information

about the state of the world that might affect their own behaviour. This common

element suggests that the capability that leads to sophisticated play in one should lead

to the same in the other. This paper tests this connection through a within-subject

experiment in which subjects each play both games. Little evidence is found that play

in one relates to play in the other in any meaningful way.

Finally, the third, co-authored with Evan Friedman, investigates the nature of errors



relative to Nash equilibrium play in a family of two-by-two games. Using data on one-

shot games, we study the mapping from the distribution of player j’s actions to the

distribution of player i’s beliefs (over player j’s actions) and the mapping from player

i’s payoffs (given beliefs) to the distribution over player i’s actions. In our laboratory

experiment, subjects play a set of fully mixed 2× 2 games without feedback and state

their beliefs about which actions they expect their opponents to play. We find that (i)

belief distributions tend to shift in the same direction as changes in opponents’ actions,

(ii) beliefs are systematically biased–“conservative” for one player role and “extreme”

for the other, (iii) rates of best response vary systematically across games, and (iv)

systematic failures to maximize expected payoffs (given beliefs) are well explained by

risk aversion. To better understand the belief formation process, we collect subject-

level measures of strategic sophistication based on dominance solvable games. We find

that (v) the player role itself has a strong effect on sophistication, (vi) sophistication

measured in dominance solvable games strongly predicts behavior in fully mixed games,

and (vii) belief elicitation significantly effects actions in a direction consistent with

increasing sophistication.
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Chapter 1

Pivotality and Sophistication

1



1.1 Introduction

Rarely is the agreement of experimental evidence and theory as startling as that of

the jury voting literature. The underlying model, as described by Austen-Smith and

Banks (1996) and Feddersen and Pesendorfer (1998), features equilibria in which a ra-

tional juror maximizes the likelihood of a correct verdict by voting in contrast with

her own private information. The juror is led to this behaviour by the recognition that

she should not vote for the state that is most likely given her private information, but

rather for the state that is most likely given her private information and the event that

her vote is pivotal. Optimal behaviour thus relies on subjects having this insight, form-

ing reasonable beliefs about others’ strategies, and from these beliefs making correct

inferences about the likelihood of each state under the assumption of pivotality - a

process that Palfrey (2016) refers to as pivotal calculus. It is reasonable to expect that

few will have such insights and capabilities.

And yet, an experimental literature led by Guarnaschelli, McKelvey, and Palfrey

(2000) and Goeree and Yariv (2011) finds behaviour that is entirely consistent with

these predictions: subjects vote against their own private information under exactly

the conditions theory predicts, and in numbers that, in the aggregate, are not far from

equilibrium predictions - a startling result. These papers, along with subsequent others

discussed further in the following section, focus primarily on the impact of the jury’s

mechanisms - including communication and group formation - upon aggregate outcomes

and juries’ overall efficiency, with the individual only treated briefly. And yet the truly

surprising aspect of these results is the individual’s apparent ability to solve the game

despite the complexity of the thought process that theory postulates. Given this, and

the potential implications of this ability in other contexts, further investigation of the

individual’s understanding of pivotality and its implications is warranted.

More recently, Esponda and Vespa (2014) take a step in this direction, focusing
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on the individual and asking, in particular, whether it is the hypothetical nature of

pivotality that makes the problem difficult. Their experiment, utilizing a related game,

finds much higher rates of nonstrategic behaviour when pivotality is hypothetical than

when it is directly observed, suggesting that this is the case. Interestingly, however,

they also find much higher rates of nonstrategic behaviour when pivotality is hypothet-

ical than in previous jury voting experiments where this is also the case, including both

Guarnaschelli, McKelvey, and Palfrey (2000) and Goeree and Yariv (2011). Because

the game they employ differs in several important ways from those used in other stud-

ies, including changes to the information structure, the use of computer players, and

complicated computer-player strategies that may confuse subjects, it is not clear what

exactly drives this divergence.

The experiment presented in this paper thus follows a similar path of inquiry, with

a focus on individual behaviour, while retaining the structure of the Guarnaschelli

et al. (2000) game (henceforth GMP), in order to present a clearer image of subjects’

capabilities in these games. In a within-subject design, subjects play five variants of

the GMP game. The first two follow the standard GMP procedure with majority

and unanimity voting, respectively. The remaining three are new variations in which

individual subjects are grouped with computer players with known strategies, thus

removing issues of belief formation and social preferences.

These three new variations allow for three contributions. In the first, in which

computer players vote fully informatively, strategic and non-strategic behaviour are

clearly separated, allowing for better identification of subjects with strategic capabilities

than the standard GMP game, in which certain behaviours, such as fully informative

voting, can result from strategic or naive thought.

The second is similar but requires subjects to choose between receiving an informa-

tive private signal and the ability to select their own vote. Optimal voting behaviour

3



is unchanged and can be achieved by the second option, but this requires subjects to

overcome the intuitive notion that giving up private information is costly. A prefer-

ence for this option suggests that subjects’ strategic understanding of the game extends

beyond voting decisions.

Finally, the third follows the first but inverts the strategies played by computer

players - that is, they vote against their private information, behaviour that is itself

fully informative - such that pivotality now holds the opposite informational content

and demands the opposite response. While this computer behaviour is unintuitive, it is

mathematically identical to the first computer game, providing a minimal test of how

subjects’ ability to extract information from others’ behaviour is dependent on that

behaviour. There is strong evidence that it makes a substantial difference, suggesting

subjects may be prone to failures to extract even mathematically simple information

from pivotality, and not just failure to condition upon pivotality in the first place, which

may go some way to explaining the higher rates of nonstrategic behaviour in Esponda

and Vespa (2014), where computer player behaviour is similarly unusual.

The structure of the paper is as follows. Section 1.2 outlines the standard jury voting

game, its predictions, and existing experimental results in this and related games.

Section 1.3 describes the experimental design, with results discussed in Section 1.4.

Section 1.5 concludes.

1.2 A Model of Jury Voting

The canonical model of jury voting is due to Feddersen and Pesendorfer (1998), which

builds upon that of Austen-Smith and Banks (1996). A jury of n voters must determine

whether to convict or acquit a passive defendant. The defendant is guilty with probabil-

ity ρ ∈ (0, 1) and innocent otherwise. While this state of the world is unobserved, each

juror receives a private, noisy, conditionally independent signal, again either innocent
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or guilty, which matches the true state with probability p ∈ (1
2
, 1). These signals rep-

resent each juror’s independent, but potentially flawed, interpretation of the evidence

presented to them. Each juror then votes either to convict or acquit. The jury’s verdict

is to convict if at least r jurors vote to convict, and to acquit otherwise. The conviction

threshold, r, ranges from rM to n where rM = dn
2
e represents majority voting and

r = n represents conviction unanimity. Jurors’ utility is normalized to 0 in the event

of correct verdicts, −q in the event of a wrongful conviction, and −(1− q) in the event

of a wrongful acquittal, where q ∈ (0, 1) sets the relative weights of these errors.

In testing the implications of this model, discussed below, GMP abstract from

jury-specific concepts about which subjects might have preconceived notions, replacing

them instead with colours. As their model forms the basis for those presented in the

paper, I will use this terminology throughout, including the remainder of the theoretical

discussion. In this version, isomorphic to the game above, a group of n voters are

assigned either a red jar or a blue jar, taking the roles of guilt and innocence respectively,

with the red jar assigned with probability ρ ∈ (0, 1). Each jar contains 10 balls, with

10p matching the colour of the jar and 10(1− p) matching the colour of the other jar.

Each subject then selects a ball from the assigned jar, with replacement, filling the role

of the juror’s signal with precision p.1 Each player then votes for either the red or blue

jar, with the group selecting the red jar (i.e. convicting the defendant) if at least r vote

for it, and the blue jar otherwise. I will refer to r = n, in which the group only selects

the red jar if all members vote for it, as red unanimity.

Let ω ∈ {r, b} denote the colour of the group’s assigned jar and s ∈ {r, b} a subject’s

selected ball. Define σ(r) and σ(b) to be the probability with which a subject votes for

the red jar when selecting a red and blue ball respectively. A subject votes responsively

when σ(r) 6= σ(b), and informatively when always voting for the jar that matches their

1This probability is equal across states in both the Feddersen and Pesendorfer (1998) and GMP
formulations, but there is no reason that this must be the case more generally.
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signal, σ(r) = 1, σ(b) = 0.2 Throughout, I follow Feddersen and Pesendorfer (1998)

and GMP in fixing ρ = 1
2
, so that each state is equally likely, and in assuming that p

is equal across states. I follow the latter in fixing q = 1
2
, so that utility depends only

on whether the group’s decision matches the state, but is otherwise equal across states.

That is, correctly selecting the red jar and correctly selecting the blue jar result in the

same payoff, as do incorrectly selecting the red and blue jar.

The primary insight of Austen-Smith and Banks (1996) is that while previous jury-

voting models implicitly assumed that jurors would vote informatively, such behaviour

may not be rational and, more specifically, may not constitute an equilibrium. The

literature focuses in particular upon symmetric responsive equilibria.3 Under majority

voting the unique such equilibrium is informative voting. Under a more demanding

decision threshold, r > rM , the unique such equilibrium is σ(r) = 1 and

σ(b) =
pKn,r − (1− p)
p− (1− p)Kn,r

∈ (0, 1) (1.1)

where

Kn,r =
(1− p

p

)n−(r−1)
r−1

.

That is, when more than a majority of the group must vote red in order to select

the red jar, in equilibrium players should vote red with positive probability even when

their own signal is blue. The comparative static of note is that, for a fixed n and p, this

probability is strictly increasing in the decision threshold, r. Moreover, Feddersen and

Pesendorfer (1998) find that under certain conditions higher decision thresholds result

in higher wrongful conviction rates in equilibrium, which contradicts their apparent

purpose.

2Here ‘informative’ is used as a shorthand for ‘perfectly informative’. Of course, σ(r) = 0, σ(b) = 1
would be equally informative, but is never observed in the standard game and is thus ignored.

3Responsiveness simply rules out those trivial equilibria in which players always vote for the same
jar regardless of signal; behaviour that is optimal only because each player has zero probability of
pivotality.
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The intuition for non-informative equilibria is simple: a player’s vote is pivotal when

exactly r − 1 other players have voted for the red jar, and n − r for the blue jar. If

other players vote informatively, r > rM then implies that the number of red signals

exceeds the number of blue signals even if the player’s own signal is blue. Thus the

player should vote for the red jar. The equilibrium attains where the common σ(b) is

large enough that the conditional probability of a red signal given a red vote is low

enough for the states to be conditionally equally likely when the player’s own signal is

blue.

On an individual level, then, different levels of understanding of pivotal calculus

may lead to different behaviours and, because rational behaviour is counter-intuitive

if r > rM , we expect to see deviations especially in such a case. A subject that

understands the informational content of their own signal, P (ω = s|s) > P (ω 6= s|s),

but not the importance of pivotality, will vote informatively. Such a subject is naive.

For those who understand the informative content of pivotality, behaviour may differ

not only from the naive, but also from other strategic subjects, as any σ(b) ∈ [0, 1] can

be optimal given plausible beliefs about others. If we assume, for simplicity, that

subjects form beliefs as if others are homogeneous, or at least drawn randomly from a

large population, then σ(b) = 1 is optimal when the ratio of these beliefs, σ(b)
σ(r)

, is below

the symmetric responsive equilibrium level, and σ(b) = 0 is optimal when this ratio is

above that level.

Experimentally, this results in difficulties determining what drives many behaviours,

all of which have been observed in previous experiments discussed below. Does a subject

vote informatively for strategic reasons or because she is naive to pivotal calculus?

Does she always vote red because her beliefs about others’ make it optimal to do so,

or is she incapable of understanding how the implications of pivotality change as other

subjects play σ(b) > 0 rather than voting informatively? Does she mix because she
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does have such an understanding, and grasps the nature of the equilibrium, or due

to changing beliefs about others, or doubt about her own pivotal reasoning? The

experiment presented in this paper seeks to shed light on these questions through

treatments utilizing computer players with known behaviour, thus fixing these beliefs,

and a within-subject design that allows comparison of behaviour in these games to

behaviour in the standard game.

Although not widely discussed in the literature, it is also plausible that apparently

strategic behaviour has drivers other than pivotal calculus. For example, a subject

might vote red despite a blue signal as a form of quasi-abstention, since a single blue

vote ensures that the group selects the blue jar and puts the subject at risk of the

responsibility of a unilateral decision. Alternately, subjects may simply wish to herd

in the face of uncertainty, and the vote-rule serves as an anchor for their beliefs about

others’ behaviour. The second computer-player game presented in this paper sheds

light on these questions by changing computer-player behaviour while retaining the

vote-rule, such that sophisticated play is different while the play induced by these

alternate drivers is unchanged.

1.2.1 Existing Evidence

Both Guarnaschelli, McKelvey, and Palfrey (2000), and Goeree and Yariv (2011), hence-

forth GY, employ the jar game described in the previous section, with subjects randomly

re-matched between rounds, jars equally likely (ρ = 1
2
), subjects paid an equal amount

for each correct group decision (q = 1
2
), and a signal strength of p = 0.7 for both jars.

n and r varies between treatments but is fixed between rounds within a treatment and

is known to subjects. The focus of both is on aggregate behaviour, which is summa-

rized in Table 1.1, with σ̂(s) representing the frequency of red votes conditional upon

signal s ∈ {r, b}. In each case, behaviour is largely informative under majority vot-
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ing,4 but σ(b) strictly increases as r increases to a supermajority (in GY), and then to

red unanimity r = n (in both). As well as matching the theorized comparative static

qualitatively, the results are also relatively close to the empirical point predictions.5

Table 1.1: Observed (and equilibrium) behaviour in previous experiments

n r σ̂(b) σ̂(r)

GMP 3 2 0.057 (0.000) 0.972 (1.000)
GMP 3 3 0.360 (0.314) 0.954 (1.000)

GMP 6 4 0.209 (0.000) 0.979 (1.000)
GMP 6 6 0.478 (0.651) 0.897 (1.000)

GY 9 5 0.07 (0.00) 0.91 (1.000)
GY 9 7 0.24 (0.31) 0.89 (1.000)
GY 9 9 0.39 (0.77) 0.90 (1.000)

It is worth noting, however, that both studies observe substantial heterogeneity

under red unanimity, including subjects responding to blue signals in all three ways:

by always voting blue, by always voting red, and by mixing. Thus these aggregate

measures provide an imperfect indication of the proportion of subjects that are capable

of pivotal calculus, and the earlier questions remain regarding the extent and nature

of these capabilities. While GMP do categorize subjects by individual behaviour -

whether they play σ̂(b) = 0, σ̂(b) ∈ (0, 1), or σ̂(b) = 1 - these classifications still leave

questions about subjects’ capabilities, as discussed above. For example, it is not clear

whether a subject playing σ̂(b) = 0 does so because of naivety or simply a belief that

the aggregate σ̂(b) is too high, in which case playing σ̂(b) = 0 is optimal. Likewise, it

is unclear whether a subject playing σ̂(b) ∈ (0, 1) does so strategically, or simply has

4The largest deviation occurs in σ(b) = 0.209 in GMP’s n = 6, r = 4 treatment, but is made less
surprising by the fact that in equilibrium a player receiving a blue signal should be indifferent between
the two jars. This contrasts to other treatments, in which one jar is strictly preferred.

5Regardless, theoretical predictions for group decision accuracy - the type I errors should decrease
and type II errors increase as the group size increases - are violated for both majority and unanimity
voting.

9



a predilection for tremors. The experiment presented here seeks to ameliorate these

concerns, both by fixing beliefs and including σ̂(r) when classifying subjects’ behaviour.

Like this paper, Esponda and Vespa (2014), henceforth EV, move away from ques-

tions of institutional efficiency and a focus on aggregate outcomes to an investigation

of individual strategic capability, finding that subjects have difficulty conditioning on

hypothetical events in particular. They do so through a related design in which groups

consist of one subject and two computer players. Each computer player observes the

state directly then votes red when the state is red and mixes otherwise. Both this

mixing probability and the probability with which the state is red vary between rounds

but are known to the subject. Although the pivotal calculus is similar, the implica-

tion here is even sharper: the subject can only be pivotal when the state is blue, so

should always vote blue. Subjects’ actions differ, however, depending on whether vot-

ing is simultaneous or whether they first observe the computer players’ votes. In the

simultaneous case, in which pivotality is hypothetical, 78% are non-strategic, failing

to converge on always voting for the blue jar, compared to 24% when pivotality can

be directly observed. This gives the primary result, that the hypothetical nature of

pivotality drives much of subjects’ failure to act strategically in these games. Learning

effects also are also substantial, with subjects becoming more strategic over time; a

result that is found again in the experiment presented in this paper.

There are also differences between subjects’ behaviour in EV and the equivalent

treatments of GMP and GY, and the substantial differences in the games’ structures

leave it unclear as to what drives this. In particular, the EV results also show much

lower rates of strategic behaviour than GMP and GY when pivotality is not observer

and subjects are similarly experienced. When restricting to the first 15 rounds of the

treatment in which subjects vote without seeing computer player votes and receive

feedback after each round - the conditions most closely resembling each of GMP, GY,
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and the experiment presented below - subjects vote blue just 26.8% of the time when

the state is unconditionally more likely to be red - perhaps the closest proxy we can

draw for σ̂(b) in the jury voting game. Of concern is that this is not much greater than

the 21.5% probability with which subjects vote red when the state is unconditionally

more likely to be blue, behaviour which cannot be justified regardless of whether or not

a subject understands pivotality, akin to voting blue with a red signal in the standard

game.

It is unclear what drives such behaviour, but given its irrationality we must consider

that subjects may simply be confused. One possible cause of this is the computer play-

ers’ behaviour, which is both complex, in that it is semi-mixed and asymmetric in the

state, and unlike that which we would expect of a human player, in that they vote red

with some probability after observing a blue state. While the implication of pivotality

is mathematically simple - any blue computer vote implies a blue state - it is easy to

imagine that such a strategy may confuse subjects. The experiment presented here

tests this by adjusting computer-player behaviour, with results suggesting confusion

may indeed play a role.

We must also consider that perhaps the simple fact of playing with computer players

is enough to cause subjects difficulty. Moreover, it is worth noting that the observed

errors (voting for the red jar when the prior favours blue) mirror those of the com-

puter players (voting with some probability for the red jar when the state is blue)

suggesting that subjects’ may simply use computer player behaviour as a guide. The

experiment presented below finds little support for either of these hypotheses, however,

with subjects displaying little irrational behaviour when computer players play simple,

seemingly rational strategies, and differing from computer players in their irrational

deviations when they don’t.

While the above papers are the most relevant to the study prevented here, the jury
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voting literature - and strategic voting literature more generally - is much broader,

featuring many issues not yet discussed. One common theme, including in the papers

discussed above, is communication between voters. Coughlan (2000) seeks more realistic

models of jury voting, first adding the possibility for mistrial when neither outcome

receives enough votes, finding informative voting to be a symmetric equilibrium under

relatively lenient conditions, and then separately adding pre-vote communication via a

straw poll, finding equilibria in which voters truthfully reveal their signals then voting

for the most common. The latter is the secondary focus of GMP, who find that subjects

do generally reveal their signals truthfully, but may overweight their private information

when voting. Likewise, GY allow for free-form communication via a chat box, again

finding that subjects reveal information truthfully, then take into account the collective

information when voting, particularly when preferences are aligned.

Ali et al. (2008) recreate the unanimity no-communication treatments of GMP with

standing committees in which subjects are not randomly rematched between rounds,

finding negligible differences from GMP’s results. The same paper then considers the

case in which jurors vote sequentially, focusing on the rate at which subjects who may

still be pivotal - that is, all previous voters have voted to convict - vote also to convict.

While overall such subjects with innocent signals tend to vote guilty more often than

under simultaneous voting, the magnitude of the differences is perhaps smaller than we

would expect, particularly given the equivalent EV results, perhaps suggesting some

unrecognized differences between the games. Battaglini, Morton, and Palfrey (2008a)

similarly consider sequential voting, with the addition of voting costs and the possibility

of abstention under majority voting. As in previous majority voting results, subjects

generally vote informatively when not abstaining, although voting order and cost have

large effects on abstention decisions. Abstention decisions are further investigated in

Battaglini, Morton, and Palfrey (2008b), Bhattacharya, Duffy, and Kim (2014) and
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others.

Another strand of the literature investigates the impact of changes to the game’s

information structure. Kawamura and Vlaseros (2017) allow for a public signal in

addition to subjects’ private signals, finding that when the two disagree, subjects follow

the former more often than equilibrium would predict. Invernizzi (2018) further tests

a similar setup, finding that recency of information is of particular importance. Costly

information acquisition is also considered, with Großer and Seebauer (2016) are more

likely to acquire information under majority voting than unanimity voting. A different

take on information acquisition is considered in the Option Game presented below.

1.3 Experimental Design

1.3.1 Games

The experiment consists of five variants of the GMP game, each played with parameters

of n = 5, p = 0.7, and either majority (r = 3) or red unanimity (r = 5) voting. Each

game is played 15 times consecutively, with each subject playing all games, for a total

of 75 rounds, with the order outlined in Section 1.3.2. After each round subjects are

told their group’s decision, the number of votes for each jar, and the true colour of

the jar. A running tally of the subject’s correct group decisions is also available at all

times. All parameters remain identical between rounds.6

The five jury voting games are as follows, with equilibrium behaviour for each

summarized in Table 1.3a, along with aggregate results.

6Subjects also each played 15 rounds of the Charness and Levin (2009) single-player bidding game,
which is the focus of Chapter 2 but omitted from the remainder of this Chapter. 110 subjects played
this game before the jury voting games and 110 played it after. Regressions throughout the results
section find no difference in behaviour when subjects have previously played the bidding game, thus
justifying its omission.
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1.3.1.1 Human Game with Majority Voting (HGM) and Red Unanimity

(HGU)

The first two variants are simply the GMP game itself with majority (r = 3) and

red unanimity (r = 5) voting respectively, providing a baseline for comparison to the

previous experiments, and for examination of subjects’ apparent strategic abilities.

Groups consist of 5 human subjects and are randomly rematched between rounds.

The symmetric, responsive equilibria are sincere voting under majority, and σ(r) = 1,

σ(b) = 0.583 under red unanimity. The threshold belief ratio at which a subject

receiving a blue signal is indifferent between jars is thus σ(b)
σ(r)

= 0.583. As discussed

above, any σ(b) along with σ(r) = 1 can be a best response to plausible beliefs in HGU,

and some behaviours - most notably informative voting - are consistent with pivotal

understanding but may still be observed in those subjects not capable of it.

1.3.1.2 Informative Computer Game with Red Unanimity (ICG)

In ICG, each group consists of one subject and four computer players, each of which

randomly selects a ball from the jar, with replacement, then votes for the jar that

matches the selected ball. That is, each computer player acts exactly like a fully

informative subject. This behaviour is known to subjects. Group decisions are made

by red unanimity, r = 5.

Optimal behaviour in this game is to always vote for the red jar: σ(r) = σ(b) = 1.

To see this, note that pivotality implies all four computer players received red signals,

resulting in a conditional probability of a red state of 0.986 when the subject’s own ball

is red, and 0.927 when it is blue, and thus voting for the red jar is always optimal.

This treatment thus provides perhaps the simplest possible application of pivotal

reasoning in a jury voting environment: subjects are not required to form beliefs over

others’ strategies, the strategies are trivial, natural, and easily understood, and there
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is no need for statistical estimation, as it is clear that four red signals outweigh a

single blue signal without any calculation. Moreover, since the best response is a pure

strategy, and beliefs are anchored, we can more easily distinguish those who are capable

of pivotal understanding, as informative or mixing behaviour - which can be optimal

in HGU - are no longer so.

1.3.1.3 Reverse Computer Game with Red Unanimity (RCG)

RCG differs from ICG only in the computer players’ behaviour. Here each computer

player votes for the jar that does not match its selected ball. Pivotality still thus implies

four red votes, but that now implies four blue signals, and as such the subject should

always vote for the blue jar regardless of signal: σ(r) = σ(b) = 0.

This reverse informative strategy is in theory no more complicated than the standard

informative strategy played by computer players in ICG: it is also pure and informative,

and thus pivotal thinking demands no more strategic insight or mathematical capability,

nor requires subjects to vote against their private information any more than in ICG.

It should thus be no more difficult. The computer strategy is less natural than regular

informative voting, however, which may prove problematic to human subjects. The

comparison to ICG tests this.

Moreover, RCG separates those who are pivotally capable from those who appear

so in HGU and ICG but are actually motivated by social drivers. While the pivotally

capable switch to always voting blue, those who voted red in ICG simply to avoid

the responsibility of unilaterally assuring a blue group decision will continue to do so.

Likewise, since the vote rule remains unchanged at r = 5, those who use it as an anchor

for herding and thus vote red in ICG should also do the same here.
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1.3.1.4 Option Computer Game with Red Unanimity (OCG)

OCG differs from ICG in that at the beginning of each round, each subject is afforded

two options. Under the Information option the subject selects a ball from the jar as

previously, but their vote is then automatically cast for the jar matching their selected

ball. Under the Choice option the subject does not select a ball from the jar but chooses

which jar she wishes to vote for.7 Under both options, each computer player selects a

ball from the jar and then votes informatively, as in ICG.

I define σR as the probability with which a subject selects Choice and votes for the

red jar, and σB the probability with which she selects Choice and votes for the blue

jar. Given the computer behaviour is unchanged from ICG, optimal behaviour is again

to vote for the red jar regardless of signal, which can be achieved here by selecting

Choice and forgoing the signal altogether, that is σR = 1. This reasoning should be

clear to those who are pivotally capable. For those who are not so, it may be that the

instinctive value of private information may be too great to give up. The game thus

provides a test of the strength of subjects’ confidence in discarding their own private

information, and more generally of their ability to extend pivotal thinking from voting

decisions to more institutional decisions about the informational structure of the game

itself.

1.3.2 Order, Subjects, and Payments

The order of the five games, summarized in Table 1.2, varies between sessions along

two dimensions: whether HGM is played before or after HGU, and whether HGU is

played before or after ICG. While the former has no impact on results and is ultimately

ignored, the latter is important and discussed below. In each case, these three games

are followed by RCG and then OCG. This results in four basic orders, each played over

7In the laboratory the options are referred to only as Option A and Option B respectively.
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four sessions of either 10 or 15 subjects.8

Table 1.2: Treatment Orders

Treatment Order Subjects

Order 1 HGM - HGU - ICG - RCG - OCG 60
Order 2 HGU - HGM - ICG - RCG - OCG 50
Order 3 HGM - ICG - HGU - RCG - OCG 50
Order 4 ICG - HGM - HGU - RCG - OCG 60

Overall, 220 subjects took part in the experiment over 16 sessions at the Columbia

Experimental Laboratory for the Social Sciences (CELSS) from November 2016 to Oc-

tober 2017. The subject pool consists of Columbia students, primarily undergraduates.

Subjects were paid a $5 show-up fee and 25c for each of the 75 jury voting rounds in

which their group made a correct decision.9 Subjects also played two practice rounds

before the first jury voting game, and two more before OCG, in which the interface

updates to incorporate the option screen. Sessions lasted from 50 to 75 minutes, with

an average payment of $20.13.

The interface was programmed using the oTree software package (Chen et al. (2016))

and subjects recruited via ORSEE (Greiner (2004)). The experimental instructions are

in Appendix A.1 with the accompanying overheads in Appendix A.2 and the interface

presented in Appendix A.3.

8Within each order, exactly half of the subjects play the CL auction game before the jury games
and half play it after - with two sessions of each - but again this has no impact on the results and is
ultimately ignored, with results pooled.

9Subject also earn 25c for every 120 points earned in CL.
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1.4 Results

1.4.1 Aggregate Behaviour

Aggregate observed behaviour for each of the five games is displayed in Table 1.3a,

with (symmetric, responsive) equilibrium predictions in parentheses. σ̂(b) represents

the aggregate frequency with which subjects vote for the red jar conditional upon a blue

signal - the empirical equivalent of σ(b), while σ̂(r) is the same for red signals. In OCG,

σ̂R shows the frequency with which subjects select Choice and vote for the red jar, with

σ̂R the frequency with which they select Choice and vote for the blue jar. Table 1.3a

shows p-values for pairwise two-tailed permutation tests of the differences between these

frequencies, with differences between σ̂(b) below the diagonal and differences between

σ̂(r) above. These permutation tests are described in Appendix A.4.

Table 1.3: Aggregate Behaviour by Treatment.

Treatments σ̂(b) σ̂(r)

HGM 0.069 (0.000) 0.948 (1.000)
HGU 0.476 (0.583) 0.912 (1.000)
ICG 0.560 (1.000) 0.919 (1.000)

RCG 0.315 (0.000) 0.613 (0.000)

σ̂R σ̂B

OCG 0.653 (1.000) 0.054 (0.000)

(a) Observed (and equilibrium) behaviour.

Treatments HGM HGU ICG RCG

HGM 0.015 0.055 0.000
HGU 0.000 0.694 0.000
ICG 0.000 0.001 0.000

RCG 0.000 0.000 0.000

(b) p-values for between-treatment differences.

The aggregate results for the human group games fit well with those of GMP and

GY, with the aggregate strategy close to fully informative under majority voting, while
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under red unanimity σ̂(b) increases substantially and significantly. This increase is

in accordance with equilibrium predictions, although the magnitude of the change is

not as great. σ̂(b) increases further in ICG, which again is qualitatively consistent

with strategic behaviour, but falls further short of the equilibrium strategy. It is also

notable that σ̂(r) is significantly lower in each of HGU and ICG than HGM, despite a

theoretical prediction of σ̂(r) = 1 in each. It is not clear why this should be, although

it is perhaps relevant that it is lower - that is, subjects are more likely to vote blue in

contrast to a red signal - in the games where they are also more likely to vote red in

contrast to a blue signal.

OCG also appears to be well understood in the aggregate, with optimal behaviour -

selecting Choice and voting for the red jar - in almost two thirds of decisions. Subjects

rarely select Choice to vote for the blue jar, and select Information, and thus vote

informatively, with frequency 1− 0.653− 0.054 = 0.293.

RCG, however, is something of an outlier, with aggregate behaviour much further

from the equilibrium than in any of the other games. Relative to ICG, which is math-

ematically equivalent, subjects are less likely to cast the optimal vote - blue in RCG,

red in ICG - both when their signal matches that vote (1 − σ̂(b) = 0.685 in RCG and

σ̂(r) = 0.919 in ICG) and when it does not (1−σ̂(r) = 0.387 in RCG and σ̂(b) = 0.560),

with each of these differences significant with p < 0.001 using the permutation tests

described in Appendix A.4. Subjects’ apparent difficulty in RCG is discussed further

in Section 1.4.2.6.

In each game, however, a focus on aggregate results belies the substantial hetero-

geneity we see amongst subjects in all but HGM. The remainder of the analysis thus

focuses on individual behaviour.
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1.4.2 Individual Behaviour

Figure 1.1 shows individual voting behaviour for each of the jury voting games, with

each point representing the observed behaviour of one subject across 15 rounds of the

given treatment. Measures of behaviour are equivalent to those of the aggregate analysis

in the previous section. A small amount of random noise is added to each point such

that those which overlap can be seen. Histograms of the distributions over each axis,

which do not include this noise, are shown at the top and right of each chart. In all

charts, a red circle shows aggregate behaviour while a red diamond shows the symmetric

responsive equilibrium, each of which can be found in Table 1.3a. Table 1.4 classifies

subjects as relevant types for each game based on the same measures, showing counts

of those falling into each category.

Table 1.4: Individuals by Behaviour Type

σ̂(r) = 1 σ̂(r) < 1

σ̂(b) = 0 σ̂(b) ∈ (0, 1) σ̂(b) = 1

HGM 167 (75.9%) 20 (9.1%) 2 (0.9%) 31 (14.1%)
HGU 49 (22.3%) 68 (30.9%) 54 (24.5%) 49 (22.3%)
ICG 47 (21.4%) 42 (19.1%) 86 (39.1%) 45 (20.5%)

σ̂B = 0 σ̂B > 0

σ̂R = 0 σ̂R ∈ (0, 1) σ̂R = 1

OCG 37 (16.8%) 27 (12.3%) 117 (53.2%) 39 (17.7%)

σ̂(r) = 1 σ̂(r) = 0 Other

σ̂(b) = 1 σ̂(b) = 0 σ̂(b) = 1 σ̂(b) = 0

RCG 24 (10.9%) 26 (11.8%) 3 (1.4%) 30 (13.6%) 137 (62.3%)

1.4.2.1 Majority Voting and Basic Rationality

Individual behaviour in HGM is generally very close to the equilibrium, with 167 of 220

subjects (75.9%) never deviating from informative voting. This suggests that subjects

20



Figure 1.1: Individual Behaviour by Treatment.

(a) HGM (b) HGU

(c) ICG (d) RCG

(e) OCG

largely understand the game to at least the level of a naive Bayesian, recognizing that

a private signal of a given colour implies that the same coloured jar is conditionally
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more likely than the other.

Indeed, in each of HGU, ICG, and OCG, irrational deviations from informative

voting are rare - such as voting blue with a red signal in HGU or ICG, resulting in

σ̂(r) < 1, or selecting Choice and voting blue in OCG, resulting in σ̂B > 0. This

further supports that subjects generally understand the game to at least a naive level.

RCG sees many more irrational deviations, however, and is discussed further below.

1.4.2.2 Red Unanimity and Strategic Behaviour

In HGU, heterogeneity in individual behaviour tells a more nuanced story than the

aggregate increase in σ̂(b). Now 49 of 220 subjects (22.3%) always vote informatively,

54 (24.5%) always vote red regardless of signal, and 68 (30.9%) always vote red given a

red signal and mix otherwise. The ratio of observed aggregate strategies is σ̂(b)
σ̂(r)

= 0.476
0.912

=

0.522, which is below the indifference threshold given homogeneous beliefs, 0.583, and

thus always voting red is the best response to the aggregate distribution. However

the similarity of the observed and equilibrium ratios make beliefs on either side of

the equilibrium threshold appear reasonable, particularly given the limited information

available to subjects with which to form these beliefs. Thus any strategy in which

σ̂(r) = 1 can be consistent with pivotal understanding, and therefore up to 171 subjects

(77.7%) may be acting strategically without error; the HGU data alone cannot tell us

more about whether they understand pivotal calculus or are driven by something else.

More about this potential for rational heterogeneity is discussed below.

By controlling beliefs, ICG removes much of this ambiguity. There, the 47 subjects

(21.4%) who vote informatively cannot be doing so optimally, but rather must fail to

grasp the implications of pivotality. Likewise, the 42 (19.1%) who mix when receiving

a blue signal and always vote red given a red signal, can no longer be doing so as part

of an optimal strategy. More about mixing is said below. 86 (39.1%) play optimally,

always voting red. Note in particular that this proportion is lower than the 77.7% of
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subjects whose behaviour is consistent with an understanding of pivotal calculus in

HGU. This suggests that the figure for HGU may indeed be inflated by the ambiguity

of informative voting, which can be driven by naivety or sophistication.

As in ICG, optimal behaviour is unambiguous in OCG. There, 117 subjects (53.2%)

always play optimally, σ̂R = 1. That is, these subjects are willing to eschew their

private information altogether in order to select Choice and vote for the red jar. 37

(16.8%) never select Choice, σ̂R = σ̂B = 0, instead receiving private information and

thus voting informatively. By valuing private information in a setting in which pivotal

calculus leads to red votes regardless of this information, these subjects show themselves

to be unaware of this reasoning and incapable of pivotal calculus. Notably, however,

the number doing this is lower than the number who always vote informatively in HGU

and ICG, although this may simply be the result of greater experience (since OCG is

always played last) leading to more sophisticated behaviour, as discussed below. 39

subjects (17.7%) select Choice and vote for the blue jar at least once - behaviour which

is never optimal.

RCG sees much more heterogeneity and less consistency in individual behaviour.

The number of subjects who always vote optimally - in this case, for the blue jar

regardless of signal - drops to 30 of 220 (13.6%). 24 (10.9%) continue to always vote red,

despite no longer being optimal, and 26 (11.8%) vote informatively. Just as noticeable

is the 65 (29.5%) that now have non-pure empirical frequencies given both signals,

appearing in the interior of Figure 1.1d. This is more than three times the 17 (7.7%)

who do the same in ICG, despite the computer player strategies being mathematically

identical. These unusual results are discussed further in Section 1.4.2.6.

1.4.2.3 Experience, Learning, and Knowledge Transfer

HGU and ICG I turn now to changes in subjects’ behaviour over time, with a

particular focus on HGU and ICG, for which there are interesting order and experience
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effects. Table 1.5 shows logistic regressions of the probability of a red vote in HGU and

ICG, with each column restricting to different signals, treatments, and/or orders. Each

of these two treatments is denoted first in sessions in which it is played before the other,

and second in sessions in which it is played after the other. Independent variables are

the round number within each treatment (1 to 15) and a series of dummies - for ICG,

for whether the treatment is first of the two in that session, and for whether subjects

have already played HGM.10

Table 1.5: Logit Regressions of Probabilty of Red Vote by Treatment, Order, and
Signal.

(1) (2) (3) (4) (5) (6) (7) (8)
Treatment Both Both HGU ICG HGU HGU ICG ICG

Order Both Both Both Both First Second First Second
Ind. Variable σ̂(r) σ̂(b) σ̂(b) σ̂(b) σ̂(b) σ̂(b) σ̂(b) σ̂(b)

Constant 2.016 0.417 0.458 0.700 -0.638 0.289 -0.135 0.470
0.000 0.165 0.255 0.096 0.020 0.278 0.664 0.089

ICG 0.123 0.348
0.468 0.001

Round 0.001 0.001 -0.011 0.015 0.068 -0.012 0.053 0.016
0.958 0.947 0.437 0.265 0.000 0.433 0.001 0.267

First 0.006 -1.019 -1.189 -0.832
0.987 0.000 0.000 0.013

First*Round -0.017 0.061 0.079 0.038
0.555 0.000 0.000 0.076

HGM Prev 0.530 -0.158 -0.078 -0.236 -0.080 -0.236
0.112 0.507 0.810 0.496 0.806 0.497

Obs 3,355 3,245 1,657 1,588 820 837 797 791
Notes: Standard errors are clustered by subject, with p-values presented below coefficient

estimates.

Before discussing learning results, I first note the treatment effects between HGU

and ICG, seen through Columns (1) and (2), which consider both games and segment

the data by signal. These results agree with those of the earlier analyses: there is no

10In all regressions, dummies for having already played the Charness and Levin (2009) bidding
game are insignificant and thus omitted.
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difference in behaviour between the two treatments when subjects receive red signals,

but given a blue signal, the increase in the likelihood of a red vote from HGU to ICG

is both large and highly significant.

The regressions show substantial evidence that learning plays an important role

in these two games when subjects receive blue signals. Moreover, this learning is not

uniform throughout the session, but occurs only through the first of the two treatments

played in each session. This can be seen in the fact that the coefficient on the round

number is significant only in those regressions that restrict to the first treatment of

each session (Columns 5 and 7), or when interacted with the First dummy in the

regressions that pool over orders (Columns 2 through 4), and is insignificant otherwise.

The coefficient is positive, and the magnitudes similar, in each case in which it is

significant, implying that σ̂(b) increases through time. It is worth noting, however,

that the point estimates are smaller and less significant in ICG than HGU, perhaps

reflecting that there is less to learn about, given beliefs about others’ behaviour are

fixed.

In each of the regressions that pool data over both orders, Columns 2 through 4, we

also see that the coefficient on the First dummy itself is large, negative, and significant

at a high level.

Together, these results tell us that in the first red unanimity treatment that subjects

play - either HGU or ICG - σ̂(b) begins relatively low but increases, while in the second

it begins higher but then does not continue to increase. This is supported by Figure

1.2, which shows the aggregate σ̂(b) for each round of the two games, divided by order.

An interesting implication of these results is that that which subjects are learning

in the first of these game appears to then be applied to the second - that is, the increase

in σ̂(b) through the first carries over into the second. This suggests that subjects must

be learning about something common to the two games, such as red unanimity and
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the resulting pivotal calculus, rather than something that differs, such as beliefs about

others’ strategies, which are fixed in ICG. Moreover, the fact that experience in each of

HGU and ICG has such an effect on the other, but that prior experience in HGM has

no effect on either - as shown in the insignificant coefficients on the HGM Prev dummy

- suggests that it must be red unanimity that subjects are learning about.

Figure 1.2: Aggregate Behaviour Given Blue Signal in HGU and ICG by Order

There is also some evidence that this learning manifests in one-time insights rather

than random exploration or short-sighted reactions to gains and losses. In particular,

I distinguish here between persistent behavioural changes, which are consistent with

insights, such as that of pivotal understanding, and non-persistent changes, which are

not. To this end, I classify a subject as switching if after the first time they vote red with

a blue signal they do so for the remainder of the treatment, and as mixing otherwise,
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that is if after voting red with a blue signal they later return to voting blue.11 Since

such a classification is sensitive to random errors in actions, I restrict here to those 175

subjects who play σ̂(r) = 1 across both treatments, which I take as a sign that they

are less prone to this. Table 1.6 shows that switching is substantially more common in

the first treatment each subject plays than in the second (significant in a difference of

proportions test with p = 0.017), but that switching rates do not differ between the two

treatments. Mixing rates, however, are the same in subjects’ first and last treatments,

but is significantly more common (p = 0.026) in HGU, where it may be rational, than

ICG, where it is not. These results are consistent with the notion that switching is due

to subjects learning about something common to the two games, and that this largely

occurs in the first of these two treatments then persists to the second.

Table 1.6: Switching and Mixing subject counts by treatment and experience

Mix Switch Total

Total 51 45 96

HGU 38 22 60
ICG 13 23 36

First 25 33 58
Second 26 12 38

Given the clear importance of learning in these games, it is instructive in classifying

subjects’ overall capabilities to consider their behaviour when most experienced. Figure

1.3 shows each subject’s behaviour in the last half (rounds 9-15) of the second HGU or

ICG treatment that each subject plays. Since each subject only plays one of these games

second, the charts each feature 110 subjects, and are thus less dense than those of Figure

11Note that this may yet exclude some who develop pivotal capability, including, for example, those
who mix as a form of exploration before switching to always voting red, but avoids arbitrary switching
thresholds as would be required for a more inclusive definition.
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1.1, but the contrasts are clear. Aggregate behaviour and individual classifications are

presented in Table 1.7.

Figure 1.3: Individual Behaviour when Experienced (HGU and ICG)

(a) HGU (last 7 rounds) (b) ICG (last 7 rounds)

Table 1.7: Aggregate Behaviour and Individuals by Behaviour Type when Experienced
(HGU and ICG)

Aggregates σ̂(r) = 1 σ̂(r) < 1

σ̂(b) σ̂(r) σ̂(b) = 0 σ̂(b) ∈ (0, 1) σ̂(b) = 1

HGU 0.516 0.932 32 (29.1%) 21 (19.1%) 43 (39.1%) 14 (12.7%)
ICG 0.615 0.931 29 (26.4%) 1 (0.9%) 68 (61.8%) 12 (10.9%)

The most stark result is that mixing has all but disappeared as a strategy in ICG,

despite figuring substantially in the overall data presented in Figure 1.1 and Table

1.4, with just one subject mixing when experienced. This compares to 21 mixing

subjects in HGU (significant in a difference of proportions test with p ≈ 0.000). The

difference is accounted for by more experienced subjects always voting red in ICG than

in HGU (p = 0.001). Notably, these differences are consistent with theory, with always

voting red the only rational strategy in ICG, but mixing also rationalizable in HGU.

The treatments do not differ significantly in the number of subjects that always vote
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informatively, or that play σ̂(r) < 1. The aggregate difference in σ̂(b), significant at

p = 0.007 by the permutation test described in Appendix A.4, is thus driven by the

differences in mixing and red-voting behaviour.

Overall, some 68 of 110 (61.8%) play optimally in ICG when experienced, always

voting red. If we take informative voting in HGU to be naive rather than sophisticated,

as discussed above, then some 64 (58.2%) play optimally in HGU when experienced,

playing σ̂(r) = 1 and σ̂(b) > 0. These proportions are not significantly different.

Finally, it is interesting to note that in both groups, those who maintain σ̂(r) < 1

once experienced largely play σ̂(b) = 0, suggesting that blue votes given red signals

are driven by something more fundamental than a tendency towards randomization.

That it persists in both treatments implies that it is not simply a (misguided) reaction

to others subjects’ unusual behaviour, but since such votes are never optimal for any

beliefs in either treatment it is not clear what might drive such behaviour.

HGM, RCG, and OCG Table 1.8 presents learning regressions for each of the

remaining jury voting games. Columns 1 through 4 present logistic regressions of the

probability of a vote for the red jar conditional upon each signal type for each of HGM

and RCG. Columns 5 and 6 present logistic regressions of the probability of selecting

Choice followed by each vote colour - that is σ̂R and σ̂B respectively - in OCG. The

HGM regression includes dummies for prior experience in HGU and ICG. These are

not relevant for RCG and OCG, which always follow the other games.12

In HGM, there is no evidence of learning for either signal type. This likely reflects

the fact that the optimal behaviour coincides with what we would expect of a naive

subject - i.e. informative voting - and that subjects arrive relatively quickly at this

behaviour. That is, since there is no distinction between naive behaviour and sophis-

12As above, in all regressions dummies for having already played the Charness and Levin (2009)
bidding game are insignificant and thus omitted.
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Table 1.8: Logit Regressions of Probabilty of Red Vote by Treatment and Signal.

(1) (2) (3) (4) (5) (6)
Treatment HGM HGM RCG RCG OCG OCG

Ind. Variable σ̂(r) σ̂(b) σ̂(r) σ̂(b) σ̂R σ̂B

Constant 2.947 -2.465 0.670 -0.500 0.480 -3.314
0.000 0.000 0.000 0.008 0.011 0.000

Round -0.011 -0.025 -0.034 -0.044 0.021 0.012
0.717 0.328 0.003 0.001 0.000 0.360

HGU Prev 0.231 -0.109
0.672 0.814

ICG Prev 0.064 -0.214
0.906 0.677

Obs 1,638 1,662 1,715 1,585 3,300 3,300
Notes: Standard errors are clustered by subject, with p-values presented below coefficient

estimates.

ticated behaviour, there is not as much for subjects to learn given a naive starting

point.

In RCG there is evidence of learning, with the coefficient on the round variable

negative and highly significant for both signals. Since optimal behaviour is to always

vote for the blue jar, the negative coefficient reflects improvement over time. Recall

that subjects playing RCG have already played HGU and ICG and, as per the above

discussion, do not learn through the second of these. That they return to learning

in RCG underlines the implication from the aggregate results that RCG is in some

way different to, and perhaps more difficult than, the other games, despite the pivotal

calculus being mathematically identical to ICG. More is said about RCG in Section

1.4.2.6.

OCG shows similar learning results. Here the pivotal calculus is identical to ICG

- pivotality implies four red computer signals, which implies a red vote is optimal

regardless of the signal - which in this case should lead subjects to select Choice and

vote for the red jar. Again, however, the rate at which subjects do this increases over

time, despite subjects already having played HGU and ICG. Like RCG, that subjects
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continue to learn here suggests that OCG imposes some additional difficulty upon

subjects beyond simply red unanimity and the resulting pivotal calculus. That is, the

decision between Choice and Information is non-trivial, even with subjects experienced

enough to have exhausted the learning opportunities of the earlier red unanimity games.

1.4.2.4 HGU and Heterogeneous Strategic Voting

The comparison between HGU and ICG also sheds light upon a difficult and previously

unanswered question, namely which strategies are played in HGU by those who are

pivotally capable. In particular, while both informative voting and mixing can be

rational in HGU, it has been unclear whether those playing such strategies do so due

to pivotal thinking and appropriate beliefs, or due to other drivers.

Informative voting provides an especially difficult case in that, while it can be ratio-

nal, it is also the behaviour we expect to see from those naive subjects who understand

the basic information structure of the game but do not understand the importance of

pivotality. The results here, however, suggest that sophisticated subjects do not vote

informatively. To see this, we use the fact that informative voting in ICG can only be

explained by naivety, and thus use its prevalence there - 47 of 220 subjects (21.4%)

overall and 29 of 110 (26.4%) when experienced - as a baseline estimate of the naivety

amongst the subject pool. That its prevalence in HGU is almost identical - 49 of 220

subjects (22.3%) overall and 32 of 110 (29.1%) when experienced - suggests that sub-

jects are not voting informatively in HGU for reasons beyond the naivety observed in

ICG.

Within-subject evidence is presented in Table 1.9, which classifies subjects by ob-

served strategies across both of HGU and ICG.13 Of those 33 subjects who always vote

red when playing ICG first, the only behaviour consistent with pivotal capability, just

13As above, I restrict the analysis to those who play σ̂(r) = 1 through both treatments in order to
minimize the effects of those with a tendency for random exploration or errors.

31



Table 1.9: Individual behaviour in HGU and ICG by treatment and order

ICG (Second)

HGU (First) Inform. Red Switch Mix Total

Inform. (σ̂(b) = 0) 16 3 5 0 24
Red (σ̂(b) = 1) 0 17 1 0 18
Switch (σ̂(b) ∈ (0, 1)) 1 16 2 0 19
Mix (σ̂(b) ∈ (0, 1)) 0 11 1 4 16

Total 17 47 9 4

(a) HGU (First) and ICG (Second)

HGU (Second)

ICG (First) Inform. Red Switch Mix Total

Inform. (σ̂(b) = 0) 13 1 2 6 22
Red (σ̂(b) = 1) 1 23 1 8 33
Switch (σ̂(b) ∈ (0, 1)) 2 8 0 4 14
Mix (σ̂(b) ∈ (0, 1)) 2 3 0 4 9

Total 18 35 3 22

(b) ICG (First) and HGU (Second)

one (3.0%) votes informatively when later playing HGU. This is clearly lower than

the 17 of 45 (38.6%) of those who play other strategies when playing ICG first (sig-

nificant in a difference of proportions test with p ≈ 0.000). Likewise, of the 24 who

vote informatively when playing HGU first, just 3 switch to always voting red in ICG

(12.5%), which is lower than those 44 of 53 (83.0%) who play other strategies in HGU

(p ≈ 0.000).

Likewise mixed strategies, that is σ̂(r) = 1, σ̂(b) ∈ (0, 1), have multiple possible

drivers in HGU. While the symmetric responsive equilibrium predicts this behaviour

in response to the belief that the aggregate strategy mixes similarly and in the cor-

rect ratio, it may also be driven by random errors from those otherwise playing pure

strategies, or by those switching from one pure strategy to the other, as discussed above.

Here, the contrast in prevalence between HGU and ICG, the latter of which shuts down

rationality as a driver by fixing beliefs but should have no impact on subject’s tendency
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towards errors or uncertainty, is telling. As discussed above, this is most starkly seen

amongst those who are experienced, where 22 of 110 (19.1%) mix in HGU but just one

(0.9%) does so in ICG (p ≈ 0.000), strongly suggesting that this mixing in HGU is

driven by rationality.

Again, within-subject evidence supports this, with 9 of the 33 (24.2%) who always

vote red when playing ICG first proceeding to play σ̂(b) ∈ (0, 1) in HGU, roughly in

line with the 16 of 45 (35.6%) of others who do so. Likewise, 27 of the 35 (77%) who

play σ̂(b) ∈ (0, 1) when playing HGU first then always vote red in ICG, significantly

more than the 20 of 42 (47.6%) of others who do so (p = 0.016).

Of course, it may not be that all such behaviour is genuine mixing. As discussed

above, more than a third of those playing σ̂(b) ∈ (0, 1) in HGU are in fact switching,

which may be indicative of those developing insights about the game and switching

from one pure strategy to another. Regardless, there is substantial evidence for genuine

mixing among the pivotally capable - and thus presumably beliefs that others are also

pivotally capable - in HGU.

1.4.2.5 OCG and Strategic Behaviour

As discussed above, the fact that subjects learn through OCG even after they have

stopped learning in HGU and ICG suggests that the new task it presents is not triv-

ially different to the tasks in those games. How, then, does subjects’ behaviour relate

between these games? In general, behaviour in OCG is as if those who appear to be

capable of pivotal thinking in HGU and ICG truly are, and those who don’t appear so

are not. As OCG is played last of the five jury voting games, I again classify subjects’

behaviour in those earlier games according to their play when most experienced - that

is, in the last 7 rounds of the second red unanimity treatment played, as in the previ-

ous section. Of those 111 who always vote red there, 91 (82.0%) always select Choice

and vote red in OCG, while just six such subjects (5.4%) always choose Information.
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Subjects who have previously displayed pivotal capability thus largely appear capable

of eschewing private information in order to vote red.

Likewise, of those 61 who vote informatively when experienced in the earlier red

unanimity games, 28 (45.9%) always choose Information in OCG. However 10 (16.4%)

always choose Choice and vote red, thus playing optimally.14 This behaviour is not

easily explained, but perhaps the most plausible cause is simply that since OCG is

played last of all the jury voting games they have had additional time to learn.

Overall, behaviour in OCG aligns well with an understanding of pivotal calculus,

particularly amongst those whose behaviour is consistent with it in previous treatments.

That performance is worse than ICG, as discussed above, suggests that the additional

element is non-trivial, but the division of subjects’ capabilities seems similar between

the two games.

1.4.2.6 The Reverse Computer Game

Throughout, behaviour in RCG has been something of an outlier. As well as aggregate

behaviour being further from theoretical predictions than other treatments, individual

behaviour is notably more heterogeneous and less consistent, with each semi-mixed

strategy observed, along with complete mixing. Many of these strategies cannot be

easily explained. This comes despite the fact that, in theory, the pivotal calculus is no

more complicated than in ICG.

One possible explanation is that subjects are accustomed to the previous computer

behaviour (that is, that of ICG) and take time to come to understand that the implica-

tions of pivotality are now reversed, thus appearing to be mixing when really switching.

Indeed some 29 (21.2%) of those 137 who cast votes in both directions appear to be

switching, which I define equivalently to the above - that is, as always voting blue with

14Four of these played ICG after HGU and are thus classified based on that behaviour, so it is not
simply the case that this informative voting may have been rational.
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a red signal once doing so for the first time. We can see the results of this in Figure

1.4b, which restricts to only data from the last 7 rounds of RCG, and shows much less

apparent mixing than Figure 1.4a, which uses all rounds (and thus simply recreates

Figure 1.1d).

Figure 1.4: Individual Behaviour, Reverse Computer Game

(a) All Rounds (b) Last 7 Rounds

Even with experience, however, many fewer play optimally than in previous treat-

ments. Just 55 (25.0%) always vote blue when experienced (i.e. in the last 7 rounds of

RCG), while 33 (15.0%) continue to always vote red, which is now the strategy with

the lowest expected payoff. This includes 30 (27.0%) of those 111 who always voted

red in the earlier red unanimity games when experienced, suggesting that they were

capable of pivotal reasoning.

As discussed in Section 1.2, one possible explanation for the failure to play rationally

here is that while the computer players’ behaviour is no more complex mathematically

than in ICG, it is far enough from expected or ‘reasonable’ behaviour - in fact, it

clearly works against subjects’ best interests in that computer players sometimes for

red given a blue state - that subjects find it more difficult to reason about, and become
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confused. While there is no clear reason why this should cause subjects’ reasoning to

fail, this confusion hypothesis is supported by the fact that subjects don’t simply revert

to naive informative voting, but in many cases do worse than this. In particular, 84

of 220 (38.2%) of subjects are more likely to vote against their information when it

is irrational to do so than when it is rational (σ̂(b) > 1 − σ̂(r)). This is much more

common than in ICG, where 33 of 220 (15.0%) do the equivalent (1− σ̂(r) > σ̂(b)).

As discussed above, equivalent behaviour is seen in the equivalent treatment (si-

multaneous, with feedback) of Esponda and Vespa (2014), in which the semi-mixed

computer-player strategies may also be seen as unusual or confusing. There, subjects’

information takes the form of a prior rather than a signal, but the results are similar.

Over the first 15 rounds, which gives the same amount of experience as those playing

RCG here, 30 of 58 subjects (52.7%) vote red with a blue prior more often than they

vote blue with a red prior - that is, they vote against their information more often when

it is irrational to do so than when it is rational. That subjects are apparently confused

by the mathematically simple computer play of RCG makes it easier to believe that

they could be similarly confused in Esponda and Vespa (2014), and goes some way to

explaining the lower levels of strategic behaviour seen in that paper relative to other

existing studies using the more standard game, discussed in Section 1.2.1.

It seems clear, then, that while subjects may appear strategic elsewhere, it is not

necessarily the case that these capabilities extend well to even very closely related

games. Where exactly the breakdown occurs warrants further investigation.

1.5 Conclusions

Overall, the variations on the Guarnaschelli et al. (2000) game presented here provide

encouraging evidence for subjects’ understanding of some amount of pivotal calculus.

Perhaps the cleanest test of this is the Informative Computer Game, which simplifies the
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pivotal calculus relative to games played in human groups. There, 39.1% of subjects

act optimally throughout, increasing to 61.8% when subjects are experienced. This

behaviour correlates strongly with apparently sophisticated behaviour in the basic jury

voting game with human groups, in that those who appear sophisticated in one are more

likely to appear so in the other, supporting the idea that those who have appeared as

if they were sophisticated in previous experiments may truly be so. Learning also

plays an important role, as previously suggested by Esponda and Vespa (2014). Much

apparent mixing behaviour appears to be a result of subjects switching from pure

informative voting to pure strategic voting (that is, always voting red), rather than

actual randomization. Notably, however, mixing persists once subjects are experienced

in HGU, where it is potentially rational, but not in ICG, where it is not.

Further support for pivotal thinking is found in many subjects’ willingness to forgo

private information in order to behave strategically in the Option Game. Moreover, a

substantial proportion of subjects that vote informatively in the human games continue

to do so in the ICG and Option treatments, implying that their behaviour in the human-

group games was a result of lacking pivotal understanding, rather than due to forming

beliefs about others that make such behaviour optimal. There is evidence, however,

that those who mix in human-group games do so due to pivotal reasoning.

Finally, however, the results of the RCG treatment suggest that if subjects truly do

understand pivotality, their ability to respond optimally to this understanding must be

limited, as a large majority of previously sophisticated subjects fail to behave optimally

in the face of this new group-mate behaviour. Alternately, it may be that some subjects

have alternate drivers of seemingly-strategic behaviour, such as a desire to herd or

abstain, that does not track with pivotal understanding in all games. In either case,

the external validity of subjects’ apparent pivotal capabilities is not guaranteed, even

in closely related games. Further, this suggests that a failure of pivotal capability can
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be driven not just by a failure to condition on hypothetical events, as per Esponda and

Vespa (2014), but also in the information extraction stage, even for those who appear

capable of hypothetical thinking elsewhere.
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Chapter 2

Hypothetical Thinking Across

Games
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2.1 Introduction

Many games ask players to make inferences about the state of the world from other

players’ actions or other state-dependent events. Distinct among them are those in

which these events are hypothetical in that they have not yet and may not occur. This

paper focusses on two such games - jury voting games and a single-player equivalent

of a common value auction - and investigates whether this common element leads to

common capability within subjects playing both, as is often assumed.

In the canonical model of jury voting due to Austen-Smith and Banks (1996) and

Feddersen and Pesendorfer (1998) a small group determine through voting whether to

convict or acquit a passive defendant. The jury does not observe whether the defendant

is guilty or innocent, each of which is equally likely, but rather each juror receives an

independent noisy signal of guilt then votes for either outcome. The defendant is

convicted if the number of conviction votes exceeds some threshold and is acquitted

otherwise, with jurors rewarded when a guilty defendant is convicted or an innocent

defendant acquitted. The crucial insight of the model is that an optimizing player

should condition on her own hypothetical pivotality, and thus her own vote’s payoff-

relevance. That is, if conviction requires r votes then she should vote as if r − 1

others will vote for it, despite a generally low probability that this occurs. If r is high

enough relative to the size of the group, the informational content of these hypothetical

votes may induce her to vote for conviction even when this contradicts her own private

signal. Amazingly, Guarnaschelli, McKelvey, and Palfrey (2000) and Goeree and Yariv

(2011) show that many subjects display behaviour consistent with this. Yet crucially,

Esponda and Vespa (2014) show, through a related setup, that the hypothetical nature

of pivotality causes subjects considerable difficulty, with many more capable of the

same informational inferences when pivotality is already observed.

In a common value auction, meanwhile, players bid for a prize after each receiving
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independent noisy signals about its randomly drawn but unobserved value, with the

highest bidder receiving that value in exchange for their bid. Here the relevant hypo-

thetical event is that a player makes the winning bid - or, said another way, that each

other player’s private information led them to make lower bids. A sophisticated player

should recognize that the prize’s expected value conditional upon winning the auction -

and thus making a transaction - is lower than its value conditional only upon her private

signal, and should decrease her bid accordingly. Failure to do so results in overbids and

expected losses - the so-called Winner’s Curse, first described by Capen et al. (1971).

Charness and Levin (2009) discuss substantial previous evidence of the Winner’s Curse

in various settings before presenting experimental evidence that it occurs extensively

even in a simplified single-player environment.

Common to both games is that a hypothetical event, necessary to the payoff-

relevance of one’s action, makes clear implications about the state of the world and

thus the player’s optimal action. Although there are differences between them - most

notably that a player’s bid in a common value auction impacts the probability that the

hypothetical event occurs, while their jury vote does not - it seems reasonable to con-

clude that the insights required for one carry over to the other. Surely the capability to

condition upon the hypothetical - which Esponda and Vespa (2014) refer to as hypothet-

ical thinking - applies to both, and for this reason the two games are commonly linked,

both in common usage and the literature. Esponda and Vespa (2014), for example,

in presenting a jury-voting experiment, utilize common-value auctions as the primary

motivating example, and freely connect their results to those of the auction game of

Charness and Levin (2009). A second paper, Esponda and Vespa (2019), tests the

extent to which one aspect of hypothetical thinking, the sure-thing principle, connects

these and other games. Koch and Penczynski (2018) suggest that a transformation of

an auction game to remove conditional reasoning could be similarly used in jury voting
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and persuasion games. Perhaps the clearest connect between the two is due, like the

canonical jury game itself, to Feddersen and Pesendorfer (1996):

“Both in auctions and in elections an agent’s action only matters in

particular circumstances: when an agent is the high bidder in an auction or

when an agent is a swing voter in an election. In either case, when other

agents have private information that may be useful to an agent, the agent

must condition his action not only on his information but also on what-

must be true about the world if his action matters.”

A more general common element - that players must make make inferences about

others’ information from their actions, whether hypothetical or not - is the focus of

Eyster and Rabin (2005) cursed equilibrium. The authors seek to reconcile equilibrium

theory with the observation that experimental subjects often fail to respond fully to

the informational implications of others’ actions. To this end they present a model

in which each player, when forming beliefs about others’ strategies, will with some

positive probability fail to recognize that different types will act in different ways,

instead assigning them the average strategy across all types. Relative to standard

equilibria, this results in higher bids in common value auctions and less strategic voting

in jury voting games. Given the extent to which the cursed equilibrium model is

associated with the games presented here, I discuss it in the context of the results for

both, but find it adds little to our understanding of the data.

The primary purpose of this paper is to test this link between these games through

a within-subject design in which subjects play both games, allowing direct investigation

of whether capability in one correlates to capability in the other. To my knowledge,

only one other experiment, Esponda and Vespa (2019), sees subjects play versions of

both games. There, however, the relationship between play in one game and play in

the other is not reported, with the focus instead on changes in play across multiple
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versions of each game. Moreover, the focus on testing the implications of the sure-thing

principle necessitates that each game is significantly transformed, and each is played

only once each, in contrast to the experiment presented here in which the canonical

versions of each are played for multiple rounds each.

2.2 Experimental Design and Game Results

The experiment presented here features a within-subject design in which subjects play

15 rounds each of six games: an auction game designed by Charness and Levin (2009),

designed to investigate the winner’s curse, and five variations on the jury voting game

designed by Guarnaschelli, McKelvey, and Palfrey (2000). The auction game and its

results are presented in Section 2.2.1 and the jury games and their results in Section

2.2.2. This primary focus of this paper is the relationship between the auction and jury

voting games, presented in Section 2.3, while the relationships between the five jury

voting games are the focus of Chapter 1.

The experiment was conducted over 16 sessions with 220 subjects at the Columbia

Experimental Laboratory for the Social Sciences (CELSS) from November 2016 to

October 2017. Of these, 110 played the auction game before the five jury voting games,

and 110 played it after. The order of the jury voting treatments also varies, as outlined

in Section 2.2. The subject pool consists of Columbia students, primarily undertaking

undergraduate studies. Subjects were paid a $5 show-up fee, 25c for each of the 75 jury

voting rounds in which their group made a correct decision, and 25c for each 120 points

earned in the auction game. Sessions lasted from 50 to 75 minutes, with an average

payment of $20.13.

The interface was programmed using the oTree software package (Chen et al. (2016))

and subjects recruited via ORSEE (Greiner (2004)). Experimental instructions are

presented in Appendix A.1 of Chapter 1, the jury voting interface in Appendix A.3 of
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Chapter 1, and the auction game interface in Appendix B.1.

2.2.1 Auction Game

2.2.1.1 Design

The Charness and Levin (2009) auction game was designed as a single-person variation

of Samuelson and Bazerman (1985) ‘Acquire a Company’ game (itself an application of

the Akerlof (1970) ‘lemons’ model), in which a player bids on a company of unknown

value, acquiring it if her bid is high enough.

In each round, the subject is endowed with 120 points, and is shown an array of

100 virtual cards numbered 20 through 119 inclusive, arranged in random order with

these values hidden.1 The subject is asked to make a whole-numbered bid, b, from 0 to

120 inclusive, and then selects a card, effectively drawing a value from U [20, 119]. The

number on this card, its value v, is then revealed. If the subject’s bid is at least the

value of the revealed card, the subject pays their bid and receives 1.5 times the value

of the card. No transaction occurs otherwise. That is, payoffs, net of endowment, are

given by

π(b, v) =


1.5v − b if b ≥ v

0 if b < v

For a given bid, the expected payoff, net of endowment, is given by

E[π|b] = P [v ≤ b] · E[1.5v − b|v ≤ b] =


−15 if b = 120

b−19
100
· [3

2
20+b
2
− b] if b ∈ [20, 119]

0 if b < 20

1The game is thus equivalent to Charness and Levin’s ‘Shifted-100VT’ treatment.
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Figure 2.1 shows this expected payoff for each possible bid. Subjects are told their

payoff at the end of each round, and at the end of the session are paid 25 cents for

every 120 points earned, rounded up to the nearest 25c.

Figure 2.1: Expected Net Payoff by Bid in the Auction Game

Solving for the optimal bid, b = 40, is not trivial given that b impacts both terms of

the expectation. A less demanding standard is that subjects avoid overbids - bids

which have negative net expectation, b > 60, which depends only on the sign of

E[1.5v − b|v ≤ b] = 1.5 · E[v|v ≤ b] − b. While generally this requires us to take

expectations over the distribution of b, which we cannot expect subjects in the lab to

do, the uniform distribution used here means that reasonable rules of thumb lead to the

correct answer. In particular, since E[v|v ≤ b] = v̄(b) where v̄(b) is the median of the

range [20, b] - that is, the median of all values that lead to a transaction - a bid b gives

an expected loss if and only if this median value would result in a loss, 1.5v̄(b)− b < 0.

Thus a subject that uses v̄(b) as a reference for evaluating a bid b - which seems in-

tuitively reasonable - may avoid overbidding even without taking expectations more

formally. Thus avoiding overbids provides a more reasonable benchmark for behaviour

than attaining the optimal bid of 40.
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2.2.1.2 Results

Figure 2.2a and Table 2.1 replicate the presentation of Charness and Levin (2009), the

former showing the distribution of bids and the latter presenting summary statistics

and categorizing bids as being greater than, equal to, or less than the optimal bid of

40. Figure 2.2b displays the bid distribution in terms of expected payoff. Throughout,

all payoffs are net of the endowment.

Figure 2.2: Distributions of Aggregate Bids

(a) Distribution of Bids
(b) Distribution of Bids by Expected Pay-
off

Table 2.1: Aggregate Bidding Behaviour

Source Obs Avg Bid Bid > 40 Bid 40 Bid < 40

This paper 3,300 67.9 2,772 (84.0%) 101 (3.1%) 427 (12.9%)
Charness and Levin (2009) 1,770 68.42 1,561 (88.2%) 46 (2.6%) 163 (9.2%)

The results are largely similar to those of Charness and Levin (2009), and in par-

ticular show strong evidence for the Winner’s Curse, with subjects frequently bidding

too much. The average bid of 67.9 points not only exceeds the optimal bid of 40, but

also the break-even bid of 60, and thus results in a negative expected payoff. The rates

at which subjects bid more than the optimal amount is much larger than the rate at

which they bid below it, and in each case these rates are similar to those of Charness

and Levin (2009), with a χ2 test finding no difference in the distributions presented on

the right of Table 2.1 (p = 0.1991).
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Table 2.2: Aggregate Underbidding and Overbidding

Underbids Good Bids Overbids Small Over. Large Over.
Rounds Avg Bid Avg Exp (b < 20) (b ∈ [20, 60]) (b > 60) (b ∈ (60, 90)) (b ≥ 90)

All 67.9 -2.78 166 (5.0%) 1165 (35.3%) 1969 (59.7%) 1208 (36.6%) 761 (23.1%)

First 7 68.3 -2.58 62 (3.5%) 526 (34.9%) 952 (61.6%) 718 (40.1%) 233 (21.0%)
Last 7 67.6 -2.94 93 (6.2%) 560 (37.4%) 887 (56.5%) 589 (32.1%) 298 (24.4%)

Change -1.6 -0.32 31 (2.7%) 34 (2.5%) -65 (5.2%) -129 (8.5%) 65 (3.4%)
p-value 0.442 0.015 0.004 0.160 0.013 0.000 0.005

As discussed in the previous section, I wish to focus in particular on the less demand-

ing standard of whether subjects are able to avoid overbids with negative expectation,

b > 60. Table 2.2 recategorizes bids along these lines, further splitting these overbids

into large overbids - those of at least 90 points, which result in expected losses of at

least 5.5 points - and and small overbids - those of between 60 and 90. Overbids make

up 59.7% of all bids submitted, with 23.1% large overbids. Underbids - those bids below

20, which ensure that no transaction takes place regardless of the value of the drawn

card - account for 5.0% of all bids.

This susceptibility to the Winner’s Curse is not driven by just a few badly per-

forming individuals, but rather is widespread in the individual-level data. Figure 2.3

shows the distribution of subjects by their mean expected payoff across all 15 rounds.

186 of 220 (84.5%) have negative expected payoffs overall, while 71 (32.3%) have a

mean expected payoff below -3.4, which is the figure attained by simply randomizing

uniformly over [20, 120], the range of bids that can result in a transaction. That is, the

vast majority of subjects would expect to be better off by always bidding below 20 and

ensuring they keep the endowment, while almost a third would expect to be better off

by randomizing than by casting their observed bids. A majority, 137 of 220 (62.3%),

overbid more often than not, with 34 (15.5%) overbidding in all 15 rounds. Complete

bidding behaviour is presented in Figure B.2 in Appendix B.2.

Behaviour is also highly variable on a within-subject basis, with a mean within-

subject range of 53.5 points and standard deviation of 16.5 points. The mean absolute
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Figure 2.3: Distribution of Subjects by Mean Expected Payoff

difference between a bid and the same subject’s previous bid is 11.6 points. More-

over, the changes in a subject’s bids are generally non-monotonic, with the movements

changing direction - that is, the subject increases (decreases) their bid when the last

change was to decrease (increase) it - on average 4.8 times over 15 rounds of play. A

reproduction of the Charness and Levin (2009) analysis, presented in Appendix B.2,

shows that bid adjustments are highly dependent on the subject’s gains and losses

from the previous round, with those making losses more likely to decrease their bid,

and those making gains more likely to maintain or increase it.

There is also some evidence that behaviour changes across time in a more persistent

way - that which we would call learning if it were an improvement. The second and

third rows of Table 2.2 compare aggregate behaviour from the first seven of the Auction

Game rounds (that is, the first half, rounded down to avoid and overlap) to the last

seven, with the differences in the fourth row. The final row shows p-values for two-

tailed permutation tests for each difference. These tests are described in Appendix

B.3. In particular, the rate of underbids increases from the first half to the last half

of the treatment while the rate of overbids decreases between the same periods. The

change in good bids, those between 20 and 60, is not significant. But while the overall

rate of overbids decreases, the rate of large overbids - bids of at least 90 points -

increases, while the rate of small overbids decreases. That is, while bids with negative
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expectation become less common, those that remain become larger and thus worse.

As a result, while the average bid does not change significantly, the average expected

payoff decreases (that is, the expected loss increases) over time.

Figure 2.4 shows the rate of each bid type by round, again showing the rate of

large overbids increasing while the rate of small overbids decreases. Further evidence

of behavioural changes are seen in the regressions presented in Tables 2.6 and 2.7 of

Section 2.3.

Figure 2.4: Proportion of Bids in Each Range of Net Expectation by Round

Finally, I follow Charness and Levin (2009) in adapting Eyster and Rabin (2005)

cursed equilibrium model to this game. To this end we must interpret the decision over

whether a transaction occurs as being made by a ‘seller’, who accepts the player’s bid,

b, if and only if it exceeds the card’s value, v. Given the uniform distribution of v over
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[20, 119], the seller thus accepts bid b with probability

P (accept|b) =


1 if b = 120

b−19
100

if b ∈ [20, 119]

0 if b < 20

A subject who is χ−cursed thus believes with probability χ that the seller accepts

the bid with this probability regardless of v, and thus chooses b to maximize

Eχ[π|b] =



∑119
v=20

[
3
2
v − b

]
if b = 120

χ
∑119

v=20

[
3
2
v − b

]
· b−19

100
+ (1− χ)

∑b
v=20

[
3
2
v − b

]
if b ∈ [20, 119]

0 if b < 20

For a fully cursed subject, that is, one for which χ = 1, signifying that she always

fails to understand the relationship between v and the seller’s acceptance of the bid,

the optimal is b = 62. This is notably much closer to the mean observed bid of 67.9

than the non-cursed optimal bid, b = 40, is. Clearly, however, subjects’ failures go

beyond that which can be predicted by cursedness, with 1,935 of 3,300 bids (58.6%)

exceeding this level. Even if we follow Eyster and Rabin (2005) by allowing χ values

outside the unit interval, a numerical analysis suggests the optimal resulting bid is

bounded above by b = 70, which is lower than both 1,398 of 3,300 bids (42.4%) bids

and the average bid for 100 of 220 subjects (45.5%). For almost half of all subjects,

then, attempting to estimate a cursedness level is futile. Thus while the theoretical

basis of cursed equilibrium - that subjects fail to fully account for the informational

content of others’ information - is intuitively appealing, and its predictions differ from

the standard optimum in the right direction, it cannot account for the extent of subjects’

failures.
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2.2.2 Jury Voting Game

2.2.2.1 Design

The five jury voting games are variations on those of Guarnaschelli, McKelvey, and

Palfrey (2000), which abstract the jury voting game of Feddersen and Pesendorfer

(1998). In each round, groups of 5 players are each assigned either a red jar or a blue

jar with equal probability. The red jar contains seven red balls and three blue balls,

and the blue jar contains seven blue balls and three red balls. The group are not told

which jar has been assigned to them. Each group member is then shown an image of

the jar with the balls in random order and with all colours obscured, and clicks one of

the ten balls to reveal its colour, providing a noisy signal about the colour of the jar

which is correct with probability p = 0.7. Each subject then votes for either the red or

blue jar. If at least r group members vote for the red jar then the group selects the red

jar, otherwise the group selects the blue jar. At the end of each round, the player is

told the colour of the jar, shown the colours of the ten balls, and is told the number of

group members that voted for each jar. At the end of the session, each subject earns 25

cents for every round in which her group selected the correct jar. A player’s strategy

is denoted by σ(b) and σ(r) which give the probability that the player votes for the

red jar with blue and red signals respectively. The literature focuses on symmetric,

responsive equilibria, where the latter is defined as σ(b) 6= σ(r).3

The five variants of the game are as follows:

2.2.2.2 Human Groups with Majority Voting (HGM)

The game proceeds as above with groups of size n = 5 and majority voting, r =

3. Groups are randomly rematched each round. The unique symmetric, responsive

3This simply rules out equilibria in which each player is trivially best responding by virtue of never
being pivotal such as σ(b) = σ(r) = 1 under majority voting or σ(b) = σ(r) = 0 under any vote-rule.

51



equilibrium entails (fully) informative voting, defined as σ(b) = 0, σ(r) = 1.

2.2.2.3 Human Groups with Red Unanimity Voting (HGU)

The game proceeds as above with groups of size n = 5 and a vote rule of r = 5. That

is, the group selects the red jar only if all group members vote for it, and selects the

blue jar otherwise. I refer to this as red unanimity voting. Here the unique symmetric,

responsive equilibrium is given by σ(r) = 1 and

σ(b) =
pKn,r − (1− p)
p− (1− p)Kn,r

= 0.583 (2.1)

where

Kn,r =
(1− p

p

)n−(r−1)
r−1

.

In particular, symmetric fully informative voting is no longer an equilibrium.4 This

is most easily seen by noting that when a player’s vote is pivotal, all four other group

members must have voted for the red jar. A player capable of pivotal calculus thus

infers that all four must have received red signals, which together outweigh her own

signal, inducing her to vote red regardless of its colour.

2.2.2.4 Informative Computer Groups with Red Unanimity Voting (ICG)

This game proceeds as HGU, with n = r = 5, except each group consists of one subject

and four computer players, each of which votes fully informatively, i.e. σ(b) = 0,

σ(r) = 1. Since these strategies are known to the subject, by the above pivotal reasoning

she should always vote for the red jar regardless of her signal, i.e. σ(b) = σ(r) = 1.

4If we relax the symmetry requirement, any value of σ(b) ∈ [0, 1], along with σ(r) = 1, can be a
best response to reasonable beliefs about others.
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2.2.2.5 Reverse Computer Groups with Red Unanimity Voting (RCG)

This game proceeds as ICG, with n = r = 5, except each computer player votes for

the jar that does not match its selected signal, i.e. σ(b) = 1, σ(r) = 0. Thus while

pivotality still implies four red votes, this now implies four blue signals, inducing a

subject capable of pivotal reasoning to vote for the blue jar regardless of her signal,

σ(b) = σ(r) = 0.

2.2.2.6 Option Computer Groups with Red Unanimity Voting (OCG)

This game proceeds as ICG, with n = r = 5 and computer players that vote infor-

matively, except prior to each round subjects must choose one of two options. Under

Option A, referred to here as the Information option, subjects receive a signal as above,

by selecting a ball and observing its colour, but their vote is automatically cast to match

the colour of their signal. That is, they vote informatively. Under Option B, referred

to here as the Choice option, subjects do not receive a signal, but may choose which

jar to vote for.

As computer players vote informatively, as in ICG, optimal behaviour remains to

always vote for the red jar, which can be achieved under the Choice option. That is,

this option allows subjects to vote optimally, but requires subjects to overcome the

reasonable intuition that eschewing private information is costly.

I denote the probability with which a player chooses Choice and then votes red by

σR and the probability with which she selects Choice and votes blue by σB. Thus the

probability with which she selects Information is 1− σR − σB, and optimal behaviour

is σB = 0, σR = 1.
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2.2.2.7 Order

HGM, HGU, and ICG are played in four different orders, which vary along two dimen-

sions, as summarized in Table 2.3. First, half of all subjects (Orders 1 and 2) play HGU

before ICG while the remainder play the reverse. This order impacts behaviour in each

of these two games, as discussed below and at more length in Chapter 1. Secondly, half

of all subjects (Orders 1 and 3) play HGM first, followed by HGU and ICG in some

order, while the remainder play HGM between these two games. This has no impact

on behaviour in any of these games. In each order, these are then followed by RCG and

OCG. Finally, within each of these orders, half play CL before the jury voting games

and half play it after. Again, this appears to have no impact on behaviour in any game.

Table 2.3: Treatment Orders of Jury Voting Games.

Jury Game Order n

Order 1 HGM - HGU - ICG - RCG - OCG 60
Order 2 HGU - HGM - ICG - RCG - OCG 50
Order 3 HGM - ICG - HGU - RCG - OCG 50
Order 4 ICG - HGM - HGU - RCG - OCG 60

Note: within each, half play CL before the jury voting games, and half play it after.

2.2.2.8 Results

Table 2.4: Observed (and Equilibrium) Aggregate Behaviour, Jury Voting Games

Treatments σ̂(b) σ̂(r)

HGM 0.069 (0.000) 0.948 (1.000)
HGU 0.476 (0.583) 0.912 (1.000)
ICG 0.560 (1.000) 0.919 (1.000)

RCG 0.315 (0.000) 0.613 (0.000)

σ̂R σ̂B

OCG 0.653 (1.000) 0.054 (0.000)

Table 2.4 summarizes the aggregate behaviour for each game. In the first four
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games, σ̂(b) and σ̂(r) show proportion of votes cast for the red jar given a blue or

red signal respectively. In OCG, σ̂R is the proportion of rounds in which a subject

selects Choice and votes for the red jar, and σ̂B the proportion of rounds in which

a subject selects Choice and votes for the blue jar. Individual behaviour is shown in

Figure 2.5, where each point shows one subject’s observed behaviour over the 15 rounds

played. Equilibrium and aggregate behaviour are shown by red diamonds and circles

respectively. Table 2.5 categorizes subjects by this behaviour. Each of these tables and

charts is recreated from Chapter 1.

Table 2.5: Individual Behaviour, Jury Voting Games

σ̂(r) = 1 σ̂(r) < 1

σ̂(b) = 0 σ̂(b) ∈ (0, 1) σ̂(b) = 1

HGM 167 (75.9%) 20 (9.1%) 2 (0.9%) 31 (14.1%)
HGU 49 (22.3%) 68 (30.9%) 54 (24.5%) 49 (22.3%)
ICG 47 (21.4%) 42 (19.1%) 86 (39.1%) 45 (20.5%)

σ̂B = 0 σ̂B > 0

σ̂R = 0 σ̂R ∈ (0, 1) σ̂R = 1

OCG 37 (16.8%) 27 (12.3%) 117 (53.2%) 39 (17.7%)

σ̂(r) = 1 σ̂(r) = 0 Other

σ̂(b) = 1 σ̂(b) = 0 σ̂(b) = 1 σ̂(b) = 0

RCG 24 (10.9%) 26 (11.8%) 3 (1.4%) 30 (13.6%) 137 (62.3%)

The first notable aspect of the results is that subjects overwhelmingly vote infor-

matively in HGM. 75.9% never deviate from this, with 83.6% deviating at most once.

This suggests that subjects generally understand the information structure to at least

a basic level, whether or not they display evidence of pivotal thinking elsewhere. This

is further supported by the large majorities playing σ̂(r) = 1 in each of the first three

treatments - rational behaviour that is common to the sophisticated and the naive alike.

HGU and ICG provide both an opportunity for and evidence of strategic behaviour,
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Figure 2.5: Individual Behaviour by Treatment.

(a) HGM (b) HGU

(c) ICG (d) RCG

(e) OCG

with the increase in σ̂(b) relative to HGM consistent with pivotal thinking. In par-

ticular, relative to HGM, many more individuals mix when receiving a blue signal,
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σ̂(b) ∈ (0, 1), or to always vote red, σ̂(b) = 1. The latter is particularly prevalent in

ICG, in which it is the only rational strategy, whereas any σ̂(b) can be rationalized

given reasonable beliefs in HGU. In the aggregate, however, the increase in σ̂(b) falls

short of theoretical predictions in HGU, and even more so in ICG.

While not the focus of this paper, Chapter 1 considers further the relationship

between these games, and finds evidence of substantial learning in each of HGU and

ICG, with σ̂(b) increasing over time. Interestingly, learning in each of these games

appears to apply to the other, with the increase only occurring throughout the first

of the two that a subject plays, then maintaining its level (but not increasing further)

through the second. Experience in HGM does not affect either, and vice-versa. This

suggests that subjects are learning about something that the two red-unanimity games

have in common, such as pivotal thinking, as opposed to something that only applies

to one of the two games, such as changing beliefs about others’ behaviour.

OCG behaviour is largely in line with that of ICG, in which the computer players

and the resulting optimal behaviour - always voting red - are the same. Here, however,

always voting red requires subjects to first select Choice and thus to forgo private

information. 117 of 220 subjects (53.2%) always vote optimally, selecting Choice and

voting for the red jar. 37 (16.8%) always select Information and thus vote informatively.

Although 39 subjects select Choice and vote blue at least once - the behaviour with the

lowest expected payoff - they do so relatively rarely, with subjects that select Choice

then voting red 92.4% of the time. This suggests that subjects see little reason to select

Choice other than that it facilitates red votes. Overall, there is little evidence that

pivotally capable subjects struggle with the additional option presented here.

Behaviour in RCG, however, deviates substantially from previous jury voting games.

30 of 220 (13.6%) always vote blue, the optimal behaviour. This represents a substan-

tial decrease from the 86 (39.0%) that optimally always vote red in ICG. 24 (10.9%)
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always vote red while 26 (11.8%) always vote informatively, despite neither being op-

timal any longer. RCG behaviour is thus very poor. The overwhelming difference in

subjects’ capabilities between ICG and RCG is interesting given information extrac-

tion is mathematically identical in both. One possible explanation, discussed further

in Chapter 1, is that the counterintuitive computer player behaviour in RCG confuses

subjects, or induces them to abandon sophisticated reasoning.

Cursedness can also be applied to jury voting games with unanimity voting r =

5.5 Specifically, since a cursed individual interprets others’ behaviour as being less

informative than it is, voting in equilibrium must be more informative - that is, σ(b)

decreases - in order for subjects to be willing to mix. Even symmetric fully informative

voting may be a (heavily) cursed equilibrium. Eyster and Rabin (2005) note that

aggregate support from Guarnaschelli, McKelvey, and Palfrey (2000) - the only jury

voting data at the time of publication - is weak, in that observed σ̂(b) is below the

non-cursed equilibrium level in only one of two treatments. More recent data is more

promising, however, in that the result holds in both non-majority treatments of Goeree

and Yariv (2011) and the HGU data presented here.

Estimating subjects’ cursedness appears relatively fruitless, however. The nature

of the game, in which subjects make binary decisions, means that these estimates are

necessarily coarse. In ICG, for example, it is relatively simple to show that a player

receiving a blue signal is indifferent between red and blue votes only if χ = 0.681.6 For a

subject that votes informatively, all that we can say is that χ ≥ 0.681, while for a subject

that always votes red, χ ≤ 0.681. The same applies to OCG and, with colours inverted,

to RCG. The threshold for HGU, assuming players are drawn from a large population

with the observed aggregate behaviour σ̂(r) = 0.913, σ̂(b) = 0.476, is χ = 0.171.

5In HGM, fully informative voting is optimal regardless of beliefs about others, and thus cursedness
has no bite.

6See Eyster and Rabin (2002) for the mathematical details of incorporating cursedness into the
jury voting model.
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That is, in each case, estimating cursedness simply attaches numerical labels to three

observed behaviours - always voting informatively, always voting red, and mixing - but

absent evidence that cursedness levels persists across strategic environments, it is not

clear what value these new labels provide.7

More generally, then, while the core idea of cursedness - that subjects do not fully

account for the informational content of others’ behaviour - seems a reasonable descrip-

tion of the cognitive failing that leads to naivety in jury voting games, the contribution

of the model - that it allows partial failings through the parameter χ - does not appear

especially pertinent in this environment.

2.3 Comparative Results

2.3.1 General Behaviour

The primary focus of this paper is the relationship between individuals’ bidding be-

haviour in the auction game, henceforth AG, and voting behaviour in the jury voting

games. Tables 2.6 and 2.7 show linear regressions of the expected payoff (Columns

(a) through (c)) and logistic regressions of the probability of an overbid (Columns (d)

through (f)) in AG upon various measures of behaviour in HGM, HGU, and ICG. RCG

and OCG are treated in Appendix B.4. In each case, informative voting is omitted and

thus acts as the base case.

Table 2.6 measures behaviour in terms of subjects’ observed σ̂(r) and σ̂(b). Equi-

librium in each of the three games requires σ(r) = 1, and thus we expect the same of

the observed σ̂(r). Deviations from this are necessarily irrational in HGM and ICG,

and can be explained in HGU only by implausible beliefs, such as other subjects always

7Of course, testing the persistence of χ across the two environments presented here - CL and the
jury voting games - is made impossible by the fact that most subjects’ CL behaviour is not consistent
with any χ.
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Table 2.6: Regressions of AG Behaviour on Jury Voting Frequencies

Variable Exp Payoff Overbid

(a) (b) (c) (d) (e) (f)
Jury HGM HGU ICG HGM HGU ICG

Constant -3.696 -4.523 -5.716 1.000 1.097 1.088
0.021 0.001 0.000 0.063 0.006 0.008

Round -0.040 -0.040 -0.040 -0.019 -0.020 -0.019
0.064 0.064 0.064 0.081 0.080 0.080

σ̂(b) -3.763 -0.384 0.242 0.064 0.145 -0.007
0.081 0.503 0.638 0.915 0.554 0.976

σ̂(r) 1.538 2.507 3.333 -0.620 -0.835 -0.715
0.344 0.105 0.017 0.257 0.061 0.118

AG First 0.077 -0.084 0.102 0.272 0.304 0.257
0.859 0.849 0.818 0.148 0.110 0.174

Obs 3,300 3,300 3,300 3,300 3,300 3,300
Notes: In all regressions standard errors are clustered by subject and p-values are presented below

the estimates.

voting against their own private information. The regressions presented here find some

evidence that such deviations correspond to worse performance in AG, with the signs

of the coefficients as expected, although this is significant at a reasonable level only for

expected payoffs in ICG (Column (c)).

σ̂(b), meanwhile, allows us to differentiate between the naive and the sophisticated,

in that positive values are consistent with sophistication but not naivety in both HGU

and ICG. This is particularly true in ICG, where σ(b) = 1 is the only rationalizable

strategy. Indeed, the estimated coefficients have the expected signs but are not signif-

icant. In HGU, where any σ(b) can be a best response to reasonable beliefs in HGU,

the effect is also insignificant in both regressions. In HGM, on the other hand, positive

values of σ̂(b) show irrational behaviour, as only informative voting is rational. Again,

the signs on the estimated coefficients are as expected, with weak significance in the
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Table 2.7: Regressions of AG Behaviour on Jury Voting Classifications

Variable Exp Payoff Overbid

(a) (b) (c) (d) (e) (f)
Jury HGM HGU ICG HGM HGU ICG

Constant -1.804 -1.989 -2.085 0.298 0.164 0.110
0.000 0.000 0.000 0.070 0.516 0.667

Round -0.040 -0.040 -0.040 -0.020 -0.020 -0.019
0.006 0.064 0.064 0.081 0.080 0.081

Pure Red -4.852 -0.805 -0.206 -0.142 0.266 0.224
σ̂(b) = σ̂(r) = 1 0.287 0.232 0.740 0.909 0.369 0.400

Mixed 2.994 0.262 -0.016 0.762 0.178 0.482
σ̂(b) ∈ (0, 1), σ̂(r) = 1 -2.447 0.607 0.981 0.033 0.493 0.121

Red Errors 0.003 -1.439 -1.611 0.406 0.537 0.548
σ̂(r) < 1 0.859 0.043 0.026 0.084 0.069 0.050

AG First 0.026 -0.052 0.093 0.270 0.3040 0.305
0.951 0.906 0.831 0.152 0.112 0.100

Obs 3,300 3,300 3,300 3,300 3,300 3,300
Notes: In all regressions standard errors are clustered by subject and p-values are presented below

the estimates.

first column. That is, more red votes given blue signals in HGM, where this behaviour

is irrational, relates to lower expected payoffs in AG.

Table 2.7 repeats the above but measures behaviour via dummies for the categoriza-

tions of individuals presented in Table 2.5. In each, the baseline is informative voting.

The results are qualitatively similar to the above, in that irrational deviations from

informative voting appear to have some relationship with worse performance in AG,

while rational deviations do not. In particular, the dummies for Pure Red and Mixed

voting, which help distinguish between the naive and the sophisticated in HGU and

ICG, are mostly insignificant. The one exception is in Column (d), where the coeffi-

cient on the Mixed dummy is positive and significant, suggesting higher overbid rates

in HGM. Given the only rational strategy in this game is informative voting, the Mixed

dummy shows irrational behaviour, and thus worse performance is consistent with the
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above. Likewise, the Red Errors variable, which dummies for those who vote blue with

a red signal at least once in a given treatment, is significant, or close to significant,

in five of six regressions, with the coefficients reflecting worse AG performance in each

case.

Overall, then, the results suggest that irrational deviations from informative voting

correspond to worse AG performance, while rational deviations - such as voting red

with a blue signal in HGU or ICG, which we expect of those who are capable of

hypothetical thinking - has no relationship with AG. This suggests that a basic level

of comprehension (or perhaps effort or consistency) in the jury voting games relates to

better outcomes in AG - an unsurprising result - but there is no evidence that pivotal

thinking in the former has any effect.

Finally, note that while informative voting is the baseline group in each regression,

changing this does not result in any additional significant differences between groups.

Figure 2.6 shows the distribution of bids, measured by expected (net) payoff, for each

of the HGU and ICG categories from Table 2.5, where we see again that those who vote

blue with a red signal, σ̂(b) < 1, and thus display evidence of basic misunderstandings

of the information structure of the game, are less likely to bid with positive expectation

in AG, while the differences between other groups - through which we see evidence of

pivotal thinking in the jury voting games - are less prevalent.

2.3.2 Learning and Insight

I consider next whether there is any connection between subjects’ apparent propensity

to learn in these various games. As discussed in Section 2.2, there is some evidence that

behaviour changes throughout both AG and the jury voting games. The regressions in

Tables 2.6 and 2.7 provide further support for this, with the coefficient on the round

number (weakly) significant in each. In keeping with the previous discussion, the signs
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Figure 2.6: Distributions of Net Expected Payoffs by Jury Voting Strategies

(a) By HGU Classification

(b) By ICG Classification

Notes: Informative subjects are those who play σ̂(r) = 1, σ̂(b) = 0, mixers play σ̂(r) = 1, σ̂(b) ∈ (0, 1), pure red
subjects play σ̂(r) = 1, σ̂(b) = 1, and red errors subjects play σ̂(r) < 1.

on the coefficients suggest that while overbids become less common over time, the

overall expected payoff also decreases. Again, this is because while subjects become

less likely to make overbids, those that they do make become worse on average, with

the rate of large overbids (bids of at least 90 points) increasing at the expense of smaller
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overbids.

I thus measure each subject’s long-term behavioural changes in AG by measuring

the increase in each of their mean expected payoffs and overbid rates from the first seven

rounds (that is, the first half of the rounds) to the last seven rounds. By averaging

behaviour over several rounds, I hope to account somewhat for the high short-term

variability of bids discussed above.

To measure each subject’s learning in the jury voting games I take a similar ap-

proach, taking the difference of the observed σ̂(b) between the first and last seven

rounds of each of HGU and ICG. To reflect the fact that learning in each of these

games appears to carry over to the other, as discussed in Chapter 1, I also compare the

first seven rounds of the first of these two treatments that a subject plays to the last

seven rounds of the second. Although such measures could be misleading in HGU, in

which any σ̂(b) can be a best response to reasonable beliefs about others’ behaviour, red

votes with blue signals remain the best available indicator of sophisticated behaviour.8

Table 2.8 shows linear regressions of these changes in AG behaviour - mean expected

payoff in Column (a) and overbid rate in Column (b) - on the above changes in jury

voting behaviour. Within-treatment changes in σ̂(b) do not appear to impact learning

in AG, but the change in σ̂(b) across the two treatments together does. In particular,

more learning across HGU and ICG combined - as measured by a higher increase in

σ̂(b) from the first seven rounds of the first of these treatments to the last seven rounds

of the second - results in a greater decrease (or lower increase) in the rate of overbids

from the first seven rounds of AG to the last seven.

It is also worth noting that the overbid rate increases more for subjects that play

AG before the jury voting games. Said another way, the overbid rate increases less (or

decreases more) amongst those who have already played the jury voting games. It is not

8Moreover, Chapter 1 presents evidence that in HGU informative voting, in which only σ(b) = 0
is rational, is generally a result of naivety rather than sophistication and appropriate beliefs.
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clear, however, whether this effect is due to experience playing the jury voting games

in particular, which would suggest a link between the games, or if it is simply due to

playing at the end of an experimental session rather than the beginning. Equivalent

regressions presented in Chapter 1 show that behaviour in the jury voting games is

unaffected by whether or not subjects have first played AG.

Table 2.8: Regressions of AG learning on changes in jury voting behaviour.

Variable ∆E[Payoff] ∆ Overbid Rate
(a) (b)

Constant -0.354 -0.082
0.230 0.024

∆σ̂(b), HGU -0.697 -0.022
0.275 0.760

∆σ̂(b), ICG -1.139 0.100
0.214 0.326

∆σ̂(b), Overall 0.389 0.108
0.397 0.053

AG First 0.066 0.095
0.870 0.043

Obs 220 220

Notes: In all regressions standard errors are clustered by subject and p-values are presented
below the estimates.

The question arises, then, as to whether any changes in jury voting behaviour carry

over to AG, as they presumably would if they were driven by insights relevant to both

games. In particular, if that which is learned in the jury voting games is applicable to

AG then we would expect those who learn more in the former to then perform better

in the latter when playing it afterwards. Table 2.9 thus restricts to those who play the

jury voting games before AG and regresses the two measures of overall AG performance

- that is, the levels rather than the changes over time - upon the previous measures of

learning in the jury voting games. There is no evidence that learning in the jury voting

games carries over, however, as none of the coefficients are significant.
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Table 2.9: Regressions of AG behaviour on jury voting behaviour.

(a) (b)
Exp Payoff Overbid

Constant -2.810 0.262
0.000 0.066

∆σ̂(b), HGU -0.262 0.084
0.850 0.880

∆σ̂(b), ICG -0.427 0.471
0.783 0.388

∆σ̂(b), Overall 0.897 -0.359
0.222 0.303

Obs 1650 1650

Notes: In all regressions standard errors are

clustered by subject and p-values are presented below the estimates.

2.4 Conclusions

It is often assumed that sophistication in jury voting games and resilience to the Win-

ner’s Curse are related, due to both relying on the ability to condition on, and extract

information from, hypothetical events. The experiment presented here shows little ev-

idence for this, however. While those who deviate from informative voting in jury

voting games in irrational ways tend to do worse in AG - overbidding more and achiev-

ing lower expected payoffs - there is no difference for those who deviate in ways that

suggest hypothetical thinking, whether measured directly by raw strategy values or by

categorization of subjects.

There is some evidence that those whose behaviour changes more in the jury voting

games also improve more in AG, but it is not clear whether this is due to developing

insights into hypothetical thinking, or to simply due to a more ready response to gains

and losses. Regardless, those who learn more in the jury voting games do not appear

to then play better in AG, suggesting that this learning does not translate between

games.

Thus while the games are clearly bound in theory by the potential for inference
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from hypothetical events, there remains no evidence of a relationship in practice.

67



Chapter 3

Stochastic Choice in Games: an

Experiment

68



This chapter is co-authored with Evan Friedman.

3.1 Introduction

Game theory rests on Nash equilibrium (NE) as its central concept, but despite its

appeal and influence, it fails to capture the richness of experimental data. Systematic

deviations from NE predictions have been documented, even in some of the simplest

games.

NE rests on two assumptions. First, players form accurate beliefs over the distri-

bution of opponents’ actions. Second, players best respond to these beliefs. Efforts to

reconcile theory with data typically amount to weakenings of these strict assumptions.

One leading example is quantal response equilibrium (QRE) (McKelvey and Palfrey

(1995)), which is very much like NE, but relaxes the assumption of best response. That

is, each player forms correct beliefs over the distribution of opponents’ actions, and

though he tends to take better actions (by expected utility), he fails to do so with

probability one. Simply put, QRE is an equilibrium model with “noise in actions”.

However, recent work by Friedman (2018) introduces noisy belief equilibrium (NBE),

an equilibrium model with “noise in beliefs” that maintains best response, and shows

that it can explain several of the same phenomena as QRE. Specifically, when only

considering actions data, the two models make similar predictions in many games com-

monly played in the lab.

The primitive of QRE is the quantal response function–the mapping from payoffs

(given beliefs) to actions. The primitive of NBE is the noisy belief mapping—the map-

ping from opponents’ actions to beliefs. In order for these theories to have empirical

content, these primitives are restricted to satisfy several behavioral axioms which cap-

ture what is meant by noisy actions and noisy beliefs.

The axioms capture forms of bounded rationality. For QRE, better actions are
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played with higher probability, and an all-else-equal increase in the payoff to some

action increases the probability it is played. For NBE, belief distributions are unbiased

and shift around in the same direction as changes in the opponents’ actions.

Since QRE and NBE incorporate noisy actions and noisy beliefs, respectively–the

two fundamental sources of stochasticity in games–it is natural to distinguish these

models in data. One approach would be to design games in which the models’ pre-

dictions diverge and then collect standard actions data. However, since it is obvious

that both sources of noise will be present in almost any experimental dataset, we take

a different approach.

We run a laboratory experiment in which we augment standard actions data with

elicited (and incentivized) beliefs; and by playing a series of games with systematically

varied payoffs, we “trace out” the mappings from the opponent’s actions to beliefs and

from payoffs (given beliefs) to actions. These correspond to the primitives of NBE and

QRE, respectively. With these empirical primitives, we test the axioms. We emphasize

that the games we play do not allow for a strong separation of the theories in terms of

predictions, but by collecting beliefs data, we test the assumptions underlying them.

Understanding the extent to which these axioms fail will help to discipline modelling

assumptions and, we argue, be of reduced-form general interest independent of the

models.

Our experiment has two parts. In the first part, subjects play a set of fully mixed

2× 2 games without feedback. In the second part, subjects state their beliefs and take

actions for these games. The games are the same up to a single payoff parameter for

player 1, and by varying this parameter, we generate the desired variation in beliefs

and expected payoffs for both players. Player 2’s payoff parameters remain fixed across

games, and so there is an asymmetry in player roles which we explore.

We find that (i) belief distributions tend to shift in the same direction as changes in
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opponents’ actions, (ii) beliefs are systematically biased–“conservative” for one player

1 and “extreme” for player 2, (iii) rates of best response vary systematically across

games, and (iv) systematic failures to maximize expected payoffs (given beliefs) are well

explained by risk aversion despite our efforts to mitigate it in the experiment. Digging

deeper into the process of belief formation, we collect subject-level measures of strategic

sophistication based on dominance solvable games. We find that (v) experience as

player 1 causes higher levels of sophistication than player 2 despite playing exactly

the same games, (vi) sophistication measured in dominance solvable games strongly

predicts behavior in fully mixed games, and (vii) belief elicitation significantly effects

actions in a direction consistent with increasing sophistication.

3.2 Theoretical Background

Though defined for any normal form game, we provide the definitions of QRE and

NBE for 2 × 2 games with unique, mixed strategy Nash equilibria.1 These games,

sometimes referred to as “generalized matching pennies” or simply “matching pennies”,

are frequently played in experiments and form the basis of this experiment.

Matching pennies is defined by the payoff matrix in Figure 3.1.2 The parameters

aL, aR, bU , and bD give the base payoffs. The parameters cL, cR, dU , and dD are the payoff

differences, which we assume are strictly positive to maintain the relevant features.3 The

row player’s actions are U and D (“up” and “down”); the column player’s actions are

L and R (“left” and “right”).

1Friedman (2018) defines NBE for normal form games. The fully mixed 2× 2 case obscures some
of its general properties. For example, NBE is a refinement of rationalizability (Bernheim (1984) and
Pearce (1984)) in the sense that only rationalizable actions are played with positive probability in
equilibrium.

2This notation is borrowed from Selten and Chmura (2008) with slight modification.

3Games in which the payoff differences are all strictly negative are equivalent up to the labelling
of actions.
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L (q) R

U (p)

bU bU + dU U: up D: down
L: left R: right

Player 1’s payoff in lower-left corner
aL + cL aR Player 2’s payoff in upper-right corner

D

bD + dD bD
aL, aR, bU , bD ∈ R
cL, cR, dU , dD > 0

aL aR + cR

Figure 3.1: Matching Pennies

We use i and j as player indices. In particular, we always refer to player i as forming

beliefs about the behavior of opponent j. Reserving k and l for action indices, we write,

for example, aik as action k of player i. To minimize the use of subscripts, we use p

and q for the probabilities of playing U and L, respectively, which we refer to simply

as “actions”. We use r ∈ [0, 1] to refer to the action of player j, which should be

understood as p or q depending on context.

The Nash equilibrium of any matching pennies games is given as {pNE, qNE} =

{ dD
dU+dD

, cR
cL+cR

}, which depends only on the payoff differences. The predictions of other

concepts may depend on more features of the game (as well as exogenously specified

primitives from outside the game).

3.2.1 Quantal Response Equilibrium

In a QRE, a player’s behavior depends on the expected payoffs to each action. To

this end, let ūi(r
′
) = (ūi1(r

′
), ūi2(r

′
)) ∈ R2 be the vector of i’s (subjective) expected

utilities given belief r
′ ∈ [0, 1] over the behavior of player j. We use vi = (vi1, vi2) ∈ R2

as shorthand for an arbitrary vector of expected utilities. That is, vi is understood to
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satisfy vi = ūi(r
′
) for some r

′
.

In a QRE, player i’s quantal response function Qi = (Qi1, Qi2) : R2 → [0, 1]2 maps

his vector of expected utilities to a distribution over actions. The quantal response

function is the primitive and assumed to satisfy the following regularity axioms (Goeree

et al. (2005)):

(A1) Interiority: Qik(vi) ∈ (0, 1) for all k ∈ 1, 2 and for all vi ∈ R2.

(A2) Continuity: Qik(vi) is a continuous and differentiable function for all vi ∈ R2.

(A3) Responsiveness: ∂Qik(vi)
∂vik

> 0 for all k ∈ 1, 2 and vi ∈ RJ(i).

(A4) Monotonicity: vik > vil =⇒ Qik(vi) > Qil(vi).

Axioms (A1)-(A2) are technical. Behavioral axioms (A3)-(A4) require that an all-

else-equal increase in the payoff to some action increases the probability it is played

and that higher payoff actions are played with higher probability.

To close the model, it is assumed that each player has correct beliefs over the

distribution of the opponent’s actions and that actions are consistent with the quantal

response functions. Specializing notation in the obvious way by letting QU and QL be

quantal responses and ūU , ūD, ūL, and ūR be expected utilities to actions:

Definition 1. A QRE is any (p, q) ∈ [0, 1]2 such that p = QU(ūU(q), ūD(q)) and

q = QL(ūL(p), ūR(p)).

3.2.2 Noisy Belief Equilibrium

In an NBE (Friedman (2018)), players’ beliefs are drawn from distributions that depend

on the opponents’ equilibrium behavior. If QRE adds “noise to actions”, NBE adds

“noise to beliefs”.4

4For similar approaches of injecting noise into equilibrium beliefs, see Friedman and Mezzetti
(2005) from which NBE adopts the basic idea of belief mappings and Rubinstein and Osborne (2003)
which assumes that players are frequentists whose beliefs are formed from observing random samples
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Given player j’s action r ∈ [0, 1], we assume that player i’s belief over j’s action is

drawn from a distribution that depends on r. In other words, player i’s belief over j’s

action is a random variable that we denote r∗(r), which depends on r and is supported

on [0, 1]. We call this family of random variables noisy beliefs, and they are defined

by a family of CDFs: for any potential belief r̄ ∈ [0, 1], F i(r̄|r) is the probability of

realizing a belief less than or equal to r̄ given that player j is playing r. Noisy beliefs

are assumed to satisfy the following axioms:

(B1) Interior full support: For any r ∈ (0, 1), F i(r̄|r) is strictly increasing and

continuous in r̄ ∈ [0, 1]; r∗(0) = 0 and r∗(1) = 1 with probability 1.

(B2) Continuity: For any r̄ ∈ (0, 1), F i(r̄|r) is continuous in r ∈ [0, 1].

(B3) Responsiveness: For all r < r
′ ∈ [0, 1], F i(r̄|r′) ≤ F i(r̄|r) for r̄ ∈ [0, 1] and

F i(r̄|r′) < F i(r̄|r) for r̄ ∈ (0, 1).

(B4) Unbiasedness: F i(r|r) = 1
2

for r ∈ (0, 1).

Axioms (B1)-(B2) are technical. Behavioral axioms (B3)-(B4) require that beliefs

shift up in the sense of first-order stochastic dominance when the opponent’s action

frequency increases and that beliefs are unbiased on median.5

To close the model, it is assumed that players best respond to realized beliefs and

that belief distributions depend on the opponent’s expected action. To this end, we

define reaction functions which give the probabilities with which U (for player 1) and

L (for player 2) are best responses to realized beliefs:

ΨU(q) ≡1− F 1(qNE|q)

ΨL(p) ≡F 2(pNE|p).

of their opponents’ equilibrium behavior.

5Friedman (2018) discusses microfoundations and explores alternate notions such as unbiasedness
on mean, which is compatible with (B1)-(B4) and so could be imposed in addition.

74



These reactions depend on game’s payoffs only through the Nash equilibrium, as this

defines the cutoff beliefs that make players indifferent.

Definition 2. An NBE is any (p, q) ∈ [0, 1]2 such that ΨU(q) = p and ΨL(p) = q.

3.3 Experimental Design

3.3.1 Overall Structure

The experiment consists of two treatments, summarized in table 3.1. The final design

was determined after running two types of pilot sessions, which are not discussed here.6

Our sessions were run in the Columbia Experimental Laboratory in the Social Sciences

(CELSS). Subjects were mainly undergraduate students at Columbia and Barnard Col-

leges.

Treatment Player 1-subjects Player 2-subjects Total
A-BA 54 56 110
A-A 11 11 22

Table 3.1: Overview of experiment

The main treatment is A-BA, which we describe here. The treatment A-A is similar,

but does not involve belief elicitation; it is included to test whether belief elicitation

itself has an effect on behavior, and we defer its discussion to Section 3.8. For aggregate

tests using actions data, we pool together the first sections of A-A and A-BA since that

data was collected under identical conditions.

The experiment involves 2×2 matrix games, and at the beginning of the experiment,

subjects are divided into two equal-sized subpopulations of row and column players,

which we refer to as players 1 and 2, respectively. The A-BA treatment consists of two

6We feared the first type was too long, and the second type did not collect a type of data that
we wished to analyze. To the extent these sessions overlap with our final design, the results are very
similar.
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sections, “action” (A) and “belief-action” (BA). In each of the 20 rounds of Section

A, players are anonymously and randomly paired and take actions simultaneously. In

each of the 40 rounds of Section BA, subjects are presented with a payoff matrix that

appeared in A. Then, before taking an action, they state a belief about their opponent’s

behavior. The BA-belief is over actions taken by subjects in A and the BA-action is

paired against an action taken in A. In this way, BA-subjects form beliefs about and

play against A-subjects. Subjects in BA are not paired since they are playing against

subjects in A, and so are allowed to play at their own pace, though in both sections

subjects must wait for 10 seconds before submitting their answers. Screenshots of the

experimental interface are given in Appendix C.4.

Before the start of Section A, instructions (see Appendix C.1) were read aloud

accompanied by slides (see Appendix C.2). These instructions describe the strategic

interaction and teach subjects how to understand 2× 2 payoff matrices. Subjects then

answered 4 questions to demonstrate their understanding of how to map players’ actions

in a game to payoff outcomes. All subjects were required to answer these correctly.

Subjects then played 4 unpaid practice rounds before proceeding to Section A. After

Section A, additional instructions for Section BA were given. Only at that point were

subjects introduced to the notion of a belief and the elicitation mechanism described.

Subjects then played 3 unpaid practice rounds before proceeding to Section BA.

At no point during the experiment (including the unpaid practice rounds) were

subjects provided any feedback. In particular, no feedback was provided about other

subjects’ actions, the outcomes of games, or the accuracy of belief statements. Only

at the end of the experiment did subjects learn about the outcomes of the games and

belief elicitations that were selected for payment. This simplifies the analysis because

subjects cannot condition on the history of play. It is also conceptually important as

we are interested in observing stochasticity in beliefs, not changes in beliefs that are

76



due to new information.

Each game is played mutliple times. This is necessary because we wish to analyze

patterns in individual subjects’ belief data. However, we take several measures to

approximate a situation in which each game is seen as if for the first time. First,

there is no feedback as described. Second, there is a large “cross section”, i.e. more

distinct games than the number of times each game is played. Third, the games appear

in a random order subject to the same game not appearing more than once within 3

consecutive rounds.

Subjects were paid according to one randomly selected round (based on actions)

from A, and four randomly selected rounds from BA–two rounds based on actions

and two rounds based on beliefs.7 Since there are twice as many rounds in BA as in

A, this equates the incentives for taking actions across sections. Each unit of payoff

corresponded to a probability point of earning $10 (e.g. 20 is a lottery that pays $10

with probability 20% and $0 otherwise). This is to mitigate the effects of risk aversion

as expected utility is linear in probability points.8

3.3.2 The Games

Central to our design are the games whose payoffs are in Table 3.2, indexed by different

values of X > 0. As shorthand, we refer to the game X = 80 as “X80” and similarly

for different values of X.

These games have several important features. First, they are fully mixed, so we

would not expect there to be much no-feedback learning (e.g. Weber (2003)). Second,

they are of low dimension in the sense that each player’s beliefs are one-dimensional.

7To allay any hedging concerns, all five payments were based on different matrices and this was
emphasized to subjects.

8Evidence suggests that this only partially linearizes payoffs in the sense that people still behave as
if they have a utility function over probability points with some curvature. See for example, Harrison
et al. (2013).
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X L (q) R

U (p)
0 20

X 0

D
20 0

0 20

Table 3.2: Game X

This is of obvious practical importance for eliciting beliefs, and means that it is feasible

to “tile” the space of possible beliefs (the unit interval) with relatively few games (i.e.

we avoid the curse of dimensionality). Third, they are sparse in the sense that the

base payoffs are set to 0. Such a restriction has no impact on equilibria but makes the

game’s structure more transparent and makes it easier to calculate best responses and

perceive differences across games. Fourth, by varying X, the theories under scrutiny

predict systematic variation in actions and beliefs, as we now show.

By varying X, we vary the ratio of payoff differences, and hence the equilibria.

Using p and q to denote predicted probabilities of U (for player 1) and L (for player

2), respectively, the NE predictions are qNE = 20
X+20

and pNE = 0.5 (constant for all

X). As is well-known, NE predicts each player must mix to make the other player

indifferent, and this is why pNE = 0.5 for all X.

For any fixed X > 0, both QRE and NBE give the same set predictions (i.e. that

can be achieved for some primitive satisfying the axioms); and these feature systematic

deviations from the NE, with the NE prediction at an extreme point of the set. Fur-

thermore, whereas NE predicts that p is unaffected by changes in X, both QRE and

NBE make the prediction that p increases in X. We are interested in these predictions

for different values of X, but since qNE is a strictly decreasing function of X, we can

parameterize predictions by qNE directly as in Figure 3.2 and summarized Lemma 1.

Lemma 1. In game X:

(i) pNBE, pQRE ∈ (1
2
, 1) for qNE <

1
2
; pNBE, pQRE ∈ (0, 1

2
) for qNE >

1
2
.
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Figure 3.2: Equilibrium Predictions for Game X as a function of qNE
The left panel plots values of p predicted by NE and QRE/NBE. The right panel plots values of q
predicted by NE and QRE/NBE. All QRE/NBE must fall within the gray regions, and QRE/NBE
predict that p decreases in qNE and q increases in qNE . The red lines correspond to logit QRE for
some fixed λ, and the blue lines correspond to a particular parametrization of NBE.

(ii) qNBE, qQRE ∈ (qNE,
1
2
) for qNE <

1
2
; qNBE, qQRE ∈ (1

2
, qNE) for qNE >

1
2
.

(iii) pNBE, pQRE are strictly decreasing in qNE ∈ (0, 1).

(iv) qNBE, qQRE are strictly increasing in qNE ∈ (0, 1).

Proof. See Appendix C.3.

Parts (i)-(ii) of the lemma say that for any one game, the QRE and NBE predic-

tions systematically deviate from the NE prediction. Visually, the QRE/NBE predic-

tions must fall in the gray regions of Figure 3.2. Parts (iii)-(iv) of the lemma give

comparative static predictions as model primitives (quantal response function or noisy

belief mapping) are held fixed as the game varies. This suggests that, by varying X,

we may observe the desired variation in beliefs and payoffs.9

9Such a comparative static represents an example of the “own payoff effect” (see, for example,
Ochs (1995) and Goeree et al. (2003)).

79



The example NBE in Figure 3.2 (blue line) is shown as symmetric about qNE = 1
2
.

This holds whenever the noisy beliefs satisfy a condition called label invariance.10 On

the other hand, the QRE will not be symmetric if the quantal response function is

translation invariant11 and label invariant12, properties that holds for the common

logit QRE (red line) and more generally for any structural QRE.13

Lemma 2. In game X:

(i) If NBE is label invariant, qNBE are pNBE are symmetric about qNE = 1
2
.

(ii) If QRE is translation invariant and label invariant, qQRE and pQRE are not

symmetric about qNE = 1
2
.

Proof. See Appendix C.3.

For the experiment, we choose the six values of X given in Table 3.3. We choose

values so that, by Lemma 2, label invariant NBE predicts symmetry about X = 20

(qNE = 0.5). This allows for a basic benchmark prediction to which we can compare

deviations.14 We represent the selection of X-games with vertical lines in Figure 3.2

(labelled along the top axis).

In addition to the X-games, we also play the games given in Table 3.4. X80s (“s”

for “scale”) is the same as X80, except with all payoffs divided by 10. This is included

10r∗ is label invariant if the distribution of r∗(r) is the same as the distribution of 1 − r∗(1 − r).
Equivalently, r∗ is label invariant if F i(r̄|r) = 1− F i(1− r̄|1− r) for all r̄, r ∈ [0, 1].

11Qi is translation invariant if Qi(vi) = Qi(vi + γeJ(i)) for all γ ∈ R where eJ(i) = (1, ..., 1) is the
vector of ones.

12Qi is label invariant if, for all j and k, Qij(vi) = Qik(v
′

i) if vij = v
′

ik and if, for all l, vil = v
′

il′
for

some l
′
.

13A structural quantal response function is derived by applying additive errors to the expected
utilities. Goeree et al. (2005) show that structural quantal response functions are translation invariant.

14Based on our pilot in which we played X20, we take as given that behavior would be essentially
uniform and that nearly all belief statements would indicate uniform play, so we omit X20 in our final
design.
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X 80 40 10 5 2 1
qNE 0.2 0.333 0.667 0.8 0.909 0.952
pNE 0.5 0.5 0.5 0.5 0.5 0.5

Table 3.3: Selection of X-games

as both QRE and NBE give very precise predictions on the effects of scaling payoffs

(Friedman (2018)). T1 and T2 are “target” games, both of which are similar to X5,

except the symmetry of player 2’s payoffs have been broken. These are included to

test the robustness of the estimated noisy beliefs: can we predict behavior in these

games using beliefs elicited in the X-games? D1 is dominance solvable: player 1 has a

dominant action to which player 2 has a unique best response; player 2’s other action

is a best response to uniform play. D2 is the same up to changing player roles and

relabelling actions, i.e. it is player 2 with the dominant action. These games are

included as measures of attention (i.e. do you believe your opponent will take his strictly

dominant action?) and strategic sophistication (i.e. do you believe your opponent will

best respond to your strictly dominant action?)

Table 3.5 summarizes the games played in both sections and the number of rounds

for each.

3.3.3 Eliciting Beliefs Using Random Binary Choice

We used the random binary choice (RBC) mechanism (see, for example, Karni (2009))

to incentivize subjects to state their beliefs accurately. In an RBC, subjects are asked

which they prefer from a list of 101 binary choices, as in Table 3.6 with option A on the

left and option B on the right. If a subject holds belief b% over the probability an event

E occurs and his preferences respect stochastic dominance (in particular, they do not

have to be risk-neutral), it is optimal to choose option A for questions numbered less
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X80s L R X80s L R

U
0 2

U
0 20

8 0 5 0

D
2 0

D
40 0

0 2 0 20

X80s X80s
T1 L R T2 L R

U
0 20

U
0 20

5 0 5 0

D
10 0

D
40 0

0 20 0 20

X80s X80s
D1 L2 R D2 L R1

U
0 20

U
0 20

6 0 20 4

D1
20 4

D2
6 8

8 20 0 20

Table 3.4: Additional Games

Section Games Rounds of each Rounds

A
X1, X2, X5, X10, X40, X80; X80s 2

20T1, T2 2
D1, D2 1

BA
X1, X2, X5, X10, X40, X80; X80s 5

40Di 3
Dj 2

Table 3.5: Games by Section

than b and option B for questions numbered greater than b.15 Otherwise, the subject is

failing to choose the option that he believes gives the highest probability of receiving

the prize.

In Section BA of the experiment, the event E is that a randomly selected player

chose a particular action. Specifically, subjects were shown a matrix that appeared in

15Another popular method for incentivizing beliefs is the quadratic scoring rule (see, for example,
Nyarko and Schotter (2002)), which has advantages but requires risk neutrality for incentive compat-
ibility. Schotter and Trevino (2014) reviews these and other elicitation mechanisms.
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Would you rather have:

Option A: Option B:

Q.0 $5 if the event E occurs or $5 with probability 0%

Q.1 $5 if the event E occurs or $5 with probability 1%

Q.2 $5 if the event E occurs or $5 with probability 2%
...

...

Q.99 $5 if the event E occurs or $5 with probability 99%

Q.100 $5 if the event E occurs or $5 with probability 100%

Table 3.6: Random Binary Choice

Section A and told that “The computer has randomly selected a round of Section 1 in

which the matrix below was played.” Player 1 (blue) subjects were then asked “What

do you believe is the probability that a randomly selected red player chose L in that

round?”, and similarly for player 2 (red) subjects. By entering their belief, a whole

number between 0 and 100 inclusive, the rows of the table were filled out optimally

given the stated belief (indifference broken in favor of option B).

If a round is selected for a belief payment, one of the 101 rows is randomly chosen

and subjects receive their chosen option. If the subject chose option A in the selected

row, a subject of the relevant type is selected and he receives $5 if he chose the relevant

option. If he chose option B in the selected row, he receives $5 with the probability

given. Since each row is chosen for payment with positive probability, subjects are

incentivized to state their beliefs accurately. In addition, subjects are told explicitly

that it is in their best interest to state their beliefs accurately.

3.4 Overview of the Data

We begin with a holistic view of the data. In Figure 3.3, we reproduce Figure 3.2

superimposed with individual belief data and various aggregate measures. The first

panel plots player 1’s action data as well as player 2’s beliefs about player 1. Specifically,

we plot (1) pA: player 1’s action frequency from Section A; (2) pBA: player 1’s action
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frequency from Section BA; (3) pbr: the action frequency that player 1 would have if

he were to have best responded to all belief statements in BA; and (4) med(p∗): the

median of player 2’s beliefs about player 1. The second panel is the analogue for player

2.

For player 1, we find that the empirical action frequencies pA and pBA are inconsis-

tent with theory in several games and do not match the comparative static predictions

in X, which are non-monotonic. For player 2, we find that the empirical action fre-

quencies qA and qBA are consistent with theory in most but not all games, and the

comparative static in X holds. Interestingly, the median beliefs are consistent with

NBE: if the action frequencies matched the median beliefs, they would be consistent

with NBE.

The aggregate data hides considerable subject-level heterogeneity. In Figures C.8

and C.9 of Appendix C.5.1, we give some representative individual subject plots. Over-

whelmingly, an individual subject’s beliefs for a given game are distributed around

a central tendency that varies sytematically across games, though the dependence of

beliefs on game varies considerably across subjects. That the individual subject be-

lief distributions vary so systematically across games suggests that the beliefs data are

meaningful.

Finally, by comparing pA to pBA and qA to qBA, there are systematic differences in

action frequencies across the two sections of the experiment, with the “direction” of

the difference being uniform across all games for both players. In Section 3.8, we argue

that these differences are caused by the belief elicitation itself.

3.5 Testing the Axioms

We test the axioms of model primitives–the quantal response function in the case of

QRE and noisy beliefs in the case of NBE. In testing QRE’s axioms, we take belief
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Figure 3.3: Equilibrium predictions for game X as a function of qNE
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statements as given and must associate individual beliefs with actions, and hence we

use data from Section BA. In testing NBE’s axioms, we must compare the belief data

from Section BA with the actions from Section A (recall that beliefs were elicited about

subjects’ behavior in A).

3.5.1 QRE

A weak implication of monotonicity in binary action games is that best responses will

be taken with probability greater than one-half. Tables 3.7 and 3.8 show that best

responses are taken with probability greater than one-half in all games, though in not

all cases is this significant.

Unsurprisingly, player 2’s rates of best response are uniformly higher than those of

player 1. By construction, for any given belief other than p∗ = 1
2
, one of player 2’s

actions stochastically dominates the other, and hence should be taken by all subjects

who do not tremble, independent of risk attitude. Perhaps the lower rates of best

response for player 1 are due to the relative complexity of “calculating” the utility to

each action. Another possibility is misspecification in assuming risk neutrality, and

perhaps by allowing curvature the two players would have similar rates.

Two interesting facts emerge from the best response rates. First, player 1’s best

response rates are uniformly higher for games X > 20 than for X < 20. Second, player

2’s best response rates are essentially constant across games. This is despite the fact

that the belief distributions vary systematically across games.

To test monotonicity fully requires that we estimate the probability of best response

conditional on all realized beliefs. To this end, we estimate for each game the action

frequencies predicted by beliefs, which we plot in Figure 3.4. It is important that the

relationship is kept flexible, so we fit linear splines (see figure caption for details).

Monotonicity is satisfied if and only if the action with the highest payoff is played
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(1) (2) (3) (4) (5) (6) (7)
X80 X40 X10 X5 X2 X1 all

best response rate 0.741∗∗∗ 0.737∗∗∗ 0.667∗∗∗ 0.600∗∗ 0.544 0.544 0.639∗∗∗

(0.000) (0.000) (0.000) (0.026) (0.356) (0.414) (0.000)

Observations 270 270 270 270 270 270 1620

p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.7: Player 1’s Rates of Best Response

(1) (2) (3) (4) (5) (6) (7)
X80 X40 X10 X5 X2 X1 all

best response rate 0.836∗∗∗ 0.857∗∗∗ 0.854∗∗∗ 0.836∗∗∗ 0.854∗∗∗ 0.857∗∗∗ 0.849∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 280 280 280 280 280 280 1680

p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.8: Player 2’s rates of best response

with probability greater than one-half. Accordingly, in each panel, we plot the “indif-

ferent belief” as a vertical line. Monotonicity is satisfied for player 1 (player 2) if and

only if the action frequency is weakly less than (greater than) one-half for beliefs lower

than the indifferent belief and weakly greater than (less than) one-half for beliefs higher

than the indifferent belief.

We find that monotonicity cannot be rejected in all games for player 2, but is

rejected for all games of player 1. In particular, monotonicity is violated over a range

of roughly one-fifth of possible beliefs. The nature of violations is systematic. For

X > 20, the violations are for beliefs just “right of” indifference, and for X < 20, the

violations are just “left of” indifference. Such a pattern is consistent qualitatively with

risk aversion or some desire to minimize the probability of receiving the low payoff of

zero or equivalently maximize the probability of “winning”.

Responsiveness is satisfied if and only if the predicted action frequences are in-
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Figure 3.4: Action frequencies predicted by beliefs
Using a linear spline with 4 knots (determined by belief quintiles), we plot the action frequncies

predicted by beliefs. Standard errors are clustered by subject. The left panels are for player 1 and
the right panels are for player 2. The vertical dashed line gives the “indifferent belief” and the

horizontal line is set to one-half.
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creasing in beliefs for player 1 and decreasing in beliefs for player 2. We say that

repsonsiveness is rejected if the slope of one of the line segments in the estimated

spline is significantly negative for player 1 and significantly positive for player 2. We

cannot reject responsiveness in X40 and X5 for player 1 and X40 for player 2, but we

do reject it in all other cases. That responsiveness is rejected in the majority of games

is both surprising and difficult to explain.

3.5.2 NBE

The NBE axiom unbiasedness requires that beliefs are correct on median. Tables 3.9

and 3.10 report the bias of beliefs for each game that are formed about player 1 and

player 2, respectively. To determine significance, we bootstrap confidence intervals for

the difference between median belief and (mean) action frequency and estimate the two-

sided (1−x)%-confidence interval16. We report the smallest x such that this confidence

interval excludes 0, which is conceptually similar to a p-value of the hypothesis of

unbiasedness. In Appendix C.5, we report similar tables based on the mean of beliefs.

We find that player 1’s beliefs about player 2 are remarkably accurate in that we

fail to reject unbiasedness in four of six games individually. What is more, significant

or not, the direction of bias is not systematic. When using the mean belief instead

of median (Appendix C.5), we again find that we cannot reject unbiasedness in most

games individually. However, based on the mean, the direction of bias is “conservative”

in the sense that mean beliefs are more uniform that the actual distribution of actions.

Such bias has been documented by Huck and Weizsacker (2002) in other settings, and

is relatively common in experiments in which beliefs are elicited.

16To preserve the within-subject correlation structure, each bootstrap sample is generated as follows.
For beliefs, we re-sample (with replacement) A-BA subjects, and conditional on drawing a subject,
we re-sample from his belief data (with replacement). Independently, for actions, we re-sample (with
replacement) the pooled A-BA and A-A subjects, and conditional on drawing a subject, we re-sample
his action data from the first section.
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(1) (2) (3) (4) (5) (6)
X80 X40 X10 X5 X2 X1

beliefs - actions 30.000∗∗∗ 28.259∗∗∗ -18.852∗∗∗ -21.667∗∗∗ -34.444∗∗∗ -26.111∗∗∗

(0.000) (0.000) (0.002) (0.001) (0.000) (0.000)

Observations 410 410 410 410 410 410

Bootstrapped ”p-values” in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.9: Player 2’s beliefs versus player 1’s actions
We report the difference between the median belief and the action frequency for each game. We
bootstrap this difference and estimate the two-sided (1− x)%-confidence interval. We report the

smallest x such that this confidence interval excludes 0, which is similar to a p-value.

(1) (2) (3) (4) (5) (6)
X80 X40 X10 X5 X2 X1

beliefs - actions -3.134 7.127∗ -0.672 -7.612 -4.627 -0.627
(0.232) (0.065) (0.433) (0.156) (0.164) (0.457)

Observations 404 404 404 404 404 404

Boostrapped ”p-values” in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.10: Player 1’s beliefs versus player 2’s actions
We report the difference between the median belief and the action frequency for each game. We
bootstrap this difference and estimate the two-sided (1− x)%-confidence interval. We report the

smallest x such that this confidence interval excludes 0, which is similar to a p-value.

More interestingly, we find that player 2’s beliefs about player 1 are very “ex-

treme” and we reject unbiasedness for all games (and similarly for mean-unbiasedness).

Whereas player 1’s actions are relatively close to uniform for all values of X, we see

that player 2’s beliefs are too high when X > 20 and too low when X < 20.

We plot the empirical distributions of beliefs by player and game in Figure 3.5. We

see that, as X varies, the distributions appear to shift monotonically in X in the sense

of FOSD, and this is confirmed by Kolmogorov-Smirnov tests in Table 3.11 (only for

player 2’s beliefs across X2 and X1 is the difference not significant at conventional

levels). Since the empirical distribution of actions does not change monotonically in

X in the same direction as the beliefs, this implies that the beliefs distributions fail
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Pair of Games p∗ q∗

X80 – X40
0.332 0.253

(0.000) (0.000)

X40 – X10
0.764 0.526

(0.000) (0.000)

X10 – X5
0.404 0.179

(0.000) (0.001)

X5 – X2
0.225 0.104

(0.000) (0.110)

X2 – X1
0.229 0.078

(0.000) (0.388)

Table 3.11: Relationship between belief distributions.
We report Kolmogorov-Smirnov statistics of the hypothesis that distributions of beliefs across pairs

of games are not ordered by FOSD. p-values are reported in parenthesis.

responsiveness. Interestingly, however, the belief distributions do move with X as

predicted by the theory even though the actions do not.

3.6 Scale Invariance

How does equilibium behavior vary with changes in payoff magnitude or scale? Fried-

man (2018) shows that NBE is invariant to changes in scale, whereas translation in-

variant regular QRE (a large axiomatic class that includes structural QRE with i.i.d.

errors such as logit) is sensitive to scale.

To answer this question, we compare behavior in X80 to that in X80s. The latter

is the same as the former, except with all payoffs divided by 10. A t-test shows that

we cannot reject that both games have the same average frequency of actions for both

players, as reported in Table 3.12. This is consistent with the study by McKelvey et al.

(2000) on payoff magnitude, though unlike their design, ours does not involve feedback

and features a larger scaling factor (10 as opposed to 4).

What about beliefs? Plotting the belief distributions in Figure 3.6 shows that the

belief distributions are slightly more uniform in X80s than in X80, with a central
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Figure 3.5: Belief Distributions
The left panel is for player 2’s beliefs about player 1, and the right panel is for player 1’s beliefs

about player 2. The solid lines mark the mean of i’s beliefs and the dashed line marks the empirical
frequency of j’s actions.
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(1) (2)
p q

scale -0.023 -0.015
(0.654) (0.755)

Constant 0.515∗∗∗ 0.246∗∗∗

(0.000) (0.000)

Observations 260 268

p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.12: Scale invariance in actions
We report t-tests of the differences between action frequencies of X80 and X80s.

Standard errors are clustered by subject.

Figure 3.6: Belief distributions across scaled games
The solid colors give beliefs in X80, and the black outline gives beliefs in X80s. The left panel is

player 2’s beliefs about player 1, and the right panel gives player 1’s beliefs about player 2.

tendency slightly closer to one-half. Though the effect seems small, it is statistically

significant, as shown in Table 3.13. This suggests that subjects believe that others are

more random when the stakes are low. That beliefs change (albeit slightly) with scale

but actions do not poses a minor puzzle.
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Pair of Games p∗ q∗

X80 – X80s
0.160 0.188

(0.003) (0.000)

Table 3.13: Scale invariance in beliefs
We report Kolmogorov-Smirnov statistics of the hypothesis that distributions of beliefs are not

ordered by FOSD. p-values are reported in parenthesis.

3.7 Sophistication

In experimental studies of strategic sophistication, it is typical to play games that

are dominance solvable. Commonly played games are the beauty contest game (e.g.

Nagel (1995)), 11-20 game (e.g. Alaoui and Penta (2015)), or 3× 3 dominance solvable

games (e.g. Costa-Gomes and Weizsacker (2008)). This is because the framework

of level k typically assigns a unique level to each action except those that are part

of the Nash equilibrium profile, which are consistent with all levels above a certain

threshold. Therefore, it is easy to infer strategic sophistication from behavior. In

generic fully mixed games however, the levels “cycle”17, meaning that no action is

“more sophisticated” than another. For this reason, there have been no attempts (to

our knowledge) to behaviorally identify sophistication in fully mixed games.

Since we have enriched standard actions data with stated beliefs in an array of games

with systematically varied payoffs, our data is ideal for understanding sophistication

in such games. In addition, we have included the dominance solvable games D1 and

D2, which we use to measure sophistication at the subject level. In game Di, player

i has a strictly dominant action. Of player j’s two actions, one is the unique best

response to i’s dominant action and the other is the unique best response to a uniform

(or sufficiently uniform) distribution. In other words, this first action of player j is that

17For example, for games of the form of Figure 3.1, the best response to L is U to which the best
response is R to which the best response is D to which the best response is L. If level 0 is taken
to uniformly mix, and assuming L is the unique best response to q = 1

2 and R is the unique best
response to p = 1

2 (as is the case for almost all games in this family), then the actions taken by levels
k = 0, 1, 2, 3, ... for players 1 and 2 are p = 1

2 , U,D,D,U, U,D,D, ... and q = 1
2 , R,R,L, L,R,R, ...,

respectively.
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taken by a player with Level 2 or higher whereas the second action would be taken

by Level 1. We thus use the belief that a player i-subject places on the first of these

j-actions as a measure of strategic sophistication.

3.7.1 Sophistication and Player Role

How does the player role itself affect strategic sophistication? To answer this question,

we compare our simple sophistication measure across player 1- and player 2-subjects.

Importantly, since D1 and D2 are exactly the same (up to permutation of rows and

columns), this measure is exactly the same for both players, and hence and any differ-

ence across players in sophistication must be due to experience in different roles of the

X-games.

Figure 3.7 plots histograms of subjects’ average sophistication (averaged across three

instances of Di) by player-type, with player 1 on the left and player 2 on the right.

Comparing average levels of sophistication (solid lines) across players reveals that player

1’s average sophistication of 56% is much greater than player 2’s average of 33%. Inter-

estingly, both players best respond to their opponents’ dominant action at nearly the

same frequency, 80% for player 1 and 76% for player 2 (dashed lines).

Player 1 is much more sophisticated than player 2. One hypothesis is that something

about player 1’s role in the X-games is more difficult, and hence player 1 subjects

end up thinking harder on the X-games and this somehow “spills over” to the Di

games. However, despite having slightly slower response times on the X-games, player

1-subjects do not spend longer on Di than player 2-subjects. Furthermore, we define

player i’s “attention” as his average belief that j takes his dominant action in Dj.18

As shown in Figure 3.8, player 1 and player 2-subjects have similar distributions of

attention and take dominated actions in Di at very nearly the same rate (dashed lines).

18We call this attention because it is a belief over an opponent whose optimal action is independent
of strategic considerations.
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Figure 3.7: Sophistication
We measure player i’s sophistication as his belief that player j plays the best response to i’s

dominant action instead of a best response to a uniform distribution in game Di. This figure plots a
histogram of subjects’ average sophistication. The left panel is for player 1, and the right panel is for

player 2. The solid line marks i’s average sophistication, and the dashed line is the empirical
frequency with which j best responds to i’s dominant action.

Figure 3.8: Attention
We plot subject i’s belief that j takes j’s dominant action in Dj, a measure we call “attention”. The

left panel is for player 1, and the right panel is for player 2. The solid line marks i’s average
attention, and the dashed line is the empirical frequency with which j takes his dominant action.
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(1) (2) (3) (4) (5) (6)
Soph. Soph. Soph. Soph. Soph. Soph.

Player 1 22.465∗∗∗ 20.846∗∗∗ 21.418∗∗∗ 25.509∗∗∗ 23.492∗∗∗ 22.730∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Response time 0.582∗∗∗ 0.588∗∗∗ 0.655∗∗∗ 0.693∗∗∗

(0.004) (0.003) (0.004) (0.002)

Attention 0.290∗∗ 0.359∗∗

(0.047) (0.032)

Constant 33.887∗∗∗ 17.137∗∗ -8.144 33.150∗∗∗ 14.880∗∗ -17.036
(0.000) (0.011) (0.567) (0.000) (0.042) (0.298)

Observations 110 110 110 92 92 92

p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 3.14: Effect of player role on sophistication. Column 1 regresses sophistication on an
indicator for player 1. Column 2 controls for subject-average response time on the three rounds of
Di. Column 3 additionally controls for the attention measure. Columns 4-6 are the same, except after
dropping subjects who ever took a dominated action throughout the experiment.

Hence, the difference in sophistication does not seem to reflect simple differences in

effort. Indeed, Table 3.14 shows that the sophistication gap between players is robust

to controlling for response times and attention as well as dropping subjects who took

at least one dominated action in the experiment.

3.7.2 The Relationship Between Sophistication and Behavior

Does sophistication measured in dominance solvable games predict behavior in fully

mixed games? To answer this, we divide player 1-subjects into equal-sized “sophis-

ticated” and “un-sophisticated” groups based on the player 1-median of the sophisti-

cation measure, and similarly for player 2-subjects. Figure 3.9 replicates Figure 3.3,

but is broken down into sophisticated and un-sophisticated groups. We find that so-

phistication, measured in the dominance solvable Di-games, is strongly predictive of

behavior in the fully mixed X-games. This is particularly interesting as other studies

find no “persistence of strategic sophistication” across different types of games (see, for
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Figure 3.9: Sophistication and behavior

example, Georganas et al. (2015)).

For X > 20 (the case of X < 20 being symmetric), player 1-subjects believe player

2 will play R more often than L. Less sophisticated player 1’s tend to believe player

2’s behavior is relatively more uniform. Consistent with these beliefs, un-sophisticated

player 1’s tend to take U , whereas sophisticated player 1’s tend to take D. Player

2-subjects believe player 1 will play U more often than L. Less sophisticated player 2’s

tend to believe player 1 takes U relatively more often (naively responding to large X

perhaps), and accordingly play R relatively more often.
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Figure 3.10: Actions without belief elicitation

Interestingly, it is the un-sophisticated player 1-subjects and the sophisticated player

2-subjects who are most consistent with the joint QRE-NBE predictions.

3.8 The Effects of Belief Elicitation

We show that the actions data from Section A differs significantly from that of Section

BA. To this end, we run F -tests (clustering by subject) and reject the joint hypothesis

that the action frequencies from Section A equal the action frequencies from Section

B game-by-game for all six X-games (p-values of 0.00 and 0.02 for players 1 and 2,

respectively).

Our hypothesis is that this difference is caused by belief elicitation. However, the

two sections differ in their order, the fact that the games in BA are played against

previously recorded actions, and very slightly in their composition of games. To nail

down the cause, we run an additional treatment called A-A. This is identical to the

A-BA treatment except beliefs are not elicited (and instructions never mention belief

elicitation).

In Figure 3.10, we plot the action frequencies separately for the two stages of A-A.
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We find that the first-section action frequencies cannot be distinguished statistically

from the second-section action frequencies, with very similar averages quantitatively

(p-values of 0.94 and 0.22 for players 1 and 2, respectively). We conclude that belief

elicitation does effect actions. This finding adds to a literature with mixed results on

the issue, with some studies claiming no such effect. For discussions, see Schotter and

Trevino (2014), Aguirregabiria and Xie (2017), and Schlag et al. (2015).

Importantly, the “direction” of the change in actions data due to belief elicitation

is systematic. Hence, there is hope that, even though we cannot say that the stated

beliefs are necessarily a good approximation of the beliefs subjects held when playing

the games without elicitation, we may be able to de-bias the effects of elicitation to

infer those beliefs. What is more, based on the analysis of the Section 3.7, we can

say that the direction of the change in action frequencies is consistent with increasing

sophistication.

3.9 Conclusion

We run a laboratory experiment in which subjects play games and state their beliefs

over their opponents’ actions. By using a family of games that vary systematically in

payoffs, we observe the mapping from opponents’ actions to beliefs and the mapping

from expected payoffs (given beliefs) to actions. Our results have direct implications for

the validity of assumptions underlying broad families of stochastic equilibrium models.

In particular, we find systematic bias in beliefs and systematic failures of best response,

which we relate to features of the underlying game. By relating subject-level behaviors

to measures of sophistication, we find that the player role itself can have an important

effect on sophistication, and sophistication has a surprising effect on behavior in fully

mixed games. We provide evidence that belief elicitation effects actions in a direction

consistent with increasing sophistication.
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A.1 Experimental Instructions

This is an experiment in decision making. All interaction will be completed on the

screen in front of you, and from this point on you may not talk to other participants

until the conclusion of the experiment. If you have any problems or questions during

the experiment, raise your hand and wait for the assistance of an experimenter. We

ask at this point that you make sure you have reviewed and signed both consent forms

on your desk.

Before we begin, the rules of the lab are that you not eat or drink while you are

in the lab, and you also must have your cellphones turned off. This lab has a ‘no-

deception’ policy, which says that neither I nor the experiment can lie to or deceive you

in any way - the game is exactly as I present it, with no hidden elements, and should

have no partial or unclear information.

The experiment will consist of six sections. Within each section, the procedure for

each of the 15 rounds will be identical, but there will be differences between each of

the sections. Before each section we will thus read instructions regarding the rules for

that section.

Your earnings will consist of a $5 fixed fee for taking part in the experiment, and

an additional payment determined by your actions in the game, by chance, and by the

actions of others. The details of this will be made explicit as we describe each game.

Section 1 [GMP w/ Majority Voting]

In Section 1, you will play 15 rounds of a group voting game. At the start of each

round, you will be randomly sorted into a group of five players. You will not know

which other participants are in your group.
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Jar Overhead

Next, one of two virtual jars will be randomly assigned to each group. The two possible

jars are shown on the overhead now. The ‘red jar’, shown on the left, contains 7 red

balls and 3 blue balls. The ‘blue jar’, shown on the right, contains 7 blue balls and 3

red balls. For each group, each jar is equally likely to be assigned to it. Each group’s

task is to determine the colour of its assigned jar.

To help you with this decision, you will be shown an image of your group’s jar with

the order of the balls randomized and all colours obscured. You will then select a ball

from the jar and observe its colour. The overhead shows an example of this process -

the blue jar is randomly assigned to the group, the order of its balls are randomized,

the colours of the balls are obscured, and the player has then selected a blue ball.

After you have selected a ball, you will then vote for either the red jar or the blue

jar. Your group’s decision will be made by simple majority - if three or more of the

five group members vote for the red jar, the group will select the red jar, otherwise the

group will select the blue jar. In each round, if your group makes the correct decision,

it will be added to your running total of correct group decisions, and you will receive

an additional 25 cents at the end of the experiment.

I will now walk you through the first practice round to teach you the experimental

interface. Throughout, certain actions may take you away from the relevant screen, so

please do not take any actions until I ask.

Main Screen

You should now see the first screen of the first round, both on the screen in front you

and the overhead. Again, please do not click on anything until asked. You will note

first that the round and section numbers are shown at the top of the screen, as well as a

record of the number of correct decisions your groups have made. At the bottom of the
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screen you will see the section number, and the rules of the game - that is, the group

decision procedure on the left, which says that group decisions are made by majority,

and on the right a reminder that your group has five members, and that for each of the

two possible jars 7 of the 10 balls match the colour of the jar. All of this information

will be presented on every screen of every round of the first section. Note that the game

is identical in every round of this section, and thus this information does not change.

In the middle of the screen, you will see the assigned jar with its colours obscured.

To select a ball and reveal its colour, you simply click on it. You may do this now.

Once you have selected a ball, you will be asked to vote. To do this, click on the

button for the color you wish to vote for. Once you have selected a colour, a new button

of the same colour will appear. Clicking this button will finalize and cast your vote.

Prior to clicking this button, you can change your selection by clicking the ‘red’ and

‘blue’ buttons as many times as you wish, but once you have clicked the vote button,

your vote will be final. Please select a colour and cast your vote now.

Results screen

Once everyone has voted, you will be shown the colour of the jar, and told which colour

your group voted for. You will also see the number of votes your group cast for each

colour, as well as the colour of both your own vote and your selected ball. Finally, you

will see an updated count of your correct group decisions, both in the center of the

screen, and in the usual position at the top. When you are ready, click ’continue’ to

indicate that you are ready to move on to the next round.

You have now completed the first practice round for the first section. Every round

in the first section will follow the exact procedure as the game you have just played.

Are there any questions at this time about the game, the rules, the computer players,

or the interface? You will now play a second practice round, unguided. You may play

the second practice round now.
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Paid Section 1

You have now completed the practice rounds for this section, and we will proceed to

the paid rounds. This section will consist of 15 rounds, each of which follows exactly

the same procedure as the practice rounds you have just played. In each round you

will be randomly sorted into a group of five, and one of the two jars will be randomly

assigned to your group, always with each having equal likelihood of being assigned, so

that each round is completely independent from the others.

Are there any questions about the rules before we begin? You may begin the paid

rounds.

Section 2 [GMP w/ Red Unanimity]

You have now completed the first section of the experiment, and we proceed to the

second. In the second section of the experiment the game follows exactly the same

procedure as the first section, except the group decision process is changed. In this

section, the group only selects the red jar if all five group members vote for it, otherwise

the group selects the blue jar. This decision procedure will be known as red unanimity.

The game is otherwise unchanged. The screens you face will be identical, with the

exception that the information regarding the voting procedure on the bottom left of

each screen is updated to reflect the red unanimity rules.

This section will again consist of 15 rounds, each following these exact rules. In

each round you will be randomly sorted into a group of five, and one of the two jars

will be randomly assigned to your group, always with each having equal likelihood of

being assigned, so that each round is completely independent from the others.

Are there any questions about the rules before we begin? You may begin the second

section.
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Section 3 [Informative Computer Game]

You have completed the second section of the experiment, and we proceed to the third.

In this section the game follows the same procedure as the previous section except that

the group composition is now changed. Now, instead of playing in groups with other

participants, your group will consist of you and four computer players, for a total of

five players.

Computer players follow the same steps as human players, and act completely inde-

pendently of you and of each other. That is, each computer player will privately select

a ball from the chosen jar exactly as a human player would, and will then privately

vote for a colour. Each computer player will always vote for the colour matching the

ball that it selected - if a computer player selects a red ball from the jar, it will vote for

the red jar, and if it selects a blue ball from the jar, it will vote for the blue jar. Again,

computer players act completely independently - they each randomly select their own

ball, and do not share that information with each other, then each independently cast

their own vote. For example, if three computer players in your group select blue balls,

and one computer player selects a red ball, then three computer players will vote for the

blue jar, and one computer player will vote for the red jar, as shown on the overhead.

The game is otherwise the same as in the previous section, including that the group’s

decisions are made by red unanimity. The interface is identical, with the exception of

the information regarding computer players and their behaviour, which is added to the

bottom-right of the screen.

This section will again consist of 15 rounds, each following these exact rules. In each

round, one of the two jars will be randomly assigned to your group, always with each

having equal likelihood of being assigned, so that each round is completely independent

from the others.

Are there any questions about the rules before we begin? You may begin the third
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section.

Section 4 [Reverse Computer Game]

You have completed the third section of the experiment, and we proceed to the fourth.

In this section the game follows the same procedure as the previous section except that

now each computer player will vote for the jar that does not match its selected ball.

That is, a computer player that selects a red ball will vote for the blue jar, while a

computer player that selects a blue ball will vote for the red jar. For example, if three

computer players select red balls and one computer player selects a blue ball, now three

computer players will vote for the blue jar and one computer player will vote for the

red jar, as shown on the overhead.

The game is otherwise the same as in the previous section, including that the group’s

decisions are made by red unanimity. The interface is identical, with the exception of

the information regarding computer players and their behaviour, which is updated at

the bottom-right of the screen.

This section will again consist of 15 rounds, each following these exact rules. In each

round one of the two jars will be randomly assigned to your group, always with each

having equal likelihood of being assigned, so that each round is completely independent

from the others.

Are there any questions about the rules before we begin? You may begin the fourth

section.

Section 5 [Option Game]

You have completed the fourth section of the experiment, and we proceed to the fifth.

In this section the game will change in two ways. The first is that computer players

will revert to voting for the colour of their selected ball. That is, a computer player
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that selects a blue ball will vote for the blue jar, while a computer player that selects

a red ball will vote for the red jar. This information is again shown on the overhead.

The second change is that at the beginning of each round you will be given two

options, labelled Option A and Option B. If you select Option A, you will then select

a ball from the jar as previously, but your vote will then be cast to automatically

match the colour of your selected ball. That is, if you select a blue ball then you

will automatically vote for the blue jar, while if you select a red ball then you will

automatically vote for the red jar.

If you select Option B, you will still click on a ball, but doing so will have not reveal

its colour - that is, all 10 balls will remain grey. You will then choose which colour you

wish to vote for, as in previous sections.

Again, under Option A, clicking a ball reveals its colour, and your vote is automat-

ically cast to match that colour. Under Option B, clicking a ball does not reveal its

colour, and you then select which colour you wish to vote for.

It is important to note that the option you choose has no impact on the computer

players. Regardless of which option you choose, each computer player selects a ball

from the jar, observes its colour, and then votes for that colour.

I will now walk you through the first of two practice rounds to teach you the exper-

imental interface. Throughout, certain actions may take you away from the relevant

screen, so please do not take any actions until I ask.

Option Screen

You should now see the first screen of the first practice round, in which you will select

between these two new options. In the center of the screen you will see the two options,

along with the rules for each option. For Option A, you can see that selecting a ball

reveals its colour, and your vote is automatically cast to match the colour of your

selected ball. For Option B, you can see that selecting a ball has no impact, and you
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select which colour you wish to vote for. Underneath, you can see information that

is the same for both options. Specifically, under both options, when each computer

player selects a ball, its colour is revealed, and the player then votes for the colour that

matches the selected ball. This information is also included on the bottom-right of the

screen, as in previous sections.

Are there any questions about these options, or the information shown on this

screen?

You may now select an option. To do so, just click on the button containing the

words ‘Option A’ or ‘Option B’.

Voting Screen

Once each player has selected an option, the interface is similar to previous sections.

Regardless of which option you selected, you will be asked to click on a ball. If you

selected Option A, this will reveal the colour of the ball and automatically cast your

vote to match that colour. If you selected Option B clicking the ball will have no

impact, and you will then be asked to select your vote. You may now select a ball and,

if necessary, vote.

Once all players have voted, you will be taken to the results screen, which is the

same as previous sections.

Are there any questions about the game, the new rules, or the interface? You may

click continue when you are ready and proceed to play the second practice round.

Paid Section 5

You have now completed the practice rounds for this section, and we will proceed to

the paid rounds.

This section will again consist of 15 rounds, each following these exact rules. In each

round one of the two jars will be randomly assigned to your group, always with each
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having equal likelihood of being assigned, so that each round is completely independent

from the others.

Are there any questions about the rules before we begin? You may begin the fifth

section.

Section 6 Instructions [Bidding Game]

You have now completed the fifth section, and we proceed to the sixth. In this section,

we move from the group voting game to an individual decision game. As in previous

sections, you will play 15 rounds of this game. You will also play two practice rounds,

so you can familiarize yourself with the rules and the interface.

In this game, you will earn points. At the end of the experiment, you will be paid 25c

for every 120 points you earn, in addition to your earnings from the previous sections.

In each round, you will see 100 cards on your screen, in a 5 x 20 array. Each of

these cards has a value between 20 points and 119 points inclusive, with each value in

this range assigned to exactly one card. The order of the cards is randomized, with the

values obscured.

In each round, you will be given an endowment of 120 points. You will then choose

a bid (a whole number between 0 and 120 inclusive) and will then select one of the

cards. The value of this card will then be revealed to you.

If your bid is greater than or equal to the selected card’s value, you receive 150

percent of this card’s value, minus your bid, in addition to your 120 point endowment.

If your bid is less than the card’s value, nothing happens, and you simply retain your

120 point endowment.

Suppose, for example, you bid 62:

• Suppose the value of your selected card is 56. Then its worth to you is 56 x 1.5

= 84 points. Since your bid was 62, you add 84 - 62 = 22 to your endowment,
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and thus earn 142 points overall.

• Suppose the value of your selected card is 30. Then its worth to you is 30 x 1.5

= 45 points. Since your bid was 62, you add 45 - 62 = -17 to your endowment,

and thus earn 103 points overall.

• Suppose the value of your selected card is 67. Since your bid was 62, no transaction

takes place and you add nothing to your endowment, and thus earn 120 points

overall.

You will play this game for 15 rounds, each time being asked to submit a bid and

select a card, and with the cards randomly rearranged in each round. A running total

of your accumulated points will be shown at the top right of the screen.

Are there any questions about this game before we begin the practice rounds?

I will now walk you through the first practice round to teach you the experimental

interface. Throughout, certain actions may take you away from the relevant screen, so

please do not take any actions until I ask.

Bid/Card Screen

You should now see the first screen of the first round, both on the screen in front you

and the overhead. Again, please do not click on anything until asked. Note that the

rules of the game, which are identical for each round, are available at the bottom of

the screen. At the top of the screen you will again see the section and round number,

and the total number of points you have accumulated in this section.

Above the cards in the centre of the screen you will see a box into which you will

type your bid. Your bid must be a whole number between 0 and 120 inclusive. Once

you have typed a bid, you may click on one of the cards to select it. Do this now.
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Results Screen Overhead

Once you have selected a card, its value will be revealed to you in black, with the values

of the other cards revealed in grey. Below the cards you will see your results - your bid,

the value of your selected card, and your overall earnings for the round. You will also

see an updated count of your total points earned in this section, which is also shown

at the top right of the screen.

Once you are ready to continue, please click continue. Once all have done so, you

can play the second practice round.

You have now completed the practice rounds of the sixth section. Are there any

questions about the rules or the interface before we begin the paid rounds? There are 15

paid rounds, each of which follows exactly the same procedure as the practice rounds

you have just played. In each round, the cards are randomly rearranged, so that each

round is independent of the others. You may play the 15 paid rounds now.
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A.2 Experimental Overheads

Figure A.1: Experimental Overheads - Slide 1
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Figure A.2: Experimental Overheads - Slides 2 and 3
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Figure A.3: Experimental Overheads - Slides 4 and 5
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Figure A.4: Experimental Overheads - Slides 6 and 7

121



Figure A.5: Experimental Overheads - Slides 8 and 9
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Figure A.6: Experimental Overheads - Slides 10 and 11
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Figure A.7: Experimental Overheads - Slide 12 and 13
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Figure A.8: Experimental Overheads - Slides 14 and 15

125



Figure A.9: Experimental Overheads - Slides 16 and 17
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Figure A.10: Experimental Overheads - Slides 18 and 19
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A.3 Experimental Interface

Figure A.11: Jury Voting Interface

(a) Ball Selection

(b) Voting
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Figure A.12: Jury Voting Interface, Continued

(a) Results

(b) Option Screen (OCG Only)

129



A.4 Permutation Tests

Consider the comparison of σ̂(s) across treatments A and B for some signal s ∈ {r, b}.

A standard difference in proportions test is invalidated by the fact that the samples are

non-independent in two ways: (a) the within-subject design means each subject appears

in both treatments, and (b) each subject plays multiple rounds and so accounts for

multiple observations within each treatment. To account for this, I create a distribution

for the statistic |σ̂A(s) − σ̂B(s)| under the null hypothesis that behaviour in the two

treatments is the same, σ̂A(s) = σ̂B(s).

To do this two new datasets, A′ and B′, are created by randomly determining

for each subject whether their data will be assigned to the matching dataset or the

mismatching dataset. That is, for each subject i ∈ {1, 2, ..., 220}, with probability 1
2

subject i’s observations from treatment A will be assigned to A′ and her observations

from treatment B will be assigned to B′, while with probability 1
2

her observations

from treatment A will be assigned to B′ and her observations from treatment B will

be assigned to A′. Whether a subject’s observations are assigned to the matching or

mismatching datasets is independent between subjects.

This resampling procedure is repeated 10,000 times, with the resampled test statistic

|σ̂′A(s) − σ̂′B(s)| recorded for each. This results in a distribution of the statistic that

is valid under the null hypothesis. The proportion of values in this distribution that

exceed the observed value |σ̂A(s) − σ̂B(s)| provides the p-value for the two-tailed test

of the alternate hypothesis that σ̂A(s) 6= σ̂B(s).
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Appendix B

Appendix to Chapter 2
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B.1 Experimental Interface

Figure B.1: Auction Game Interface

(a) Card Selection

(b) Results
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B.2 Additional Auction Game Results

Bidding Behaviour

Figure B.2 shows all bids, and the standard deviation of those bids, for all subjects.

Subjects are ordered by median bid, increasing from left to right.

Figure B.2: All Bids by Subject

Short-term Bid Changes

The following recreates Charness and Levin’s (2009) analysis of round-to-round changes

in subjects’ bids. Table B.1 shows how often subjects increase, decrease, or maintain

their bids relative to the previous bid as a function of realized gains and losses of that

bid. The results are largely similar to Charness and Levin’s, including that subjects

who make losses tend to decrease or maintain their bids in the following round, those

who make gains are most likely to maintain their bids, and those who make neither

gains nor losses are more likely to increase or maintain their bids.
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Table B.1: Bid Changes by Previous Outcome

Increase Bid No Change Decrease Bid

Gain 180 (26.5%) 310 (45.7%) 188 (27.7%)
No Gain/Loss 637 (40.9%) 635 (40.8%) 286 (18.4%)

Loss 137 (16.2%) 292 (34.6%) 415 (49.2%)

Total 954 (31.0%) 1237 (40.2%) 889 (28.9%)

Table B.2 presents a linear regression of the change in a subject’s bid relative to the

previous bid upon lagged payoffs. It suggests that outcomes with no gains or losses -

which generally implies no transaction - lead to substantially increased bids in the next

round, while gains have a smaller positive effect, as does experience, which is discussed

further in the main text.

Table B.2: Linear Regression of Bid Changes on Previous Payoffs.

∆(bid)

Constant -3.968
0.000

Round -0.159
0.009

Lag Net Payoff 0.131
0.000

Lag Net Payoff = 0 11.287
0.000

AG First 0.245
0.658

Obs 3,080
R2 0.1027

Notes: Standard errors are clustered by subject and p-values are presented below the estimates.

B.3 Permutation Tests

Here I describe the permutation tests used to test the significance of the changes in

AG behaviour over time presented in Table 2.2. The null hypothesis of each test is

that round numbers are not predictive of behaviour, an implication of behaviour not
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changing over time. Let Rp be a random permutation of the set of round numbers

R = [1, ..., 15]. I perform 10,000 such permutations, in each case relabelling the data

using Rp. That is, if the first element of Rp is 5, all data from the first round is relabelled

as coming from round 5. I then calculate the absolute value of the applicable statistic

for each column of Table 2.2 - that is, the absolute change in behaviour between the first

and last seven relabelled rounds. This creates a distribution for each statistic under the

null hypothesis. I then compare the absolute value of the observed statistic for each

column to the distribution, and report the percentile as the p−value. This constitutes

a two-tailed test of the null hypothesis against the alternative that experience matters.

B.4 Comparative Results - OCG and RCG

Table B.3 extends Table 2.6 to OCG and RCG, presenting linear regressions of a bid’s

expected payoff (Columns (a) and (b)) and logistic regressions of the probability that

a bid is an overbid (Columns (c) and (d)) upon the subject’s behaviour through each

of RCG and OCG.

The results generally follow those presented in the main text. For RCG, coefficients

on jury voting strategies are insignificant, showing no evidence of a relationship between

behaviour here and in AG. For OCG, on the other hand, a higher σ̂B results in a lower

expected payoff in AG. Recall that σ̂B measures the frequency with which a subject

selects Choice and then votes for the blue jar - behaviour which results in the lowest

expected payoff, and which we would not expect of either those capable of pivotal

reasoning (who we expect to select Choice and vote red) nor those who are not (who

we expect to select Information and thus vote informatively). Thus this is also in

keeping with the results of the main text, in that those who deviate from expected

behaviour in irrational ways in the jury voting games do worse in AG. The behaviour

that differentiates the sophisticated from the naive - selecting Choice and voting red,
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rather than selecting Information - appears to have no relationship with performance

in AG, with the coefficients on σ̂R insignificant.

Table B.3: Regressions of AG Behaviour on Jury Voting Behaviour.

Variable Exp Payoff Overbid

(a) (b) (c) (d)
Jury RCG OCG RCG OCG

Constant -2.495 -2.502 0.515 0.330
0.000 0.000 0.016 0.138

Round -0.040 -0.040 -0.019 -0.019
0.064 0.064 0.080 0.081

σ̂(b) -0.885 0.191
0.165 0.476

σ̂(r) 0.546 -0.274
0.274 0.298

σ̂B -5.354 0.738
0.012 0.276

σ̂R 0.397 0.082
0.470 0.731

AG First -0.008 0.156 0.281 0.256
0.986 0.713 0.136 0.172

Obs 3,300 3,300 3,300 3,300
Notes: In all regressions standard errors are clustered by subject and p-values are presented below

the estimates.
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C.1 Experimental Instructions

Welcome!

This is an experiment in decision making, and you will be paid for your participation

in cash. Different subjects may earn different amounts of money. What you earn

depends partly on your decisions, partly on the decisions of others, and partly on luck.

In addition to these earnings, each of you will receive $10 just for participating in and

completing the experiment.

It is the policy of this lab that we are strictly forbidden from deceiving you, so you

can trust the experiment will proceed exactly as we describe, including the procedures

for payment.

The entire experiment will take place through your computers. It is important

that you do not talk or in any way try to communicate with other subjects during the

experiment.

Please turn off your cellphones now.

On the screen in front of you, you should see text asking you to wait for instructions,

followed by a text box with a button that says “ID”. Your computer ID is the number

at the top of your desk, which is between 1 and 24. In order to begin the experiment,

you must enter your computer ID into the box and press ‘ID’. Please do that now.

You should all now see a screen that says “please wait for instructions before con-

tinuing”. Is there anyone that does not see this screen? This screen will appear at

various points throughout the experiment. It is important that whenever you see this

screen, you do not click ‘continue’ until told to do so.

The experiment has two sections . We will start with a brief instruction period for

Section 1, in which you will be familiarized with the types of rounds you will encounter.

Additional instructions will be given for Section 2 after Section 1 is complete.

If you have any questions during the instruction period, raise your hand and your
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question will be answered so everyone can hear. If any difficulties arise after the exper-

iment has begun, raise your hand, and an experimenter will come and assist you.

At the beginning of the experiment, each subject will be assigned the color RED or

the color BLUE. There will be an equal number of RED and BLUE subjects. If you are

assigned RED, you will be RED for the entire experiment. If you are assigned BLUE,

you will be BLUE for the entire experiment.

Section 1 consists of several rounds . I will now describe what occurs in each round.

First, you will be randomly paired with a subject of the opposite color. Thus, if you

are a BLUE subject, you will be paired with a RED subject. If you are a RED subject,

you will be paired with a BLUE subject. You will not not know who you are paired

with, nor will the other subject know who you are. Each pairing lasts only one round.

At the start of the next round, you will be randomly re-paired.

[SLIDE 1]

In each round, you will see a matrix similar to the one currently shown on the

overhead, though the numbers will change every round. In every round, you and the

subject you are paired with will both see the same matrix , but remember that one of

you is BLUE and one of you is RED.

Both subjects in the pair will simultaneously be asked to make a choice. BLUE will

choose one of the two rows in the matrix, either ‘Up’ or ‘Down’, which we write as ‘U’

or ‘D’. RED will choose one of the two columns, either ‘Left’ or ‘Right’, which we write

as ‘L’ or ‘R’. We refer to these choices as “actions”. Notice that each pair of actions

corresponds to one of the 4 cells of the matrix. For instance, if BLUE chooses ‘U’ and

RED chooses ‘L’, this corresponds to the top-left cell, and similarly for the others.

Thus, depending on both players’ actions , there are 4 possible outcomes:

• If BLUE chooses ‘U’ and RED chooses ‘L’, BLUE receives a payoff of 10, since

that is the blue number in the UP–LEFT cell, and RED receives 20, since that
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is the RED number.

• If BLUE chooses ‘D’ and RED chooses ‘R’, BLUE receives a payoff of 11 and

RED receives 75.

• And the other two cells UP–RIGHT and DOWN–LEFT are similar.

We reiterate: each number in the matrix is a payoff that might be received by one of

the players, depending on both players’ actions. Are there any questions?

In this section, you will play for 20 rounds and 1 of your rounds will be chosen

for your payment. This 1 round will be selected randomly for each subject, and the

payment will depend on the actions taken in that round by you and the subject you

were paired with. In the selected round, your payoff in the chosen cell denotes the

probability with which you will receive $10. For example, if you receive a payoff of 60,

then for that round you would receive $10 with 60% probability and $0 otherwise.

Since every round has an equal chance of being selected for payment, and you do

not know which will be selected, it is in your best interest that you think carefully about

all of your choices .

During the experiment, no feedback will be provided about the other player’s chosen

action. Only at the end of the experiment will you get to see the round that was chosen

for your payment and the actions taken by you and the player you were paired with in

that round.

Before we begin the first section, you will answer 4 training questions to ensure you

understand this payoff structure. In each of these 4 questions, you will be shown a

matrix and told the actions chosen by both players. You will then be asked with what

probability a particular player earns $10 if this round were to be selected for payment.

That is, you are being asked for their payoff in the appropriate cell. To answer, simply

type the probability as a whole number into the box provided and click ‘continue’. The

page will only allow you to ‘continue’ when your answer is correct, at which point you
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may proceed to the next question. Please click ‘continue’ and answer the 4 training

questions now.

[SLIDE 2]

Now that you’ve completed the training questions and understand the payoff ma-

trices, we will proceed to Section 1. In each round of this section you will be randomly

paired with another subject. If you are BLUE, you will be paired with a RED subject,

and if you are RED, you will be paired with a BLUE subject. Recall that, at the start

of each round, you will be randomly re-paired.

In each round, for each pair, the RED player’s task will be to select a column of

the matrix, and the BLUE player’s task will be to select a row of the matrix, and these

actions determine both players’ payoffs for the round.

[SLIDE 3]

You should now see an example round on the overhead. This shows the screen for

a BLUE player, who is asked to choose between ‘U’ and ‘D’. Notice however that the

text instructing you to make a choice is faded. This is because you must wait for 10

seconds before you are allowed to make a decision. Once 10 seconds has passed, the

text will darken, indicating that you can now make a selection. The number of seconds

remaining until you are able to choose is shown in the bottom right corner. Now the

overhead shows what the screen will look like after the 10 seconds have passed.

[SLIDE 4]

The 10 seconds is a minimum time limit. There is no maximum time limit on your

choices, and you should feel free to take as much time as you need, even after the 10

seconds has passed. In order to make your selection, simply click on the row or column

of your choice. Once you have done so, your choice will be highlighted, and a ‘submit’

button will appear, as we now show on the overhead.
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[SLIDE 5]

You may change your answer as many times as you like before submitting. If you

would like to undo your choice, simply click again on the highlighted row or column.

Once you are satisfied with your choice, click ‘submit’ to move on to the next round.

Before beginning the paid rounds of Section 1, we will play 4 practice rounds to

familiarize you with the interface. These rounds will not be selected for payment. Are

there any questions about the game, the rules, or the interface before we begin the

practice rounds?

Please click ‘continue’ and begin the practice rounds now. You will notice that

you have been assigned either RED or BLUE. This will be your color throughout the

experiment. Please continue until you have completed the 4 practice rounds.

You have now completed the practice rounds, and we will proceed to the paid rounds

of Section 1. Section 1 consists of 20 rounds, exactly like those you have just played.

Recall that, in each round, you will be randomly paired with another subject and that

one round will be randomly selected for payment. Are there any questions about the

game, the rules, or the interface before we begin?

[SLIDE 6]

Please click ‘continue’ and play Section 1 now. The rules we discussed for Section

1 will be shown on the overhead as a reminder throughout.

[SLIDE 7]

We will now have a brief instruction period for Section 2, in which you will be

familiarized with the types of rounds you will encounter.

If you have any questions during the instruction period, raise your hand and your

question will be answered so everyone can hear. If any difficulties arise once play has

begun, raise your hand, and an experimenter will come and assist you.
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In this section, each round will be similar to those from Section 1. You will see

some of the same matrices and your assignment of RED or BLUE will be the same as

before.

Now, however, after being shown a matrix, your task will be to give your belief or

best guess about the probability that a randomly selected subject chose a particular

action when playing the same matrix in Section 1. That is, you will be shown a matrix,

and the computer will randomly select a round from Section 1 in which the same matrix

was played. Then,

• If you are RED, you will be asked for the probability that a randomly selected

BLUE player chose ‘U’ in that round in Section 1.

• If you are BLUE, you will be asked for the probability that a randomly selected

RED player chose ‘L’ in that round in Section 1.

As before, you will be paid for your responses. We will now describe this payment

mechanism.

[SLIDE 8]

Consider first the matrix that is shown on the overhead. Please imagine that the

computer has randomly selected a round from Section 1 in which this matrix was played.

We wish to know your belief about the probability that a randomly selected RED player

chose ’L’ in that round. Please, take some time now to think carefully about what you

believe this probability to be.

[SLIDE 9]

Consider the question that is now shown on the overhead, which asks which of the

following you would prefer:

• Under Option A, you receive $5 if a randomly selected RED player chose ’L’ in

that round, and $0 otherwise.
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• Under Option B, you receive $5 with probability 75%, and $0 otherwise.

Please think carefully about which of these two options you would prefer.

Presumably, if you believe the probability that a randomly selected RED player

chose ’L’ is greater than 75%, then you would prefer Option A, which you believe gives

you the highest probability of a $5 prize. For example, if you believe this probability

is 89%, you would choose Option A since 89 is greater than 75.

If, on the other hand, you believe the probability that a randomly selected RED

player chose ’L’ is less than 75%, then you would prefer Option B, which you believe

gives you the highest probability of a $5 prize. For example, if you believe this proba-

bility is 22%, you would choose Option B since 22 is less than 75.

In this way, your answer to this question will tell us whether you believe this prob-

ability is greater than or less than 75%.

[SLIDE 10]

Now imagine we asked you 101 of these questions, with the probability in Option

B ranging from 0% to 100%. Presumably you would answer each of these questions

as described previously. That is, for questions for which the probability in Option

B is below your belief, you would choose Option A, and for questions for which the

probability in Option B is above your belief, you would choose Option B. Imagine, for

example, you believe that there is a 64% probability that a randomly selected RED

player chose ’L’ in the selected round. Then, you would select Option A for all questions

before #64, and Option B for all questions after #64. For Question #64, you could

make either selection.

[SLIDE 11]

In this case, your selections would be as shown on the overhead, with the chosen

options in black and the unchosen options in gray. From these answers, we could
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determine that you believe the probability that a randomly selected RED player chose

’L’ is 64%.

In each round of this section, you will be faced with a table of 101 questions as

shown on the overhead. To save time, instead of having you answer each question

individually, we will simply ask you to type in your belief, and the answers to these

101 questions will be automatically filled out as above. That is, for rows of the table

in which the probability in Option B is below your stated belief you will automatically

select Option A, and for rows of the table in which the probability in Option B is at or

above your stated belief you will automatically select Option B.

If this round is chosen for payment, one of the 101 rows of the table will be randomly

selected and you will be paid according to your chosen option in that row. If you chose

Option A in that row, a subject of the relevant color will be randomly chosen, and you

will receive $5 if they played the relevant action in the selected round of Section 1. If

you chose Option B in that row, you will receive $5 with the probability given in that

option.

It is thus in your best interest, given your belief, to state your belief accurately .

Otherwise, if you type something other than your belief, there will be rows of the table

for which you will not be selecting the option that you believe gives you the highest

probability of receiving a $5 prize.

In this section you will play 40 rounds, giving 40 such beliefs. At the end of the

section, 2 rounds will be randomly chosen for payment. For each of these rounds, one

of the 101 rows of the table will be randomly selected and you will be paid according

to your chosen option in that row.

Are there any questions about this?

In addition to stating a belief, in each round you will also be asked to choose an

action, as you did in Section 1. Now, however, the other action will not be determined
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by another subject acting simultaneously. Instead, recall that the computer has ran-

domly selected a round from Section 1 featuring the matrix shown on your screen. The

computer will also randomly select a player of the other color and record the action

they took in that round. This is the action that you will be paired with. That is:

• If you are RED, the BLUE action will be that which a randomly selected BLUE

player chose in the selected round of Section 1.

• If you are BLUE, the RED action will be that which a randomly selected RED

player chose in the selected round of Section 1.

Again, the randomly selected round from Section 1 will feature the same matrix shown

on your screen, so your payoff is determined as if you were paired with a randomly

selected player from Section 1, rather than being paired with a player who chooses an

action simultaneously.

As in Section 1, your payoff from taking an action gives the probability of earning

$10 if the round is chosen for payment.

At the end of the section, 2 rounds will be randomly chosen for payments based

on your actions. This is in addition to the 2 rounds randomly chosen for payments

based on your beliefs. Moreover, the randomization algorithm that selects these rounds

will ensure that all 4 rounds feature different matrices and that these matrices will be

different from that selected for payment in Section 1. In particular, this means that if a

round is selected for an action-payment, it cannot also be selected for a belief-payment

and vice versa.

As before, since you do not know which round will be selected for payment, nor

which type of payment it will be selected for, these payment procedures ensure that,

in each round, it is in your best interest to both state your belief accurately and choose

the action that you think is best.

[SLIDE 12]
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You should now see an example round on the overhead. This shows the screen for a

BLUE player. As in Section 1, you will see the matrix in the middle of the screen. At

the top of the screen, you are told that the computer has randomly selected a round of

Section 1 in which this matrix was played.

Below this, the instructions are shown, and are again faded for 10 seconds. Once

10 seconds has passed, the text asking you for your belief will darken as now shown on

the overhead.

[SLIDE 13]

You will not be able to select an action until after you have entered your belief.

Once you have entered your belief, the resulting probabilities will appear below or

beside the matrix and the text asking you to select your action will darken, as now

shown on the overhead.

[SLIDE 14]

Your belief must be a whole number between 0 and 100 inclusive. Once you enter

your belief, we will automatically ’fill out’ the questions in the 101 rows based on your

belief as previously described. If you wish, at any time you may scroll down to observe

the 101 rows.

As in Section 1, once you have selected an action, it will be highlighted on the

matrix, as now shown on the overhead.

[SLIDE 15]

At this point, you may freely modify both your belief and action as many times

as you wish before pressing ‘submit’. Remember that there is no upper time limit on

your choices, and you should feel free to take as much time as you need, even after the

minimum 10 seconds has passed.
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Before beginning the paid rounds of Section 2, we will play 3 practice rounds to

familiarize you with the interface. These rounds feature the same matrices as the

practice rounds from Section 1, and will not be selected for payment. Are there any

questions about the game, the rules, or the interface before we begin the practice

rounds?

Please click ‘continue’ to be taken to the first practice round now. Recall that your

belief must be a whole number between 0 and 100 inclusive, and at any time you may

scroll down to see the table of 101 questions. Please continue until you have completed

the 3 practice rounds.

You’ve now completed the practice rounds, and we will proceed to the paid rounds

of Section 2.

[SLIDE 16]

Recall that Section 2 consists of 40 rounds, exactly like those you have just played.

4 rounds will be randomly selected for payment–2 rounds for beliefs and 2 rounds for

your actions. Again, these 4 rounds will feature different matrices to each other and to

the matrix selected for payment in Section 1. The payment procedures ensure that it

is always in your best interest to both state your belief accurately and choose the action

that you think is best . Unlike Section 1, Section 2 will be played at your own pace

without waiting for other subjects between rounds. Once you have completed Section

2, please remain seated quietly until all subjects have finished.

Are there any questions about the game, the rules, or the interface? If you have any

questions during the remainder of the experiment, raise your hand, and an experimenter

will come and assist you. You may click ’continue’ and play Section 2 now. The rules

we discussed for Section 2 will be shown on the overhead as a reminder throughout.

You have now completed the experiment. All that remains is to organize payments.

To do this, you will be shown a page with all of your randomly selected rounds and
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your earnings in each. This page will also show you how to fill out the payment receipt

at your desks. Before reaching this page, you will see an explanation page describing

how the results are determined and how to read them. You may click ‘continue’ now

and read through the explanation page. Then continue to the payments page, where

you will see your results and fill out your receipt.
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C.2 Experimental Overheads

1 / 16

Section 1

2 / 16

3 / 16 4 / 16

Figure C.1: Experimental Overheads - Slides 1 to 4
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5 / 16

Section 1

There are 20 rounds.

Subject pairs are randomly chosen each round.

In each round, you choose a row or column.

1 round will be randomly selected for payment.

For the selected round, your payoff from the matrix
gives your probability of winning $10.

6 / 16

Section 2

7 / 16 8 / 16

Figure C.2: Experimental Overheads - Slides 5 to 8
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Would you rather have:
Option A: Option B:

$5 if the red player chose L or $5 with probability 75%

9 / 16

Would you rather have:
Option A: Option B:

Q.0 $5 if the red player chose L or $5 with probability 0%
Q.1 $5 if the red player chose L or $5 with probability 1%
Q.2 $5 if the red player chose L or $5 with probability 2%
Q.3 $5 if the red player chose L or $5 with probability 3%

...
...

Q.97 $5 if the red player chose L or $5 with probability 97%
Q.98 $5 if the red player chose L or $5 with probability 98%
Q.99 $5 if the red player chose L or $5 with probability 99%
Q.100 $5 if the red player chose L or $5 with probability 100%

10 / 16

Would you rather have:
Option A: Option B:

Q.0 $5 if the red player chose L or $5 with probability 0%
Q.1 $5 if the red player chose L or $5 with probability 1%
Q.2 $5 if the red player chose L or $5 with probability 2%
Q.3 $5 if the red player chose L or $5 with probability 3%

...
...

Q.62 $5 if the red player chose L or $5 with probability 62%
Q.63 $5 if the red player chose L or $5 with probability 63%
Q.64 $5 if the red player chose L or $5 with probability 64%
Q.65 $5 if the red player chose L or $5 with probability 65%

...
...

Q.97 $5 if the red player chose L or $5 with probability 97%
Q.98 $5 if the red player chose L or $5 with probability 98%
Q.99 $5 if the red player chose L or $5 with probability 99%
Q.100 $5 if the red player chose L or $5 with probability 100%

11 / 16 12 / 16

Figure C.3: Experimental Overheads - Slides 9 to 12
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13 / 16 14 / 16

15 / 16

Section 2

There are 40 rounds.

In each round, the computer will randomly select a round of Section 1
with the same matrix as shown on your screen:

State your belief about the probability of a randomly selected
player’s action in that round.
Take an action–this will be paired against the action of a
randomly selected player in that round.

4 rounds will be randomly selected for payment:

2 rounds for beliefs
2 rounds for actions

16 / 16

Figure C.4: Experimental Overheads - Slides 13 to 16
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C.3 Proofs

Lemma 1. In game X:

(i) pNBE, pQRE ∈ (1
2
, 1) for qNE <

1
2
; pNBE, pQRE ∈ (0, 1

2
) for qNE >

1
2
.

(ii) qNBE, qQRE ∈ (qNE,
1
2
) for qNE <

1
2
; qNBE, qQRE ∈ (1

2
, qNE) for qNE >

1
2
.

(iii) pNBE, pQRE are strictly decreasing in qNE ∈ (0, 1).

(iv) qNBE, qQRE are strictly increasing in qNE ∈ (0, 1).

Proof. In an NBE, p and q solve

p = ΨU(q
+

; qNE
−

) ≡1− F 1(qNE|q)

q = ΨL(p
−

) ≡F 2(
1

2
|p). (C.1)

In a QRE, p and q solve

p =QU(qX
+
, (1− q)20

−
)

q =QL((1− p)20
+

, p20
−

). (C.2)

From (B3)/(B4) and (A3)/(A4), respectively, it is easy to show that all NBE/QRE

satisfy:


p < (=)1

2
if q < (=)qNE

p > (=)1
2

if q > (=)qNE

and


q > (=)1

2
if p < (=)1

2

q < (=)1
2

if p > (=)1
2
.

This shows (i) and (ii). Suppose qNE increases. From (ΨU ,ΨL), as qNE increases, it

must be that either p decreases and q increases, p increases and q decreases, or that

both p and q remain constant. The latter two cases are impossible since ΨU implies

that as qNE increases, p decreases if q is constant or decreases. Thus, as qNE increases,

p must strictly increase and q must strictly decrease. From (QU , QL), as qNE increases,

or equivalently, as X decreases, it must be that either p decreases and q increases, p
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increases and q decreases, or that both p and q remain constant. The latter two cases

are impossible since QU implies that as X decreases, p decreases if q is constant or

decreases. Thus, as qNE increases, p must strictly increase and q must strictly decrease.

This shows (iii) and (iv).

Lemma 2. In game X:

(i) If NBE is label invariant, qNBE are pNBE are symmetric about qNE = 1
2
.

(ii) If QRE is translation invariant and label invariant, qQRE and pQRE are not

symmetric about qNE = 1
2
.

Proof. Fix game X with qNE = 20
X+20

. If {p, q} is an NBE, it solves (C.1). If F 1 and

F 2 are label invariant (see footnote 10), then F 1(qNE|q) = 1− F 1(1− qNE|1− q) and

F 2(1
2
|p) = 1 − F 1(1

2
|1 − p), and therefore {1 − p, 1 − q} is an NBE for game X with

q
′
NE = 1 − qNE. This shows (i). Fix game X with qNE = 20

X+20
. If Q = (QU , QL)

is translation invariant, then quantal response depends only on the expected payoff

differences between actions and the QRE {p, q} can be rewritten as the solution to

p =QU (20
q

qNE
− 20︸ ︷︷ ︸

+

)

q =QL(20− 40p︸ ︷︷ ︸
+

).

If QU is label invariant, the QRE will be symmetric about qNE only if 20 q
qNE
− 20 =

−(20 1−q
1−qNE

− 20), but it is easy to show that this has no solution in q for any qNE 6= 1
2
.

This shows (ii).

C.4 Experimental Interface
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Figure C.5: Screenshots from Section A
This figure shows an example round from the perspective of a player 1-subject (blue). At the start of
the round, the subject sees the payoff matrix (left screen), and a 10 second timer counting down to 0

(not shown here) is seen at the bottom right corner of the screen. After 10 seconds pass, the text
“Please click to select between U and D:” darkens (middle screen) indicating that the subject may

take an action. To select an action, the subject clicks on a row of the matrix. The row becomes
highlighted and a ’Submit’ button appears (right screen). At this point, the subject may freely

modify his answer before submitting. The subject may undo his action choice by clicking again on
the highlighted row.

156



Figure C.6: Screenshots from Section BA
This figure shows an example round from the perspective of a player 1-subject (blue). At the start of

the round, the subject sees the payoff matrix (top-left screen) and is told “The computer has
randomly selected a round of Section 1 in which the below matrix was played.” After 10 seconds

pass, the text “What do you believe is the probability that a randomly selected red player chose L in
that round?” darkens (top-right screen) indicating that the subject may state a belief. The subject
enters a belief as a whole number between 0 and 100. Once the belief is entered, the corresponding

probabilities appear below the matrix and the text “The computer has randomly selected a red
player and recorded their action from that round. Please click to select between U and D:” darkens
(bottom-left screen) indicating that the subject may take an action. Only after stating a belief may

the subject select an action, but after the belief is stated, the subject may freely modify both his
belief and action before submitting. After a belief is entered and an action is selected, the ’Submit’

button appears (bottom-right screen).
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Figure C.7: Screenshots from A-A treatment
The first section of the A-A session is identical to that of the A-BA session. The second section of

the A-A session is the same as that of the A-BA session, except beliefs are not elicited.
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C.5 Mean Bias

(1) (2) (3) (4) (5) (6)
X80 X40 X10 X5 X2 X1

beliefs - actions 26.280∗∗∗ 27.996∗∗∗ -16.473∗∗∗ -18.563∗∗∗ -25.750∗∗∗ -18.618∗∗∗

(0.000) (0.000) (0.002) (0.002) (0.000) (0.001)

Observations 410 410 410 410 410 410

p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table C.1: Player 2’s beliefs versus player 1’s actions
We report t-tests of the differences between the mean belief and the action frequency for each game.

Standard errors are clustered by subject.

(1) (2) (3) (4) (5) (6)
X80 X40 X10 X5 X2 X1

beliefs - actions 5.518 10.249∗∗ -7.312 -16.130∗∗∗ -10.971∗∗ -10.201∗

(0.306) (0.040) (0.193) (0.001) (0.045) (0.064)

Observations 404 404 404 404 404 404

p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table C.2: Player 1’s beliefs versus player 2’s actions
We report t-tests of the differences between the mean belief and the action frequency for each game.

Standard errors are clustered by subject.
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C.5.1 Individual Subjects’ Data
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Figure C.8: Individual Subjects: Player 2’s Beliefs and Actions.
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Figure C.9: Individual Subjects: Player 1’s Beliefs and Actions.
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