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ABSTRACT

CLEARING THE AIR: ESSAYS ON THE ECONOMICS OF AIR POLLUTION

Mehdi Benatiya Andaloussi

Exposure to air pollution is a leading cause of premature death worldwide. An increasing part

of air pollution results from industrial activity and the production of energy. When unregu-

lated, emissions of air pollutants constitute a market failure as polluters do not bear the costs

imposed on society at large. My dissertation develops empirical methods to test the effective-

ness and distributional effects of environmental policies designed to address this externality.

To do so, I apply econometrics and data science techniques on large datasets from cutting-

edge research in environmental science and engineering that I match with microeconomic

data. The dissertation makes use of new datasets on air pollution derived from satellite im-

agery, as well as micro-level data on power plant operations and housing transactions across

the United States.

Chapter 1 assembles unit-level data to disentangle the factors that led US power plants to

achieve the unprecedented reductions in emissions of the past fifteen years. I calculate the

costs incurred by the electricity generation sector and compare these costs to the correspond-

ing health benefits. In hedonic regressions, I use these shocks to emissions to estimate the

demand for clean air with micro-level data on housing transactions. Chapter 2 studies the

causal impacts and evaluates the distributional effects of stringent emissions markets that

were put in place to target power plants emissions of air pollutants in the Eastern US. Chap-

ter 3 uses new satellite imagery to document the inequalities in the exposure to air pollution

in American cities and their recent evolutions.
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Chapter 1

Clearing the Air

The Role of Technology Adoption in the Electricity Generation
Sector1

Abstract Between 2005 and 2014, the US electricity sector reduced its emissions of local

air pollutants by more than half, while maintaining historical levels of electricity generation.

This paper seeks to quantitatively uncover the factors that drove these unprecedented de-

creases in emissions, and to compare the costs incurred by the industry to benefits accrued to

health. To that end, I assemble a comprehensive unit-level dataset on power plant operations

and costs. In a statistical decomposition of emission reductions at the power plant level, I

find that the adoption of capital-intensive abatement technologies accounted for 60% of the

achieved reductions, and represented a cumulative investment of $45 billion for power plants.

Switching to cleaner fuel and retiring dirty units also each contributed approximately 20%

1 I am deeply indebted to Wolfram Schlenker, Donald Davis and Geoffrey Heal for their invaluable guid-
ance and continued support. For useful comments and suggestions, I thank Douglas Almond, Francis Annan,
Sandra Baquié, Scott Barrett, Geoffrey Barrows, Hélène Benveniste, Fiona Burlig, Arlene Fiore, Tim Foreman,
Joséphine Gantois, François Gérard, Florian Grosset, Louise Guillouet, Solomon Hsiang, Elisabeth Isaksen,
Amir Jina, Xiaomeng Jin, Ignacia Mercadal, Ron Miller, Anouch Missirian, Matthew Neidell, Claire Palandri,
Cristian Pop-Eleches, Mar Reguant, Bernard Salanie, Jeffrey Shrader, Joseph Shapiro, Sophie Shive, Rodrigo
Soares, Lin Tian, Ana Varela, Reed Walker, Scott Weiner, Andrew Wilson, and Catherine Wolfram. For shar-
ing reanalysis data on particulate matter pollution in the US, I am grateful to Aaron van Donkelaar, Randall
Martin, Robert Spurr, and Richard Burnett. For allowing me to use their clusters and for sharing micro-level
data on housing transactions from CoreLogic, I am thankful to Christopher Mayer and the Milstein Center
for Real Estate at Columbia Business School. I would also like to thank participants in multiple seminars at
the Economics Department, the Sustainable Development Program and the Atmospherical Chemistry Group at
Columbia University for helpful comments and suggestions. All remaining errors are mine.
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CHAPTER 1. STATISTICAL DECOMPOSITION

of the observed reductions. These emission reductions generated significant health benefits.

Using measures of air pollution derived from satellite imagery and estimates from the health

economics literature suggests that 19,000 premature infant deaths were avoided during the

period considered thanks to the achieved emission reductions. Finally, I use these shocks to

emissions to estimate the local demand for clean air. In hedonic regressions that make use

of transaction-level information on house prices, I find that the emission reductions caused

housing prices to increase close to power plants, thereby appreciating house values by $8

billion.

1.1 Introduction

Air pollution has severe impacts on human health (Schlenker and Walker, 2015; Currie and

Walker, 2011; Chay and Greenstone, 2003). In recent years, toxic air has become the primary

cause of premature mortality at the global scale, surpassing infectious diseases and tobacco

consumption (World Health Organization, 2016).2 At present, 91% of the global population

is exposed to unhealthy levels of air pollution, leading to 4.2 million premature deaths around

the world annually. Sulfur dioxide (SO2) and nitrogen oxides (NOx) are of particular interest

because they affect health both directly and indirectly through the formation of other toxic air

pollutants (particulate matter and ground-level ozone). In the 2000s, power plants emitted as

much as three-quarters of all SO2 and one-quarter of all NOx. When unregulated, emissions

from the electricity generation sector constitute a critical market failure, because they cause

damages to society that are not accounted for in the costs that power plants face. These

emissions are on the rise worldwide, generating dangerous levels of air toxicity.

The United States is one exception to this trend. Between 2005 and 2014, the US elec-

tricity generation sector reduced SO2 emissions by nearly 80%, and NOx emissions by 60%.

2In a recent interview, the director general of the World Health Organization declared that “The world has
turned the corner on tobacco. Now it must do the same for the ‘new tobacco’—the toxic air that billions breathe
every day. (...) It is a silent public health emergency.”

2
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CHAPTER 1. STATISTICAL DECOMPOSITION

These reductions helped achieve an unprecedented abatement of air pollution, particularly in

the country’s populous eastern states, which had theretofore suffered from elevated levels of

air pollution. Understanding the factors that contributed to these reductions is fundamental

for reaching international clean air goals, such as the UNs Sustainable Development goal of

reducing the number of global deaths from air pollution by two-thirds by 2030.3

This paper provides the first quantification of the abatement channels employed at the

power plant level to achieve the record reductions in emissions mentioned above. The study

also provides the first calculation of the costs incurred by power plants to abate emissions

and weighs them against their direct public health benefits and the benefits accrued to hous-

ing values.4 The analysis presented herein assembles and leverages a comprehensive dataset

on power plant operations and costs, containing monthly information on unit-level electricity

production, fuel input quantities and costs, abatement technology adoption5 and associated

investments, and utility revenues. This unique dataset is augmented with data on air pollu-

tants emissions that are precisely and continuously measured at each fossil fuel power plant

throughout the US. Additionally, this research leverages satellite imagery of air pollution and

a proprietary micro-level dataset on housing transactions to estimate the benefits for human

health and local housing markets. Using these datasets, this paper makes four main con-

tributions. First, this paper quantifies the impacts of the adoption of stringent cap-and-trade

markets designed to curb emissions from power plants. Second, the analysis presented herein

quantitatively uncovers the mechanisms employed at the power plant level to achieve these

emission reductions: this is accomplished in a bottom-up approach that makes use of the

observation of abatement technology adoption at the unit level, which also enables the con-

3This is the target of the United Nations’ Sustainable Development Goal 11.
4Benefits could include other impacts on the environment, such as improvements in visibility and reductions

in acid rain. Thus, health and housing impacts correspond to an important but lower-bound estimate of the total
benefits achieved.

5These technologies can be installed to filter local pollutants from gases produced by the combustion of
fossil fuels.
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struction of the first estimates of the associated costs incurred by power plants. Third, this

study provides the first ex post quantitative calculation of the impacts of the emission reduc-

tions during this period on human health. To that end, a set of novel air pollution datasets

derived from three satellite imagery products, which offer spatially continuous coverage of

the population’s exposure to air pollution at a monthly frequency is compiled: this paper is

the first in the literature to use and validate these satellite imagery products. By pairing these

measures with commonly used estimates of the health impacts of air pollution, this research

performs a fine-resolution calculation of the health benefits resulting from air quality im-

provements. Fourth, this paper leverages a proprietary dataset containing information on all

US housing transactions to estimate the impacts of power plant emission reductions on local

housing markets, thereby providing a lower-bound estimate of the demand for clean air.

Multiple factors may have contributed to the aforementioned reductions in power plant

emissions. During the period from 2005 to 2014, the electricity generation sector was ex-

posed to three major shocks, namely, (1) to input markets, (2) to the demand for electricity

and (3) through the enactment of ambitious environmental regulations. First, the fossil fuel

markets were disrupted by the extraction of shale gas, which led to a rapid fall in the price

of natural gas, which is by far the cleanest input for fossil fuel power plants.6 Second, large

shocks to the overall economy and weather may have influenced the demand for electricity:

the financial crisis followed by the Great Recession and warmer-than-normal winters could

have contributed to reductions in the demand for—and thus, the production of—electricity

and associated emissions. Third, to address the consequential externalities that emissions

represent, the US Environmental Protection Agency (EPA) adopted and implemented a suite

of ambitious environmental policies. In 2005, the EPA approved the Clean Air Interstate

Rule (CAIR), which introduced cap-and-trade markets to limit SO2 and NOx emissions from

power plants in twenty-seven states throughout the eastern US. Thereafter, debates escalated

6Gas units typically emit negligible levels of SO2 and much less NOx than coal units.
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over the costs and benefits of environmental policies targeting power plant emissions.7 In

particular, fears over their impacts on coal power plants and upstream industries dominated

debates on environmental regulations. To date, no ex post assessments of the costs and bene-

fits of these ambitious programs have been provided.

This research procures three sets of results. The first part of the paper demonstrates that

most of the achieved emission reductions were driven by the adoption of abatement tech-

nology. To that end, this study constructs a micro-level dataset of power plants’ operations

and costs. To study the abatement mechanisms at the unit level, the analysis statistically de-

composes the emission changes at the power plant level. This decomposition builds on an

engineering model of the production of emission from the burning of fossil fuels that links

those emissions to the physical properties of fuels, the generation of electricity and the adop-

tion of abatement technology. This environmental accounting exercise first recovers power

plant-level estimates from a regression of the changes in emissions against the properties of

fuel inputs, electricity generation, and abatement technology adoption at the unit level. The

exercise then builds region-wide estimates by aggregating the micro-level results based on

initial power plant emissions in the eastern US. The analysis finds that over 50% of the de-

creases in SO2 emissions under the CAIR between 2005 and 2014 were achieved through the

adoption of abatement technology at coal units that operated throughout this period. During

the same period, switching to cleaner types of coal or switching from either oil or coal to gas

accounted for approximately 20% of the aforementioned reductions. Additionally, approxi-

mately one-fifth of the emission reductions were achieved by the retirement of old coal units,

which were replaced by cleaner electricity generation units. Certain types of abatement tech-

nologies led to a stark reduction of up to 95% of all emissions at the unit level. This paper

is the first to document this large wave of technology adoption at coal units throughout the

7In discussing the legality of the mercury rules introduced by the Obama-era EPA, Justice Antonin Scalia
determined that “It is not rational, never mind ‘appropriate,’ to impose billions of dollars in economic costs in
return for a few dollars in health or environmental benefits”—New York Times.
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eastern US that followed the adoption of the CAIR markets in 2005 and intensified during

the implementation of the policy: over 80% of the region’s coal units that employed SO2

abatement technologies in 2014 installed them between 2005 and 2014. In addition, this pa-

per constructs estimates of the costs incurred by utilities due to the installation of abatement

technology. Using micro-level data on investments at the unit level, this study demonstrates

that aggregate costs amounted to $45 billion for the power plants in the CAIR region between

2005 and 2014. Moreover, a calculation of levelized abatement costs reveals that the adoption

of abatement technology represented an added $3 per megawatt hour (MWh) of electricity

produced at units that installed them—an average of a 2% increase in the costs for electricity

generation. These costs represented 3% of the preinstallation yearly revenue of utilities.

Second, to account for the benefits achieved from decreases in NOx and SO2 emissions,

the analysis presented herein proceeds with a calculation of the health effects. Accord-

ingly, this paper uses and validates novel air quality data derived from satellite imagery,8

which offer complete and detailed geographic coverage of air pollution throughout the US

at a monthly frequency. Using geographic information system methods, this study matches

these datasets with the geography of population settlements recovered from the Census and

the Center for International Earth Science Information Network. Using estimates produced

by health economics studies linking air pollution to infant mortality, this analysis finds that

nearly 19,000 premature infant deaths were avoided thanks to the achieved improvements in

air quality. Paired with a conservative measure of the statistical value of life, these benefits

would amount to approximately $152 billion from 2008 to 2014. However, these preliminary

back-of-the-envelope calculations do not account for all the health benefits induced by im-

provements in the local air quality. First, they capture the reduction in infant mortality only

8Local air concentrations of NOx and SO2 are recovered from images processed by the Ozone Monitoring
Instrument, a satellite launched by NASA in 2004 to take daily footage of pollution around the world. Data
on particulate matter concentrations are derived from a reanalysis product that combines inputs from satellites,
ground-level monitoring stations and chemistry models. This dataset was produced by Aaron van Donkelaar,
Randall Martin, Robert Spurr, and Richard Burnett in van Donkelaar et al. (2015), to whom I am grateful for
sharing these monthly frequency data.
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between 2008 and 2014 and should therefore be treated as a lower-bound estimate, as they do

not consider the long-term positive effects on mortality achieved through permanent reduc-

tions in these emissions. Second, these numbers are limited to infant mortality data. Thus, to

produce an exhaustive assessment of the benefits of these air quality improvements, the anal-

ysis would ideally include estimates of the impacts of pollution on hospitalization, defensive

investments, in utero effects and adult mortality, to name a few examples. Nonetheless, these

lower-bound estimates of the health benefits outweigh the costs incurred by the electricity

generation sector.

Third, this paper estimates how residents value local improvements in the air quality

around power plants. The causal impact of decreases in emissions on local housing values is

estimated using an empirical difference-in-differences strategy. This approach compares the

evolution of house values in the immediate proximity of power plants to that of residential

units located slightly farther away in response to changes in power plant emissions. In the at-

mosphere, SO2 is short lived and does not travel long distances. Accordingly, using satellite

imagery measurements of SO2 concentrations, the analysis demonstrates that power plant

emissions translate into high concentrations of pollutants up to 3 miles away from power

plants and that the pollutant concentrations decline beyond that radius. As SO2 has a strong

smell and (in high concentrations) leads to irritation of the eyes and respiratory system, local

residents would likely notice large changes in the local air pollution observed from space.

The results indicate that the decreases in emissions led to a 2% appreciation in local housing

values over the period considered. These effects were very concentrated—within a radius of

approximately 1 mile around a power plant—and grew stronger for properties closer to the

source. In aggregate, these capitalizations amount to a total benefit of $8 billion. Similar

results are found when using technology adoption on the right-hand side instead of emis-

sions. Doing so makes it possible to strip away potential cyclical variations in emissions. An

ideal experiment would seek to randomly assign various levels of air pollution to housing

units while holding all other aspects regarding the areas surrounding plants constant. Hence,

7
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to generate variations in exposure to air pollution, papers in the literature have studied the

changes in local air pollution levels generated by the opening and closure of dirty plants,

which might also cause large changes in local neighborhoods and impact the local noise

levels, congestion, and visual architecture, among other things. Therefore, focusing on a bal-

anced panel of plants that primarily reduced emissions by installing abatement technologies

better approximates an ideal experiment.

This paper contributes to the literature in four ways. This research constitutes the first

study to quantitatively disentangle the channels of abatement mechanisms at the power plant

level. Previous studies have qualitatively discussed the implication of declines in cleaner coal

prices on abatement costs in earlier periods (Schmalensee and Stavins, 2013; Chan et al.,

2012; Stavins, 1998). Recent papers investigated the consequences of the shale gas boom

and subsequent decline in gas prices for medium- to long-run switching from coal to gas in

US electricity markets (Preonas, 2017; Knittel et al., 2015; Covert et al., 2016). Other papers

focused on power plant compliance choices under cap-and-trade markets and how deregula-

tion in electricity markets (Cicala, 2015; Fowlie, 2010) or the roles of geography and access

to markets for cleaner inputs (Preonas, 2017) can lead to inefficient outcomes. In contrast,

observations of fuel inputs, electricity generation and technology adoption at the unit level

disentangles these channels in a systematic manner. Other statistical decompositions of emis-

sions were carried out for the manufacturing sector to disentangle the effects on emissions of

the relocation of dirty industries, the adoption of abatement technology and that of changes

in inputs and outputs (Shapiro and Walker, 2018).

Second, this paper provides the first ex post estimates of the costs incurred by the industry

to achieve the unprecedented emission reductions over the last decade. The observations

of the actual costs incurred by power plants to reduce emissions allows a direct estimation

of those costs, whereas an entire branch of the literature relies on indirect estimations of

abatement costs (Fowlie et al., 2018; Meng, 2017; Anderson and Sallee, 2011), in other

settings. Costs are important in the context of this paper. Indeed, the stringency of the CAIR
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was unprecedented and incurred large capital expenditures, as abatement technologies for

SO2 are particularly costly.

Third, this paper provides the first ex post calculation of the corresponding health benefits.

This part of the analysis builds on seminal papers on the geography of marginal damages

(Chan et al., 2015; Fowlie and Muller, 2013; Muller et al., 2011). Compared with those

papers, the present analysis provides novel measures of the local exposure to air pollution

derived from satellite imagery. Although these data are not without limitations, their coverage

improves on measures from monitoring stations that are widely used in the literature, and

they promise to reduce the uncertainties in air circulation models derived from atmospheric

chemistry models (Grainger et al., 2017; Sullivan, 2016b; Chan et al., 2015).

Fourth, this paper provides the first estimate of how recent declines in power plant emis-

sions impacted local housing markets. Following Rosen’s seminal work on hedonic valuation

(Rosen, 1974), a large amount of the literature on environmental economics has sought to em-

pirically recover estimates of the demand for local environmental amenities.9 These papers

have focused on changes in water pollution (Keiser and Shapiro, 2018), superfund clean-

ing (Greenstone and Gallagher, 2008), and toxic plant openings and closures (Currie et al.,

2015; Davis, 2010, 2004) in addition to changes in air pollution in response to either an elec-

tricity crisis (Sullivan, 2016a) or an economic crisis (Chay and Greenstone, 2005).10 Here,

the analysis seeks to uncover the impacts of changes in emissions from power plants that

were active throughout the period from 2005 to 2014 on the surrounding housing markets.

Those plants reduced emissions primarily by installing technologies rather than by reducing

their power output. The installation of abatement technologies is likely not observable by

residents, which means that the recovered effect likely reflects a valuation of the local air

quality.

9Consult Kahn and Walsh (2015) for a recent review of this literature.
10Other papers have used similar empirical strategies to estimate the impacts of crime on real estate, for

instance, the impacts of sex offenders moving in to a neighborhood (Linden and Rockoff, 2008).

9



CHAPTER 1. STATISTICAL DECOMPOSITION

The remainder of the paper is structured as follows: Section 1.2 provides background

information on local air pollution and power plant emissions. Section 1.3 presents the data

used in the empirical analysis. Section 1.4 outlines the statistical decomposition of power

plant emissions and the calculations of the costs incurred. Section 1.5 documents the large

costs incurred by the adoption of abatement technologies. Section 1.6 proposes back-of-the-

envelope calculations of their health benefits. Section 1.7 outlines the resulting impacts of

emission reductions on local housing markets. Finally, Section 1.8 concludes the paper.

1.2 Local air pollution and power plant emissions

1.2.1 Local air pollution

Local air pollution is a pervasive issue in most countries that costs the world economy more

than $5 trillion per year in welfare losses (WHO, 2018), mainly due to the burden it im-

poses on human health. Children and infants are particularly vulnerable: it is estimated that

600,000 children die prematurely from exposure to air pollution (WHO, 2018). The World

Health Organization (WHO) estimates that 91% of the world’s population lives in areas with

pollution levels detrimental to health. The goal of the WHO is to achieve a two-thirds reduc-

tion in global deaths resulting from air pollution by 2030, which would necessitate drastic

measures to reduce the emissions of local air pollutants.

The US EPA lists six criteria air pollutants that have particularly severe impacts on health:

carbon monoxide (CO), lead, ground-level ozone (O3), particulate matter (PM2.5 and PM10),

SO2, and NOx.11 Among them, SO2 and NOx are of particular importance: they not only im-

pact health directly but also are involved in chemical reactions responsible for the formation

11The effects of these pollutants include infant mortality, respiratory diseases, hospital admissions, and
productivity losses. Currie et al. (2014) offers a review of the health economics literature on the impacts of air
pollution on various health outcomes.
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of ground-level ozone and particulate matter.

Sulfur dioxide can inflame the respiratory system, thereby making it difficult to breathe,

and can worsen respiratory diseases. Repeated exposure to SO2 at high concentrations can

cause premature death, particularly among children and the elderly. In addition, it can irritate

the eyes, and it is characterized by the distinct and unpleasant odor of rotten eggs. Sulfur

dioxide leads to the formation of SOx, which reacts with other compounds to form tiny

particulate matter, notably PM2.5.12 These tiny particles can penetrate deep into the lungs;

consequently, they can have severe impacts on respiratory diseases and premature mortality.

Sulfur dioxide is short-lived in the atmosphere and thus does not travel far from its point

source.13 However, particulate matter formed through reactions involving SO2 can travel

tens of miles away from emission sources; as a result, SO2 emissions can have far-reaching

impacts through the formation and transport of PM2.5.

Nitrogen oxides are mixtures of odorless and transparent gases that are composed of nitro-

gen and oxygen molecules. Repeated exposure to high levels of NOx can lead to the irritation

of respiratory systems and cause or aggravate respiratory diseases, particularly asthma, lead-

ing to hospital admission. Children and the elderly are particularly sensitive to NOx exposure.

Nitrogen oxides are also responsible for the formation of particulate matter and ground-level

ozone, particularly in hot temperatures, which have severe impacts on health.

Throughout most of the world, air pollution has exhibited an upward trend, reflecting

the relentless growth of industrial and fossil fuel energy production and consumption. One

notable exception has been the US, where local air pollution has been significantly reduced

over the past 30 years, particularly since 2005: between 2004 and 2014, the air concentrations

12Those particles have diameters smaller than 2.5 micrometers, making them 25 times thinner than the
average human hair.

13See Figure A.16, which plots the concentration of SO2 against the distance from coal power plants.
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of SO2, NOx and PM2.5 dropped by more than 75%, approximately 40% and approximately

25%, respectively, relative to their 2004 levels (see Figure A.18 and Figure A.19). The eastern

parts of the US were particularly affected by this unprecedented abatement of air pollution,

as can be observed from the state-of-the-art satellite measurements of NOx, SO2 and PM2.5

concentrations shown in Figure 1.4.

How were these unprecedented air quality improvements achieved in the eastern US?

Understanding the mechanisms that led to the abatement of air pollution in the US could be

essential in helping the WHO achieve its goal of a two-thirds reduction in air pollution-related

premature deaths worldwide. In 2005, fossil fuel power plants emitted over 75% of all SO2

and 25% of all NOx emissions in the US14 Accordingly, these unprecedented improvements

in air quality were achieved through significant reductions in power plant emissions.

1.2.2 Emissions from the electricity generation sector

This section describes how power plants emit both NOx and SO2 and how they can limit

these externalities by either switching to cleaner inputs or installing and operating abatement

technologies.

Emissions as externalities

Figure A.3 describes the electricity generation process at the coal unit level. This process con-

sists of burning coal in the boiler, a large chamber bounded by walls lined with steel tubes.

Fuel combustion generates heat that is transmitted to high-pressure demineralized water that

fills the steel tubes. The high-pressure steam released by the boiler (at temperatures exceed-

ing 550◦C) drives a turbine in the turbo generator. The metallic generator rotates within

a magnetic field, which produces alternating current by induction following Faraday’s law.

14Other sources of SO2 include heavy industries and volcanoes, and other sources of NOx include trans-
portation and heavy industries.
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The generated current leaves the generator, after which it is adapted within the transformer

and then transmitted over high-voltage transmission lines.

The burning of fossil fuels in the boiler generates incombustible materials (ash and par-

ticulate matter), toxic gases (NOx and SO2), greenhouse gases (carbon dioxide) and water

vapor. These byproducts are released into the air through the stack: a large chimney con-

nected to the boiler. These emissions constitute the main externality of generating electricity

through the combustion of fossil fuels. However, the amounts of NOx and SO2 released into

the atmosphere can be limited by either switching to cleaner fuels (see section 1.2.2) or in-

stalling and operating capital-intensive technologies that can filter out pollutants at the stack

level (see section 1.2.2).

Fossil fuel power plants are composed of several electricity generation units that can use

coal-specific, oil-specific or gas-specific boilers. Figure A.2 maps out fossil fuel power plants

according to the type of boiler: certain power plants have only gas-specific boilers, whereas

others have only coal-specific boilers. Nonetheless, some power plants contain oil-specific,

gas-specific and coal-specific boilers and can therefore decide to generate electricity using

some or all units.

Fossil fuels: inputs

In 2005, 70% of all generated electricity was produced by fossil fuel power plants.15 These

power plants are composed of electricity generation units that burn one of three main types

of fossil fuel, namely, coal, gas, and oil, in their boilers, and different types of fuel cannot

be interchanged within a boiler. Different varieties of coal, gas and oil are available, and

the quality of each variety can be defined by three measures: the heat content (in MMBtu

per unit of mass) in addition to the ash content and sulfur content (in percentage of mass).

The heat content represents the amount of energy that can be extracted from the burning of

15Coal accounted for 50% of the total electricity generation, while gas accounted for 20%.
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a unit of mass of the fuel in a boiler, whereas the ash and sulfur contents correspond to the

quantities of ash and SO2, respectively, that can be formed from the burning of one unit of

mass of fuel.16

Coal is a type of sedimentary rock dominated by combustible organic material that origi-

nated as plants that were deposited in swampy environments, covered by other sediments

and ultimately subjected to high pressures and temperatures for up to 350 million years.

Four categories of coals are used for electricity production: anthracite, bituminous coal, sub-

bituminous coal and lignite. Most power plants use either bituminous or sub-bituminous

coals. Bituminous coals, which are predominantly found in the Appalachian Basin, have

high heat contents,17 and they have historically constituted the dominant source of coal used

for electricity generation: in 2000, 60% of electricity generated from coal power plants orig-

inated from bituminous coal. In contrast, sub-bituminous coals from the Powder River Basin

were rarely used before the 1970s due to their low heat content (18 MMBtu per ton on average

compared with 24 MMBtu per ton for bituminous coals) in addition to their high extraction

and transport costs at that time.18 In the 1990s, these trends changed as a result of the imple-

mentation of the Acid Rain Program, a cap-and-trade market targeting SO2 emissions from

fossil fuel power plants (Goulder, 2013; Schmalensee and Stavins, 2013). The sulfur content

of sub-bituminous coals is 3.5 times lower than that of bituminous coals (0.063 tons of sulfur

per MMBtu of heat content compared with 0.018 tons per MMBtu for bituminous coals).

However, the extraction and transport costs of sub-bituminous coals remained high prior to

the 1970s, at which time the rail system became deregulated, making it cheaper to trans-

port sub-bituminous coals from the Powder River Basin across the US, and thus, extraction

16Table A.1 describes the heat input, ash and sulfur contents and costs of the coal, gas and oil used in fossil
fuel power plants in the US.

17Give number and refer to table in the appendix
18In 1990, sub-bituminous coals accounted for less than 20% of all electricity generated from coal.
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became profitable.

As a consequence, coal power plants reduced their SO2 emissions primarily by switching

to cleaner sub-bituminous coals, and they managed to comply with the price regulations of

the Acid Rain Program at costs ten times lower than what had been anticipated. Aided by an

unrelated but simultaneous shock to fuel input markets that allowed power plants to switch

to cleaner coals, SO2 emissions dropped during the implementation of the Acid Rain Pro-

gram. However, not all coal power plants could switch to cleaner coals: some power plants

were locked into long-term contracts with bituminous coal mines, while others lacked access

to sub-bituminous coal sources because they were too remote from railroads and rivers that

could transport these coals (Preonas, 2017). Thus, under the Acid Rain Program, it remained

cheaper for many coal power plants in the eastern US to purchase extra emissions permits

under the SO2 market instituted by the Acid Rain Program than to reduce emissions; con-

sequently, the local air pollution emitted from these plants remained an issue in the densely

populated eastern US (Chan et al., 2015).

Oil-fired19 electricity generation units provide small amounts of the electricity capacity and

net electricity generation in the US. Oil units, which are often paired with gas or coal units

that are used as a base for electricity generation, can be used during peak hours when elec-

tricity prices are high. Indeed, oil units are fast and cheap to both start and stop. However,

oil is up to 8 times more expensive than coal (Figure B.5). Moreover, the combustion of oil

releases larger amounts of both SO2 and NOx than does the combustion of either gas or coal.

Gas refers to hydrocarbons composed mostly of methane, ethane and propane.20 Gas deposits

occur naturally and are often mixed with crude oil reservoirs. Prior to recent technological

advances in its extraction and transport, gas was an oil exploration byproduct and had to be

19I use oil and petroleum interchangeably throughout the paper.
20I use gas and natural gas interchangeably throughout the paper.
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burned off at oil exploration sites (flaring). Improvements in three-dimensional computerized

geophysical exploration, refining methods, horizontal drilling in the 1980s, vertical drilling

in the 1990s, and hydraulic fracturing in the 2000s21 permitted the extraction and transport

of unprecedented amounts of gas throughout the US. The shale gas boom of the 2000s and

2010s led to a sharp decrease in the price of natural gas relative to coal, affecting the electric-

ity supply curve merit order,22 that is, electricity production became progressively cheaper

with gas than that with coal. Figure B.5 displays the evolution of the price ratio of a unit

of the heat content contained in gas and oil to a unit of the heat content contained in coal.

As a consequence, a large number of new gas power plants were built in the 2000s (Davis,

2010). Since the burning of gas in gas boilers releases almost no SO2 and approximately

25% less CO2 per unit of the heat content, these newly constructed gas power plants and the

subsequent retirement of older coal units contributed to the abatement of pollution within the

electricity generation sector in the US (Knittel et al., 2015).

The vast majority of the coal power plants operating during the 2000s throughout the east-

ern US were still young; in addition, a majority of those plants were composed of coal units

only, and thus, switching from coal units to gas units as a mechanism to reduce emissions

was impossible. Furthermore, it was not possible to switch to cleaner coals as a mechanism

to reduce emissions because these plants were either locked into long-term contracts with

bituminous coal mines or too remote to access sub-bituminous coals. In other words, switch-

ing to cleaner fuel inputs is a low-cost solution to reduce emissions that has not always been

available to all power plants. Nonetheless, another option to reduce emissions from coal

boilers resides in the installation of capital-intensive abatement technologies.

21This technique forces a mixture of pressurized water, sand and various chemicals into wells drilled hori-
zontally through shale deposits.

22The merit order of coal, oil and gas units within a power plant reflects the order of their short-run marginal
costs of electricity production.
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Abatement technologies

Abatement technologies can be installed at the stack level to limit emissions from the burning

of fossil fuels.

For SO2, two main types of control equipment exist for coal units: wet flue gas desul-

furization (FGD) technologies23 and dry FGD technologies.24 In wet FGD systems, SO2 is

filtered out of the polluted gas stream through contact with a liquid sorbent either by forcing

the gas into a pool of the liquid (in JB systems) or by spraying the sorbent (in SP systems). In

dry systems, SO2 is removed by putting the gas into contact with a semi-dry sorbent through

use of a spray dryer.

Most importantly, dry FGD systems cannot be used in boilers that burn high-sulfur-

content coals, as their efficiency drops dramatically with the SO2 concentration in the emitted

gas. As a result, dry FGD systems are an option only for coal plants that can burn low-sulfur

sub-bituminous coals. For those units that do not have access to low-sulfur-content coals, the

only option available to reduce the emissions of SO2 is wet FGD, which can remove up to

98% of SO2 from the gases flowing out of boilers.25

Two main types of abatement technologies exist for NOx:26 selective catalytic reduction

23In the dataset used in the analysis and described in section 1.3, three technologies fall into this category: jet
bubbling reactor (JB) scrubbers, tray-type (TR) scrubbers, and spray-type (SP) scrubbers. These technologies
differ with regard to the chemical used to dissolve and capture gaseous SO2.

24Four technological sub-categories are observed for dry FGD technologies in the dataset: venturi-type (VE)
scrubbers, circulating dry (CD) scrubbers, spray dryer-type, semi-dry (SD) FGD, and dry sorbent injection-type
(DSI) scrubbers.

25Cicala (2015) shows that privately owned plants in deregulated markets during the early 2000s were more
likely to switch to cleaner coals, which constituted a less costly option than investments in abatement technolo-
gies, to reduce SO2 emissions. Under the more stringent regulations of the late 2000s that compose the focus
of our analysis, power plants had to install abatement technologies to reach new caps.

26Here, I list post-combustion technologies that remove NOx from the gases produced by combustion. How-
ever, other techniques, including the regulation of the flame characteristics, such as the temperature and fuel-air
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(SCR) technologies and selective non-catalytic reduction (SNCR) technologies. For SNCR

technologies, ammonia vapor is injected into the gases exiting the boiler to react with NOx,

producing acids and water. SCR operates similarly but achieves higher rates of filtering by

using a catalyst bed composed of various metals; as a consequence, SCR systems are more

costly than SNCR technologies.

Compared with the technologies utilized to remove SO2, NOx removal systems are much

less capital intensive (the capital costs for NOx systems are up to fifty times lower than

those for SO2 removal technologies). Most importantly, NOx technologies run on electricity

and hence can be switched on and off. This means that plants equipped with such systems

can decide not to operate them and continue to emit NOx. As a consequence, most power

plants in the eastern US installed NOx abatement technologies and operated them in the sum-

mer months to comply with the NOx Budgeting Program27, which imposed a cap-and-trade

market on summertime emissions. These same power plants would switch their abatement

technologies off during unregulated winter months to avoid operational costs. This is an im-

portant feature of these technologies, and it will be discussed in greater detail Chapter 2 of

this dissertation.

1.3 Data

1.3.1 Data sources

1. Power plant emissions. The EPA installed monitors on every boiler in the country to

precisely measure their emissions of SO2, NOx and CO2 at an hourly frequency. I collected

mixing characteristics, exist to limit NOx emissions during combustion.
27See Chapter 2.
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these SO2 and NOx emissions data from the EPA’s Air Markets Program Database,28 which

contains observations at the electricity generating unit level. The majority of emissions are

monitored using a continuous emissions monitoring system at the stack level, implying that

these data are of particularly high quality.

2. Power plant operations and costs. The US Energy Information Administration (EIA)

collects a large amount of information on the operations and costs of power plants. Accord-

ingly, I assembled and constructed a detailed dataset at the monthly frequency and plant level

by pulling data from a variety of surveys conducted by the EIA. The database I assembled in-

cludes information acquired monthly on power plants’ generation capacities according to the

type of fuel, their electricity generation (both the net generation and the gross load), quantity

and quality, their costs of fuel inputs, and their adoption of abatement technologies. I aug-

mented this dataset with information on yearly revenues accrued from electricity generation

at the utility level.

Data regarding power plants’ technical characteristics, including the generator capacity

according to the type of fuel, the initial operation dates and planned retirement dates of the

boiler and generator, and the plant coordinates were retrieved from the EIA. Information

on the boiler type and design, the generator type, design and capacity, the stack design and

height, and the power plant addresses was retrieved from Forms 767 between 2001 and 2005

and Forms EIA860 from 2006 onward. These forms contain information on all operable,

proposed and retired units within every fossil fuel power plant with a nameplate capacity

exceeding 50 MW. These datasets also contain information on the first day of operation and

the planned retirement date (year-month) for every electricity generation unit.

Data were also obtained on the fuel delivered to every power plant at a monthly frequency

containing information regarding the type of fuel (gas, oil, or coal), the type of coal (either

28See appendices for a complete description of the data sources used and how to access the publicly available
datasets.
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bituminous or sub-bituminous), the fuel heat content, the fuel sulfur content, the fuel cost and

the quantity of fuel delivered. These data were retrieved from EIA Forms 423 and 923.29 As

fuel costs were not available for deregulated, privately owned plants, I also assembled data

on fuel prices from the EIA at a monthly frequency and at the state level. I complemented

these data on fuel costs at the power plant level with data on yearly and state-average fuel

prices faced by the electricity generation sector obtained from EIA State Energy Data System

(SEDS) forms.

Data on the net electricity generation at the generation unit level within each fossil fuel

power plant were further collected at a monthly frequency. These data contain information

on the quantity of electricity produced (in MWh) according to the type, quantity and quality

of fuel input.30

Data on the adoption of abatement technologies and setup costs for NOx and SO2 for each

boiler within every power plant in the US were gathered from the EIA. In particular, the EIA

reports information with a monthly frequency on the installation of different technologies

used to reduce the emissions of NOx and SO2 and the corresponding costs incurred by power

plants. Furthermore, information on the abatement technology type, manufacturer, installa-

tion date (month-year) and installation costs were retrieved from yearly EIA publications,

namely, Form 767 from 2001 to 2005 and from Form 860 from 2006 onward.

Finally, information regarding the owner and operator of each power plant in addition to

the electricity market regulations was retrieved from Form EIA860. Utilities’ electricity gen-

eration revenues were retrieved from EIA Forms 861 and 861S, which are collected annually

from both utilities and independent producers of electricity.

29Every year, the EIA uses these forms to collect data on the fuel quality (heat content in addition to sulfur
and ash contents), fuel costs for utility-owned plants, and fuel origin (coal mines). EIA Forms F906, E423, and
F423 were used from 2002 to 2007, and pages 3 and 5 of Form F-923 were used from 2008 to 2015.

30These data are collected by the EIA and published yearly on page 1 of Form F-923 from 2008 onward.
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3. Air quality data. Air quality data were derived both from observations at ground-level

monitoring stations installed across the country and from novel satellite imagery. The EPA

has installed monitoring stations in population centers across the US. These monitoring sta-

tions measure the concentrations of six criteria air pollutants: NOx, SO2, carbon monoxide,

lead, mercury and particulate matter. These stations precisely measure those pollutants at a

high frequency; however, their geographic coverage is limited. Measurements of NOx and

SO2 were derived from satellite imagery acquired by NASA’s Ozone Monitoring Instrument,

which produces daily measurements of NO2 and SO2 air columns over the US and reports

them with a resolution of 0.25 by 0.25 degrees. I aggregated these daily measurements at

a monthly frequency and at the block group level. I also validated these measurements by

estimating the correlations among the pollutant concentrations derived from both satellite

measurements and monitoring measurements in counties that possess monitors. Finally, I

used processed PM2.5 concentration data with a 0.05 by 0.05 degree resolution from (van

Donkelaar et al., 2015).

4. Housing data. Housing data were derived from Corelogic.31 This dataset contains

micro-level data on most housing transactions in the US. In particular, I used the dollar

amounts of sales of residential units that the dataset collected from 2000 to 2016. I used

the transaction date, dollar amount and location (latitude, longitude) of all units sold in the

US during the period of study.

5. Other datasets. I used data from the 2000 and 2010 Censuses and the American

Community Surveys of 2009, 2010, 2011, 2012, 2013, 2014 and 2015. These datasets contain

information on the population age, race, income, and education at the block group level. They

also contain information on the built environment at the block group level: number of housing

31Columbia Business School’s Milstein Center for Real Estate graciously made these data available to me.
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units and gross rent.32

Measurements of local temperatures were derived from ground-level monitoring stations

and aggregated at a daily frequency on a 2.5 km by 2.5 km grid across the contiguous US33

I subsequently calculated measurements of extreme heat and cold using commonly used

degree-day methods and aggregated them at the monthly frequency on every grid cell in

the contiguous US.

1.3.2 Merging datasets

I used data on the locations of power plants (longitude, latitude) to merge all of the ge-

ographic datasets. Specifically, I constructed circles of various radii around every power

plant and intersected other datasets using Geographic Information System methods coded in

Python. For gridded datasets (such as the PRISM and satellite data), I averaged the mea-

surements of the intersections between the circles and grid cells based on area weights. For

shapefiles containing information on the population (from the Census), I constructed circles

with measurements by weighting shape measurements with the population of the intersec-

tion. For point-level data with coordinates (notably for housing transactions), I calculated

the distances between power plants and other point locations and aggregated the information

in different circle radii. Finally, I merged the data on power plant emissions, operations and

costs using the power plants’ unique identifiers provided by the EIA.

32I downloaded data from the National Historical Geographic Information System website. The data
produced by the Census were assembled at the block group level by Steven Manson, Jonathan Schroeder,
David Van Riper, and Steven Ruggles in the Integrated Public Use Microdata Series (IPUMS) National
Historical Geographic Information System: Version 12.0 Minneapolis: University of Minnesota. http:
//doi.org/10.18128/D050.V12.0. More information and descriptive statistics are available in the
online appendix.

33Wolfram Schlenker graciously shared the Parameter-elevation Relationships on Independent Slopes Model
(PRISM) data with me.
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1.4 Statistical decomposition of power plant emissions

1.4.1 Abatement strategy

To reduce emissions, power plants are given three distinct options for boilers that continue

to operate: switch to cleaner inputs, reduce the output—electricity generation—or install

capital-intensive abatement technologies.

At the boiler level, those choices are separable. As discussed in section 1.2.2, lower-cost

abatement technologies (dry scrubbers) can be used with low-sulfur coals only, while high-

cost wet scrubbers function only with the burning of high-sulfur coals. Those technical char-

acteristics imply that power plants will either invest in capital-intensive scrubbers or switch

to cleaner sub-bituminous fuels to reduce emissions.34 In a regression discontinuity-like

graph, Figure 1.1 plots the monthly average boiler emissions before and after the installation

of abatement technologies.35 These findings show that the adoption of abatement technolo-

gies has immediate and long-lasting effects on boiler emissions: up to 98% of emissions are

filtered following the adoption of these technologies.

If changes in the input quantity and quality are systematically correlated with the timing

of technology adoption, it will be difficult to separate their effects on emissions. It is there-

fore useful to reproduce regression discontinuity-like graphs that plot measurements of the

electricity production and fuel pollution intensity against the timing of technology adoption.

In particular, emissions of carbon dioxide are correlated with the type and amount of coal

burned in the boiler.36 Hence, Figure A.11 plots the evolution of boiler-level variables that

can impact emissions of SO2 against the timing of technology adoption, demonstrating the

34A boiler is designed specifically for one type of fuel: it can function with any sort of coal but cannot burn
gas. Switching fuels from coal to gas would lead to the more intensive use of gas-specific units in coal power
plants that are equipped with both coal-specific and gas-specific units.

35Figure A.10 reproduces these graphs according to the type of abatement technology.
36These emissions are not filtered out of the output gases by scrubbers because carbon dioxide does not

dissolve easily and is thus difficult to capture. For these chemical reasons, abatement technologies for NOx and
SO2 do not affect carbon dioxide emissions.
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lack of significant changes in carbon dioxide emissions—and hence the type and quantity of

coal burned—that would be correlated with the installation of emission controls.

1.4.2 Empirical approach

A power plant j is composed of several boilers i. The emissions ei,t from boiler i in month t

can be reduced by decreasing the amount of electricity produced, switching to cleaner fuels to

produce the same amount of electricity, or installing capital-intensive abatement technologies

to filter out pollutants from its air outflows. As discussed above, the emissions of boiler

i in month t can be decomposed into an extensive margin—the generated electricity—Yi,t,

an intensive margin that captures the intensity of emissions from the fuel inputs πi,t, and a

technology channel θi,t. The emissions ei,t could thus be written as follows:

ei,t = Y α
i,tπ

β
i,tθ

γ
i,t, (1.1)

where Yi,t is the generated electricity for boiler i in month t (in MWh), πi,t is the emissions

intensity of the fuel inputs (in the sulfur content per MWh) for boiler i in month t, and θi,t

represents the abatement technologies installed on boiler i in month t.37

1.4.3 Estimation

To decompose the emission reduction channels at the power plant level, I estimate three

power boiler-level parameters, namely, αi, βi, and γi, in regressions that are run for every

37The emissions intensity of the fuel inputs used to produce electricity with boiler i is derived as follows:

πi,t = f−1i × si,t × h−1i,t ,

where si,t is the pollutant content of the fuel inputs (in percentage of mass), and hi,t is the quality of fuel
inputs measured in the heat content of the fuel (in MMBtu per unit mass). The conversion factor fi captures the
efficiency of the electricity generation unit at transforming the primary energy contained within the fuel inputs
(in MMBtu) into electricity (in MWh): it represents the amount of electricity that can be produced per unit of
heat generated through the burning of the fuel (in MWh per MMBtu). Hence, fi depends on the design of boiler
i and the associated generators and gives an indication of its efficiency.
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boiler that was operable continuously from 2005 to 2014:38

log(ei,t) = γiθi,t + βilog(πi,t) + αilog(Yi,t) + εi,t, (1.2)

where ei,t represents the emissions of boiler i in month t, θi,t is a dummy variable equal to

one on all dates after the month t of the installation of an abatement technology and a unit

i, πi,t is the pollution intensity of the fuel burned in boiler i in month t, Yi,t is the electricity

generated by unit i, and εi,t is the idiosyncratic error term.

These regressions enable the recovery of estimates of the share of the reductions in emis-

sions achieved through technology adoption (γ̂i), fuel switching (β̂i), and output reduction

(α̂i) at the boiler level for a balanced panel of power plants between 2005 and 2014. Esti-

mates of these parameters are recovered for each of the 1,483 fossil fuel boilers continuously

operating in the CAIR region from 2005 to 2014.

1.4.4 Findings

Technology adoption

As mentioned above, boilers running on high-sulfur bituminous coal can use only capital-

intensive wet scrubbers. Of the 432 boilers running on bituminous coal in 2005, 175 in-

stalled an abatement technology. On average, the installation of a wet scrubber led to a 91%

reduction in SO2 emissions from bituminous coal boilers. Of the 143 boilers running on low-

sulfur sub-bituminous coals, only 35 installed low-cost abatement technologies, which led to

an average reduction of 15% in emissions from those boilers.

Figure 1.3 displays the timing of the adoption of abatement technologies at the boilers

in the CAIR region. Most NOx abatement technologies were installed at the beginning of

the NOx Budgeting Program implementation period between 2003 and 2005. In addition,

a significant wave of adoption of SO2 abatement technologies followed the announcement

38The assumption here is that the adoption of abatement technologies, the switch to cleaner fuels and the
decision to decrease electricity production are separable, as discussed above.
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of the CAIR; as a result, more than 85% of all SO2 abatement technologies were installed

between 2005 and 2012.

Figure 1.1: Impacts of technology adoption on gross load, fuel sulfur intensity and emissions

(a) Gross load Y (b) sulfur intensity of coal (π) (c) Emissions e

Notes: The figure displays the average impact of technology adoption on monthly gross load (a), coal sulfur intensity (b)
and emissions of SO2 (c) across coal boilers. Averages include all boilers in the Western region, at which technology was
installed between 2005 and 2014. One boiler typically receives a unique retrofit: only one technology (if any) is installed
by boiler. The panels depict the impact of spray type scrubbers systems adoption on SO2 emissions, a leading abatement
technology for SO2.

Fuel switching

Within a coal boiler, it is possible only to switch to different types of coal.39 In regression 1.2,

the impact of switching from high-sulfur coal to low-sulfur coal at the unit level is captured

by β̂i. Of the 237 bituminous coal boilers operating in 2005 for which abatement technologies

were not installed, 58 switched to low-sulfur sub-bituminous coal, which achieved an average

reduction of 54% in emissions.

Reduction in output

For bituminous boilers that did not switch to cleaner coal and did not install abatement tech-

nologies, reductions in emissions were achieved through a reduction in the electricity output,

which was made possible only for coal boilers in plants that operated both coal and gas units.

In the CAIR region, 87 such plants operated during the period of analysis (see Figure A.2).

As gas prices plunged, gas units became cheaper to operate than coal units in those plants.

39Only 14 coal boilers were retrofitted to switch to gas.
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Hence, power plants used their gas units more intensively to compensate for the diminished

electricity production from coal units. Figure A.6 shows that reductions in the output from

coal units at those plants were compensated by an increase in electricity generation from gas

units.

This alternative could be regarded both as a reduction in output and as a switch from coal

to gas across units within the same plants. As the burning of gas does not emit SO2, the

switch from coal units to gas units at those plants led to reductions in emissions. Similar

switching was observed between oil units and gas units.

Retirement

Between 2005 and 2014, 204 coal boilers and 43 oil boilers were retired, accounting for

17.2% of the total reduction in SO2 emissions. The vast majority of these boilers were not

equipped with any abatement technologies. The average age of retirement of these boilers

was 60 years, which was the typical retirement age for such boilers. In the same period, 130

new boilers came into operation across the CAIR region; all of these new boilers burned gas,

which emits almost no SO2.40 Figure A.7 plots the monthly number of coal and gas units that

were retired during the period of study.

Aggregation at the industry level

To recover the industry-level relative importance of these emission reduction channels, the

analysis proceeds with the following aggregation:

A =
∑

i∈CAIR

υiα̂i

B =
∑

i∈CAIR

υiβ̂i

40Fifty gas boilers were also retired in the period considered.
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C =
∑

i∈CAIR

υiγ̂i,

where υi is the share of emissions that boiler i accounted for in 2005 relative to the total

emissions of power plants throughout the CAIR region in the same year.

This statistical decomposition is informative of the mechanisms employed for a balanced

panel, to which this analysis adds the contribution from the retirement of coal units. Fig-

ure 1.2 summarizes the results obtained at the industry level in the CAIR region. In aggre-

gate, 60% of the total reduction in SO2 emissions in the CAIR region was achieved through

the adoption of abatement technologies at units that continuously operated throughout the

period. The retirement of older coal units accounted for approximately 16% of the achieved

emissions reductions, whereas switching from coal-based to gas-based electricity production

in power plants that operated both coal and gas units accounted for 13%, and switching from

high- to low-sulfur coals accounted for only 5% of the observed decline.
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Figure 1.2: Statistical decomposition of SO2 emission reductions at coal power plants

(a) SO2

Notes: The figure summarizes the contribution of coal unit retirement, technology adoption, coal-to-gas switching and
bituminous-to-sub-bituminous coals switching at coal power plants in the CAIR region. Plants included in this analysis
were operable in 2004. Between 2004 and 2014, the retirement of coal units accounted for 15.9% of total SO2 emission
reductions. Figures for technology adoption are recovered from the statistical decomposition conducted at the plant level,
in a balanced panel of plants as described in section 1.4.2. Figures assigned to coal-to-gas switching and switching to
cleaner coals combine estimates on output and fuel pollution intensity.

1.5 Abatement Costs

Retrofitting coal units is a capital-intensive process. Figure A.8 displays the average costs

of installation for all types of abatement technologies. Wet scrubbers that can be installed

on bituminous coal boilers are expensive pieces of equipment whose installation can cost up

to $250 million for a large boiler.41 Next, the levelized costs of these technology adoptions

are calculated. The date on which the technology was installed and each unit’s proposed

retirement date are known for all boilers. This enables the calculation of an annualized in-

stallation cost. Reported in the amount of electricity generated, the adoption of abatement

41The low variance in reported costs from plants owned and operated by different utilities lends confidence
that reports do not inflate costs. A cross-validation of the costs incurred for a couple of abatement technology
designs confirms that the costs reported in EIA surveys are consistent.
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technology represents an additional $3 dollar per MWh of electricity produced at units for

which such technologies were installed—an average increase of 2% in the costs for electricity

generation.42 These investments represented a sizable 3% of utilities’ annual revenues.

Figure 1.3: Timing of technology adoption and cumulative costs—Eastern US

(a) NOx (b) SO2

Notes: The figure displays the timing and costs of technology adoption for NOx (left) and SO2 (right) for plants in
the CAIR region. Technology adoption occured during the NOx Budgetting Program for NOx, yet power plants could
switch off abatement technologie during unregulated month in the winter. The introduction of the annual market for NOx

emissions led power plants to keep technologies switched on throughout the year, hence leading to the sharp decrease of
emissions in the winter. For SO2, most of the technology adoption occured after the adoption of the CAIR, and during its
preparation and its implementation phases. Costs of SO2 technologies are an order of magnitude more expensive, which
may rationalize why power plants did not install such technologies under less stringent preceeding regulations.

The aggregate costs across all power plants operating in the CAIR region amounted to

$45 billion between 2005 and 2014. This exceeded the ex ante EPA cost prediction by an or-

der of magnitude. These costs should be compared with the ex post calculation of abatement

costs under the Acid Rain Program, the flagship cap-and-trade market for SO2 emissions im-

plemented in the 1990s and early 2000s across the US. The EPA calculated that the aggregate

costs required to achieve reductions under this program amounted to $3 billion. This is not

surprising because the Acid Rain Program was much less stringent: it imposed a cap three

times higher than that imposed in the CAIR. Moreover, reductions in emissions at plants in

the western US were achieved by switching to cleaner coals, while plants in the east bought

42These costs include only the fixed installation cost. Since scrubbers need large amounts of electricity to
operate, they also incur operating costs that are not accounted for in these calculations.
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emission permits on the market and continued to emit (Chan et al., 2015). As illustrated in

Figure 1.3, almost no abatement technology was installed at power plants in the region prior

to the adoption of the CAIR.

The high costs incurred during the adoption of abatement technologies in response to

some of the most stringent environmental policies ever implemented should be compared

with the benefits of those policies. To date, no ex post cost-benefit analyses of these policies

have been reported. Accordingly, the rest of this paper estimates the health impacts of the air

quality improvements achieved across the US due to these emission reductions as well as the

demand for local air quality in the vicinity of power plants.

1.6 Health Benefits

The EPA is required by law to produce ex ante projections of the costs and benefits associated

with its rules. How do ex ante projections compare with ex post health benefits? In this

section, I provide the first ex post calculations of the health benefits realized through air

quality improvements.

The goal of the CAIR was to limit emissions that contributed to local air pollution in

neighboring states through the transport of particulate matter. Interestingly, the results from

back-of-the-envelope calculations show that the health impacts of reductions in SO2 emis-

sions were indeed greater locally.

1.6.1 Air quality improvements

The EPA projected that most of the benefits achieved through the CAIR would be captured

in improvements to human health, that is, through avoiding 17,000 premature deaths, 22,000

non-fatal heart attacks, 12,300 hospital admissions, 1.7 million lost work days, and 500,000

lost school days (EPA, 2005). According to the EPA, more than 90% of these health benefits
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would be captured by avoiding the occurrence of 17,000 premature deaths. To the best of my

knowledge, here, I provide the first ex post estimates of the health benefits achieved through

the air quality improvements resulting from the CAIR.

Figure 1.4: The geography of local air pollution improvements

(a) 2004 - NO2 (b) 2013 - NO2

(c) 2004 - SO2 (d) 2013 - SO2

(e) 2004 - PM2.5 (f) 2011 - PM2.5

Notes: NOx and SO2 measures are retrieved from images collected by NASA’s Ozone Monitoring Instrument. Data on
daily concentrations were accessed through NASA portals and averaged at the monthly and yearly frequency. Panel (a)
(resp. b) displays monthly frequency averages of NO2 concentrations in 2004 (resp. 2013). PM2.5 concentrations are
derived from a reanalysis product developed by van Donkelaar et al. (2015) that blends satellite imagery, atmospheric
chemistry circulation models and ground-level measurements. The authors made the data available to me at the monthly
frequency. Panel (e) (resp. d) presents yearly averages of PM2.5 concentrations in 2004 (resp. 2011).

To do so, I use satellite imagery of NOx, SO2 and PM2.5 air concentrations to augment

commonly used air quality data derived from ground-level monitoring stations. This is the

first paper in the economics literature to use and validate such datasets (see section A.2.5
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for the results of the validation exercise). The main advantage of air quality measurements

derived from satellite imagery is that they cover the entire contiguous US; consequently, an

investigation of the population exposure is possible. In contrast, most analyses employ air

quality measurements derived from ground-level monitoring stations that are sparsely dis-

tributed in space (see FigureA.17) and do not provide complete measurements of the expo-

sure of the US population to local air pollution.43

1.6.2 Health impacts

To associate the air quality improvements measured through satellite imagery with the corre-

sponding health outcomes, I employ estimates from the health economics literature. I focus

on infant mortality, which has been found to be the primary source of mortality resulting from

air pollution. This obviously does not capture all of the health impacts, since air pollution

has been shown to have significant consequences for morbidity, medical expenses, and adult

mortality, among others. However, this back-of-the-envelope exercise is useful insomuch

that it provides the first ex post comparison of the costs and benefits of the CAIR. Given the

large costs incurred by the electricity generation sector, it is important to establish whether

the achieved emission reductions translated into net benefits to society.

The results from this exercise, which matches air pollution data with the population, are

summarized in Table 1.1. Using information on natality and infant mortality at the cell level,

this analysis first determines the exposure of the population to air pollution. Back-of-the-

envelope impacts on infant mortality are produced by using estimates of the impacts of SO2,

NOx and PM2.5 on infant mortality. The estimates used for this calculation are retrieved from

the papers summarized in Table A.3.

I find that decreases in the concentrations of SO2, NOx and PM2.5 resulted in 18,976

43Other studies use dispersion models that build on air circulation models based on atmospheric sciences to
simulate the responses of local air pollution to changes in power plant emissions (Chan et al., 2015). Although
these studies provide complete geographic coverage of air pollution, they do not measure local air pollution
directly, and thus, the uncertainties regarding local exposure remain high.
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fewer premature infant deaths between 2008 and 2014. These lower-bound calculations of

health costs are in the same range as those projected by the EPA in its analysis of the CAIR.

Interestingly, most of the deaths were avoided as a result of lower exposure to SO2 pollution

in the vicinity of power plants. This exercise presents several limitations. In particular, it is

not clear whether estimates from the literature can be used in any setting (external validity).

In future work, I plan to use shocks to emissions introduced by the adoption of abatement

technologies to estimate the impacts of SO2 pollution on various health outcomes. This

unique setting would likely improve the current literature because it provides a shock to

emissions only, which would help identify a causal impact of pollution on health.

Table 1.1: Health benefits from reductions in air pollution

SO2 NOx PM2.5

% drop 80 37 19

% drop (pop weighted) 62 37 20

Mortality
Avoided Deaths 13,312 3,976 1,688

Dollar Value (Billion USD) 106.4 31.8 13.5

Notes: This table summarizes results from the back-of-the-envelope evaluation of emission reduction benefits accrued
to health. This uses spatially continuous measures of concentrations in SO2, NOx and PM2.5 recovered from satellite
imagery and matched with population. Using information on natality and infant mortality at the cell level, and estimates
of the impacts of these pollutants on infant mortality, the exercise produces the results above.

How were improvements in the air quality valued by local residents? The next section

investigates the impacts of emission reductions on local housing markets in the vicinity of

power plants.

1.7 Demand for clean air: impacts on local housing

markets

The goal of this section is to investigate the causal impact of the large declines in emissions

from power plants on local housing markets.
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1.7.1 Local pollution

The demand for local environmental amenities can be recovered through a hedonic estima-

tion of the impacts of changes in the environment on real estate. Estimating these effects

in the case of air pollution presents several challenges. First, most local air pollutants are

not observable by residents, who may not respond to invisible changes in the local air qual-

ity. Second, many pollutants travel long distances, thereby complicating the definitions of

treated and control areas for an empirical investigation. Third, sharp changes in the local air

pollution are rare, difficult to observe and often confounded with other changes in economic

activity. Recent papers have focused on the opening and closure of dirty plants, which cause

sharp changes in local air pollution, along with multiple changes in the local economy and

architecture. Thus, isolating the effects of pollution on local outcomes is difficult.

An ideal experiment would seek to randomly assign various levels of air pollution to

houses while holding all other aspects constant. The analysis presented herein offers a unique

setting. By observing a balanced panel of plants that drastically reduced their emissions

through the adoption of abatement technologies, the setting can better approach that of an

ideal experiment. In particular, technology adoption is unlikely to be directly observed by

residents, but it nevertheless leads to sharp and quasi-instant decreases in power plant emis-

sions.

How local is sulfur dioxide pollution? An investigation of satellite imagery of pollutant

concentrations in the US reveals that most SO2 emitted from power plants lies within three

miles of the point source (Figure A.16). At the high concentrations observed in these areas,

SO2 is highly noticeable: it leads to significant irritation of the lungs and eyes and has the

distinct odor of rotten eggs.
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1.7.2 Empirical strategy

Local impacts of emission reductions

The empirical strategy employed herein will exploit the differential impacts of changes in

power plant emissions on the immediate vicinity of each power plant relative to locations

slightly farther away. Within a difference-in-differences setting, I estimate the impacts of

changes in emissions on local outcomes by comparing the evolution of outcomes close to the

power plant to that of outcomes slightly farther away. In practice, I estimate the following:44

yj,t,d = β0 + β1ej,t

+ β2ej,t × nearj,d

+ β3nearj,d

+ f(Xj,t)

+ cj + λt + εj,t,

(1.3)

where yj,t,d is the natural logarithm of the mean house value in month t within a circle of

radius d around power plant j, ej,t is the natural logarithm of SO2 emissions from power

plant j in month t, and nearj,d is a dummy variable indicating whether the observation lies

within a circle of radius d centered on plant j that controls for time-invariant characteristics

of the treated areas. I estimate these models using data containing observations within a circle

of radius d around plant j and contained in donuts with a radius from d to d+ 0.3 miles that

serve as the control group. No theoretical framework is available to define the immediate

vicinity of a power plant. Therefore, I estimate equation 1.3 using distances varying from 0.3

44Similar procedures are used in Currie et al. (2015); Davis (2010). These papers estimate the impacts of the
opening and closure of dirty plants (toxic plants or gas power plants) on local housing markets. Plant openings
and closures may lead to numerous changes in local neighborhoods that would be correlated with emissions,
including changes in the landscape, traffic congestion and noise from the plant’s operation. By using changes
in emissions driven by technology adoption at power plants that continue operating, the current setting permits
a cleaner identification of the effects of changes in local pollution on local housing markets.
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to 12.5 miles from power plants.45

Identification assumption. The identification relies on the parallel trends assumption: in

the absence of decreased emissions at the power plant level, the evolution of housing values

for residential units close to the power plant will be similar to the evolution of those for

residential units slightly farther away.

1.7.3 Results

Table 1.2 displays the estimation results of the difference-in-differences specification mod-

eled in equation 1.3. Each column corresponds to a regression in which the treatment group

corresponds to a circle with radius d centered on a power plant. The regressions are run

separately for various values of d.

Emission reductions have a small but significant positive effect on local housing values.

A 10% decrease in SO2 emissions leads to a 0.3% increase in the prices of houses located

within 0.3 miles of a power plant. This effect decays with distance and is significant up to

1.2 miles away from a plant. For higher values of d, the effect is null and non-significant.

In addition, an 80% reduction in SO2 emissions leads to a 2.4% appreciation in house

values within 0.3 miles of power plants. Given the mean value of housing units in the treated

groups, this corresponds to an appreciation of $1,500 per house. Since there are 6,000 units

on average within this distance of power plants (ACS, 2009) and there are 375 coal power

plants in the sample, the total housing appreciation that resulted from the reductions in emis-

sions amounts to $3.4 billion.

45Figure A.15 displays the treated and control areas.
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Table 1.2: Impact of SO2 emissions on local housing markets

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
emissions × near -0.0260∗∗∗ -0.0112∗∗∗ -0.0050 -0.0034 -0.0040 -0.0049∗∗ -0.0048∗∗∗ -0.0042∗∗ -0.0030

(0.0080) (0.0038) (0.0030) (0.0028) (0.0025) (0.0020) (0.0017) (0.0019) (0.0019)
Observations 5164 7056 8035 8558 8871 9124 9320 9452 9563
Number of Facilities 375 393 411 416 417 420 422 422 425
Number of Years 15 15 15 15 15 15 15 15 15
Number of States 25 25 25 25 25 25 25 25 25
Mean Sale Amount (in 2005) 199248 191346 187002 180850 178029 177668 179218 176460 175727

Notes: The table displays results from ten separate regressions. The estimated parameter of interest is β2 in equation 1.3.
It captures the difference in the evolution of housing prices at housing units located in the immediate vicinity of a plant
and exposed to its pollution and housing units located slightly further away. Each column corresponds to a regression in
which the treatment group is composed of housing units located within distance d of a power plant, and the control group
includes all housing units located in an adjacent ring within d and d+ 0.3miles of a power plant. Distances d are given in
miles on the header of each column. All regressions include power plant fixed effects, state-specific time trends, as well as
time-varying controls of local demographics recovered from block-group level data from the ACS and summarized over
circles of interest.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

1.8 Conclusion

This paper quantitatively investigates factors that led to the unprecedented reductions in air

pollutants emissions from the electricity generation sector in the eastern US between 2005

and 2014. Using a micro-level dataset on the operations and costs of power plants compiled

from various sources, the study proceeds to a statistical decomposition of the emissions at the

plant level. The results reveal that investments in capital-intensive abatement technologies

accounted for over 50% of the emission reductions achieved during that period, and followed

the adoption of some of the most stringent emissions markets to date. Particularly high

numbers of these retrofits were performed on coal units that were still far from retirement

age and could not switch to cleaner coal. Through calculations using micro-level data on

plant expenditures, the analysis finds that the costs incurred due to the adoption of these

capital-intensive emission controls amounted to an unprecedented $45 billion between 2005

and 2014, corresponding to a few percentage points of utilities’ revenues.

This paper then compares those costs with the benefits accrued to human health. Using

continuous measures of local air pollution derived from satellite imagery, a calculation re-

veals that 19,000 premature infant deaths were avoided during the period considered thanks
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to the achieved emission reductions. Using a conservative statistical value of life, saving these

lives amounted to health benefits of $152 billion. Although these health impacts constitute

a crude lower-bound estimate of the obtained benefits, they outweigh the costs incurred by

the industry. Finally, this paper estimates the demand for clean air around power plants us-

ing hedonic methods. The sharp decreases in emissions following the adoption of abatement

technologies provides a unique setting with which to estimate the impacts of air pollution

on local housing markets. Using micro-level data on housing transactions matched to power

plants, this paper concludes that emission reductions caused local housing markets to appre-

ciate by $8 billion.

This paper opens several avenues for future research. First, estimating the direct impacts

of air pollution on health would be useful for informing the benefit calculations of this study.

The sharp decreases in emissions documented in this paper constitute a unique setting with

which to identify the impacts of air pollution on local health outcomes. Indeed, the adoption

of abatement technologies at the plant level led to sharp decreases in emissions that were

likely uncorrelated with other changes in the local economy. Second, the large costs incurred

by power plants due to the adoption of abatement technologies are an interesting topic to

investigate further. In deregulated electricity markets where prices reflect the equilibrium be-

tween the local supply and demand for electricity, the adoption of capital-intensive abatement

technologies could impact mark-ups. Hence, it will be useful to study the effects that these

large investments had on the local competition for electricity generation, as only dirty coal

units had to install abatement technologies. Finally, more formal work could be conducted

on the impacts of air pollution on housing markets. This paper offers estimates of the demand

for clean air as captured by changes in local housing values resulting from sharp decreases in

power plant emissions that are likely invisible to residents. It would be useful to investigate

how the responses of local housing markets differ with the amount of information available

on the local air quality.

More broadly, future research could focus on the urban economics of power generation as
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it relates to local disamenities such as air pollution. Understanding how history, regulations,

recent electricity market deregulations and changes in electricity production and distribution

technologies are shaping local plant profits and their location choices represents a fruitful

area of research.
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Chapter 2

The Environmental and Distributional

Consequences of Emissions Markets

Evidence from the Clean Air Interstate Rule1

with Elisabeth T. Isaksen

Abstract Who benefits from emissions markets? We investigate this question by examin-

ing cap-and-trade programs to mitigate SO2 and NOx from US power plants. Using double

and triple differences, we find that these programs lowered emissions on average, but reduc-

tions were smaller at plants located in disadvantaged communities. Emissions reductions in

these areas were primarily due to shutdowns of dirty units, while plants in higher income

neighborhoods lowered emission intensity. Policy-induced emissions reductions capitalized

into home values and led to sorting of poorer households out of cleaned areas. Our findings

suggest that benefits from emissions markets are unevenly distributed across socioeconomic

groups.

1We want to thank Douglas Almond, Kjell Arne Brekke, Fiona Burlig, Donald Davis, Arlene Fiore, Mered-
ith Fowlie, Geoffrey Heal, Jo Thori Lind, Matthew Neidell, Karine Nyborg, Rohini Pande, Mar Reguant, An-
dries Richter, Bernard Salanie, Jeffrey Shrader, Wolfram Schlenker, Joseph Shapiro, Sophie Shive, James Stock,
Anna Tompsett, and Reed Walker, as well as participants at the Northeast Workshop on Energy Policy and En-
vironmental Economics, the Royal Economic Society Annual Conference, the 16th Occasional Workshop on
Environmental and Resource Economics at University of Santa Barbara, the West Economics Association In-
ternational Conference, the Annual Conference of the European Association of Environmental and Resource
Economists, the Interdisciplinary Ph.D. workshop in Sustainable Development and the Symposium in Sustain-
able Development at Columbia University for helpful comments and suggestions. All remaining errors are
ours.
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2.1 Introduction

Over the past three decades, environmental policies have played a significant role in reducing

air pollution in the United States (Auffhammer et al., 2009; Shapiro and Walker, 2018).

Health benefits associated with air quality improvements are substantial (Currie and Neidell,

2005; Schlenker and Walker, 2015; Deschênes et al., 2017). However, whether these benefits

are evenly distributed across socioeconomic groups is still subject to disagreements (Fowlie

et al., 2012; Bento, 2013; Grainger and Ruangmas, 2017; Hsiang et al., 2019). Such debates

have been particularly pronounced on cap-and-trade markets, which are commonly used to

regulate emissions of air pollutants in the United States.2 Under a cap-and-trade system,

locations of emissions reductions are determined by firms’ decisions to reduce emissions

or buy allowances to comply with the policy. As non-uniformly mixed air pollutants, like

sulfur dioxide (SO2) and nitrogen oxides (NOx), have local impacts, the benefits of emissions

reductions are linked to plants’ locations. By letting firms trade emissions rights, skeptics

fear that disadvantaged communities will experience smaller reductions in local air pollution.

This could be the case if marginal abatement costs are systematically higher for plants located

in low-income neighborhoods, or if local pressure to reduce emissions is stronger in more

affluent communities.

The main goal of this paper is to investigate the distributional profile of emissions reduc-

tions induced by cap-and-trade programs. Concretely, we want to test if plants’ compliance

mechanisms and emissions reductions vary with the socioeconomic characteristics of their

surrounding neighborhood, and if lower emissions affect home values and neighborhoods’

2Under a cap-and-trade system, the legislator decides on a cap on aggregate emissions and initial allocations
of pollution rights, and allows emitters to trade allowances on a market. The core idea of the policy is to
exploit heterogeneity in marginal abatement costs across firms. Trading will enable polluters with low marginal
abatement costs to reduce emissions beyond their allocated pollution rights, and sell unused permits to emitters
with higher marginal costs of abatement, for which it is cost-effective to buy additional allowances to offset
emissions (Coase, 1960). While a cap-and-trade system with a single market price will (in theory) equalize the
marginal abatement costs across firms, hence ensuring cost-efficient reductions, it may not yield an efficient
outcome if the marginal damage of pollution varies across locations (Fowlie and Muller, 2013).
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composition. We examine these issues in light of the Clean Air Interstate Rule. The Rule in-

stituted three cap-and-trade programs targeting fossil fuel-fired power plants in 27 US states:

an annual program for SO2 emissions, an annual program for NOx emissions, and a summer-

time program for NOx emissions. The programs were adopted in 2005 and operative from

2008 to 2014.

We start by examining the average effect of the Clean Air Interstate Rule on SO2 and NOx

emissions. To identify the causal effects of the Rule, we employ a difference-in-differences

(DiD) approach, where we compare changes in emissions for plants targeted by the Rule

to plants not covered. Causal interpretation relies on the assumption of parallel trends in the

absence of treatment - an assumption we carefully discuss in the analysis. For NOx emissions,

we exploit the fact that the annual program should only affect wintertime emissions.3 This

allows us to estimate a triple difference (DiDiD), which relies on weaker assumptions than a

traditional DiD.

Second, we examine how policy-induced emission changes vary with neighborhoods’

socioeconomic characteristics.4 Did wealthier neighborhoods experience more substantial

reductions in emissions under the cap-and-trade programs? If so, what mechanisms could

lead to such a result? In particular, are there systematic patterns as to how plants achieve

emissions reductions (e.g., by installing technology, switching to cleaner fuels or by scaling

down production)? To explore these issues, we pair data on emissions, plant characteris-

tics, and air pollution from the US Environmental Protection Agency with socioeconomic,

neighborhood-level data from the US Census, and data on fuel delivery from the US Energy

Information Administration.

3As the summertime cap-and-trade program under the Clean Interstate Rule replaced the former NOx Bud-
get Trading Program, the new annual NOx program should only have an effect on wintertime emissions.

4Throughout the paper, a neighborhood corresponds to the area within a 1-mile radius circle of a power
plant. We also conduct robustness checks with 0.5, 2 and 3-mile radii circles. Within these distances, power
plants can be visible, which implies that residents might more easily detect changes to a plant’s emissions. The
pungent smell of sulfur dioxide will also primarily affect households near the plant. Furthermore, previous
studies find that power plant openings affect house values and rents only within a 4-mile radius (Davis, 2010),
while toxic plant openings affect house values only within a 0.5-mile radius (Currie et al., 2015).
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Lastly, we use the policy as a quasi-natural experiment to estimate the impacts of emis-

sions reductions on property values and neighborhood composition. This contributes to our

understanding of distributional effects in two ways. First, if pollution reductions are capital-

ized into home values, the Rule will generate economic gains locally. The size of these gains

will depend on the magnitude of emissions reductions, the responsiveness of house values to

lower emissions, and the rate of home-ownership. Second, higher house prices might, in turn,

lead to a sorting of poorer households out of cleaned areas, hence influencing who ultimately

enjoys cleaner air. To examine these effects, we exploit that gas power plants experienced no

significant reductions in emissions under the Rule. By comparing neighborhoods surround-

ing gas plants to neighborhoods surrounding coal or oil power plants before and after the

policy implementation, and controlling for state-specific time trends, we estimate a reduced

form effect of the Rule on house values and demographics. Furthermore, we estimate a di-

rect effect of emissions on the same outcome variables by using coal× post as an instrument

for changes in SO2 and NOx emissions. To our knowledge, this is one of only a few stud-

ies to empirically estimate the distribution of benefits under cap-and-trade programs, and to

investigate mechanisms leading to such patterns.

Why would emissions reductions under a cap-and-trade system differ across neighbor-

hoods? One potential explanation is that plants located in more impoverished neighborhoods

might have higher marginal abatement costs relative to those located in wealthier neighbor-

hoods. Under cap-and-trade markets, plants are free to choose which compliance mechanism

to adopt: they can lower production, invest in capital-intensive abatement technology, switch

to cleaner fuels, or buy allowances. Plants with higher marginal costs of abatement may find

it cheaper to buy emissions permits, resulting in small or no reductions in emissions.5 Char-

acteristics of their immediate neighborhood could also influence the compliance mechanisms

that plants choose. Households living near power plants are likely to favor emissions reduc-

5While plants’ marginal cost of abatement cannot be observed directly, we use a variety of technical char-
acteristics of power plants to proxy for them in the analysis.
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tions over permits, in particular if reductions can be achieved without lowering electricity

production. As environmental awareness and vocal opposition tend to be more widespread in

affluent communities , a plant’s choice of compliance mechanism might hence be influenced

by the type of residents living in nearby areas.6 A stronger community push-back could, in

this way, serve as an added cost to buying permits.

Results from the empirical analysis suggest that the cap-and-trade programs implemented

under the Clean Air Interstate Rule led to significant reductions in SO2 and NOx emissions.

On average, emissions from operative coal power plants covered by the Rule decreased by

22–29% over the period, compared to the control group. We find that policy-induced reduc-

tions of SO2 emissions were significantly smaller for power plants located in neighborhoods

with an initial high share of low-income, poorly educated and minority households. Esti-

mates of emissions reductions range from 0% for destitute neighborhoods to over 60% for

the top-income neighborhoods. There is a similar but weaker pattern for NOx emissions.

After investigating compliance mechanisms, we find that more substantial emissions re-

ductions in high-income areas were primarily achieved through lowering emission intensity

rather than making cuts to production.7 The lower intensity was partly achieved by adopt-

ing capital-intensive abatement technology, like scrubbers, and not by switching to cleaner

fuels. In an extended analysis, we expand the sample by including power plants that opened

up or shut down during the treatment period. Using a linear probability model, we find that

plants located in low-income neighborhoods are more likely to shut down in response to the

policy. If we bring these plants into the main analysis, by imputing zeros after shutdown, the

systematic pattern of lower emissions reductions in low-income neighborhoods persists but

is weaker. This suggests that plants located in low-income and high-income neighborhoods

6A positive correlation between environmental awareness and income could have several explanations. If
environmental quality is a normal good, the willingness to pay for clean air will increase with income. Fur-
thermore, income is typically positively correlated with educational attainment, and better-educated individuals
might be better informed about environmental risks. In the analysis, we examine heterogeneous effects along
both the income and education dimension.

7Emission intensity is defined as emissions in ton per GWh electricity produced by the plant.
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are complying with the policy in different ways; plants located in deprived areas either do not

reduce emissions or decide to shut down, while plants located in high-income neighborhoods

lower their emissions intensity. While both compliance choices reduce emissions, the latter is

less likely to be accompanied by job losses, and hence could be more attractive to residents.

What can explain this observed heterogeneity in emissions reductions? In particular,

why would low-income neighborhoods experience smaller reductions? Controlling for initial

plant characteristics such as average electricity production, age of the plant, emissions inten-

sity, technology stock, and fuel type (coal or oil) have minor effects on the heterogeneity of

the estimates.8 This suggests that observable, pre-existing differences in plant characteristics

do not fully explain the different pattern of emissions reductions.

Lastly, we examine how the socioeconomic composition and housing market of power

plants’ neighborhoods evolve in response to the CAIR. We find that areas around coal and

oil power plants, which experienced substantial emissions reductions under the CAIR, also

experienced an increase in home values, median income, and college attainment, as well as

a decrease in the poverty rate. The demographic change and rise in home values are more

substantial in high-income neighborhoods than in low-income neighborhoods. For the top-

income neighborhoods, home values increased by 4-5%, while there was no significant effect

for the most impoverished neighborhoods. This implies that the policy translated into eco-

nomic benefits through the housing market and that these benefits were unequally distributed

across low- and high-income neighborhoods. The higher home values point to taste-based

sorting as an explanation for the demographic changes. Lastly, by using the higher treatment

intensity for coal plants (compared to gas plants) as an instrument for plant-level emission

changes, we find that a 1% decrease in SO2 emissions led to a 0.07% increase in home val-

8We control for plant characteristics by including interaction terms between the policy variable and the
level of the plant characteristics prior to policy implementation. To see if the heterogeneous effects reflect cross-
regional variation, we also run six separate regressions where we restrict the sample to different geographical
regions. The regressions reveal a clear pattern of heterogeneous effects in the North-East, East, and South-East,
with a more significant treatment effect for high-income neighborhoods. The average treatment effects for the
Mid-West and Texas are small and insignificant, with no apparent heterogeneous pattern.
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ues.9 Overall, our findings suggest that environmental and economic benefits induced by the

Clean Air Interstate Rule were unevenly distributed across socioeconomic groups.

There exist few empirical studies on how emissions reductions under cap-and-trade pro-

grams are distributed across neighborhoods. An exception is Fowlie et al. (2012). Looking at

the Southern California’s NOx Trading Program (RECLAIM), which targeted NOx emissions

from manufacturing industries, the authors find no systematic pattern in emissions reductions

along with the socioeconomic characteristics of firms’ neighborhoods. Grainger and Ruang-

mas (2017) revisit the study by Fowlie et al. (2012) using a dispersion model to determine

affected areas, and find that higher income areas experienced more substantial reductions

in NOx concentration under the policy.10 The distributional profile of emissions markets is

hence disputed, and one goal of this paper is to resolve some of this ambiguity. We do so by

improving on the existing literature in several ways. First, we study a policy that comprised

half of the US states and two different pollutants. The larger geographical scope may leave

more room for heterogeneity in emissions reductions while examining both NOx and SO2

reveals a stronger heterogeneous pattern for SO2 emissions.11 Second, focusing on power

plants rather than manufacturing industries enhances comparability between the treatment

and control group.12 In particular, we avoid problems of industry-specific shocks confound-

ing the treatment. For NOx, we also show that a DiDiD strategy renders similar results as

the DiD, strengthening the credibility of our result. Third, and importantly, we expand on

the previous literature in several ways. By examining compliance choices of plants, and

9The instrumental variable estimate for NOx emissions is of a similar magnitude (0.06%).
10Although more distant, our study is also related to Ringquist (2011). Examining the Acid Rain Program,

he finds that plants in neighborhoods with a high share of Blacks and Hispanics were less likely to buy additional
SO2 allowances, while plants in poorly educated neighborhoods were more likely to buy additional allowances.
While he compares emissions relative to an assigned cap, we look at the development in SO2 and NOx emissions
for a treatment group compared to a control group.

11We discuss potential explanations for this differential effect, including the role of smell externalities and
overlapping regulations.

12This is corroborated by the estimated parallel trend in NOx and SO2 emissions for the two groups prior to
the policy implementation. Focusing on the power sector also allows us to compare detailed plant characteristics
between the treatment and control group.
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how these vary across neighborhoods, we generate novel insights on how plants respond to

market-based policies. In contrast to previous studies, we also account for shutdown as a

compliance mechanism. Overlooking this option will give an incomplete picture of the ef-

fects of cap-and-trade markets on emissions. Furthermore, we empirically explore potential

explanations for why emissions reductions might be larger in higher income neighborhoods.

Lastly, we show that the heterogeneous pattern of emissions reductions manifest itself in

changing house values and demographics.

Our paper also contributes to the broader empirical literature on the distribution of envi-

ronmental benefits.13 Recent studies look at emission changes caused by stricter air quality

standards (Grainger, 2012; Bento et al., 2015), shutdown and opening of plants (Currie et al.,

2015), and an electricity crisis (Sullivan, 2016b). Emission changes in these settings might

differ from those induced by a market-based policy. In particular, Bento et al. (2015) find that

stricter air quality standards led US policymakers to target emissions sources in the dirtiest

areas, which tended to benefit low-income households as these disproportionately reside in

these areas. Mechanisms under cap-and-trade are likely to be different.14 Furthermore, our

identification strategy avoids some of the problems associated with commonly used meth-

ods in the air pollution literature, such as using bordering areas as controls in a geographic

DiD design, and using interpolations of pollution monitor data.15 As pointed out by Sulli-

van (2016b), sharp changes in pollution dispersion can lead to contamination of the control

group, as well as inaccurate measures of pollution exposure. We mitigate such problems

13See Bento (2013) and Hsiang et al. (2019) for recent literature reviews.
14Grainger (2012) examine the effects of lower air pollution induced by stricter air quality standards on

housing values and rents. He finds that while the pass-through to rents is incomplete, landowners still capture
much of the value of the air quality regulations. Currie et al. (2015) investigate the effects of toxic emissions
from industrial plants in the US on housing values and birth weight. While the authors find some evidence
of a larger decline in house prices in lower-income communities, they find no strong heterogeneous pattern in
the estimated health effects. Sullivan (2016b) uses data from a pollution dispersion model to examine changes
in rents and neighborhood demographics caused by the California Electricity Crisis of 2000 and finds that
higher-income households gained the most.

15See e.g., Currie and Walker (2011) and Currie et al. (2015).
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by (i) using plant-level emissions and focusing on the immediate vicinity of plants, and (ii)

comparing outcomes around coal power plants to those around gas power plants.16 Lastly,

by exploiting emissions reductions caused by lower emissions intensities at operative plants

rather than those caused by shutdowns, we mitigate problems of air quality improvements

being confounded by labor market effects and changes to visual amenities.17

The rest of the paper is structured as follows. Section 2.2 presents a simple model for

plants’ decision to abate or buy allowances. Section 2.3 introduces the policy. Section 2.4

describes the data used in the analyis. Section 2.5 establishes the causal link of the markets

on emissions. Section 2.6 presents results on the distribution of emission reductions across

neighborhoods. Section 2.7 investigates the sorting of households in response to emission

reductions. Section 2.8 concludes.

2.2 Conceptual framework

We present a simple modeling framework to guide the empirical analysis and discussion. The

model defines compliance choices available to plants and identifies factors that can lead to

heterogeneous reductions in emissions across low- and high-income neighborhoods.

16By using an IV-DID design, we also mitigate potential attenuation bias caused by measurement error in
exposure to pollution.

17Our study also relates to the literature on cap-and-trade and local marginal damages (Muller and Mendel-
sohn, 2009; Chan et al., 2015). Studies in this literature typically rely on structural models; by contrast, we
use a reduced-form approach. We also focus on the distributional profile of emissions reductions, while the
mentioned studies focus on the spatial variation in reductions and consequences for efficiency. Two recent
working papers on cap-and-trade and health outcomes are also relevant to our paper. Barreca et al. (2017) ex-
ploit changes in long-term exposure induced by the Acid Rain Program, and compare changes in mortality over
time in counties near regulated plants (within 100 miles) to changes in mortality in similar counties far from the
plants. ? looks at changes in PM2.5 induced by the CAIR and effects on county-level infant mortality rates. In
contrast to these studies, we look at spatially refined effects on home values and demographics, and how these
effects vary across neighborhoods.
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2.2.1 A simple model of a cap-and-trade market

Assume that power plants operate in perfectly competitive input and output markets. Assume

further that plants’ emissions are regulated under a cap-and-trade program and that each

power plant chooses the compliance mechanism that minimizes the present value of costs.18

Following Stavins (1995), we let uit denote a power plant’s unconstrained (or status quo)

emissions, qit ≥ 0 denote a plant’s abatement, and Ai denote initial allowances allocated to

plant i.19 To remain in compliance with the policy, a plant must hold enough allowances to

offset its own emissions, uit − qit. Assume that allowances are tradable and that plants take

the market-clearing allowance price, pt, as given. A plant can then remain in compliance by

(i) lowering emissions (i.e., increase qit), (ii) buying additional allowances, (iii) or shutting

down.

To reduce emissions (i.e., increase abatement qit), plant i can lower its electricity produc-

tion, or lower the emissions content of the electricity production by installing abatement tech-

nology, or by switching to cleaner inputs. Assume that a plant’s cost of abating at time t, cit,

depends on both the level of abatement, qit, and its operating characteristics, θi: cit(qit, θi).20

θi can be interpreted as a vector of technical characteristics.21

Lastly, assume that power plants may face non-technical, location-specific costs that are

not captured by cit(qit, θi). Such costs could take the form of community pressure exerted

on power plants to lower their emissions, either directly or through local political channels.

18By assuming perfect competition, plants will be price takers and minimizing costs will be equivalent to
maximizing profits.

19We assume that allowances are distributed gratis at the beginning of the program.
20We assume that the cost function is continuous and twice differentiable, where partial derivatives with

respect to q satisfy c′q > 0 and c′′q > 0.
21For simplicity, we disregard subscript t in the model. Note, however, that a plant might influence θi by,

e.g., installing new technology or switching fuel, which would change the profile of the abatement cost function
for any given level of abatement. Additionally, installing technology or switching to cleaner input have a fixed
cost at the time of the upgrade (e.g., the cost of buying the scrubbers or the cost of searching and switching to
other input sellers), as well as a variable cost (e.g., cost of operations in the case of scrubbers and of buying
cleaner fuel). For simplicity, we consider that θi incorporates the fixed costs and the present value of future
variable costs.

50



CHAPTER 2. EMISSIONS MARKETS

Suppose that such costs depend on both the emission level of the plant, uit − qit, and the

demographic characteristics of neighborhood l, Xil: sil(uit − qit, Xil).

A plant’s cost minimization problem can then be expressed as:

Ci = min
{qit},θi

Tir∑
t=0

1

(1 + r)t

(
cit(qit, θi) + pt(uit − qit − Ai) + sil(uit − qit, Xil)

)
(2.1)

where r is the discount rate, Tir is the retirement date of plant i, and (uit − qit − Ai) is the

quantity of allowances traded. For a given period t, retirement date, Tir, and plant character-

istics, θi, the problem yields the following first-order condition:

c′i(qit, θi) = p+ s′il(uit − qit, Xil), (2.2)

where s′il is the neighborhood-specific marginal cost. If a plant’s marginal abatement cost in

period t is less than the sum of the allowance price and the neighborhood-specific marginal

cost, c′i < p + s′il, the plant will choose to reduce own emissions over buying allowances,

and vice versa. s′il could then be interpreted as an additional, plant-specific cost to buying

allowances.

2.2.2 Factors that could lead to uneven reductions across

neighborhoods

Equation 2.2 identifies two primary factors that can lead to uneven reductions in emissions

across neighborhoods: the technical marginal abatement cost, c′i(qit, θi), and the neighborhood-

specific marginal cost, s′il(uit − qit, Xil).

Technical abatement costs: If c′i(qit, θi) is systematically higher for plants located in lower-

income neighborhoods, it will lead to less abatement at these plants. This case is illustrated in
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Figure 2.1: Technical and locational marginal costs of abatement

(a) Two types of plants θ1 and θ2

θ1θ2

qiq1<q2

c′i

pt

(b) Locational Marginal Abatement Costs

θ, sL1θ, sL2

qiq1<q2

c′i

pt

Notes: In both panels, the marginal cost of abatement (c′i) is drawn against abatement quantities (qi). Figure (a) illustrates
the market equilibrium in the case of two different plants of types θ1 and θ2. In equilibrium, the price of permits (pt)
equates the marginal costs of both plants. Plant θ2, which displays a steeper marginal cost curve, achieves a smaller
abatement q2,t than plant θ1. Figure (b) displays the equilibrium in the case of two identical plants of type θ located in
neighborhoods L1 and L2, which are subject to different locational costs on emissions (sL1 and sL2). The plant located
in the neighborhood with the most stringent constraint (sL1) on emissions abate more than the identical plant located in a
less stringent location (sL2).

panel (a) in Figure 2.1.22 As the geographic distribution of socioeconomic groups is not ran-

dom, we might expect systematic differences in both plant characteristics and initial emission

levels across neighborhoods. In particular, previous studies have found that disadvantaged

groups tend to scatter around dirtier emissions sources (Hanlon, 2014). If dirtier plants are,

e.g., older and harder to retrofit, such historical sorting might lead to less abatement at plants

in lower income areas.23

Neighborhood-specific costs: If the location-specific marginal cost of emissions, s′il, is

larger for power plants in more affluent neighborhoods, it would lead to a larger abatement

in these areas. This case is illustrated in panel (b) in Figure 2.1. As discussed in Section

2.6, community push-back and reputation costs might be more substantial for power plants

located in wealthier, more educated neighborhoods as residents may be more aware of envi-

ronmental risks, as well as better equipped to put pressure on plants.

22Differences in c′i(qit, θi) could be due to differences in initial abatement levels and/or differences in plant
characteristics, θi, such as age, size, fuel mix, and installed abatement technologies.

23Note that the opposite could also be true: plants with high initial emissions levels and old technology
might have a larger potential for emissions reductions.
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Other costs and constraints: Beyond the costs describe above, there might be other types

of constraints and costs that vary with the socioeconomic profile of neighborhoods, and that

influence the compliance mechanism of plants. First, if plants in low-income neighborhoods

face binding financial constraints, this might make it harder to make significant upfront in-

vestments in abatement technology (Levine et al., 2018). Second, previous studies have found

that deregulated plants are less likely to invest in capital-intensive SO2 abatement technolo-

gies compared to publicly-owned plants (Fowlie, 2010; Cicala, 2015). If ownership correlate

with income, it might lead to systematically different emissions reductions.24

2.3 The Clean Air Interstate Rule

In March 2005, the US Environmental Protection Agency (EPA) adopted the Clean Air In-

terstate Rule (CAIR) to reduce emissions of SO2 and NOx from power plants in 27 US states

and the District of Columbia. The CAIR introduced three separate interstate cap-and-trade

markets targeting fossil fuel power plants: a SO2 annual trading program, a NOx annual

trading program, and a NOx ozone season trading program imposing a cap on summertime

emissions of NOx.25 Figure A.1 gives an overview of the states and power plants covered by

the new cap-and-trade programs.

2.3.1 The SO2 annual trading program

Sulfur dioxide (SO2) contributes to poor ambient air quality and is one of the six criteria

pollutants regulated by the EPA. SO2 has a pungent smell similar to rotten eggs and irritates

nose and lungs. It is also a precursor for the formation of particulate matter, which can

lead to increased respiratory symptoms, irregular heartbeats, and premature mortality (EPA,

24There might also be differences in access to skilled labor to install and operate the technology.
25The programs were meant to complement an existing federal policy regulating emissions from power

plants (the Acid Rain Program), and replace and expand a former regional program (the NOx Budget Trading
Program). See Figure B.1 for more details.
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Figure 2.2: States and facilities targeted by the CAIR

(a) States (b) Facilities

Notes: The figure displays states (left map) and power plants (right map) that are part of the CAIR. Orange triangles
represent facilities that are part of the annual cap-and-trade programs for SO2 and NOx introduced by the CAIR.

2013). Fossil fuel-fired power plants are the primary source of SO2 emissions in the US

(EPA, 2005), and emissions from these plants are covered by the Acid Rain Program - a

federal cap-and-trade program established in the 1990s. In the early 2000s, the EPA intended

to lower the cap for the Acid Rain Program but failed to secure Congress’ approval. Without

such approval, the EPA could not act at the federal level.26 Instead, the EPA used the Clean

Air Act’s “good neighbor” provision27 and created an additional annual cap-and-trade market

to lower emissions from 24 eastern states and the District of Columbia, where pollution was

most severe. The SO2 market was one of three programs implemented under the Clean Air

Interstate Rule and imposed a cap intended to reduce emissions by 70% from 2003 levels.

The program operated from 2009 to 2014, with 2009 as a training year.28

The initial allocation of SO2 allowances under the CAIR was calculated with a close link

to the Acid Rain Program. Each CAIR state was allocated a CAIR SO2 budget by taking

the sum of the Acid Rain Program allowances initially assigned to that state, adding any

26In 2002, the Bush administration proposed the Clear Skies Act to tighten the SO2 cap of the Acid Rain
Program, but then abandoned the project in 2005 (Schmalensee and Stavins, 2013).

27The ”good neighbor” provision requires the EPA and states to address interstate transport of air pollution
which affects states’ air quality downwind of emissions sources.

28During the training year, units were required to monitor and report their emissions but were not required
to hold allowances for compliance.
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additional special reserve allowances specified under the CAIR, and dividing this total by

2. Essentially, the new rule required a two-to-one exchange of Acid Rain Program SO2

allowances to CAIR SO2 allowances (EPA, 2013). Facilities covered by the CAIR were only

allowed to buy permits from other CAIR facilities in complying with the stricter regulation.

To encourage early reductions, the EPA allowed power plants to use Acid Rain Program

permits of vintage years preceding 2010 with a one-to-one ratio to comply with the CAIR.29

This phased approach created strong incentives for early reductions in SO2 emissions, as

banked allowances of the pre-2010 vintage were expected to have a higher market value than

2010-2014 vintage allowances. This was reflected by the unprecedented spike in the price

of ARP allowances, in 2005, at the adoption of the CAIR (see Figure A.12). Given the

stringency of the CAIR, plants expected future spikes in the price of SO2 allowances and

sought to bank allowances from the ARP and sell them under the CAIR. The large spike in

the price of SO2 allowances created an incentive for early reductions in emissions as soon as

the CAIR was adopted in 2005.30

2.3.2 The NOx annual and seasonal trading programs

Nitrogen oxides (NOx) are odorless and colorless gases that have significant impacts on air

quality and human health. NOx is a precursor for ground-level ozone (O3) and particulate

matter (mainly PM10), which have adverse impacts on health. As a consequence, NOx is a

criteria pollutant for the EPA. From 2003 to 2009, the NOx Budget Trading Program (NBP)

applied a summertime (May-September) cap-and-trade program for NOx emissions from fos-

sil fuel-fired power plants in 20 North-eastern states. The Clean Air Interstate Rule replaced

29The vintage year of an allowance indicates the earliest year for which it can be used to comply with the
emission cap. An allowance of the vintage year 2010 can be used to comply with the 2010 cap on emissions or
banked and used to comply with caps in a later year.

30Prior to implementation, the EPA projected that plants covered by the CAIR would significantly reduce
SO2 emissions in the years before 2010 (Fraas and Richardson, 2010). This would allow power plants to carry
unused allowances from the Acid Rain Program into the CAIR SO2 cap-and-trade program.
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Figure 2.3: Total SO2 and NOx power plant emissions and CAIR caps

(a) NOx emissions (annual) (b) SO2 emissions

Notes: Graphs show total emissions of SO2 and NOx from power plants targeted by the CAIR (solid black lines), as well
as aggregate emission caps (brown dashed lines). Vertical lines indicate the year the CAIR policy was adopted (2005), and
implemented (2008 for NOx, 2009 for SO2).

and expanded this former program by introducing two new cap-and-trade markets. The first

market replaced the old summertime market and expanded its geographic scope from 20 to

25 states. The second market instituted a cap on annual emissions of NOx in 25 states. Initial

allowances of NOx under the new programs were allocated to each state based on the heat

input of the state’s power plants in 2005.31 While the SO2 market under the CAIR came on

top of a federal cap-and-trade market, the two emissions markets for NOx came on top of a

federal rate-based policy.32

Figure 2.3 depicts aggregate SO2 and NOx emissions from CAIR units between 2000 and

2014, as well as overall emissions caps. While NOx emissions were below the cap by 2009,

SO2 emissions were below the cap by 2012.33

31Specifically, each state’s budget was calculated by summing the heat input of each source, adjusted by
a fuel factor. The adjusted heat input was calculated by taking the average heat input multiplied by a fuel
adjustment factor, where the factors for coal, gas, and oil were the following: coal:1.0, gas:0.4, oil:0.6.

32The Acid Rain Program imposed boiler-specific NOx emissions rates uniformly across the country, with
penalties to power plants exceeding the rates. See Appendix B.1 for more details.

33The use of banked Acid Rain Program allowances from the pre-2010 period made it possible for SO2

emissions under the CAIR to exceed the caps set in the years 2010-2014. For NOx, the total emissions in the
period 2009-2014 could not exceed the overall cap for the period.
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2.3.3 Legal challenges and replacement policy

As is common for EPA rules, the CAIR was challenged in court as soon as it was adopted.

States and industry representatives challenged the EPA on the grounds that it did not have the

authority to regulate interstate matters. This created uncertainties regarding the implementa-

tion of the CAIR. In 2008, the Supreme Court vacated the CAIR, ruling that only Congress

could impose interstate emission markets in which power plants from different states could

trade. Most importantly, however, the Supreme Court did not question the stringency of the

policy and did not prohibit its implementation. Instead, it allowed the EPA to implement the

CAIR and mandated that it revise the policy, the goal of which was to replace the interstate

trading scheme with state-specific policies that would achieve the same cap. In these markets,

power plants would only be allowed to trade allowances with plants within the same state.

In 2011, the EPA announced the set of policies that would replace the CAIR from 2014

onward: the Cross-State Air Pollution Rule. This new rule imposed state-specific cap-and-

trade markets for summertime NOx emissions, annual NOx emissions and annual SO2 emis-

sions. More importantly, the stringency of these rules was unchanged from the CAIR. If

anything, it became more apparent to the industry that emissions would become more costly.

Accordingly, the prices in the newly created markets rose.

2.4 Data

2.4.1 Data sources

Emissions data: We collected monthly data on SO2 and NOx emissions from the EPA’s

Air Markets Program Database.34 The database contains observations at the electricity-

generating unit level for facilities that are part of major emissions trading programs, like

the Acid Rain program, the NOx Budget Trading program, or the CAIR. The majority of

34See Appendix B.2 for a complete description of data sources used.
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emissions are monitored using a continuous emissions monitoring system at the stack outlet:

this implies that the data is of particularly high quality. From the same database, we also col-

lect unit-specific data on electricity generation, fuel input types, technology adoption, startup

and shutdown dates, and location coordinates.35

Demographics data: Demographic variables come from the 2009 and 2014 American

Community Survey (ACS). The survey datasets are available as 5-year averages (2005-2009

and 2010-2014) at the block group level36 and include different measures of income, educa-

tion, population, and race. Based on the Survey data, we constructed different variables that

capture the distribution of households’ income level (median income, the share of households

below the poverty line, the share of households with income above $100 000), the education

level, as well as a measure of share of black and Hispanic residents. To obtain demographics

for areas surrounding power plants, we constructed circles of differing radii (0.5, 1, 2, and

3 miles) around each power plant. For each circle, we identified the block groups that inter-

sect with the circle. We then calculated population-weighted averages of each demographic

variable, using intersections between block groups and the circle to compute weights.37

Other variables: We assembled a dataset of monthly coal and gas deliveries to fossil-

fueled power plants in the US from the Energy Information Agency (EIA). The data contains

information on the energy source, the quantity of fuel delivered, Btu content, sulfur content

35We use emissions data from power plants because the CAIR regulated emissions. As the dispersion of
emissions depends on prevailing winds and topology, locations that experience emissions reductions do not
necessarily fully correspond to locations that benefit from policy-induced air pollution reductions. To fully
evaluate which populations experienced improved air quality as a result of plant-level emission reductions, a
more geographically-refined measure of local air pollution would be needed.

36A block group is the smallest unit for which data is available and typically contains between 600 to 3000
people. There are around 200 000 block groups in the US

37The procedure is illustrated in Appendix Figure B.6. A similar procedure has been used in recent papers
(Fowlie et al., 2012; Currie et al., 2015).
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and ash content.38 We use measures of heat derived from daily measures of minimum and

maximum temperatures on a 2.5 by 2.5 mile grid.39 Temperature data are aggregated at the

plant level using spatial averages on a 100-km radius around each power plant. We also

collected data on time-varying state-level real GDP from the EIA. To capture ambient air

quality in the area surrounding the power plant, we collected monitor-level pollution read-

ings of SO2, NOx and O3 from the EPA. Information on non-attainment counties for criteria

pollutants and all National Ambient Air Quality Standards are derived from the EPA.40

2.4.2 Descriptive statistics

Sample adjustments We restrict the main sample to power plants that had at least one coal

unit in 2005 and that operated throughout the time period 2003-2014. We focus on non-gas

plants due to the very low NOx and SO2 intensity for gas units. Balancing the sample ensures

that the composition of the treatment and control group does not change over time. The

balanced sample contains both gas and non-gas units, consists of 2,551 electricity generating

units (EGUs) located at 938 facilities in 48 states (see Table B.1).

Descriptives Table B.1 presents summary statistics for selected plant characteristics.41 From

the table, we observe that average SO2 emissions are higher for CAIR units than non-CAIR

38Note that the data from EIA only covers power plants with a generating capacity of 50 or more megawatts.
We used information from the forms E243 and F243 from 2002 to 2007, and form EIA-923 for the years 2007
to 2015.

39The daily temperature datasets is drawn from Wolfram Schlenker’s interpollation of the PRISM data, an
extensive database of US monitoring stations for weather data.

40These were provided to us by Nick Muller. To construct a measure of air quality in the areas surrounding
the power plants, we calculated a distance-weighted average of monitoring readings. We limited the number
of monitoring stations to those located within a 100-kilometer radius of the power plant. The weights were
constructed by taking the square of the inverse distance between the power plant and the monitoring station.
Note that the distance between a power plant and the closest monitoring station can vary substantially. This
implies that pollution readings might give very inaccurate measures of the ambient air quality for the 1-mile
radius circle around each power plant.

41Plant-level emissions, gross load and heat input are found by taking the sum of all units within the facility.
Plant-level fuel shares and technology stock are found by averaging over units within a facility. See Appendix
B.2 for summary statistics of all plant characteristics.
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units, while NOx emissions are very similar across the two groups.42 CAIR facilities are on

average 2.4 years older than non-CAIR facilities. They also have a somewhat lower level

of SO2-specific technologies installed but a lager stock of NOx-specific technologies. Gross

load, heat input and fuel mix are not significantly different across the two groups.

Table 2.1: CAIR plants and permit trading

CAIRNOx CAIROS CAIRSO2

Number of Facilities 929 925 966
Number of Facilities with at least one coal unit 449 458 457
Number of coal units (2005) 968 1,010 961
Number of gas units (2005) 1,598 1,470 1,681
Number of oil units (2005) 356 456 372
Average number of units per facility 4 4 4

Total cap (mill. tons) 1.54 0.63 4.57
Total cap allocated to facilities (mill. tons) 1.39 0.56 3.60
Total cap allocated to facilities with at least one coal unit (mill. tons) 1.23 0.48 3.36
Total cap allocated to facilities with no coal unit (mill. tons) 0.16 0.08 0.24

Correlation initial allocation x population density -0.04 -0.03 -0.04
Correlation initial allocation x median income -0.06 -0.09 -0.05

Average number of transactions per year 4,054 4,570 .
Average quantity of emissions exchanged per year 29.21 25.67 .
Average quantity of emissions realocated per year 0.86 0.38 .

Notes: The table gives summary statistics on cap-and-trade markets implemented under the Clean Air Interstate Rule: the
annual NOx (CAIRNOx) and SO2 (CAIRSO2) markets and the summertime NOx market (CAIROS). Data come from
EPA’s Air Markets Program Data.

2.5 Effects of the CAIR markets on emissions

2.5.1 Estimation strategy

Difference-in-Differences (DiD) To identify a causal effect of the CAIR, we exploit both a

time break in the regulation and spatial variation in targeted facilities. Our main specification

42Figure B.4 shows density functions for SO2 and NOx emissions. While the distribution in levels show
more treated units in the upper parts of the distribution, the log versions show a better overlap between CAIR
and non-CAIR units. We address the skewed distribution in one of the robustness checks by trimming the
sample in both ends of the distribution, see Appendix B.3.
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is a difference-in-differences (DiD) estimator, with which we can compare the development

in emissions of treated facilities to a control group, before and after treatment. WhenCAIRj,t

is a dummy that indicates if facility j is affected by the treatment at time t, the DiD estimator

is written as:

yj,t = β1CAIRj,t + γ′Xj,t + cj + λt + εj,t, (2.3)

where j is facility, t is time, yj,t is facility-level emissions, Xj,t is a vector of observable

covariates, cj are facility-specific fixed effects, λt are time dummies (month×year) and εj,t

is the idiosyncratic error term.43 The main identifying assumption is that, in the absence

of treatment, the treatment and control groups would have followed parallel trends in the

outcome variable. If the error term is correlated with time-varying omitted variables,44 the

DiD fails to give consistent estimates.

While we cannot directly test the common trend assumption, similar pre-treatment trends

give an indication that this assumption holds. In Section 2.5.3, we investigate the parallel

trends assumption by including leads and lags dummies for the time of treatment. Specif-

ically, we interact the treatment variable (CAIRj,t) with time dummies, where we use the

year before the first treatment year as the reference. The lead dummies include the years be-

fore the treatment while the lag dummies include the treatment years. If we denote M as the

number of leads and K as the number of lags, we can estimate the unfolding of the treatment

with the following regression:

yj,t =
M∑
m=0

β−mCAIRj,t−m +
K∑
k=1

β+kCAIRj,t+k + γ′Xj,t + cj + λt + εj,t, (2.4)

where leadm captures potential deviations in the pre-treatmentm years before treatment, and

lag k captures the effect of the policy k years after the start of the treatment. The estimated

43Note that the interpretation of the DiD estimate differs across the two pollutants. For SO2, the CAIR
imposed a cap that was twice as stringent as for the control group. Additionally, CAIR units also faced the
constraint that they were only allowed to buy permits from other facilities covered by the rule. The treatment
effect hence reflects the difference in stringency between the regional and the national cap-and-trade system.
For NOx, the CAIR added a cap-and-trade system to an already established national rate-based policy, and the
treatment effect hence reflects any added stringency.

44That is, if E[εj,t|cj ,Xj,1, .......,Xj,T ] 6= 0
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coefficient for leads dummies (β−m) should show no effect of treatment under the parallel

trends assumption, while the coefficients for the lags dummies (β+k) capture how treatment

effects unfold over time.

Identification in the DiD set-up relies on an assumption of no spillovers from the treat-

ment to the control group. In the case of SO2, the two-to-one exchange of Acid Rain Program

SO2 allowances to CAIR SO2 allowances implied a mechanical link between the treatment

and control group.45 The treatment estimate hence reflects the effect of CAIR units facing

an allowance price twice that of the control group. The DiD strategy might therefore either

understate or overstate the overall gains of the policy on SO2 emissions, as it does not ac-

count for such spillovers. For NOx, there is no shared pool of allowances for the treatment

and control group, and the DiD estimate can be interpreted as the effect of a cap-and-trade

market added to an already established command-and-control regime.46

Even though the pre-treatment trends are parallel, it could still be the case that the treat-

ment and control groups were exposed to different shocks in the treatment period - something

that would violate the identification assumption.47 Regions implementing CAIR might have

experienced different trends in factors influencing power plant’s emissions of NOx and SO2,

for instance via inputs markets or electricity markets. In order to account for potential unob-

served effects, we run robustness checks that include time-varying covariates (Xj,t).48

45Emissions reductions induced by the CAIR could hence have a direct effect on the SO2 allowance price in
the control group. According to Goulder (2013), the more stringent requirements for emissions reductions for
CAIR units led to a drop in the demand for SO2 allowances in the national cap-and-trade market. This, in turn,
resulted in a decline in allowances prices on the Acid Rain Program market. Various court actions related to the
CAIR also introduced uncertainty, which affected the allowances prices.

46Other potential spillovers from the treatment to the control groups could include: changes in the fuel prices
as the CAIR may lead to changes in input mix or the relocation of electricity production to non-CAIR states.
These mechanisms could potentially materialize for both NOx and SO2. We test for such potential leakage in
the robustness checks.

47While the DiD approach will net out any general trends that are common to the control and treatment
groups, it does not take care of differential group-specific trends.

48Specifically, we include a proxy for economic activity and weather controls. We could potentially include
the price of natural gas. By including local natural gas prices, we need to be aware of the fact that the natural gas
price may be endogenous. If power plants constitute a large buyer of natural gas, the policy itself could affect

62



CHAPTER 2. EMISSIONS MARKETS

Difference-in-Difference-in-Differences (DiDiD) Even though we include time-varying

observables, we might still worry about omitted time-varying variables that affect the treat-

ment and control groups differently. One way of mitigating this problem is to use a difference-

in-difference-in-differences (DiDiD) specification. The DiDiD requires that the treatment

group be divided into two subgroups, where only one is treated. The main advantage of the

DiDiD over the DiD is its ability to difference out trends that affect the CAIR and non-CAIR

units differently.

Here, we exploit the fact that a majority of treated units were already subject to a cap-and-

trade for summertime NOx emissions under the NOx Budget Trading Program between 2003

and 2009. When the CAIR was formally implemented in 2009, former NOx Budget Trading

Program units were carried over to the summertime CAIR market for NOx emissions. This

implies that the annual cap-and-trade program for NOx introduced under the CAIR only

represented a regulatory break for the winter months (October to April). Hence, for units

previously regulated under the NOx Budget Trading Program, the CAIR should only have an

effect on wintertime emissions.

If CAIRj,t is a dummy variable indicating if facility j is affected by the treatment in time

t, postt indicates the treatment period and wintert indicates the winter months, the DiDiD

estimator can be written as:

yj,t = α1CAIRj,t + β1CAIRj,t × wintert

+ α2postt × wintert + γ′Xj,t + cj + cj × wintert + λt + εj,t,

(2.5)

where β1 is the DiDiD estimate. If the CAIR only affected emissions in the winter months,

we should find α1 ≈ 0 and β1 6= 0.49 In order for the DiDiD to give a consistent estimate,

we must assume that there were no shocks during the treatment period that only affected

the price - making it a bad control. We could also include state-specific linear time trends. In this case, the DiD
would be interpreted as the deviation from a linear time trend for the treatment group minus the deviation from
a linear time trend for the control group. A potential problem with this approach is that the time trends might
absorb large parts of the treatment effect.

49As with the DiD estimate, we specify a version with leads and lags. If we denote m as the number of leads
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wintertime emissions for the treated units. Furthermore, we must assume that there are no

spillovers from winter to summer months as a consequence of the policy.50

2.5.2 Findings

Table 2.2 presents the estimated average treatment effects using equations 2.3 and 2.5. In

estimating an average treatment effect, we restrict the sample to the years 2004-2005 (pre-

period) and 2009-2014 (post-period). From the first column, we see that SO2 emissions were

reduced by an average of 286 tons relative to non-CAIR units, conditional on facility and

month×year fixed effects. This corresponds to a reduction of 22% relative to a counterfactual.

For NOx, the reduction is 25% for the DiD estimate and 20% for the DiDiD estimate. The

average treatment effects are robust to the inclusion of time-varying variables controlling for

weather, economic activity, fuel costs and changes in the attainment status of power plants’

counties. In addition, we present a battery of robustness checks in Appendix B.3.

and k as the number of lags, we can estimate the unfolding of the treatment as

yj,t =

M∑
m=0

α−mCAIRj,t−m +

K∑
k=1

α+kCAIRj,t+k +

M∑
m=0

β−mCAIRj,t−m × wintert+

K∑
k=1

β+kCAIRj,t+k × wintert + α2postt × wintert + γ′Xj,t + cj + cj × wintert + λt + εj,t.

(2.6)

50We regard it as unlikely that units will re-optimize and move parts of their electricity production from
winter months to summer months.
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Table 2.2: Treatment effects of the CAIR markets on NOx and SO2 emissions

(1) (2) (3) (4) (5) (6)
Panel A - log SO2 (DiD)
CAIR x postt -0.24∗∗ -0.15∗∗ -0.15∗∗ -0.13∗ -0.21∗∗ -0.22∗∗

(0.11) (0.07) (0.07) (0.07) (0.08) (0.10)

Panel B - SO2 (DiD)
CAIR x postt -286.25∗∗∗ -263.96∗∗∗ -261.34∗∗∗ -223.33∗∗∗ -239.53∗∗∗ -247.33∗∗∗

(72.99) (60.24) (59.92) (54.56) (53.83) (62.09)

Panel C - log NOx (DiD)
CAIR x postt -0.29∗∗ -0.24∗ -0.25∗ -0.27∗∗ -0.31∗∗∗ -0.30∗∗

(0.13) (0.13) (0.13) (0.12) (0.12) (0.13)

Panel D - NOx (DiD)
CAIR x postt -133.60∗∗∗ -153.80∗∗∗ -149.15∗∗∗ -124.63∗∗∗ -111.70∗∗∗ -102.99∗∗∗

(45.23) (34.07) (34.34) (32.21) (31.63) (37.60)

Panel E - log NOx (DiDiD)
CAIR x postt -0.38∗ -0.30 -0.30 -0.32 -0.40∗ -0.36∗

(0.21) (0.22) (0.22) (0.22) (0.20) (0.20)
CAIR x postt x winter -0.22∗∗∗ -0.22∗∗∗ -0.22∗∗∗ -0.21∗∗∗ -0.21∗∗∗ -0.22∗∗∗

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Panel F - NOx (DiDiD)
CAIR x postt -50.74 -63.20 -62.69 -16.51 -30.58 -16.49

(63.64) (63.87) (64.04) (60.58) (58.21) (56.23)
CAIR x postt x winter -132.78∗∗∗ -132.71∗∗∗ -132.71∗∗∗ -133.12∗∗∗ -132.24∗∗∗ -132.82∗∗∗

(28.31) (28.32) (28.32) (28.57) (28.69) (28.30)

Facility FE X X X X X X
Year FE X X X X X X
Temperatures X X
GDP X X X
Fuel Costs X X X
NAAQS dummies X X X

Notes: This table reports regression coefficients from 36 separate regressions, 6 per panel. Panels A, B, C, and D present
results from a difference-in-differences specification comparing the evolution of emissions at power plants targeted by the
Clean Air Interstate Rule to power plants in the control group. The dependent variable is power plant SO2 emissions in
panel A (natural logarithm), and panel B (absolute value), and NOx emissions in panel C (natural logarithm) and panel
D (absolute value). In panels C and D, only wintertime emissions of NOx are included. Panels E and F report results
from the triple differences that compares the evolution of power plant emissions in the winter compared to the summer
in the treated area compared to the control group after implementation of the annual market for NOx. The annual market
for NOx introduced by the CAIR was only a break in policy in the winter months as the CAIR continued an existing
cap-and-trade market for NOx emiisons in the summer. The dependent variable is the natural logarithm of NOx emissions
(panel E) and the absolute value of NOx emissions (panel F). Emissions are measured continuously and summarized at the
monthly frequency and the power plant level. All regressions include facility fixed effects, and year fixed effects. Columns
(4) and (5) include non-linear controls for minimum and maximum temperature, and measures of extreme heat and cold
recovered at the monthly frequency and power plant level (see appendix for details). Columns (4), (5) and (6) include year
and state level controls for GPD. Columns (2), (3), and (4) include monthly-frequency and state-level measures of fuel
costs. These include gas prices, coal prices, and a ratio of gas-to-coal prices. Finally, columns 4 to 6 include controls for
county attainment status to the National Air Ambient Quality Standards. Those are pollutant-specific, county-level and
yearly-frequency dummies, that are equal to 1 for counties in non-attainment. Standard errors are clustered at the state-year
level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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2.5.3 Parallel trends assumption

We visually investigate the parallel trends assumptions underlying the DiD and DiDiD esti-

mations. Figure 2.4 displays the coefficients β̂−t and β̂t estimated from equation 2.4 (DiD)

or equation 2.6 (DiDiD). The figure reveals a fairly stable development of SO2 emissions for

the treatment group until the end of 2005, when emissions start to decrease. For both NOx

and SO2, pre-trends are not statistically different for the treatment and control groups.

Figure 2.4: Effects of the CAIR on coal power plant emissions of SO2 and NOx

(a) NOx (DiD) (b) SO2 (DiD)

Notes: Figures plot the coefficients β̂−t and β̂t estimated from equation 2.4 (DiD) or equation 2.6 (DiDiD). The dependent
variable yj,t is emissions in absolute value. The connected lines depict the estimated yearly treatment effects, while the
gray areas are 95% confidence intervals. In panel (a) the coefficient for year 2005 is normalized to 0, while in panel (b) the
coefficient for year 2007 is normalized to 0. Standard errors are clustered at the state level in all regressions. The sample
is balanced over the period 2003-2014 and restricted to coal power plants. Only winter months are included in the DiD
estimation for NOx.

The effects of the CAIR on the NOx emissions of targetted power plants was sharp and

immediate. Figure B.3 displays the average daily NOx emissions across coal power plants

in the CAIR region. It shows that during the NOx Budgeting Program, power plants abated

emissions in the summer only, from May 1st to September 30th. They used abatement tech-

nologies that could be switched on and off. On September 30th, plants switched abatement

technologies off and NOx emissions were not controlled outside of the NOx Budgeting Pro-

gram market period. This changed with the implementation of the annual market for NOx
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emissions, which the CAIR introduced. As depicted in Figure B.3, plants continued to abate

NOx emissions in newly regulated months under the CAIR.

Figure 2.5 panel (a) shows the trends for winter and summer separately, and reveals very

similar developments prior to the policy in the treated and control plants for both seasons.

While the trends appear to be parallel for NOx, shocks could have occurred in the post period

that confound the policy. By employing a triple differences, we circumvent this problem by

looking at the difference between winter and summer months, pre and post, for the treatment

and the control groups.51

Figure 2.5: Effects of the CAIR on coal power plant emissions of NOx—winter

(a) NOx Trends (winter & summer) (b) NOx (DiDiD)

Notes: The left panel plots the raw data. It depicts average NOx emissions from coal power plants in the CAIR region
in orange and in the control group in grey. Dashed lines represent summer emissions (from May 1st to September 30th)
and solid lines represent winter emissions (from October 1st to April 30th). The right panel shows results from the triple-
differences specification, where the treatment effect is interacted with year dummies. From 2004 to 2008, NOx emissions
in the summer were regulated under the NOx Budgeting Program (NBP) for CAIR power plants. The NBP imposed a cap
on NOx emissions in the summer only. Plants installed abatement technologies that could be switched on and off. Most
importantly, plants switched abatement technologies off during unregulated winter months between 2004 and 2008 and
did not abate NOx emissions in the winter. In 2008, the CAIR continued the summer cap from the NBP and imposed an
annual cap on NOx emissions. The annual market was thus a break in policy for winter emissions only.

51As some CAIR units were not covered by the former NOx Budget Trading Program, it is expected to see
a small drop also for the summer months.
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2.6 Heterogeneous effects of the CAIR markets on

emissions

Having established a large and robust treatment effect, we move to the second part of the

analysis. In this part, we investigate whether emission changes induced by the CAIR vary

systematically with socioeconomic characteristics of the neighborhoods surrounding each

power plant.

2.6.1 Empirical strategy

Our main empirical specification allows for the treatment effect to vary with demographic

variables in a linear way:

yj,t = β1CAIRj,t + β2CAIRj,t ×Demoj + γ′Xj,t + cj + λt + εj,t, (2.7)

where yj,t is facility-level emissions, and Demoj is a facility-specific, time-invariant variable

measuring a socioeconomic characteristic of the surrounding neighborhood prior to policy

implementation. The net treatment effect is given by β1 + β2 × Demoj . For the DiDiD

strategy, we estimate the following equation:

yj,t = α1CAIRj,t + β1CAIRj,t × wintert + β2CAIRj,t × wintert ×Demoj

+ α2postt × wintert + γ′Xj,t + cj + cj × wintert + λt + εj,t,

(2.8)

where the net treatment effect is given by β1 + β2 × wintert ×Demoj .52

52In a robustness check, we also allow for the treatment effect to vary in a non-linear way with the socioe-
conomic characteristics by constructing k different bins:

yj,t =

n∑
k=1

βk(CAIRj,t ×Demoj,k) + γ′Xj,t + cj + λt + εj,t, (2.9)

where βk captures the treatment effect for bin k.
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2.6.2 Results

Household income

To test whether CAIR-induced emission reductions vary with income, we interact the treat-

ment variable (CAIRj,t) with the median income of neighborhoods. The estimated heteroge-

neous effects for SO2 and NOx, using both the DiD and DiDiD specifications, are presented

in Figure 2.6. Values of the income variable are indicated on the x-axis. The left y-axis indi-

cates the density for different values of the income variable, while the right y-axis indicates

the net treatment effect for different values of the income variable.

Figure 2.6: Heterogeneous treatment effects, by median income

(a) log SO2 (b) log NOx (c) log NOx (DiDiD)

Notes: The solid blue lines in all figures are the net treatment effects β̂1 + β̂2 × Demoj estimated from equation 2.7
(DiD) or equation 2.8 (DiDiD). The dependent variable yj,t is log SO2 emissions (panel a) or log NOx emissions (panels
b and c). The horizontal axis indicates median income as Demoj , where a histogram of the variable is shown in the
background. The left y-axis reports the density of Demoj in percent, while the right y-axis reports the net treatment effects
β̂1 + β̂2 ×Demoj . Dashed lines represent 95% confidence intervals. Standard errors are clustered at the state level in all
regressions. The sample is balanced over the period 2003-2014, restricted to non-gas units and to the years 2004-2005 (pre
period) and 2009-2014 (post period). Median income is from the 2005-2009 American Community Survey (ACS), and is
constructed for 1 mile radius circles around the power plants.

Looking at SO2, there is a clear downward sloping curve for the net treatment effect (see

Figure 2.6a). This means that CAIR-induced reductions in emissions were relatively smaller

for plants located in neighborhoods with a low median income, and relatively higher for

plants located in neighborhoods with a high median income. The net treatment effect varies

between 0 for the poorest neighborhoods and up to a 60% reduction for the very richest

neighborhoods. For NOx, we see a similar but weaker pattern (see Figures 2.6b and 2.6c).
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Using both a DiD and DiDiD specification, the slope of the interaction term is about 1/3 of

the slope for SO2.

Other measures of wealth and demographics

Results for each measure of the demographics are presented in Table 2.3. Overall, the

heterogeneity in emission reductions persist across measures for wealth and demographics:

for median income, income per capita, % of black people living in the neighborhood, % of

university educated people living in the neighborhood, or median gross rent.

To test whether the heterogeneity in the CAIR’s treatment effect uncovers differences be-

tween states, or between plants neighborhoods within the same state, we use different mea-

sures of the distributions in demographic variables: demoj can hence be taken as the absolute

value of the demographic variable (e.g.: median income in 1,000 of USD), or the percentile

of the neighborhood’s demographics across all US plants, across CAIR’s plants or within

each CAIR state. Emissions reductions were also stronger in high density neighborhoods.

These patterns reveal heterogeneity within states, and do not seem to reflect a geographic

devide between states in the CAIR region, as shown by the negative coefficients displayed in

columns 2, 3, and 4.
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Table 2.3: Heterogeneous treatment effects of the CAIR markets on SO2 emissions (in log)

(1) (2) (3) (4)
Absolute Value Across Plants Across CAIR Within States

Median Income -0.000013 -0.0042 -0.0058 -0.0047
( 0.000006) ( 0.003163) ( 0.003867) ( 0.003396)

Income per Capita -0.000047 -0.0069 -0.0098 -0.0096

( 0.000018) ( 0.003951) ( 0.005189) ( 0.004546)

% Black Population 0.640723 0.0028 0.0030 0.0033

( 0.438332) ( 0.003166) ( 0.003482) ( 0.003701)

% University Educated -1.300033 -0.0056 -0.0076 -0.0095

( 0.860295) ( 0.004063) ( 0.005249) ( 0.004419)

Population Density -0.000476 -0.0133 -0.0201 -0.0145

( 0.000259) ( 0.005005) ( 0.007029) ( 0.005040)

Median Gross Rent -0.001464 -0.0066 -0.0088 -0.0054

( 0.000782) ( 0.004174) ( 0.005185) ( 0.003180)

Notes: The table presents results of the estimations of coefficient β2 in equation 2.7, for 24 separate regressions, 4 per
demographic variable. The dependent variable is the logarithm of SO2 emissions as measured at the monthly frequency and
power plant level. In column (1), demoj is the absolute value of the given demographic variable. demoj is the percentile
of plants’neighborhoods in the demographic distribution across all US plants neighborhoods (column (2)), across CAIR
based power plants neighborhoods (column (3)), or across CAIR power plants located within the same state (column (4)).

2.6.3 Compliance mechanisms of power plants

Here, we examine how power plant owners are choosing to comply with CAIR, and if their

choice systematically differs with socioeconomic characteristics of the plant’s surrounding

neighborhood. In particular, we investigate three potential compliance mechanisms: lower

electricity production, lower emissions intensity (by installing abatement technologies or

switching to cleaner fuels) and shutting down. To test if power plants’ compliance choices

correlate with neighborhoods’ socioeconomic characteristics, we estimate equation 2.7 using

electricity generation and emissions intensity of SO2 and NOx as outcome variables.
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Lower electricity production

Figure 2.7a shows the estimated heterogeneous treatment effect when using gross load as

an outcome variable in equation 2.7. The estimation reveals that, on average, the Rule had

minor effects on electricity production. We see no effects in low-income neighborhoods,

while high-income neighborhoods experienced a small decline in production.

Figure 2.7: Heterogeneous treatment effects on compliance choice, by median income

(a) log gross load (GWh) (b) log SO2 intensity (ton/Gwh) (c) log NOx intensity (ton/Gwh)

Notes: The solid blue lines in all figures are the net treatment effects β̂1 + β̂2×Demoj estimated from equation 2.7 (DiD).
The dependent variable yj,t is log electricity production (panel a), log SO2 intensity (panel b) or log NOx emissions (panel
c). The horizontal axis indicates different values of the demographic variable Demoj , where a histogram of the variable
is shown in the background. The left y-axis reports the density of Demoj in percent, while the right y-axis reports the
net treatment effects β̂1 + β̂2 ×Demoj . Dashed lines represent 95% confidence intervals. Standard errors are clustered
at the state level in all regressions. The sample is balanced over the period 2003-2014, includes only non-gas units and is
restricted to the years 2004-2005 (pre period) and 2009-2014 (post period). Demographic variables are from the 2005-2009
American Community Survey (ACS). Median income is measured in $1000, and is based on inflation adjusted values. The
demographic variable is constructed for 1 mile radii circles around the power plants.

Lower emissions intensity

We find that the CAIR led to a reduction in power plants’ emissions intensity for SO2 and

NOx (see Figures 2.7b and 2.7c). While NOx intensities were reduced evenly across power

plants located in different socioeconomics neighborhoods, there were small or no reductions

in the intensity of SO2 emissions for power plants located in low-income neighborhoods.

For power plants located in high-income neighborhoods, we observe large and significant

reductions in SO2 emissions intensity. Reductions in emissions intensity could be caused by

plants installing abatement technology or switching to cleaner fuels.
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Technology adoption: To test for heterogeneous adoption of abatement technologies across

neighborhoods of different socioeconomic composition, we estimate equation 2.7 using a

measure of technology adoption as the outcome variable. The two main technologies used to

reduce emission intensity are flue-gas desulfurization (FGD) for SO2 and Selective Catalytic

or Non-Catalytic Reduction (SCR or SNCR) technologies for NOx. Figure B.10 shows the

results when interacting the policy variable with the share of households living below the

poverty line. The estimation reveals that plants located where poor populations are more

concentrated were less likely to adopt sulfur abatement technologies as a response to CAIR,

while NOx technologies were evenly adopted across neighborhoods.53

Fuel switching: Given the technical constraints of boilers, switching from coal to gas at the

plant level is rare.54 The lower emissions intensity must therefore be achieved by switching to

cleaner coal, installing technology, or both. Using detailed data on ash and sulfur content of

coal delivered to power plants, we estimate average and heterogeneous impacts of the CAIR

on the quality of coal purchased. We find that, on average, power plants targeted by the CAIR

did not switch to higher quality coals. This suggests that reductions in emissions intensity

were achieved through technology adoptions rather then switching to cleaner fuels.

2.6.4 Discussion

Why are SO2 reductions smaller in poorer neighborhoods? Why would emissions trad-

ing induce less abatement at plants located in low-income areas? Guided by the framework

in Section 2.2, we discuss potential explanations for the heterogeneous reductions observed

53Note that many power plants had already installed NOx abatement technologies under the former NOx

Budget Trading Program, which they only used during summer months. When the CAIR expanded the NOx

Budget Trading Program to the winter months, it was easy for units to use the already installed technologies
in winter months as well. When interacting the policy variable with the median income instead of the poverty
rate, wee see a positive and even treatment effect across income groups. This implies that the lower probability
of installing SO2 technologies was only present in the very bottom of the income distribution.

54We estimate the probability of switching to gas as a primary input to be around 2%.
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in the context of the CAIR.

Plant characteristics: If the marginal abatement cost, c′i(qit, θi), is systematically higher

for power plants located in low-income areas relative to higher income areas, this might ex-

plain the observed pattern of emissions reductions. A plant’s operating characteristics, θi, can

be either observed (Xi) or unobserved (uit). In our case, Xi contains information on age, fuel

inputs, gross loads, and the technology stock. Comparing the mean of these characteristics

for plants located in low- and high income areas, we find small differences across the two

groups (see Table B.7).55 Next, we include plant characteristics as controls when estimat-

ing equation 2.7, and find that the heterogeneous treatment effect remains intact (see Table

B.15). These results suggest that pre-policy, observable plant characteristics cannot explain

the larger treatment effect observed in higher income neighborhoods.56

Neighborhood characteristics: Finally, power plants located in lower and higher in-

come neighborhoods could face differences in community pressure or local reputation costs,

sil(uit − qit, Xil). In our setting, it is difficult to establish such sources of causation be-

tween neighborhood income and power plants’ emissions reductions. However, focusing on

areas experiencing repeated problems with air pollution (non-attainment counties), the het-

erogeneous effect is strong and significant, while for attainment counties we do not see any

systematic pattern in emissions reductions. This suggests that uneven reductions are taking

place in areas where the marginal damage of pollution is high. In these counties, populations

55The only significant difference between the two groups is the share of coal versus oil used as primary
input.

56Note that there might be unobserved technical characteristics, uit, that vary systematically between power
plants located in lower and higher income areas. One example is the boiler’s model and constructor, which could
limit available options for low-cost abatement technologies. Potential differences in boiler characteristics could
be due to differences in financial constraints: installing new technology is capital intensive, and plants in poorer
areas might face a binding financial constraint. Beyond technical plant characteristics, there might be systematic
differences in non-technical costs. In particular, plants located in low and high-income neighborhoods could
face differences in unobserved input costs, such as labor costs.
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are more likely to be aware of risks associated with air pollution, and the heterogeneous effect

may hence stem from differences in local opposition.

Why is the heterogeneous pattern stronger for SO2?

The stronger heterogeneous pattern for SO2 compared to NOx could have different explana-

tions. First, while SO2 has a strong odor which causes a substantial negative externality in

nearby areas, NOx is odorless and seemingly undetectable by local observers. This could

imply that the neighborhood-specific cost, sil, is larger for SO2.57

2.7 Effects of emissions reductions on neighborhood

characteristics

In Section 2.6, we showed that the CAIR induced larger emissions reductions in wealthier

neighborhoods. Here, we expand on this analysis by (i) testing whether the heterogeneous

pattern of emissions reductions is reflected in changing house values and demographics (Sec-

tion 2.7.2), and (ii) estimating effects of emission changes on home values and neighborhood

demographics (Section 2.7.3).

2.7.1 Empirical strategy

Heterogeneous effects of the CAIR on house values and neighborhood composition To

see if emissions reductions induced by the CAIR also affected neighborhood composition,

we use home values and neighborhood characteristics as outcome variables. In addition to

the two differences used in equation 2.7 (CAIR vs. non-CAIR, pre vs. post), we also exploit

the fact that the treatment intensity is larger for coal plants than gas plants. In fact, gas power

57Additionally, coal power plants are the single largest source of SO2 emissions, while they only contribute
to about 20% of total NOx emissions in the US This could make residents scrutinize coal plants’ emissions of
SO2 to a larger extent than NOx, also influencing sil.
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plants experienced close to zero emissions reductions under the CAIR.58 Including both gas

and coal plants in the sample allows us to estimate the following triple difference:

ln yj,t = α1CAIRj,t+β1CAIRj,t×coalj+α2postt×coalj+γ′Xj,t+cj+λs,t+εj,t, (2.10)

where ln yj,t is the natural logarithm of a socioeconomic characteristic of the neighborhood

surrounding the power plant, β1 indicates the DiDiD estimate and λs,t stands for state-specific

time dummies. By including the latter, the DiDiD estimate reflects the difference in devel-

opment in socioeconomic characteristics for coal and gas plants within the same CAIR state,

compared to the difference between coal and gas plants within non-CAIR states. The vec-

tor Xj,t includes an interaction term between postt and the log of the pre-policy level of the

demographic variable. To see how the DiDiD estimate varies with income, we estimate the

following regression:

ln yj,t = α1CAIRj,t + β1CAIRj,t × coalj + β2CAIRj,t × coalj ×Demoj

+ α2postt × coalj + γ′Xj,t + cj + λt,s + εj,t,

(2.11)

where Demoj is a facility-specific, time-invariant variable capturing a neighborhood charac-

teristic prior to policy implementation.

Effects of emissions reductions on house values and sorting Lastly, we exploit the CAIR

as a quasi-natural experiment to estimate the effects of power plants’ emissions reductions

on home values and neighborhood demographics. The empirical strategy is similar to the one

described in Section 2.7.1, but restricts the sample to CAIR states only. Using the restricted

sample, we can exploit coalj × postt as an instrument for changes in SO2 or NOx emissions.

The reduced form, first stage and second stage then take the following forms:

Reduced form: ln yj,t = α1coalj × postt + γ′Xj,t + cj + λt,s + εj,t (2.12)

58 The insignificant effect for gas power plants can be explained by natural gas generating much lower levels
of SO2 and NOx emissions.
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First stage:
emissionsj,t = α1coalj × postt + γ′Xj,t + cj + λt,s + εj,t (2.13)

Second stage:
ln yj,t = β1 ̂emissionsj,t + γ′Xj,t + cj + λt,s + uj,t, (2.14)

where ln yj,t is the natural logarithm of a socioeconomic characteristic of the neighbor-

hood surrounding the power plant, coalj × postt is the excluded instrument and λt,s are

state-specific year dummies. By including state-specific year dummies, the coefficient α1 in

equation 2.13 captures differences in the development in emissions for coal and gas plants

located within the same state. The IV-DiD estimate β1 in equation 2.14 captures the effect of

changes in facility-level emissions on neighborhood characteristics. The vector Xj,t includes

an interaction term between postt and log of the pre-policy level of the demographic variable.

2.7.2 Results

Heterogeneous effects of the CAIR on house values and neighborhood demographics

Did the CAIR effect house values and neighborhood demographics? Figure 2.8 plots treat-

ment effects (β̂1 + β̂2 ×Demoj) estimated from equation 2.11 where neighborhoods demo-

graphics are used as outcome variables.

From the figure, we observe that high-income neighborhoods located around coal power

plants in CAIR states experienced an increase in home values and rents, compared to similar

neighborhoods in the control group. The result suggests that neighborhoods experiencing

large emissions reductions under the CAIR also experienced economic benefits via higher

home valuation. While rents also increased, the share of home-owners is large in high-income

neighborhoods.59 Further, we see that higher income neighborhoods experienced a decline

in the share of poor residents and an increase in residents holding a college degree. Since

population density is not affected, this suggests that the environmental benefits induced by

59In our sample, the home-ownership rate in neighborhoods with a median income below the 25th percentile
is 70%, while the home-ownership rate in neighborhoods with a median income above the 75th percentile is
86% (see Table B.9 in the Appendix).
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Figure 2.8: Effects of CAIR on neighborhood characteristics.

(a) House value (b) Rent (c) Median income

(d) Poor (e) College degree (f) Population density

Notes: The solid blue lines are net treatment effects β̂1 + β̂2 × Demoj estimated from equation 2.11. The dependent
variable yj,t is log of the demographic variable indicated by the sub-figure heading. Data is from the 2005-2009 and
2010-2014 American Community Survey (ACS). Horizontal axis indicates different values of the demographic variable
Demoj from the 2005-2009 ACS, where a histogram of the variable is shown in the background (and restricted to coal
CAIR plants). The left y-axis reports the density of Demoj in percent, while the right y-axis reports the net treatment
effect. Dashed lines represent 95% confidence intervals. Standard errors are clustered at the state level in all regressions.
All demographics are constructed for 1 mile radius circles around the power plants.

the CAIR led to a sorting of poorer households out of cleaned areas while college-educated

households sorted into those areas.

2.7.3 Sorting

Here, we exploit the CAIR as a quasi-natural experiment to estimate effects of emission

changes on home values and neighborhood demographics.60 Table 2.4, panel (a) displays re-

60As explained in Section 2.7.1, our empirical strategy is to limit the sample to CAIR units only and compare
the neighborhoods around coal and oil plants (treatment group) to those around gas plants (control group)
before and after policy implementation. While both types of plants are covered by the CAIR, only the coal
power plants experienced notable reductions in emissions, as gas unit do not emit SO2. Furthermore, before
the implementation of the CAIR, neighborhoods around coal and gas plants within CAIR states shared similar
characteristics, see Appendix Table B.8. By including state-specific time dummies, as well as facility fixed
effects, we compare the facility-level changes over time for gas and non-gas facilities within the same state.
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sults from the reduced form estimation (equation 2.12). Results suggest that neighborhoods

surrounding coal- or oil-fired plants experienced an increase in home values, median income,

and share of college-educated residents, and a decline in the share of households below the

poverty line. The estimated effects on population density and rents are not statistically dif-

ferent from zero.

Panel B in Table 2.4 shows the estimated effects when instrumenting for facility-level

SO2 emissions, both in levels and logs. Looking at column 1, we observe that reductions in

plant-level SO2 emissions increase home values in plant neighborhood. In particular, the log-

log estimation coefficient suggests that a 1% reduction in SO2 emissions leads to a 0.07%

increase in home values.61 The F-statistics on the excluded instrument (77.62 and 40.99)

reveals a strong first stage. The rest of the columns show results when using other demo-

graphics as outcome variables. Overall, the coefficients reveal that reductions in SO2 emis-

sions result in a decline in the share of poor and an increase in the share of college-educated

people. The coefficients on population density and rent are not statistically different from

zero.

Panel C in Table 2.4 shows the effects of NOx emissions on plants neighborhoods de-

mographics and home values. All coefficients for NOx share the same sign and same order

of magnitude as for SO2. The coefficients, however, are more precisely estimated for NOx,

which is likely due to a stronger first stage.

Time-varying shocks at the state level are hence absorbed by the state-specific time dummies, and what is left
is the variation within a state.

61Using the log-level estimation coefficient (-0.0351) suggests that a 1000-tons reduction in SO2 emissions
leads to a 3.51% increase in home values. Combining these estimates with the heterogeneous emissions re-
ductions found in Section 2.6.2, the richest neighborhoods experienced around a 4% increase in home values
(60%× 0.07%). The average effect was a 2.6% increase in home values (37%× 0.07%).
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Table 2.4: Effect of the CAIR markets on house values and neighborhood demographics

House Median % Below % College Population
value Rent Income Poverty Educated Density

Panel A: Reduced form
Coal*post 0.0518∗∗∗ 0.00453 0.0473∗∗ -0.0113∗ 0.0101∗∗ -0.00117

(0.0180) (0.0248) (0.0186) (0.00659) (0.00415) (0.00301)

Panel B: IV estimates (SO2)
SO2 (1000 tons) -0.0351∗∗ -0.00298 -0.0324∗∗ 0.00783∗ -0.00689∗∗ 0.000819

(0.0139) (0.0162) (0.0145) (0.00454) (0.00328) (0.00207)

log SO2 -0.0691∗∗ -0.00586 -0.0659∗ 0.0159 -0.0136∗ 0.00161
(0.0320) (0.0319) (0.0369) (0.0109) (0.00766) (0.00423)

Panel C: IV estimates (NOx)
NOx (1000 tons) -0.0850∗∗∗ -0.00734 -0.0779∗∗ 0.0187 -0.0166∗∗ 0.00196

(0.0286) (0.0398) (0.0346) (0.0115) (0.00793) (0.00501)

log NOx -0.0582∗∗ -0.00499 -0.0539∗ 0.0130 -0.0112∗ 0.00132
(0.0215) (0.0271) (0.0283) (0.00897) (0.00587) (0.00345)

Obs 1308 1236 1304 1296 1308 1300
Number of facilities 654 618 652 648 654 650
Clusters (state) 24 24 24 24 24 24
Mean dep.var (pre) 11.70 6.583 3.873 0.130 0.222 0.177
Mean SO2 (1000 tons) (pre) 0.977 0.987 0.971 0.981 0.973 0.983
Mean NOx (1000 tons) (pre) 0.391 0.393 0.390 0.393 0.390 0.393
F-stat (excl. instr.): SO2 77.62 82.30 74.78 72.46 74.55 77.95
F-stat (excl. instr.): log SO2 40.99 40.51 37.27 38.48 43.37 40.79
F-stat (excl. instr.): NOx 201.6 198.2 193.6 189.6 196.2 195.5
F-stat (excl. instr.): log NOx 66.69 69.67 63.20 61.92 72.35 68.35

Notes: Panel A reports the coefficient α̂1 estimated from equation 2.12. Panel B and C reports the coefficient β̂1 estimated
from equation 2.14. The dependent variable yj,t is indicated by the column heading and is the log of a demographic
variable from the 2005-2009 and 2010-2014 American Community Survey (ACS). All regressions include interaction
terms between postt and log of the demographic variable. Standard errors clustered at the state level in parenthesis.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

2.8 Conclusion

This paper examines how environmental benefits from cap-and-trade systems are distributed

across different population groups, and to what degree these benefits are translated into eco-

nomic gains via the housing market. We investigate these questions in the context of three

large cap-and-trade systems targeting air pollution from US power plants. When studying
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how power plants reduced emissions, we find that facilities located in higher income areas

lowered emission intensities by installing expensive abatement technologies, while plants lo-

cated in poorer areas shut down dirtier units. Further, we find that policy-induced emissions

reductions led to an increase in home values in power plants’ neighborhoods. Since home-

owners tend to be wealthier, these policy-induced effects on real estate disproportionately

benefited higher income households. What is more, the increase in house values coincided

with a demographic sorting, where poorer households initially living near power plants that

reduced their emissions were replaced by higher income households. Overall, our findings

suggest that the environmental and economic benefits were unevenly distributed across so-

cioeconomic groups.

81



Chapter 3

Air Pollution and American Cities

Is there environmental gentrification?1

Abstract I match granular information on air pollution derived from satellite imagery with

precise demographic data from the census to document the evolution and heterogeneity of

the exposure to particulate matter—a harmful set of air pollutants, in the United States be-

tween 2000 and 2016. I find vast inequities in exposure to air pollution both across and

within American cities. Neighborhoods with a higher share of low-income inhabitants face

an average concentration of particulate matter 8% higher than the US mean, and almost 15%

higher than wealthiest neighborhoods within the same city. These heterogeneities are more

pronounced along with the racial composition of neighborhoods: black populations in the

US are disproportionately more exposed to high levels of air pollution. These distributions

did not change across time despite the unprecedented drops in air pollution across the US. I

hypothesize that changes in local air pollution capitalize into housing values, leading to the

sorting of poorer households out of clean areas. I test this hypothesis with housing transac-

tion level data and find that a 1% drop in the local concentration of particulate matter leads to

a 0.5 to 0.8% increase in house prices and that these effects are stronger in locations where

1 I am deeply indebted to Donald Davis, Arlene Fiore, Geoffrey Heal and Wolfram Schlenker for their
advise. For sharing reanalysis data on particulate matter pollution in the US, I am grateful to Aaron van Donke-
laar, Randall Martin, Robert Spurr, and Richard Burnett. For allowing me to use their clusters and for sharing
micro-level data on housing transactions from CoreLogic, I am thankful to Christopher Mayer and the Milstein
Center for Real Estate at Columbia Business School. For sharing data on attainment status of counties in the
US, I thank Nicholas Muller. All remaining errors are mine.
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information on air pollution is publicly available.

3.1 Introduction

Since the industrial revolution, urbanization has been linked to the rise of air pollution, rep-

resenting a significant disamenity of city life, and endangering populations’ health and life

expectancy (Hanlon and Tian, 2015; Hanlon, 2014). The focus has recently been put on un-

derstanding the relations between increasing levels of air pollution and the advent of sprawl-

ing cities in the developing world (Kahn and Walsh, 2015). Less is known on the impact of

declining levels of air pollution on the development of neighborhoods and cities, and on the

evolution of inequalities in the exposure to air pollution across populations both between and

within cities.

In the past twenty years, air pollution in the US has dramatically dropped, offering a

unique historical experiment to study the impacts of air pollution improvements on cities. At

the same time, spatial inequalities have risen, with the concentration of highly skilled workers

and industries in a few city centers. The changes in the spatial distribution of wealth has led

to the rebirth of cities and neighborhoods often associated with gentrification (Couture et al.,

2019).2 How have inequalities in exposure to air pollution been impacted by local changes in

air pollution? How are recent improvements in the environment linked to the ever-increasing

spatial concentration in wealth? Is there environmental gentrification? A necessary first

step is to document the evolution in the exposure to air pollution, its distribution across

populations, and its impacts on house values. This chapter leverages satellite imagery of

air pollution, reports from EPA’s ground-level monitoring stations, demographic information

provided by the Census at the block group level and a proprietary micro-level dataset on

housing transactions to document inequalities in the exposure to air pollution and establish a

2In this paper, I use gentrification as the process of improving a neighborhood that is accompanied with the
influx of middle-class or higher income households and is often associated with the sorting of poorer households
out of this neighborhood.

83



CHAPTER 3. AIR POLLUTION AND AMERICAN CITIES

link between air pollution and house prices. The paper makes three main contributions. First,

this chapter documents vast and persistent inequalities to the exposure to air pollution: both

across and within cities, lower-income households are disproportionately exposed to higher

levels of air pollutants. Although inequalities have tended to decrease over the studied period,

they seem to persist. Second, to understand these patterns, the analysis proposes to estimate

the impact of changes in air pollution on real estate prices. Higher home prices in cleaned

areas could lead to the sorting of poorer households out of cleaner areas. In doing so, the

analysis provides a measure of the marginal willingness to pay for air quality by estimating

a hedonic model with block-group level data. On the whole, however, local air pollutants

are hard to observe directly, and it is not apparent how inhabitants could react to changes in

air pollution that cannot be perceived by a naked eye. Lastly, the paper provides an estimate

of the impact of air pollution monitoring on house values, by pairing measures obtained

through the parsimonious network of monitors installed by the EPA and the geographically

continuous measure of air pollution provided by satellite products. This allows the analysis

to provide a lower bound estimate of the value of air pollution monitoring by focusing on the

additional impact to air pollution variations that monitoring reports can have on local housing

values.

In a first step, I document inequalities in the exposure to air pollution across the US pop-

ulation. This is made possible by matching precise data on demographics with new datasets

that offer a geographically continuous measure of air pollution with an unprecedented spatial

granularity.3 By matching time-varying block group level data from the Census to high-

resolution air pollution imagery, I describe the evolution of the distribution in the exposure

to air pollution, within cities, and across cities. I find that overall, populations living in the

most deprived areas of the US experience exposure to particulate matter pollution 10% higher

than the average American, and that populations living in blocks with the highest share of

3The pollution data was developed by van Donkelaar et al. (2019) and contains annual data on the concen-
tration of eight major air pollutants on 1km by 1km grid cells.
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black inhabitants experience exposure to particulate matter 20% higher than average. These

patterns reflect inequalities between cities and between neighborhoods within the same city:

on average, poorest neighborhoods present particulate matter concentrations 8% higher than

the city’s average, and 15% higher than the wealthiest neighborhoods. Between 2000 and

2016, I document that the average exposure to key human-made air pollutants has dramati-

cally dropped: by 75% for ammonium, 65% for sulfate, close to 30% for particulate matter,

and up to 50% for nitrate. These large drops materialized across cities, reducing between

cities inequalities in the exposure to air pollution. Inequalities between neighborhoods were

unchanged on average, although some cities (e.g., New York) managed to reduce the gaps

between their poorest and wealthiest neighborhoods. Why do these vast inequalities in the

exposure to air pollution persist? This is precisely the question that the second part of the

paper investigates. I conduct hedonic regressions to indirectly recover the average house-

hold’s marginal willingness to pay for clean air. Using house prices derived from transaction

level data that I match to satellite imagery of air pollution at the block group level, I find

that a 1% drop in the concentration of particulate matter is associated with an appreciation

in house values ranging from 0.5% to 0.6% across specifications.4 One unobserved variable

that could lead to both changes in house values and air pollution could be changed in the

location of dirty plants or other pollution sources (e.g.: roads): house prices may respond to

the local changes in industrial activity that would also drive changes in local air pollution. In

that sense, the hedonic estimates may overestimate the impact of changes in air pollution on

house values. Pollutants like particulate matter can travel long distances from their source,

and since air pollution impacts health, residents may notice changes in air pollution through

changes in their overall health, even far from pollution sources. However, at the concentra-

tions level experienced in the US, fine particulate matter might not be observable by a naked

eye, and some may argue that it is not clear how residents could value changes in air pollution

4These estimates may suffer from endogeneity. The analysis could be refined in the future, using instru-
ments to air pollution.
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that they cannot observe directly. In the last part of the paper, I investigate how information

on air pollution impacts changes in house values. I use measures of air pollution derived from

ground level monitoring stations installed by the EPA as the primary source of information

on air pollution at the county level. Because this network of monitors is sparse, many coun-

ties do not have any ground-level monitors. Hence, in an additional hedonic regression that

links satellite imagery of air pollution to county-level changes in house values, I estimate the

additional effect that information on air pollution has on house values by interacting changes

in air pollution described by satellites with changes in air pollution described by monitors in

counties that have monitors. This allows me to estimate the impact that information on air

pollution has on housing values. I find in counties with monitors, the impact of changes in air

pollution on real estate is more substantial than in counties that do not have monitors. This

suggests that households pay attention to readings from monitoring stations.

This paper contributes to two lines of research. First, it is the first paper to document

the recent evolution of the exposure to air pollution in the US, and of its distribution across

households. Using air pollution data derived from satellite imagery allows a granular de-

scription of populations exposed to air pollution, both across cities and within cities at the

neighborhood level. Other studies on the inequality to air pollution focused on data derived

from monitoring stations or emission sources or proposed a static description (Hsiang et al.,

2019; Clark et al., 2014). To my knowledge, this is the first paper to offer a complete descrip-

tion of spatial inequalities in the exposure to air pollution and their evolution across time.

The description takes into account changes in local air pollution and in the composition of

local populations across time. In doing so, the analysis attempts to link the literature on envi-

ronmental amenities with the growing literature on the sorting of households along the skill

and income distribution (Davis and Dingel, 2019; Couture and Handbury, 2017).

Second, the paper contributes to the sizeable empirical hedonics literature, which links

changes in amenities to changes in housing values (Rosen, 1974; Albouy and Stuart, 2014;

?). Papers focus on changes in air pollution brought about by the opening or closure of
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dirty plants (Currie et al., 2015; Banzhaf and Walsh, 2008; Davis, 2010), which can often

be associated with changes in amenities of a neighborhood other than air pollution, such as

changes in traffic congestions, employment, or noise level. Other papers study the impact

of air pollution on house values in Los Angeles (Sullivan, 2016b). With county-level data

only (Chay and Greenstone, 2005), previous studies had to assume that the US constituted

a unique housing market and that households were optimizing across the US to choose a

location to live in. Combining data on house values and pollution at the block group level

allows this paper to estimate the impact of changes in air pollution on real estate prices by

comparing block groups within the same city. Finally, most variations in air pollution used

in the literature are drawn from observable changes (opening of dirty plants) or measured

pollution levels that can be publicly available. This study intends to disentangle the impact

of air pollution (measured by satellites) from the impact of information on air pollution (from

monitoring stations) and aims to contribute to the literature on the value of information on

environmental hazards (Davis, 2004).

The remainder of the chapter is structured as follows: Section 3.2 describes datasets used

in this chapter. Section 3.3 documents the heterogeneity in exposure to air pollution and its

evolution across time. Section 3.4 outlines the impact of changes in air pollution on housing

prices. Section 3.5 estimates a lower bound of the value of information on air pollution.

Section 3.6 concludes the paper.

3.2 Data and descriptive statistics

3.2.1 Data sources

This paper uses detailed satellite-derived data on air pollution, transaction-level real estate

data, and block group level demographic data. Here, I present the datasets I obtained and

matched and provide descriptive statistics.
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1. Air pollution — I obtained data on air pollution from three primary sources: reanalysis

data derived from satellite imagery products were developed by van Donkelaar et al. (2019),

readings from monitoring stations installed by the Environmental Protection Agency across

the US, and National Ambient Air Quality Standards status for all counties and standards.5

Summary statistics for all three sources are provided in Table 3.1.

van Donkelaar et al. (2019) statistically combines information from satellites, chemical

transportation models, and monitoring readings to provide the most detailed data on air pol-

lution to date. The data covers North America and contains information on the concentration

of eight major air pollutants at 0.01o by 0.01o grid cells (roughly 1km2): particulate matter

(PM2.5), sulfate (SO2
4), nitrate (NO3), ammonium (NH+

4 ), organic matter (OM), mineral dust

and sea salt. Those pollutants constitute the bulk of fine particulate matter known to affect

health. Some of these particles stem from industrial activity, or car emissions (PM2.5, SO2
4,

NO3, NH+
4 and organic matter) while others are formed naturally close to the coasts (sea salt)

or in desertic areas (dust). The files report yearly averages of each air pollutant at the grid

cell level from 2000 to 2016 across North America.

Monitoring stations readings are provided by the Environmental Protection Agency’s Air

Quality System. I obtained data for five air pollutants deemed dangerous to health by the

Agency and included in its list for criteria air pollutants: nitrogen oxides, ground-level ozone,

particulate matter (10), particulate matter (2.5) and sulfur dioxide. I obtained data on daily

measures of the air quality index associated with each of these pollutants. These data were

averaged at the yearly frequency from 2001 to 2015 at the monitoring station level. I then

took county-level simple averages. Because monitors are expensive to install and operate, the

coverage is scarce (e.g., 417 monitors are installed throughout the US to measure nitrogen

oxides concentrations). Based on these geographically limited data, I estimated county-level

5A version of this dataset was provided to me by Nicholas Muller.
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Figure 3.1: The geography of local air pollution improvements

(a) Particulate Matter

(b) Sulfate

(c) Ammonium

(d) Nitrate

Notes: The maps display air concentrations of major air pollutants produced by industrial activity. The left panels represent
yearly average air concentrations in the year 2000, and the right panels represent yearly average air concentrations for year
2016. For each pollutant, scales for left and right panels are identical. Geographic resolution is of 0.01 by 0.01 degrees
(approximately 1km by 1km).

averages by taking the simple average of monitor readings in counties that have at least a

station.

Finally, the EPA releases annual data on the attainment status of every county in the
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US. Attainment status is decided by comparing the readings of monitoring stations to some

threshold defined individually for every pollutant on a list of six criteria pollutants: carbon

oxides, lead, nitrogen oxides, ozone, particulate matter, and sulfur dioxide. Individual ceil-

ings are determined by the national ambient air quality standards introduced by the clean air

act and revised in 1971, 1978, 1979, 1987, 2006, 2008, and 2010. Enforcement of these

thresholds was often delayed. I use annual data on the attainment status of every county in

the US from 2000 to 2014.

Table 3.1: Descriptive statistics: air pollution data

Frequency Years N Mean in 2010 SD in 2010

Satellite Imagery
Black Carbon yearly 2000-2016 8,219,192 0.9 0.4

Ammonium yearly 2000-2016 8,219,192 0.9 0.4

Nitrate yearly 2000-2016 8,219,192 1.2 0.8

Organic Matter yearly 2000-2016 8,219,192 3.3 1.3

Particulate Matter yearly 2000-2016 8,219,192 9.6 2.3

Sulfate yearly 2000-2016 8,219,192 2.0 0.8

Dust yearly 2000-2016 8,219,192 0.7 0.3

Sea Salt yearly 2000-2016 8,219,192 0.3 0.4

Monitoring Stations
Nitrogen Oxides yearly 2001-2015 417 17.9 9.3

Ozone yearly 2001-2015 1,280 37.8 6.4

Particulate Matter (10) yearly 2001-2015 853 19.5 10.3

Particulate Matter yearly 2001-2015 1,333 34.4 11.5

Sulfure Dioxide yearly 2001-2015 469 9.6 12.7

NAAQS Status
CO (1971) yearly 2000-2014 3,109 0.00 0.00

Lead (1978) yearly 2000-2014 3,109 0.06 2.54

Lead (2008) yearly 2000-2014 3,109 0.55 7.38

Nitrogen Oxides (1971) yearly 2000-2014 3,109 0.00 0.00

Ozone (1979) yearly 2000-2014 3,109 6.98 25.48

Ozone (1997) yearly 2000-2014 3,109 7.94 27.05

Ozone (2008) yearly 2000-2014 3,109 0.00 0.00

Particulate Matter (10) (1987) yearly 2000-2014 3,109 1.19 10.85

Particulate Matter (2.5) (1997) yearly 2000-2014 3,109 6.69 24.99

Particulate Matter (2.5) (2006) yearly 2000-2014 3,109 3.83 19.19

Sulfure Oxides (1971) yearly 2000-2014 3,109 0.23 4.74

Sulfure Oxides (2010) yearly 2000-2014 3,109 0.00 0.00

Notes: The table displays summary statistics for data on pollution used in this analysis.
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2. Housing transactions — Data on the price of a house is disclosed whenever a house is

sold. This information is gathered in a deed record attached to the house being sold. These

documents are made public in most states due to information disclosure act. CoreLogic

has gathered information on all US housing transactions between 2000 and 2016. I use

transaction-level data on housing prices for all types of residential units. The data includes

information on the location (longitude and latitude), price and date of the housing transaction.

About 5.5 million transactions per year are included in the dataset. I matched every house

in the dataset the centroid of its closest block groups, using the shapes of block groups as

defined by the census of 2010. I then constructed annual averages of the price of houses sold

at the block group level. This also allowed me to match every house with its Core-Based

Statistical Areas (CBSA).

Table 3.2: Descriptive statistics: housing transactions data

Observations/Year Years Mean in 2010 SD in 2010

All Transactions 5,990,574 2000-2016 252,037 .

By block group 27 2000-2016 252,037 1,565,526

By county 3,336 2000-2016 167,338 175,315

By CBSA 6,266 2000-2016 173,302 163,276

Notes: The table displays summary statistics on housing transactions used in the analysis.

3. Demographics — I assembled information on population demographics at the block

group level from the 2000 and 2010 census and every annual American Community Surveys

between 2009 and 2016.6 To compare demographics across years, I merged all datasets at the

block group level as defined by the census of 2010. A block group contains 1,500 inhabitants

on average and has an average area of 3.9 km2 across the US with a standard deviation of

57 square kilometers.7 Table 3.3 gives descriptive statistics of the main variables used in

6Data were downloaded from the National Historical GIS platform developed by the University of Min-
nesota.

7Block groups in densely populated cities are smaller, and can be as small as 0.0004 km2.
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this study: total population, population density, percentage of households with no university

degree, percentage of white households, percentage of black households, median household

income, per capita income, percentage of population living under the poverty line, number of

housing units, median value, median gross rent and percentage of homeowners.

4. Additional datasets — Other datasets were used as control variables. In particular, I

used temperature data derived from the PRISM network of stations in the contiguous United

States.8

3.2.2 Merging datasets

All datasets are first brought to the block group level of the 2010 census. For gridded vari-

ables, such as satellite measures of air pollution and temperature, grids are overlayed with

block group shapes, and block group averages are performed using the intersection area be-

tween the block group and the grid cells as a weight. Before 2010, the census used a different

definition for block groups. I used the crosswalk between block groups of census 2000 to

census 2010, available on IMPUMS NHGIS’s website.9

8Temperature data is available on a 2.5 by 2.5-mile grid for the contiguous United States, based on a spatial
interpolation procedure conducted by Wolfram Schlenker and available to download on his website.

9website: data2.nhgis.org
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Figure 3.2: Aggregation of gridded data to census block groups

Notes: The figure overlays grid cells from the pollution data with shapes of the Census block groups. The yellow area
corresponds to a census block group. The block group measure of air pollution is the weighted average of the values at
each grid cell that intersects with the block group. Weights (ωj) correspond to the percentage of the block group area
intersecting with the grid cell.
polCensusi,t = Σj ωj polGridj,t

Housing transactions are recorded at the address level. I assigned each house in the

dataset to its closest group, using longitude and latitude to estimate the distance between

block group centroids and houses. I then calculated the means of housing transaction prices

at the block group level and on an annual frequency.

To calculate county-level measures of air pollution based on measurements from EPA’s

monitoring stations, I took the simple average of measures from stations within each county.

3.2.3 Descriptive statistics

Block-group level — Census variables are available for about 215,000 block groups in the

contiguous US (see Table 3.3). Information was retrieved at the block group level on de-

mographics (total population, % of white and black people living in the block group, and

education levels), on income (median income, per capita income and % of people living be-

low the poverty line), and housing (number of housing units, median value, median gross

rent and % of homeowners).
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Table 3.3: Descriptive statistics: block group level demographics

N 2000 2009 2010 2011 2012 2013 2014 2015 2016

Total Population 216,331 1,641 1,354 1,396 1,408 1,419 1,430 1,442 1,453 1,463
% No University Degree 215,187 49 47 45 45 40 40 39 39 38
% White 215,256 76 73 73 73 73 73 73 72 72
% Black 215,256 13 14 13 13 13 13 13 13 13

Median Household Income 214,662 45,516 55,135 56,321 57,350 57,499 57,568 58,155 59,105 60,698
Per Capita Income 215,154 21,645 26,801 27,372 27,915 28,032 28,123 28,519 28,887 29,759
% Under Poverty 214,917 13 15 15 15 16 16 17 16 16

Number of Housing Units 216,331 675 571 597 602 605 607 610 613 616
Median Value (Dollars) 209,396 134,494 237,449 235,946 230,248 222,471 216,513 215,913 225,584 233,387
Median Gross Rent (Dollars) 186,824 639 870 906 937 957 950 967 997 1,020
% of home owners 214,865 67 67 67 66 66 65 65 64 64

Notes: The table displays mean values for key variables from the census, collected at the block group level. Data for
2000 comes from the US Census of 2000. In 2009, the Census bureau drew new block group shapes. Data from the 2000
Census were aggregated at the block group level of the census 2010 block group shapes using a crosswalk file developped
by IMPUMS NHGIS. Data for years above 2009 come from the annual American Community Serveys developped by
the Census Bureau. All census data at the block group level were collected from IMPUMS NHGIS (website: data2.
nhgis.org).

Figure C.2 displays the evolution of population-weighted exposure to each air pollutant

between 2000 and 2016. Of particular interest, pollutants stemming from industrial and trans-

portation activities have sharply declined. Between 2000 and 2016, the average exposures to

PM2.5 and nitrate were reduced by close to 50%, exposure to sulfate was reduced by 60%,

and exposure to ammonium was reduced by 80%.10

CBSA level — A core-based statistical area (CBSA) is defined as a US geographic area cen-

tered by an urban core of at least 10,000 people. All residents of a CBSA can commute to the

urban center daily, which means that a CBSA can be thought of as constituting unique local

labor and housing markets. In 2010, there were 934 CBSAs in the contiguous US Table3.4

provides descriptive statistics for census and pollution variables. Column (2) displays the

cross-CBSAs mean for key variables in the 2010 census and population-weighted pollution

exposures in 2010. Coefficient of variation is the standard deviation of a variable, normalized

by the mean and gives information on the spread of the variable in the sample. Column (3)

10Exposure to black carbon and organic matter dropped by about 20 % in the same time frame, while
variations in exposure to mineral dust was unchanged. Exposure to sea salt seems to have dropped, yet this may
be an artifact of the data or caused by natural phenomena.
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displays coefficients of variation based on the sample of 934 CBSAs. Column (4) displays

the mean across the 934 CBSAs of the coefficients of variation calculated with block group

level data for each CBSA. It gives information on the average within-CBSA spread in key

demographic and pollution variables.

Table 3.4: Descriptive statistics: CBSA level demographics and pollution

(1) (2) (3) (4)

N Cross-City Cross-City Within-City

Mean Standard Deviation Standard Deviation

Total Population 934 410,494 1,491,045 626

% No University Degree 934 50 10 15

% White 934 81 14 15

% Black 934 9 13 11

Median Household Income 934 47,403 9,815 16,953

Per Capita Income 934 22,787 4,465 8,420

% Under Poverty 934 16 6 13

Number of Housing Units 934 165,572 605,490 257

Median Value (Dollars) 934 150,631 85,535 60,170

Median Gross Rent (Dollars) 934 717 175 207

% of Home Owners 934 70 6 20

Particulate Matter (µ g/m3) 934 8.9 2.4 0.42

Sulfate (µ g/m3) 934 1.9 0.8 0.06

Ammonium (µ g/m3) 934 0.8 0.4 0.05

Nitrate (µ g/m3) 934 1.0 0.7 0.11

Black Carbon (µ g/m3) 934 0.7 0.3 0.08

Organic Matter (µ g/m3) 934 2.9 0.9 0.39

Mineral Dust (µ g/m3) 934 0.7 0.3 0.05

Sea Salt (µ g/m3) 934 0.2 0.3 0.04

Notes: The table displays mean values for key variables from the census, collected at the block group level and aggregated
at the CBSA level.

3.3 Heterogeneity in the exposure to air pollution

By matching census data to the geographically continuous measures of air pollution offered

by the reanalysis data on air pollution, the previous part described the vast heterogeneity in
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exposure to air pollution across and within cities. Who gets exposed the most to air pollu-

tion? Have the distributional profiles of exposure to air pollution evolved in the past twenty

years? These are the two questions this part will address.

Table 3.5 exhibits cross-sectional correlations between PM2.5 concentrations and key de-

mographic variables for every year for which census data is available.11 This allows to ob-

serve the evolution in the correlation between pollution and demographics, accounting for

both changes in air pollution and changes in the demographics of each location.

Across the country, PM2.5 pollution seems to consistently by higher for black popula-

tions: block groups with a higher proportion of black people are likely to be more polluted,

with a correlation across the country of 0.18 in 2016. Similarly, white populations live in

locations that are less exposed to PM2.5 pollution. These are the two most salient features of

the correlation between air pollution and key demographics when looking at the entire con-

tiguous US It would seem at first sight that there is no clear pattern linking air pollution and

income at the US level. However, looking at the relationship between income and pollution

in a non-linear way reveals that the poorest block groups in the US are exposed to PM2.5 con-

centrations that are 10% higher than the average. At the same time, the higher percentiles in

the country’s income distribution are exposed to slightly more pollution than average, likely

because wealthier block groups are disproportionately located in cities, where air pollution is

a more salient issue than in less densely populated areas.

Are disparities in exposure to air pollution, revealing a divide between regions, cities, or

within cities? The second panel in Table 3.5 displays correlation between CBSA-level pol-

lution and demographics. It reveals that there is a negative correlation between income and

pollution at the city level, meaning that poorer cities tend to be relatively more polluted than

11See appendix for similar tables for all other air pollutants. Particulate matter is correlated with black
carbon (0.7), sulfate (0.7) and ammonium (0.86). Table C.1 displays spatial correlations between air pollutants.
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Table 3.5: Correlations between pollution and key demographic variables (PM2.5)

2000 2009 2010 2011 2012 2013 2014 2015 2016

Average Concentration (µ g/m 3) 12.6 9.7 9.6 9.8 9.0 8.8 8.8 8.4 7.7

Cross Country
Population Density 0.12 0.14 0.12 0.18 0.16 0.16 0.13 0.18 0.14
Median Income 0.00 0.02 -0.06 -0.01 -0.03 0.01 -0.00 0.02 -0.01
Income per capita -0.00 -0.01 -0.06 -0.03 -0.05 -0.02 -0.03 -0.01 -0.04
% Under Poverty 0.12 0.06 0.10 0.10 0.11 0.09 0.10 0.10 0.11
% Black 0.25 0.14 0.23 0.19 0.19 0.10 0.15 0.17 0.18
% White -0.32 -0.28 -0.24 -0.30 -0.28 -0.25 -0.27 -0.30 -0.30
% No University Degree 0.11 0.06 0.12 0.10 0.11 0.08 0.10 0.08 0.10
Median House Value 0.06 0.18 -0.02 0.11 0.06 0.12 0.10 0.13 0.11
Median Gross Rent 0.08 0.17 0.01 0.13 0.11 0.16 0.15 0.18 0.17

Cross Cities
Population Density 0.06 0.14 -0.01 0.06 0.08 0.18 0.11 0.18 0.11
Median Income -0.01 -0.01 -0.15 -0.15 -0.13 -0.02 -0.09 -0.05 -0.13
Income per capita -0.00 -0.07 -0.18 -0.20 -0.18 -0.13 -0.16 -0.12 -0.21
% Under Poverty 0.10 0.06 0.17 0.21 0.17 0.09 0.15 0.14 0.21
% Black 0.46 0.28 0.37 0.36 0.33 0.17 0.32 0.28 0.38
% White -0.24 -0.14 -0.15 -0.24 -0.18 -0.10 -0.19 -0.18 -0.28
% No University Degree 0.38 0.29 0.38 0.41 0.37 0.31 0.34 0.31 0.37
Median House Value -0.12 -0.09 -0.27 -0.23 -0.24 -0.13 -0.22 -0.15 -0.20
Median Gross Rent -0.08 -0.00 -0.17 -0.09 -0.10 -0.01 -0.08 -0.01 -0.06

Within City
Population Density 0.23 0.30 0.32 0.33 0.34 0.33 0.31 0.31 0.31
Median Income -0.22 -0.21 -0.22 -0.21 -0.21 -0.20 -0.19 -0.18 -0.19
Income per capita -0.14 -0.14 -0.15 -0.14 -0.14 -0.13 -0.13 -0.13 -0.13
% Under Poverty 0.25 0.21 0.22 0.22 0.22 0.22 0.20 0.20 0.20
% Black 0.25 0.21 0.21 0.20 0.22 0.21 0.21 0.19 0.21
% White -0.30 -0.26 -0.26 -0.26 -0.26 -0.25 -0.25 -0.24 -0.25
% No University Degree 0.13 0.11 0.12 0.11 0.10 0.10 0.09 0.09 0.09
Median House Value -0.16 -0.12 -0.13 -0.12 -0.12 -0.12 -0.14 -0.11 -0.12
Median Gross Rent -0.06 -0.08 -0.09 -0.09 -0.08 -0.08 -0.07 -0.07 -0.07

Notes: The table displays correlations between exposure to PM2.5 pollution and key demographic variables. Correlations
are computed for each year for which demographic variables are reported by the US Census (or American Community
Survey) and allow for comparison across years, taking into account both changes in air pollution and changes in the
demographic composition of each location. Cross country correlations are computed at the block group level for all blocks
in the contiguous US. Cross cities correlations are calculated based on population-weighted averages of air pollution and
demographics aggregated at the CBSA level for 944 CBSAs. Within city correlations are computed at the block group
level for each of the 944 CBSAs. The table reports population-weighted averages across cities of correlations computed
within each city.

richer cities. This demographic divide between cities is also exhibited by the positive cor-

relation between education levels (% of people with no university education) and pollution:

cities that attract talents tend to be less polluted. Finally, the racial differences in exposure
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to air pollution seem to be stronger across cities than on average across the country: cities

with higher shares of black inhabitants are more polluted than cities with a higher share of

the white population.

The third panel in Table 3.5 describes correlations between pollution and demographics

at the city level: it compares block groups within each CBSA in the US and presents mean

correlations across all CBSAs. This reveals that within a given CBSA, more impoverished

neighborhoods tend to be more polluted (correlation of -0.19 between median income and

PM2.5 in 2016). The same disparities in exposure to air pollution exist between neighbor-

hoods along the lines of racial composition and house values. On average, the relations

between air pollution and demographics seem to hold across years.

Figure 3.3 depict the distribution of exposures to PM2.5 pollution across income and racial

groups, across the country, between cities, and within cities. When looking at the distribu-

tion across income groups, the distributions reveal non-linearities that correlations cannot

picture. In particular, it seems that block groups in the lowest percentiles of the US income

distribution are exposed to levels of PM2.5 pollution that are 10% higher than the national

averages. This pattern persists over time as distributions seem identical in 2000, 2008 and

2010. Distributions across cities also reveal that cities in the lowest percentiles of the income

distribution across CBSAs are on average 10% more polluted than the average CBSA. This

pattern becomes weaker with time, suggesting that differences across cities have tamed with

time. At the city level, however, unequal exposure to PM2.5 seem to persist with time: blocks

in the poorest percentile in the city-level income distribution remain almost 20% more pol-

luted than blocks in the highest percentiles. Differences across races seem to be even more

pronounced: blocks with the highest proportions of black populations are exposed to PM2.5

concentrations on average 18% higher than the US mean, while blocks that have the lowest

share of black populations are exposed to concentrations that are 18% lower than the mean.

This pattern comes both from disparities across cities and within cities (panel e and f). These

differences seem to become less severe across time, mainly due to changes in the cross-city
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heterogeneity.

Figure 3.3: Distribution of exposures to particulate matter pollution

(a) Across the country (b) Between cities (c) Within cities

(d) Across the country (e) Between cities (f) Within cities

Notes: The figures display the distribution of exposures to PM2.5 along the income distribution (panels a,b and c) or along
the racial composition of the population (panels d, e and f). Each line corresponds to a year of data: the darker brown line
represent the distributions of exposure to PM2.5 in year 2000, the orange lines correspond to year 2008, and the lighter
orange lines correspond to year 2016. The grey horizontal line correspond to the average population weighted concentration
of PM2.5. All other lines are drawn relative to the year’s average population weighted concentration of PM2.5. Each line
represent the exposures to PM2.5 predicted a locally weighted regressions of population-weighted PM2.5 concentrations
against median income (panels a,b and c) or against the percentage of black population (panels d, e and f). Panels (a) and
(d) are derived from regressions conducted at the block group level for all blocks in the contiguous US Panels (b) and
(e) result from regressions conducted at the CBSA level, in which population weighted PM2.5 concentrations and census
variables are aggregated at the CBSA level. Panels (c) and (d) represent cross-CBSA averages of regressions conducted at
the block-group level within each of the 944 CBSAs. All x-axis variables picture the percentile of income group (resp. %
of black population) of the block group across the US (panels a and d), CBSAs among the 944 CBSAs (panels b and e)
and block groups within each city (panels c and f). Demographic variables come from the 2000 Census.

Table 3.6 describes the mean PM2.5 exposure in the 21 CBSAs with the largest popula-

tion in the U.S in 2000 and 2016 (and Fresno, CA, which was the CBSA with the highest

PM2.5 concentration in 2000). It also outlines their ranking across all 934 cities in terms

of exposure to air pollution and the correlations between block group median income and

PM2.5 concentrations within each CBSA in 2000 and 2016. Importantly, all cities in the sam-

ple experienced large drops in exposure to PM2.5 between 2000 and 2016. In most CBSAs,
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there exist a negative correlation between PM2.5 concentrations and median income at the

block group level, which seems to persist between 2000 and 2016. In some cities, however,

inequalities in exposure seem to have diminished (e.g., New York).

Table 3.6: Whithin city inequality in the exposure to air pollution

PM2.5 Concentration Rank Pollution x Income

City 2000 2016 2000 2016 2000 2016

Fresno, CA 20.6 13.2 1 2 0.01 -0.12

New York City, NY 14.2 7.6 171 341 -0.44 -0.13

Los Angeles, CA 19.3 12.1 2 4 -0.36 -0.23

Chicago, IL 14.6 8.8 116 51 -0.47 -0.28

Miami, FL 9.9 7.2 628 461 -0.19 -0.09

Atlanta, GA 17.3 9.6 7 17 -0.04 -0.07

Dallas, TX 11.9 8.2 433 175 -0.11 -0.11

Washington, DC 13.9 7.9 240 277 -0.29 -0.24

Houston, TX 11.7 8.2 459 188 -0.17 -0.11

Philadelphia, PA 14.0 8.7 214 65 -0.54 -0.43

Phoenix, AZ 10.0 8.0 621 247 -0.23 -0.30

San Francisco, CA 11.3 7.5 496 379 -0.30 -0.31

Riverside, CA 15.3 10.8 62 10 -0.01 -0.02

Detroit, MI 13.4 8.7 295 69 -0.39 -0.44

Boston, MA 10.3 6.0 588 674 -0.17 -0.16

Tempa, FL 12.2 7.9 412 279 0.22 0.06

Minneapolis, WI 10.3 6.7 583 564 -0.24 -0.20

San Diego, CA 14.2 10.5 179 11 -0.23 -0.07

Seattle, WA 9.7 5.0 653 798 -0.31 -0.37

Saint Louis, IL 13.9 8.4 229 112 -0.28 -0.25

Las Vegas, NV 9.3 7.9 684 288 -0.04 -0.14

Baltimore, MD 14.2 8.3 173 151 -0.55 -0.42

Notes: For each of the 21 most populous CBSAs in the U.S, the table displays PM2.5 average concentration (in µg/m3),
rank of the CBSA among the 934 US CBSAs in terms of PM2.5 average concentration, and block-group level correlations
between PM2.5 concentration and median income within each CBSAs. For each CBSA, the table displays figures for years
2000 and 2016. PM2.5 concentrations correspond to a population weighted average of block group level concentrations
within the CBSA. Census data are from the 2000 Census for year 2000 and the 2012-2016 American Community Survey
for year 2016. The first row of the table corresponds to Fresno, the most polluted CBSA in 2000.
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3.4 The impact of air pollution on house values

Why do we observe persistent inequalities in exposure to air pollution both across and within

cities? If residents value changes in air pollution, reducing air pollution could lead to an

increase in local house values that would lead to the sorting of poorer households out of

cleaned areas. This part investigates links between changes in air pollution and house prices.

3.4.1 Empirical strategy

The following fixed effect model is used to estimate the impact of changes in the concentra-

tion of air pollution on housing values:

πi,t = α + βpoli,t +Xi,t + αi + εi,t, (3.1)

where πi,t is the logarithm of the average house value in block group i and year t, poli,t is

the logarithm of the average concentration of particulate matter in block group i and year t,

and αi represents block group fixed effects and control for time-invariant block group omit-

ted variables, and εi,t is the idiosyncratic error term. Xi,t contains time-varying controls and

includes block-group level temperature measures at the annual frequency (average tempera-

ture, number of heating degree days, number of cooling degree days), dummy variables for

county-level attainment status to the National Ambient Air Quality Standards (I include sepa-

rate dummies for each of the criteria pollutants and standards), time-varying block group level

demographic characteristics (population density, percentage of black population, median in-

come, percentage of households living below the poverty line). In further specifications, I

include changes in the concentration of all pollutants in the ? dataset as controls.

β is the parameter of interest and captures the relationship between changes in pollution

levels and the average house value at the block group level. In further specifications, I include

fixed effects at the block group level to absorb the block-group permanent effects (time-

invariant block group specifics). Year fixed effects are added to control for time-varying
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unobserved variables that would affect pollution and house prices on a yearly frequency

(e.g., the financial crisis). I also include CBSA level time trends to control for unobserved

variables that would vary linearly with time at the CBSA level.

Identification relies on the assumption that there are no unobserved shocks to pollution

levels that would covary with unobserved shocks to housing prices, an assumption I discuss

further in section 3.4.3. Formally, the error term εi,t is assumed to be uncorrelated with the

explanatory variables, or E(εi,t|αi, poli,t, Xi,t) = 0

3.4.2 Results

Table C.3 summarizes results from block group-level data regressions using block group

averages of house prices on the left side and satellite imagery of air pollution on the right

side in log-log specifications. Estimates for β are consistently negative, meaning that an

increase in local air pollution would lead to a decrease in house prices. When adding block

group fixed effects to remove the effects of time-invariant block group characteristics on

house values (column 1), or CBSA-specific time trends to control for temporal variations

in pollution level (in column 2), results seem to indicate that a percent increase in PM2.5

concentration at the block level leads to a decrease in mean house values ranging from 0.53

to 0.6 percents.

However, controlling for both time-invariant block group characteristics and year-specific

shocks to air pollution yields non-significant estimates. Column 4 reports result from a re-

gression that includes both block-group level fixed effects and year fixed effects: the coef-

ficient remains negative but is no longer significant. This result suggests that a one-percent

increase in PM2.5 concentration leads to 0.024 percent decline in mean house value. Includ-

ing city-specific time trends and block-group fixed effects yields a non-significant elasticity

of 0.014 (column 5). The fact that these estimates are non-significant may reveal that there

is not enough variation in the data to allow to control for both time fixed effects and block
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group fixed effects.

Columns 5 to 8 report results from regressions where block group fixed effects are in-

cluded. Instead of controlling for all temporal shocks to air pollution using time fixed effects,

I include here time-varying controls at the block group level. Even more significant impacts

are found when controlling for temperature variables that can affect pollution levels (columns

6 to 8): a one percent increase in PM2.5 concentration would lead to a drop in house values

ranging from 0.57 to 0.87 percents. These effects may seem sizeable, but are comparable to

effects found in regressions at the county level conducted by Chay and Greenstone (2005).12

Table 3.7: Treatment effect of PM2.5 concentration on real estate prices

(1) (2) (3) (4) (5) (6) (7) (8)
House Prices -0.539∗∗∗ -0.527∗∗∗ -0.600∗∗∗ -0.024 0.014 -0.866∗∗∗ -0.866∗∗∗ -0.568∗∗∗

(0.092) (0.181) (0.109) (0.125) (0.051) (0.094) (0.094) (0.078)

N 2,180,337 2,179,912 2,179,370 2,179,370 2,178,944 2,169,549 2,169,549 1,884,171
Adjusted R2 0.00 0.43 0.62 0.65 0.71 0.63 0.63 0.64
Number of Units 150,590 150,589 149,623 149,623 149,622 149,281 149,281 146,973
Number of Clusters 47 47 47 47 47 47 47 47

Block Group FE X X X X X X
Year FE X
CBSA Trends X X
Temperatures Data X X X
Demographics X X
NAAQS dummies X

Notes: This table reports regression coefficients from 9 separate regressions. Estimates for coefficient β from equation 3.1
are reported. Each column represents a regression with different sets of controls. The dependent variable and the main
explanatory variables, as well as demographic and temperatures controls are at the block group - year level. Data on
attainment status to the NAAQS are at the county-year level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

12In this seminal paper, the authors find an elasticity of housing values to changes in total suspended particles
ranging from -0.20 to -0.35.
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3.4.3 Discussion

By using satellite imagery products that offer a geographically continuous measure of air

pollution, and statistics derived from the observation of all housing transactions in the US, the

above analysis unveils the negative correlation between air pollution and housing prices with

unprecedented geographic details. In using block group level aggregates offers enough power

to disentangle the effects of pollution on housing values within and across cities, something

that county-level data used in the literature did not allow (Chay and Greenstone, 2005).

However, one caveat in this part of the analysis resides in the causal interpretation of co-

efficient estimates on the impact of air pollution on house prices. In particular, identification

may suffer from the omitted variable bias: another factor could impact both local air pollu-

tion and local housing prices. Multiple papers have established the impact of the opening

or shutting down of dirty plants on both local air pollution and housing prices (Davis, 2010;

Currie et al., 2015), and similar impacts could be driven by changes in congestions, or the

opening or shutting down of new roads. House values could thus be responding to changes

in the local environment that could be correlated with changes in air pollution at the block

group level. Indeed, an extensive epidemiology literature hypothesizes that households do

not respond to changes in air pollution because they are assumed not to realize variations in

air pollution. To some degree, fine particulates are invisible and odor-free, and information

on air pollution may not be available to households locally.

The next part of the paper aims to uncover the impact of information about local air

pollution on changes in housing values.

3.5 Does information on air pollution matter?

What is the role of information disclosure about air pollution on real estate prices?
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3.5.1 Information disparities

One way to recover an estimate of the value of air pollution measurement is to identify the

effects of air pollution reports on housing values.13 To estimate the impact that information on

air pollution has on housing prices, the ideal experiment would randomly assign information

on air pollution to a treatment group and compare the evolution of house values in this group

to a control group that would be comparable in all other aspects (including pollution levels).

This would enable to obtain the causal impact of information about air pollution on house

values by comparing the evolution of house prices in the treatment group to the evolution of

prices of houses facing the same level of air pollution, but having no information about air

pollution.

To approximate this ideal experiment, I rely on the parsimony of monitors in the United

States. The assumption is that households can only have information on air pollution through

the measurements of EPA monitoring stations and that in the absence of monitors at the

county level, no information on air pollution is available. A subsequent assumption is that

information on air pollution at a specific county cannot be used for other nearby counties.

Satellite imagery of air pollution offers complete information on air pollution at every county

of the contiguous US, allowing to disentangle levels of air pollution from information dif-

fusion about air pollution. We can, in principle, compare the evolution of house prices in

response to air pollution variations in counties that have monitors to counties that do not

have any monitors.

EPA monitors are placed in counties with any levels of pollution. Figure C.3(a) shows

the number of counties that have monitors for PM2.5 in each quartile of the distribution of air

pollution as measured by satellite. Surprisingly enough, the EPA placed monitors in counties

that have relatively low mean PM2.5 concentrations as measured by satellites. Importantly,

13This would underestimate the value of air pollution reports, which has been proved to lead to adaptation
behavior of inhabitants to protect against the adverse health effects of pollution (Zivin and Neidell, 2009).
Reports on air pollution also have great value for scientific research or for the enforcement of laws and standards
such as the NAAQS.
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there are EPA monitors in counties across the distribution of counties according to their mean

PM2.5 concentrations. Table 3.8 compares counties that have EPA monitors to counties that

do not have any monitors for PM2.5 along with key demographic and pollution variables.

Stations are installed in counties that are more densely populated (e.g., counties in cities),

slightly more affluent, with more educated and more diverse populations. However, differ-

ences along these lines and pollution are not very large, which will allow comparing the

evolution of housing values in response to air pollution in counties that have monitors and in

counties that do not.

Table 3.8: Differences in means for key variables across counties with or without PM2.5

monitoring stations

With Station Without Station Difference

Mean (S.E.) Mean (S.E.) Mean (S.E.)

Population Density 3.11 (0.16) 0.54 (0.02) 2.57 (0.16)

Median Income 28,335.0 (239.1) 26,742.4 (104.1) 1,592.6 (260.8)

Income per capita 13,805.3 (113.2) 13,338.5 (50.6) 466.8 (124.0)

% Under Poverty 7.99 (0.08) 9.16 (0.05) -1.16 (0.09)

% Black 4.59 (0.09) 4.72 (0.06) -0.13 (0.11)

% White 34.76 (0.39) 44.22 (0.22) -9.46 (0.45)

% No University Degree 17.64 (0.22) 25.07 (0.14) -7.43 (0.26)

Particulate Mater 9.26 (0.03) 8.85 (0.01) 0.40 (0.03)

Ammonium 0.88 (0.01) 0.84 (0.00) 0.04 (0.01)

Black Carbon 0.73 (0.00) 0.66 (0.00) 0.07 (0.00)

Nitrate 1.01 (0.01) 0.88 (0.00) 0.13 (0.01)

Organic Matter 3.25 (0.01) 2.81 (0.01) 0.44 (0.01)

Sulfate 2.19 (0.01) 2.27 (0.01) -0.08 (0.01)

Sea Salt 0.31 (0.00) 0.21 (0.00) 0.09 (0.00)

Dust 0.60 (0.00) 0.60 (0.00) 0.00 (0.00)

Number of Stations 2626 502

Number of Counties 776 2328

Notes: The tables displays means and standard errors for key demographic and pollution variables. It compares means
across counties that have at least one monitoring station PM2.5 with counties with no such stations. Pollution data are
drown from year 2005, while demographic data are derived from ACS 2009.
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3.5.2 Empirical strategy

The goal of this analysis is to estimate the added impact that reports on air pollution have on

house prices on top of the effects of air pollution variations on housing values. To do so, I

estimate the following panel-data model:

πi,t = α + β1poli,t + β2poli,t × δi,t × AQIi,t +Xi,t + αi + εi,t, (3.2)

in which for county i and year t, πi,t is the logarithm of the county-average house price,

poli,t is the logarithm of the population-weighted average of PM2.5 satellite concentrations

at the county level, δi,t is a dummy variable equal to one for counties that have at least one

PM2.5 monitoring station in year t, AQIi,t is the logarithm of the county-wide average of Air

Quality Index for PM2.5 reported by all monitors in the county, Xi,t is a set of time-varying

controls, αi are county fixed effects, and εi,t the idiosyncratic error term.

β2 is the coefficient of interest and measures the additional effect that variations in mon-

itors measures of PM2.5 pollution has on housing values. If households pay attention to

county-level pollution reports from the EPA, β2 should be negative.

3.5.3 Results

Table 3.9 summarizes results from the estimation of model 3.2. As in the previous section, β1

is negative and reveals that a one percent increase in PM2.5 leads to a decrease in an average

decrease in house values ranging from -0.56 to -0.75 percent. All specifications reveal that

β2 is negative, suggesting that reports from monitoring stations have an additional negative

impact on house values ranging from 0.04 to 0.07 percent. This seems to be robust to the

inclusion of county fixed effects and state-specific time trends, as well as the inclusion of

time-varying controls.

These results suggest that measures of air pollution delivered by EPA’s monitoring sta-

tions do have an impact on house values. As particulate matter pollution is hardly visible at
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a low level, this suggests that information about air pollution does matter. It is likely that

other aspects of a county or neighborhood could reveal information about air pollution: the

location of dirty plants or roads would likely have a greater impact on local populations’

knowledge about air pollution, something we can control for in this setting.

Table 3.9: Interacting PM2.5 concentrations with ground-level measures

(1) (2) (3) (4) (5) (6)
Reading Interaction
log PM2.5 -0.215 -0.753∗∗∗ -0.607∗∗ -0.607∗∗ -0.607∗∗ -0.563∗∗

(0.242) (0.267) (0.243) (0.243) (0.243) (0.251)
log PM2.5 x Monitor x log AQI -0.147∗∗∗ -0.115∗∗∗ -0.069∗ -0.069∗ -0.069∗ -0.036

(0.037) (0.040) (0.041) (0.041) (0.041) (0.042)

N 9,016 9,016 9,016 9,016 9,016 8,355
Adjusted R2 0.00 0.07 0.07 0.07 0.07 0.07
Number of Clusters 48 48 48 48 48 48

County FE X X X X X
State Trends X X
Temperatures Data X X X X
Demographics X X X
NAAQS dummies X

Notes: This table reports regression coefficients from 6 separate regressions. The dependent variable is the log of the
county-average sale prices from corelogic. The independent variables includes measures of PM2.5 concentrations derived
from satellite imagery (in logs). The term log PM2.5 x Monitor x log AQI interact satellite imagery data on PM2.5

concentration with ground-level measurements from monitors (log AQI) at counties that have at least one monitor (Monitor
is a dummy equal to one for counties that have at least one monitor for PM2.5 in year t).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

3.6 Conclusion

Is there environmental gentrification? This paper documents the vast inequalities that exist

and persist concerning exposure to air pollution. These inequalities materialize between cities

and between neighborhoods within the same city: poorer households are more likely to live

in neighborhoods that experience higher levels of air pollution. I find that changes in local
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air pollution are inversely associated with house values, and formulate and test a hypothesis:

house values respond to the local cleaning of the air. This mechanism could explain in part

why spatial inequalities with regards to air pollution persist with time.

The description of the heterogeneity in the exposure to air pollution and its evolution

across time proposed in this paper constitutes the first step in our understanding of the spatial

inequalities to environmental hazards such as air pollution.

109



Bibliography

Albouy, D. and Stuart, B. (2014). Urban Population and Amenities: The Neoclassical Model
of Location. NBER Working Paper No. 19919.

Allcott, H. and Greenstone, M. (2012). Is There an Energy Efficiency Gap? J. Econ. Per-
spect., 26(1):3–28.

Anderson, S. T. and Sallee, J. M. (2011). Using Loopholes to Reveal the Marginal Cost of
Regulation: The Case of Fuel-Economy Standards. Am. Econ. Rev., 101(4):1375–1409.

Angrist, J. D. and Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist’s
Companion. Princeton University Press.

Auffhammer, M., Bento, A. M., and Lowe, S. E. (2009). Measuring the Effects of the Clean
Air Act Amendments on Ambient PM10 Concentrations: The Critical Importance of a Spa-
tially Disaggregated Analysis Critical Importance of a Spatially Disaggregated Analysis.
J. Environ. Econ. Manage., 58(1):15–26.

Banzhaf, H. S. and Walsh, R. P. (2008). Do People Vote with their Feet? An Empirical Test
of Tiebout. Am. Econ. Rev., 98(3):843–863.

Barreca, A. I., Neidell, M., and Sanders, N. J. (2017). Long-Run Pollution Exposure and
Adult Mortality: Evidence from the Acid Rain Program. NBER Working Paper No. 23524.

Bento, A., Freedman, M., and Lang, C. (2015). Who Benefits from Environmental Regula-
tions? Evidence from the Clean Air Act Amendments. Rev. Econ. Stat., 97(3):610–622.

Bento, A. M. (2013). Equity Impacts of Environmental Policy. Annu. Rev. Resour. Econ.,
5(1):181–196.

Borenstein, S. and Bushnell, J. (2015). The US Electricity Industry After Twenty Years of
Restructuring. Annu. Rev. Econom., 7(1):437–463.

Burtraw, D. and Szambelan, S. J. F. (2009). US Emissions Trading Markets for SO2 and
NOx. Resources for the Future Discussion Paper No. 09-40.

Bushnell, J. B., Holland, S. P., Hughes, J. E., and Knittel, C. R. (2017). Strategic Policy
Choice in State-Level Regulation: The EPA’s Clean Power Plan. American Economic
Journal: Economic Policy, 9(2):57–90.

Cameron, A. C., Gelbach, J. B., and Miller, D. L. (2008). Bootstrap-based Improvements for
Inference with Clustered Errors. Rev. Econ. Stat., 90(3):414–427.

110



BIBLIOGRAPHY

Chan, G., Stavins, R., Stowe, R., and Sweeney, R. (2012). The SO2 allowance trading sys-
tem and the Clean Air Act Amendments of 1990: Reflections on twenty years of policy
innovation. NBER Working Paper No. 17845.

Chan, H. R., Chupp, B. A., Cropper, M. L., and Muller, N. Z. (2015). The Market for Sulfur
Dioxide Allowances: What Have we Learned from the Grand Policy Experiment? NBER
Working Paper No. 21383.

Chay, K. Y. and Greenstone, M. (2003). The Impact of Air Pollution on Infant Mortality:
Evidence from Geographic Variation in Pollution Shocks Induced by a Recession. The
Quarterly Journal of Economics, 118(3):1121–1167.

Chay, K. Y. and Greenstone, M. (2005). Does Air Quality Matter? Evidence from the Hous-
ing Market. Journal of Political Economy, 113(2):376–424.

Cicala, S. (2015). When Does Regulation Distort Costs? Lessons from Fuel Procurement in
US Electricity Generation. Am. Econ. Rev., 105(1):411–444.

Cicala, S. (2017). Imperfect Markets versus Imperfect Regulation in US Electricity Genera-
tion. (23053).

Clark, L. P., Millet, D. B., and Marshall, J. D. (2014). National Patterns in Environmental
Injustice and Inequality: Outdoor NO2 Air Pollution in the United States. PLoS One,
9(4):e94431.

Coase, R. H. (1960). The Problem of Social Cost. Journal of Law and Economics, 3:1–44.

Couture, V., Gaubert, C., Handbury, J., and Husrt, E. (2019). Income Growth and the Distri-
butional Effects of Urban Spatial Sorting. Working paper.

Couture, V. and Handbury, J. (2017). Urban Revival in America, 2000 to 2010. Working
paper.

Covert, T., Greenstone, M., and Knittel, C. R. (2016). Will We Ever Stop Using Fossil Fuels?
J. Econ. Perspect., 30(1):117–138.

Cullen, J. A. and Mansur, E. T. (2017). Inferring Carbon Abatement Costs in Electricity Mar-
kets: A Revealed Preference Approach Using the Shale Revolution. American Economic
Journal: Economic Policy, 9(3):106–133.

Currie, J., Davis, L., Greenstone, M., and Walker, R. (2015). Environmental Health Risks
and Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings. Am. Econ.
Rev., 105(2):678–709.

Currie, J. and Neidell, M. (2005). Air Pollution and Infant Health: What Can we Learn from
California’s Recent Experience? Q. J. Econ., 120(3):1003–1030.

Currie, J. and Walker, R. (2011). Traffic Congestion and Enfant Health: Evidence from
E-ZPass. Am. Econ. J. Appl. Econ., 3(1):65–90.

111



BIBLIOGRAPHY

Currie, J., Zivin, J. G., Mullins, J., and Neidell, M. (2014). What Do We Know About Short-
and Long-Term Effects of Early-Life Exposure to Pollution? Annu. Rev. Resour. Econ.,
6(1):217–247.

Dallas Burtraw and Palmer, K. (2006). CO2 Allowance Allocation in the Regional Green-
house Gas Initiative and the Effect on Electricity Investors. The Electricity Journal,
19(2):79–90 79–90.

Dardati, E. (2016). Pollution Permit Systems and Firm Dynamics: How does the Allocation
Scheme Matter? Int. Econ. Rev., 57(1):305–328.

Davis, D. R. and Dingel, J. I. (2019). A Spatial Knowledge Economy. Am. Econ. Rev.,
109(1):153–170.

Davis, L. W. (2004). The effect of health risk on housing values: Evidence from a cancer
cluster. Am. Econ. Rev., 94(5):1693–1704.

Davis, L. W. (2010). The Effect of Power Plants on Local Housing Values and Rents. Rev.
Econ. Stat., 93(4):1391–1402.

Debra Kahn, C. (2017). China Is Preparing to Launch the World’s Biggest Carbon Market.
Scientific American.
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Sjöberg, E. (2016). An Empirical Study of Federal Law Versus Local Environmental En-
forcement. J. Environ. Econ. Manage., 76:14–31.

Stavins, R. N. (1995). Transaction Costs and Tradeable Permits. J. Environ. Econ. Manage.,
29(2):133–148.

Stavins, R. N. (1998). What Can we Learn from the Grand Policy Experiment? Lessons from
SO2 Allowance Trading. J. Econ. Perspect., 12(3):69–88.

Sullivan, D. M. (2016a). Residential Sorting and the Incidence of Local Public Goods: The-
ory and Evidence from Air Pollution. Working paper.

Sullivan, D. M. (2016b). The True Cost of Air Pollution: Evidence from the Housing Market.

Taylor, M. R. (2012). Innovation Under Cap-And-Trade Programs. Proceedings of the Na-
tional Academy of Sciences, 109(13):4804–4809.

Tra, C. I. (2010). A Discrete Choice Equilibrium Approach to Valuing Large Environmental
Changes. J. Public Econ., 94(1):183–196.

van Donkelaar, A., Martin, R. V., Li, C., and Burnett, R. T. (2019). Regional Estimates
of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-
Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci.
Technol., 53(5):2595–2611.

van Donkelaar, A., Martin, R. V., Spurr, R. J. D., and Burnett, R. T. (2015). High-Resolution
Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regres-
sion over North America. Environ. Sci. Technol., 49(17):10482–10491.

Viard, V. B. and Fu, S. (2015). The Effect of Beijing’s Driving Restrictions on Pollution and
Economic Activity. J. Public Econ., 125:98–115.

Wagner, U. J. and DePreux, L. (2016). The co-benefits of climate policy: Evidence from the
EU Emissions Trading Scheme. Working paper.

Walker, R. (2012). The Transitional Costs of Sectoral Reallocation: Evidence from the Clean
Air Act and the Workforce. US Census Bureau Center for Economic Studies Paper No.
CES-WP-12-02.

Weitzman, M. L. (1974). Prices vs. Quantities. Rev. Econ. Stud., 41(4):477–491.

WHO (2018). Air Pollution and Child Health. World Health Organization report.

World Health Organization (2016). Preventing disease through healthy environments.

Zivin, J. G. and Neidell, M. (2009). Days of Haze: Environmental Information Disclosure
and Intertemporal Avoidance Behavior. J. Environ. Econ. Manage., 58(2):119–128.

117



Appendix A

Appendix to Chapter 1

118



APPENDIX A. APPENDIX TO CHAPTER 1

A.1 Additional data descriptives

A.1.1 Data sources

From 2002 to 2007: EIA-423 Survey form EIA-423 collect monthly non-utility fuel re-

ceipts and fuel quality files on plants with a fossil-fueled nameplate generating capacity of

50 or more megawatts. We use forms from 2002 to 2007 to collect monthly-frequency data

on type of fuels

Form E-243 for non-utility plants: Detailed data are provided on monthly deliveries of fossil

fuels to nonutility generating facilities are included at the specific energy source, quantity of

fuel delivered, the Btu content, sulfur content, ash content, coal mine state and county (or

country) of origin, coal mine type (surface/underground), as well as the supplier of the fuel.

Fuel cost data collected on this survey is not be made available to the public because it is

protected.

Form F-243 for utility plants: Survey form FERC-423 collected monthly utility fuel receipts

and fuel quality data prior to 2008. Data files include information on type of fuel purchase,

fuel cost, fuel type, fuel origin, fuel quantity and fuel quality.

From 2007 to 2015: EIA-923 The Form EIA-923, Power Plant Operations Report, is used

to collect plant-level data on generation, fuel consumption, stocks, and fuel heat content from

utility and non-utility power plants and for combined heat and power plants, beginning with

the monthly 2008 data and annual 2007 data collections. Page 5 contains information on fuel

receipts and costs at the plant level and monthly frequency.
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A.1.2 Descriptives

Table A.1: Summary statistics on fuels received in 2005

Count Mean SD Min Max Sum

Quantity of Gas (Mcf) 1,406 4,544,498 (9,693,613) 0 102,608,626 6389564554
Quantity of Oil (Barrels) 1,406 53,602 (389,820) 0 7,310,855 75,364,814
Quantity of Coal (tons) 1,406 702,985 (1,705,916) 0 14,464,625 988,396,341
Quantity of Bituminous Coal (tons) 1,406 305,374 (964,938) 0 8,657,200 429,356,184
Quantity of Sub-Bituminous Coal (tons) 1,406 319,265 (1,227,900) 0 13,617,400 448,885,971
Quantity of Other Coal (tons) 1,406 78,346 (619,485) 0 12,897,227 110,154,186

Cost of Gas (USD/Mcf) 306 902 (485) 104 7,933 276,123
Cost of Oil (USD/Barrel) 19 352 (574) 43 1,807 6,689
Cost of Coal (USD/Ton) 313 166 (61) 46 439 52,087
Cost of Bituminuous Coal (USD/Ton) 215 202 (59) 81 439 43,451
Cost of Sub-Bituminuous Coal (USD/Ton) 155 128 (45) 46 345 19,891
Cost of Other Coal (USD/Ton) 22 131 (49) 62 203 2,889

Ash Content of Gas (percent weight) 472 0 (0) 0 0 0
Ash Content of Oil (percent weight) 213 0 (0) 0 2 27
Ash Content of Coal (percent weight) 474 10 (6) 1 51 4,594
Ash Content of Bituminuous Coal (percent weight) 335 10 (3) 5 29 3,386
Ash Content of Sub-Bituminuous Coal (percent weight) 204 6 (3) 1 29 1,197
Ash Content of Other Coal (percent weight) 60 19 (13) 7 51 1,127

Sulfur Content of Gas (percent weight) 478 0 (0) 0 0 0
Sulfur Content of Oil (percent weight) 250 1 (2) 0 6 240
Sulfur Content of Coal (percent weight) 474 1 (1) 0 4 525
Sulfur Content of Bituminuous Coal (percent weight) 335 1 (1) 0 4 493
Sulfur Content of Sub-Bituminuous Coal (percent weight) 204 0 (0) 0 2 71
Sulfur Content of Other Coal (percent weight) 60 1 (1) 0 4 86

Heat content in Gas (MMBtu/Mcf) 912 1 (0) 1 1 934
Heat content in Oil (MMBtu/Barrel) 281 8 (7) 4 29 2,348
Heat content in Coal (MMBtu/ton) 474 22 (4) 10 27 10,195
Heat content in Bituminous Coal (MMBtu/ton) 335 24 (2) 19 27 8,088
Heat content in Sub-Bituminous Coal (MMBtu/ton) 204 18 (1) 16 22 3,628
Heat content in Other Coal (MMBtu/ton) 60 18 (6) 10 27 1,079

Notes: Table shows statistics of characteristics of fuel received by power plants for the year 2005. Unit-level fuel shares
and technology stock are averaged over facility to arrive at facility-level data. All facility-level data is then collapsed by
year. Quantity refers to quantity received at the monthly level by facility, summed up across month in 2005 at the facility
level. Costs, sulfur, ash and heat content are averages of monthly values meaned across month in 2005 at the facility level.
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Figure A.1: States and facilities targeted by the CAIR

(a) States (b) Facilities

Notes: The figure displays states (left map) and power plants (right map) that are part of the CAIR. Orange triangles
represent facilities that are part of the annual cap-and-trade programs for SO2 and NOx introduced by the CAIR.

Figure A.2: Composition of fossil fuel power plants

(a) Gas plants vs other fuels (b) Composition of coal/oil plants

Notes: fossil fuel power plants are composed of several fuel-specific units — four units per power plant on average. Panel
(a) plots the location of gas-only power plants (in blue) and power plants that have at least one unit burning coal or oil.
Panel (b) plots the location of these latter units and distinguishes power plants that only have coal units (black), that have
both coal and gas units (white), that have coal, gas and oil units (orange) or gas and oil units (blue).

121



APPENDIX A. APPENDIX TO CHAPTER 1

Figure A.3: Coal unit within a power plant

Notes: This scheme describes the functioning of a coal unit within a fossil-fuel power plant. Coals are transported from
deposits to the boiler in which they are burnt to produce heat. The heat generated boils pressurized water that transforms
into vapor and liquid water in the condenser. The steam is released to lead a turbine that rotates a generator in a magnetic
fields to produce alternative current by induction following Faraday’s law. Electricity is then adapted in the transformer
to be released in the transmission lines. The process of burning fuel in the boiler generates incombustible material (ashes,
particulate matters), toxic gases (CO2, NOx, SO2) and water vapor. These by-products are released in the cheminee, also
called stack and constitute the main externality of power generation from fossil fuel burning.
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A.2 Supporting material

A.2.1 Statistical decomposition

Figure A.4: Distribution of the impact of technology adoption on SO2 emissions

(a) JB (b) TR (c) SP

(d) CD (e) DSI (f) SD

Notes: The figure displays the distribution of the estimates of γ from boiler-level regressions. I plot here the exponential
of γ minus one, which gives the percentage impacts of technology adoption on SO2 emissions. The top row displays the
impact of wet flue gas desulfurization technologies: jet bubbling reactor scrubbers (JB), tray type scrubbers (TR), spray
type scrubbers (SP). The bottom row displays the impact of dry flue gas desulfurization technologies: circulating dry
scrubber (CD), dry sorbent injection type (DSI) and spray dryer type, semi-dry flue gas desulfurization (SD).
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Figure A.5: Emission reductions at coal boilers with and with no abatement technology

(a) NOx (b) SO2

Notes: The figure displays the total emissions of NOx (left) and SO2 (right) from coal boilers that install abatement
technology between 2004 and 2014 and boilers with no new installation.

Figure A.6: Switching from coal to gas units for electricity generation

(a) Operating Time (b) Net Generation

Notes: Figure (a) depicts the evolution of the monthly number of hours that coal and gas units operated at plants in the
CAIR region that were composed of both coal-specific and gas-specific boilers. These include a balanced panel of units
that did not shut down. For the same plants, figure (b) describes the evolution of net generation at coal and gas units within
the same plants. Both panels show that gas units were used more intensively at plants that had both coal and gas units.
Total electricity production at these plants was unchanged during the period of study.
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Figure A.7: Retirement of coal and gas units

(a) Retiring Coal Boilers (b) Retiring Gas Boilers

Notes: The figure displays the timing and number of coal (left) and gas (right) units shut-downs in the CAIR region.
Most shut downs happened after emissions had dropped to the level of the CAIR cap. In 2012, the EPA’s Mercury rule
was signed and is thought to have pushed dirtiest units out of operation, although no paper in the literature investigates
the question. In our sample, most units that shut down had been operating for more than 60 years and had hence reached
retirement age.
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Table A.2: Technology adoption

SO2 emissions (mill. tons) Share of Number of
2002 2014 Drop drop (%) boilers

Total 9.90 2.86 7.04 100.0 1483

Bituminous Boilers 5.86 1.62 4.24 60.2 412
Bituminous Boilers—installed tech 3.83 0.34 3.49 49.6 175
Bituminous Boilers—did not install tech 2.03 1.28 0.75 10.7 237

Sub-Bituminous Boilers 1.22 0.62 0.60 8.5 143
Sub-Bituminous Boilers—installed tech 0.49 0.07 0.42 6.0 35
Sub-Bituminous Boilers—did not install tech 0.73 0.55 0.18 2.6 108

Bituminous to Sub-Bituminous switchers 0.57 0.21 0.36 5.1 58
Bituminous to Sub-Bituminous switchers—installed tech 0.19 0.01 0.18 2.6 14
Bituminous to Sub-Bituminous switchers—did not install tech 0.37 0.20 0.17 2.4 44

Other Coals Boilers 0.35 0.26 0.09 1.3 20
Other Coals Boilers—installed tech . . . . .
Other Coals Boilers—did not install tech 0.35 0.26 0.09 1.3 20

Retiring Coal Boilers 1.21 0.00 1.21 17.2 204
Retiring Coal Boilers—installed tech 0.09 0.00 0.09 1.3 6
Retiring Coal Boilers—did not install tech 1.12 0.00 1.12 15.9 198

Oil Boilers 0.09 0.00 0.09 1.3 21
Oil Boilers—installed tech . . . . .
Oil Boilers—did not install tech 0.09 0.00 0.09 1.3 21

Retiring Oil Boilers 0.07 0.00 0.07 1.0 43
Retiring Oil Boilers—installed tech . . . . .
Retiring Oil Boilers—did not install tech 0.07 0.00 0.07 1.0 43

Switch coal-to-gas Boilers 0.06 0.00 0.06 0.9 14
Switch coal-to-gas Boilers—installed tech 0.01 0.00 0.01 0.1 2
Switch coal-to-gas Boilers—did not install tech 0.05 0.00 0.05 0.7 12

Switch oil-to-gas Boilers 0.06 0.00 0.06 0.9 14
Switch oil-to-gas Boilers—installed tech 0.01 0.00 0.01 0.1 2
Switch oil-to-gas Boilers—did not install tech 0.05 0.00 0.05 0.7 12

Gas Boilers 0.05 0.00 0.05 0.7 134
Gas Boilers—installed tech . . . . .
Gas Boilers—no tech 0.05 0.00 0.05 0.7 134

Sub-Bituminous to Bituminous switchers 0.06 0.02 0.04 0.6 8
Sub-Bituminous to Bituminous switchers—installed tech 0.06 0.02 0.04 0.6 8
Sub-Bituminous to Bituminous switchers—did not install tech . . . . .

New Boilers 0.00 0.04 -0.04 -0.6 130
New Boilers—installed tech 0.00 0.04 -0.04 -0.6 26
New Boilers—did not install tech 0.00 0.00 0.00 0.0 104

Notes: The table gives summary statistics on technology adoption and type of boilers operating between 2005 and 2014
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A.2.2 Abatement technology

Figure A.8: Average costs incurred to power plants for abatement technology installation

(a) NOx (b) SO2

Notes: The figure displays fixed costs reported by power plants for installing each type of abatement technology for
NOx emissions (left) and SO2 emissions (right). Costs are averaged across power plants. Vertical bars display standard
deviations.

Figure A.9: Impacts of NOx abatement technology adoption on NOx emissions

(a) SNCR (b) SCR

Notes: The figure displays the average impact of technology adoption on monthly emissions of NOx across all boilers.
Averages include all boilers in the CAIR region, at which technology was installed between 2005 and 2014. One boiler
typically receives a unique retrofit: only one technology (if any) is installed by boiler. Impacts are displayed for selective
non-catalytic reduction systems (left) and selective catalytic reduction systems (right).
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Figure A.10: Impacts of SO2 abatement technology adoption on SO2 emissions

(a) JB (b) TR (c) SP

(d) CD (e) DSI (f) SD

Notes: The figure displays the average impact of technology adoption on monthly emissions of SO2 across coal boilers.
Averages include all boilers in the CAIR region, at which technology was installed between 2005 and 2014. One boiler
typically receives a unique retrofit: only one technology (if any) is installed by boiler. The top row displays the impact
of wet flue gas desulfurization technologies: jet bubbling reactor scrubbers (JB), tray type scrubbers (TR), spray type
scrubbers (SP). The bottom row displays the impact of dry flue gas desulfurization technologies: circulating dry scrubber
(CD), dry sorbent injection type (DSI) and spray dryer type, semi-dry flue gas desulfurization (SD).
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Figure A.11: Evolution of key operation variables of coal units with technology adoption

(a) Operating time (b) CO2 emissions (c) Sulfur content of coals

(d) Heat content of coals (e) Quantity of coal

Notes: The figure displays the average impact of technology adoption across coal boilers on key operating variables at
the monthly frequency: operating time, CO2 emissions, Sulfur content of coals, heat content of coals and quantity of coal.
Averages include all boilers in the Western region, at which technology was installed between 2005 and 2014. The figure
displays the impact of wet flue gas desulfurization technologies: jet bubbling reactor scrubbers (JB). Technology adoption
does not seem to be correlated with changes in operating time of coal boilers, or other key variables that could impact
emissions of SO2.
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Figure A.12: Emissions markets prices

(a) NOx prices (b) SO2 prices

Notes: The left panel displays allowance prices for NOx emissions under the NOx Budgeting Program (from 2003 to
2008), the CAIR (from 2008 to 2014), and the CSAPR which replaced the CAIR in 2014. The orange line represent prices
on the summer markets, and the grey line represent prices in the annual markets. Prices are from the spot markets during
implementation of each policy and from forward markets for months preceeding implementation. The right panel displays
prices for SO2 allowances on the Acid Rain Program (ARP), the CAIR market and the CSAPR markets. Under the ARP,
prices were stable for about 10 years prior to 2004. In 2004, when the EPA announced it was working on the CAIR, prices
started to rise. In 2005, when the CAIR was published and approved, allowance prices on the ARP skyrocketted. Under
the CAIR, the cap for SO2 emissions was divided by two. The spike in prices in the ARP maket can in part be explaine by
the fact that the CAIR allowed plants to bank their ARP allowances and use them during the CAIR implementation, and
that one ARP allowance would be worth two allowances on the CAIR (Schmalensee and Stavins, 2013). This was meant
to be an incentive for early emission reductions. Demand for allowances on the ARP thus grew in 2005, in response to
the CAIR approval, and before the CAIR was implemented. Only a few companies keep track of spot and forward prices
on US NOx and SO2 emissions markets. I collected manually information on allowance prices for NOx and SO2 markets
from annual reports published by the EPA and from Resources for the Future working papers. The data that are displayed
in these documents were acquired from CantorCO2e Market Price Index, BGC Environmental Brokerage Services Market
Price Index, Bloomberg, and SNL Financial.
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Figure A.13: NOx: Present value of permit purchases v. Investment in abatement technology

(a) Low price expectations (b) Medium price expectations (c) High price expectations

Notes: The figure compares the present value of the costs of purchasing permits on the NOx market to the investments in
abatement technologies at the plant level. Each circle corresponds to a power plant in the CAIR and NBP region. The size
of each circle corresponds to the number of years of operations left at the date of installation of an abatement technology.
The number of years left is calculated using the facility planned retirement date as described in EIA form 860. For each
power plant, the present value the purchases of permits is calculated in three steps. First, initial allowances are recovered
from the EPA Clean Air Market database, and compared with “unabated” emissions at the plant level. Second, the excess
yearly emissions recovered is multiplied with the “expected” price of allowances, derived from observed allowance prices
(see Figure A.12): panel (a) uses a low expected price, corresponding to the lowest price observed during the NBP market
years ($1,000 per ton), panel (b) uses a medium expected price ($2,200 per ton) and panel (c) a high expected price
corresponding to the peak price ($7,000 per ton). Finally, future streams of permit costs are actualized at 2003 year values.
The black doted line represent the break-even points at which the cost of technology would be equal to the present value
of expected permits costs. In all scenarii, power plants faced a higher costs of buying extra permits compared to the
investment realized in technologies. Technology adoption was the least-cost option to comply with the NBP.
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Figure A.14: SO2: Present value of permit purchases v. Investment in abatement technology

(a) Low price expectations (b) Medium price expectations (c) High price expectations

Notes: The figure compares the present value of the costs of purchasing permits on the NOx market to the investments in
abatement technologies at the plant level. Each circle corresponds to a power plant in the CAIR and NBP region. The size
of each circle corresponds to the number of years of operations left at the date of installation of an abatement technology.
The number of years left is calculated using the facility planned retirement date as described in EIA form 860. For each
power plant, the present value the purchases of permits is calculated in three steps. First, initial allowances are recovered
from the EPA Clean Air Market database, and compared with “unabated” emissions at the plant level. Second, the excess
yearly emissions recovered is multiplied with the “expected” price of allowances, derived from observed allowance prices
(see Figure A.12): panel (a) uses a low expected price, corresponding to the historical SO2 price observed during the ARP
market years ($220 per ton), panel (b) uses a medium expected price ($500 per ton) and panel (c) a high expected price
corresponding to the 2006 peak price ($1,500 per ton). Finally, future streams of permit costs are actualized at 2005 year
values. The black doted line represent the break-even points at which the cost of technology would be equal to the present
value of expected permits costs. In all scenarii, power plants faced a higher costs of buying extra permits compared to
the investment realized in technologies. Technology adoption was the least-cost option for a large part of power plants
targeted by the CAIR, under the asumption that plant managers expected prices to remain at least as high as they had been
under the Acid Rain Program, a market that operated a cap 3 times less stringent. However, under any expectation skims,
some power plants invested in technologies that were more expensive than the present value of not abating. This leads
support to two hypotheses: (1) power plants over invested in abatement technologies to insure themselves against large
policy uncertainties, (2) some plants installed technologies in response to other policies that are unobserved in the analysis
and may have been implemented at the state, or municipality level.
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A.2.3 Health benefits

Table A.3: Literature review: effects of SO2 and NOx pollution on health outcomes

Paper Pollutant Health Impact % drop of pollutant % drop of health issue
? SO2 Birth Weight 1 µg 5 g

Gestation duration 1 µg 0.18-day
Luechinger (2014) SO2 Infant Mortality 1 % 0.13 %

? NOx, O3 Mortality 10% 0.04%
death/100,000 population

? NO2 Prematurity 6.8% 10.8 %

NO2 Low birth weight 6.8% 11.8 %

Chay and Greenstone (2003) TFP Infant Mortality 1% 0.5%
(PM10, PM2.5)

Knittel et al. (2016) PM10 Infant Mortality 1 unit 18 fewer infant mortality/100,000

Notes: This table summarizes results from a selection of health economics studies linking local air pollutants to health
outcomes — mainly, infant mortality. These estimates are used to calculate the back-of-the-envelope health effects reported
above.

A.2.4 Hedonics

Figure A.15: Impact on housing: treatment and control groups

Notes: The picture illustrates the empirical strategy of the housing estimations. The circles center on a coal power plant.
The treated area corresponds to housing units in the yellow circle. The control group is composed of housing units in the
ring contained in between the yellow and red circles.
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Table A.4: Air pollution around coal power plants

SO2 NOx PM2.5 % of U.S. Area
Disk of ray 1 miles 3 2 2 0
Disk of ray 2 miles 10 7 5 1
Disk of ray 3 miles 18 14 10 1
Disk of ray 5 miles 37 30 22 3
Disk of ray 10 miles 72 63 50 10
Disk of ray 20 miles 94 86 77 29
Disk of ray 50 miles 99 97 95 69
Disk of ray 100 miles 100 99 99 92

Notes: The table displays the total amount of pollution that is contained within circles of varying distances from coal power
plants (column 1 to 3). Numbers correspond to the percentage of pollution that is detected from satellites and lies within
circles of varying distances from power plants as compared with the total pollution detected from space across the US. The
last column displays the percentage of the US surface that those circles represent.
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Figure A.16: Air pollution concentration around coal power plants

(a) SO2 (b) Ratio Pollution/Area

(c) NOx (d) Ratio Pollution/Area

(e) PM2.5 (f) Ratio Pollution/Area

Notes: These figures represent the concentration of pollutants around all coal power plants in the US. The left column
depicts air concentrations of SO2, NOx and PM2.5 in 2004. The right graphs plot the total amount of pollution that
is contained within circles of varying distances from coal power plants. The black lines represent the ratio of total air
pollution on total surface of these circles. It shows that pollution from SO2 is concentrated within 3 miles of coal power
plants. For NOx and PM2.5, pollution is more diffused. Although concentration of these two pollutants is higher in the
vicinity of power plants, levels of pollution away from plants is high. For NOx, this is because coal power plants only
account for a quarter of total emissions. Other sources include cars, hence NOx concentrations are high in city centers.
In the case of PM2.5, SO2 transforms into compounds that can travel dozens of miles and become PM.2.5 far away from
power plants.
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A.2.5 Validation of satellites’ air pollution data

Figure A.17: Ground-level monitoring stations

(a) NOx (b) SO2

(c) PM10 (d) PM2.5

Notes: The maps display the location of ground-level monitoring stations installed by the EPA to continuously collect
information on local concentrations of NO2, SO2, PM2.5, and PM10.
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Figure A.18: Evolution of concentration of major pollutants—Satellites

(a) NO2 (b) SO2 (c) PM2.5

Notes: The graphs display changes in local air concentrations of NO2, SO2 and PM2.5. Values are recovered from satellite
imagery derived from the Ozone Monitoring Instrument and from van Donkelaar et al. (2015). Measures are weighted by
population using Census and CIESIN geographic information on population in the US. Values from 2004 are normalized
to 100.

Figure A.19: Evolution of concentration of major pollutants—Monitors

Notes: The graph displays changes in local air concentrations of NO2, SO2, PM2.5, and PM10. Values are recovered from
information collected by ground-level monitoring stations installed by the EPA.
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Table A.5: Correlation between monitoring stations and satellite measures—SO2 and NO2

Year Correlation Number of County
2005 0.70 253
2006 0.70 252
2007 0.68 252
2008 0.69 247
2009 0.67 240
2010 0.65 242
2011 0.65 232
2012 0.62 236
2013 0.58 243
2014 0.61 255
2015 0.64 250
Overall 0.68 2702

Year Correlation Number of County
2005 0.64 326
2006 0.60 326
2007 0.54 327
2008 0.55 312
2009 0.36 300
2010 0.27 298
2011 0.31 293
2012 0.23 303
2013 0.11 311
2014 -0.02 312
2015 0.06 315
Overall 0.52 3423

Notes: The left table displays correlation between monthly measures of NOx concentrations from ground-level stations
and measures derived from satellite imagery obtained from NASA’s Ozone Monitoring Instrument. All measures are ag-
gregated at the monthly frequency and county level. Correlations are estimated for every year. The right table displays
correlation between monthly measures of SO2 concentrations from ground-level stations and measures derived from satel-
lite imagery obtained from NASA’s Ozone Monitoring Instrument. All measures are aggregated at the monthly frequency
and county level. Correlations are estimated for every year. Initial years display high correlation between satellite data and
monitoring stations. As air concentrations of SO2 dropped after 2008, they were less precisely measured from space. Low
concentrations of SO2 are difficult to detect from space.

Table A.6: Correlation between monitoring stations and satellite measures—PM

Year Correlation (2.5) Number of County (2.5) Correlation (10) Number of County (10)
2004 0.84 641 0.28 481
2005 0.82 638 0.35 466
2006 0.82 603 0.24 442
2007 0.82 595 0.31 416
2008 0.79 585 0.15 395
2009 0.77 589 0.13 384
2010 0.80 594 0.29 378
2011 0.78 548 0.17 371
2012 0.70 552 0.16 369
Overall 0.82 5345 0.27 3702

Notes: The table displays correlation between monthly measures of PM2.5 concentrations derived from the reanalysis
product provided by van Donkelaar et al. (2015) and ground-level measures of PM2.5 and PM10. All measures are aggre-
gated at the monthly frequency and county level. Correlations are estimated for every year. Not suprisingly, the reanalysis
data for PM2.5 correlates well with ground-level measures of the pollutant. It is interesting to observe that correlation with
PM10, a visible pollutant similar to smog is low. The invisibility of PM2.5 makes it one of the most dangerous pollutants
as it often goes unoticed.
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B.1 Policies targeting SO2 and NOx

Figure B.1 describes the timeline of the CAIR and preceeding and overlapping regulations

towards power plant emissions of SO2 and NOx.

Figure B.1: Regulations timeline: cap-and-trade markets in the eastern US states

Notes: The EPA implemented the NOx Budgeting Program (NBP) from 2003 to 2008 in eastern US states. This consisted
in a cap-and-trade market targeting power plant emissions of NOx in summer months. In 2005, the EPA adopted the
Clean Air Interstate Rule (CAIR) that would implemented three cap-and-trade markets from 2008 on. The NBP would be
continued under the summertime CAIR market for NOx emissions. In addition, the CAIR implemented an annual market
for NOx emissions, to force power plants to reduce emissions in winter months also. In addition, the CAIR introduced an
annual cap-and-trade market to limit annual emissions of SO2 from the same power plants in the eastern US. The CAIR
SO2 market came to complement the existing federal market for SO2 emissions implemented under the Acid Rain Program
since 1995. After several legal actions challenging the adoption of the CAIR for its stringency, the Supreme Court decided
to vacate the CAIR in 2008. It invoked one reason unrelated to the CAIR stringency: the EPA did not have the authority to
implement inter-state trading systems and should revise the CAIR to implement as stringent caps at the state level. Until
the EPA came up with a new policy, the CAIR was allowed to be run. In 2014, the Cross State Air Pollution Rule (CSAPR)
implemented 27 state-specific cap and trade systems for NOx and SO2.

The National Ambient Air Quality Standards In order to mitigate the negative health

effects of air pollution, the 1970 revision of the Clean Air Act1 imposed upper-limit concen-

trations for six criteria air pollutants. These upper limits are known as the National Ambient

Air Quality Standards (NAAQS).2 The criteria pollutants include SO2 and NOx, as well as

1The Clean Air Act is the law that defines the responsibilities of the EPA for addressing air pollution.
2The NAAQS do not directly regulate emissions of air pollutants, but aim to limit concentrations of air

pollutants. The ambient air quality is measured by a network of monitoring stations across the US
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particulate matter (PM2.5 and PM10) and ozone.3 Counties that violate the upper-limit are

designated as ”non-attainment” areas. The EPA requires states with non-attainment counties

to form a State Implementation Plan to bring all counties to attainment by targeting emis-

sions.4

Figure B.2: Percentage of counties in violations of the NAAQS

(a) O3 (b) PM (c) SO2

Notes: The figure displays the percentage of counties in the CAIR region (plain lines) and the non-CAIR region (dashed
lines) for O3 (a), PM (b) and SO2 (c). The figures show the evolution of the proportion of counties considered in non-
attainment of the NAAQS. The NAAQS were revised in 1979, 1997 and 2008 for O3, 1987, 1997, and 2006 for PM, and
1971 and 2010 for SO2. The 2006 and 2010 revisions led to more drastic standards for both PM and SO2. In doing so,
the EPA hoped to add another layer of legislation on air quality, which contributed to signaling that SO2 emissions were
going to be controlled more stringently than ever before. Importantly, shocks to NAAQS were as important in the treated
and control areas, and mostly happened at a later stage of the CAIR, once emissions had already been reduced. We thank
Nicholas Z. Muller for graciously sharing data on county attainment status for all US counties and criteria pollutants, at a
yearly frequency.

The Acid Rain Program To counter air pollution at the federal level, the EPA developed

the Acid Rain Program. The program was established under Title IV of the 1990 Clean Air

Act Amendments, and was primarily formed to reduce acid rain. The Acid Rain Program

introduced a federal cap-and-trade program on SO2 emissions, and a rate-based policy on

NOx emissions, both on large fossil-fueled power plants.5 The EPA is responsible for setting

the federal cap, which must be approved by Congress. Initial allowances were grand-fathered

3The other two are carbon monoxide and lead.
4Failing to comply with the regulation would trigger EPA sanctions on the state. The EPA can for instance

withhold federal grant money or ban the construction of potential new emission sources.
5The policy was unfolded in two phases. Phase I ran from 1995 to 1999 and affected the largest coal-

burning units in 21 eastern and Midwestern states. Phase II began in 2000 and expanded the program to include
smaller units fired by coal, oil and gas.
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by the EPA to power plants. Plants are then allowed to purchase allowances if they fail to

keep their emissions below their allocated level, or to sell or bank excess allowances if they

manage to reduce their emissions beyond the allocated allowances.6

Contrary to the regulations on SO2, the Acid Rain Program implemented a rate-based

policy on NOx emissions. The policy imposed boiler-specific NOx emissions rates uniformly

across the country, with penalties to power plants exceeding the rates. However, the rates

were thought to be too lenient, particularly during summer months, when NOx is an important

precursor to ground-level ozone. Further, there was a growing concern over prevailing winds

transporting NOx from the industrial Midwest to the Northeast, contributing to ozone non-

attainment status in eastern US states. In response to these concerns, 13 northeastern states

introduced the NOx Budgeting Program in 2003.7

The NOx Budget Trading Program The NOx Budgeting Program established a cap-and-

trade program for summertime emissions (May to September) of NOx from fossil-fueled

power plants.8 It operated from 2003 to 2008 and covered a total of 20 states by the end of

the program period. Under the program, emissions allowances were grand-fathered to power

plants. The allocated allowances were fully tradable, meaning that plants were free to buy

and sell permits in the market to comply with the policy. At the end of September each year,

affected units had to surrender one allowance for each ton of NOx emitted. Previous studies

have found that the NOx Budgeting Program was efficient in reducing NOx emissions (Fowlie

6Between 1990 and 2004, emissions of SO2 from power plants involved in the program declined by 36%,
while electricity generation by coal power plants increased by 25 % (Schmalensee and Stavins, 2013). However,
ex-post studies have found the Acid Rain Program to displace SO2 pollution from West to East (Chan et al.,
2015). As the marginal damages of air pollution are generally higher in the east, partly due to higher population
density, this displacement likely increased the overall damages of local pollution.

7An earlier, less stringent version of the program operated from 1999-2002: the so-called Ozone Transport
Commission (OTC) NOx Budget Program. This earlier program covered in total 12 North-eastern states.

8The seasonal program also included a few, large industrial units that were carried over to the CAIR sum-
mertime market for NOx.
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and Muller, 2013), and generated substantial health benefits (Deschênes et al., 2017).9

Figure B.3: NOx emissions in summer and winter days

Notes: The figure displays daily NOx emissions from coal electricity generation units in the CAIR region against days
of the year. Thin lines represent daily emissions averaged across coal EGUs, each line representing a year of emissions
from these units. Thick lines represent the daily averages across years. Grey lines correspond to years preceeding the
implementation of the CAIR NOx annual market. During those years (2003 to 2008), summertime emissions where
regulated under the NOx Budgeting Program, which imposed a cap on NOx emissions between May 1st and September
30th every year. Between 2003 and 2008, winter time emissions were not regulated. On September 30th every year,
power plants switched off their abatement technologies for NOx. Orange lines correspond to years at which the CAIR
markets operated: from 2009 to 2014. The CAIR continued the Summertime market for NOx emissions and introduced an
annual market. Under the CAIR, wintertime emissions were also regulated, which led power plants to keep their abatement
technologies on all year long.

9See Burtraw and Szambelan (2009) for more details on the different US emissions trading programs.
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B.2 Additional data descriptives

Power plants

Table B.1: Summary of plant characteristics, by CAIR and non-CAIR

CAIR non-CAIR Difference

Mean (S.E.) Mean (S.E.) Mean (S.E.)
SO2 emissions (tons) 12,023.3 (991.1) 3,795.2 (527.0) 8,228.1
NOx emissions (tons) 3,579.7 (245.1) 3,243.5 (408.6) 336.2 (476.5)
CO2 emissions (1000 tons) 2,344.0 (146.7) 1,835.1 (201.3) 508.9 (249.0)
log(SO2+1) 4.80 (0.17) 3.69 (0.23) 1.11 (0.29)
log(NOx+1) 5.92 (0.10) 5.31 (0.17) 0.61 (0.20)
log(CO2+1) 5.96 (0.10) 5.71 (0.14) 0.24 (0.17)

Average heat input (1000 MMBtu) 2,261.2 (130.4) 1,814.7 (178.8) 446.4 (221.3)
SO2/Heat input (tons/MMBtu) 0.24 (0.02) 0.10 (0.01) 0.14 (0.02)
NOx/Heat input (tons/MMBtu) 0.10 (0.00) 0.09 (0.01) 0.01 (0.01)
CO2/Heat input (tons/MMBtu) 71.76 (1.50) 66.93 (1.08) 4.83 (1.85)

Gross Load (GWh) 2,726.4 (164.2) 2,163.7 (209.5) 562.7 (266.2)
Operating time (hours per month) 955.6 (38.0) 784.3 (43.4) 171.3 (57.6)
SO2 rate (tons/GWh) 3.47 (0.97) 1.15 (0.14) 2.32 (0.98)
NOx rate (tons/GWh) 2.56 (1.35) 1.47 (0.39) 1.08 (1.40)
CO2 rate (1000 tons/GWh) 2.38 (1.45) 0.85 (0.05) 1.53 (1.46)

Average number of units per facility 2.76 (0.08) 2.13 (0.08) 0.64 (0.12)
Average number of coal units 0.87 (0.05) 0.55 (0.06) 0.31 (0.08)
Average number of gas units 1.66 (0.08) 1.50 (0.10) 0.16 (0.13)
Average age of units (years) 22.56 (0.64) 21.23 (0.97) 1.33 (1.16)
Age of oldest unit (years) 24.70 (0.70) 23.59 (1.07) 1.11 (1.28)

SO2 controls (total number) 0.28 (0.03) 0.29 (0.05) -0.01 (0.05)
NOx controls (total number) 3.30 (0.12) 2.54 (0.15) 0.76 (0.20)
PM controls (total number) 1.06 (0.06) 0.69 (0.07) 0.37 (0.10)
Hg controls (total number) 0.02 (0.01) 0.02 (0.01) 0.00 (0.01)

Number of Units 1938 613
Number of Facilities 665 273
Number of States 24 24

Notes:Table shows the means and standard deviations of plant characteristics for the year 2005, by CAIR and non-CAIR
facilities. The two last columns show the difference in means and the standard errors from a t-test on the equality of means.
The sample is balanced over the period 2003-2014 and is restricted to power plants that have at least one coal unit, see
Section 2.4.2.
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Emissions

Figure B.4: Densities for SO2 and NOx emissions, by CAIR and non-CAIR. 2005

(a) SO2 (b) log SO2 (c) NOx (d) log NOx

Notes: Figures show the kernel densities for SO2 and NOx emissions (curves) and the mean (vertical lines) for the treatment
and the control group. Balanced panel (2003-2014). Only non-gas units. The monthly unit observations are summarized
within a facility, then averaged over the year. The density for NOx emissions is based on wintertime emissions.

Fuels

Table B.2: Quantity of fuels received, by CAIR and non-CAIR

CAIR non-CAIR Difference

Mean (sd) Mean (sd) Mean (se)

Quantity of Gas (Mcf) 4,433,589 (9,889,399) 5,004,791 (8,836,919) -571,201 (610,219)

Quantity of Oil (Barrels) 52,097 (364,258) 59,848 (482,380) -7,751 (31,136)

Quantity of Coal (tons) 662,057 (1,633,672) 872,840 (1,972,055) -210,783 (128,845)

Quantity of Bituminous Coal (tons) 340,745 (998,724) 158,581 (794,718) 182,164 (56,514)∗∗∗

Quantity of Sub-Bituminous Coal (tons) 245,538 (1,073,343) 625,244 (1,696,141) -379,706 (107,494)∗∗∗

Quantity of Other Coal (tons) 75,775 (604,661) 89,016 (678,639) -13,241 (44,830)

Notes: Table shows the means and standard deviations of plant characteristics for the year 2005, by CAIR and non-CAIR
facilities. Unit-level fuel shares and technology stock are averaged over facility to arrive at facility-level data. All facility-
level data is then collapsed by year.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.3: Costs of fuels received, by CAIR and non-CAIR

CAIR non-CAIR Difference

Mean (sd) Mean (sd) Mean (se)

Cost of Gas (USD/Mcf) 938.61 (557.03) 803.35 (139.43) 135.26 (40.28)∗∗∗

Cost of Oil (USD/Barrel) 384.57 (600.16) 75.64 (46.23) 308.93 (149.19)∗

Cost of Coal (USD/Ton) 181.68 (57.30) 118.81 (46.75) 62.86 (6.53)∗∗∗

Cost of Bituminuous Coal (USD/Ton) 207.05 (56.17) 156.32 (62.00) 50.73 (14.12)∗∗∗

Cost of Sub-Bituminuous Coal (USD/Ton) 136.19 (44.55) 116.54 (44.16) 19.65 (7.27)∗∗∗

Cost of Other Coal (USD/Ton) 164.39 (34.29) 83.51 (15.29) 80.88 (10.79)∗∗∗

Notes: Table shows the means and standard deviations of plant characteristics for the year 2005, by CAIR and non-CAIR
facilities. Unit-level fuel shares and technology stock are averaged over facility to arrive at facility-level data. All facility-
level data is then collapsed by year.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table B.4: Quality of fuels received, by CAIR and non-CAIR

CAIR non-CAIR Difference

Mean (sd) Mean (sd) Mean (se)

Ash Content of Gas (percent weight) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Ash Content of Oil (percent weight) 0.14 (0.33) 0.06 (0.11) 0.08 (0.03)∗∗

Ash Content of Coal (percent weight) 10.10 (6.45) 7.71 (3.95) 2.40 (0.55)∗∗∗

Ash Content of Bituminuous Coal (percent weight) 10.04 (2.87) 11.08 (3.52) -1.04 (0.77)
Ash Content of Sub-Bituminuous Coal (percent weight) 5.42 (2.37) 6.79 (3.87) -1.37 (0.51)∗∗∗

Ash Content of Other Coal (percent weight) 20.44 (13.44) 9.38 (1.33) 11.06 (1.93)∗∗∗

Sulfur Content of Gas (percent weight) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)
Sulfur Content of Oil (percent weight) 0.98 (1.68) 0.76 (1.51) 0.23 (0.33)
Sulfur Content of Coal (percent weight) 1.24 (0.89) 0.49 (0.25) 0.75 (0.05)∗∗∗

Sulfur Content of Bituminuous Coal (percent weight) 1.52 (0.88) 0.77 (0.69) 0.75 (0.16)∗∗∗

Sulfur Content of Sub-Bituminuous Coal (percent weight) 0.32 (0.18) 0.41 (0.18) -0.08 (0.03)∗∗∗

Sulfur Content of Other Coal (percent weight) 1.56 (0.92) 0.67 (0.18) 0.89 (0.14)∗∗∗

Heat content in Gas (MMBtu/Mcf) 1.02 (0.04) 1.02 (0.03) 0.00 (0.00)
Heat content in Oil (MMBtu/Barrel) 8.42 (6.93) 7.68 (6.24) 0.74 (1.32)
Heat content in Coal (MMBtu/ton) 22.13 (3.61) 18.48 (2.74) 3.65 (0.35)∗∗∗

Heat content in Bituminous Coal (MMBtu/ton) 24.25 (1.51) 22.62 (1.61) 1.63 (0.35)∗∗∗

Heat content in Sub-Bituminous Coal (MMBtu/ton) 17.72 (0.90) 17.91 (1.27) -0.19 (0.17)
Heat content in Other Coal (MMBtu/ton) 18.38 (5.70) 15.73 (4.38) 2.65 (1.66)

Notes: Table shows the means and standard deviations of plant characteristics for the year 2005, by CAIR and non-CAIR
facilities. Unit-level fuel shares and technology stock are averaged over facility to arrive at facility-level data. All facility-
level data is then collapsed by year.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure B.5: Fuel price to coal ratio (price/mmBtu) by CAIR

(a) All fuels (b) Gas to Coal

Notes: The figures plot the ratio of oil, gas and petroleum costs (per unit of heat content) on the average costs of coals (per
unit of heat content). Data are retrieved from the EIA monthly-frequency and state-level dataset on fuel prices delivered
at fossil fuel power plants. Plain lines correspond to these ratios in states covered by the CAIR, and the dotted lines
correspond to data in non-CAIR states.

Demographics

Figure B.6: Block groups and 1 mile radii circles

Notes: Figure illustrates how demographic variables are constructed. The background map shows block group level
boundaries. The three red dots represents three different power plants. The blue circles encapsulating the power plants are
1 mile radii circles. To construct demographics for the 1 mile radii circles, we first identify the block groups that intersect
with the circle. We then calculate the size of the intersected areas (in m2). Next, by assuming a uniform distribution of
population, we can calculate the number of people per m2 within each block group. Multiplying this population density
(pop/m2) by the size of the intersected areas (in m2), we get the number of people living within the intersected areas.
Taking the population within each intersected area and dividing it by the total population within the 1 mile circle, we get
population-weighted shares for each intersected area. These population weights are used to create average demographic
variables for the 1 mile circles around power plants.
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Table B.5: Demographics in power plants neighborhoods v. all country

Count Mean SD Min Max

Panel A: All block groups in the US

Median household income (USD 1000) 209272 54.20 30.26 2.50 250.00
Top income (above USD 100 000) (%) 211274 0.18 0.18 0.00 1.00
Below poverty line (%) 209697 0.12 0.09 0.00 0.50
High school or less (%) 211274 0.47 0.21 0.00 1.00
College degree (%) 211274 0.32 0.20 0.00 1.00
Population (1000) 211274 1.45 1.24 0.00 55.28
Median house value (USD 1000) 204199 230.82 196.11 5.40 1,000.00

Panel B: 1 mile radius circles around power plants

Median household income (USD 1000) 394 50.12 16.94 12.07 127.97
Top income (above USD 100 000) (%) 394 0.15 0.11 0.00 0.65
Below poverty line (%) 394 0.13 0.09 0.00 0.65
High school or less (%) 394 0.53 0.14 0.12 0.84
College degree (%) 394 0.26 0.12 0.05 0.73
Population within 1 mile (1000) 394 2.38 14.53 0.00 225.34
Median house value (USD 1000) 394 147.06 98.73 29.40 727.52

Notes: Table shows summary statistics of demographic variables from the 2005-2009 American Community Survey (ACS).
Panel (a) shows an unweighted average of demographics for all block groups in the US Panel (b) shows population-
weighted averages for a 1 mile radius circle around non-gas power plants.
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Table B.6: Demographics, by CAIR and non-CAIR

CAIR non-CAIR Difference

Mean (sd) Mean (sd) Mean (se)

Census year(s): 2005-2009 (1 mile radius)

Median household income (USD 1000) 49.26 (17.27) 52.93 (15.58) -3.67 (1.90)∗

Top income (above USD 100 000) (%) 0.15 (0.11) 0.16 (0.10) -0.01 (0.01)
Below poverty line (%) 0.13 (0.09) 0.12 (0.09) 0.01 (0.01)
High school or less (%) 0.55 (0.14) 0.48 (0.12) 0.07 (0.01)∗∗∗

College degree (%) 0.25 (0.12) 0.29 (0.11) -0.03 (0.01)∗∗

Population within 1 mile (1000) 2.70 (16.54) 1.34 (2.88) 1.35 (1.00)
Median house value (USD 1000) 143.12 (102.97) 159.83 (82.75) -16.71 (10.43)

Census year(s): 2010-2014 (1 mile radius)

Median household income (USD 1000) 53.07 (18.31) 55.63 (15.89) -2.56 (1.96)
Top income (above USD 100 000) (%) 0.19 (0.10) 0.17 (0.10) 0.02 (0.01)
Below poverty line (%) 0.14 (0.09) 0.13 (0.10) 0.01 (0.01)
High school or less (%) 0.50 (0.14) 0.45 (0.12) 0.05 (0.01)∗∗∗

College degree (%) 0.29 (0.13) 0.32 (0.12) -0.03 (0.01)∗∗

Population within 1 mile (1000) 2.68 (16.51) 1.40 (3.09) 1.27 (1.00)
Median house value (USD 1000) 142.84 (95.63) 158.84 (69.88) -15.99 (9.10)∗

Air quality index (AQI) (100 mile radius)

SO2 AQI 16.26 (1.97) 12.82 (2.33) 3.43 (0.27)∗∗∗

NOx AQI 23.77 (1.20) 23.53 (1.30) 0.24 (0.15)
Ozone AQI 37.15 (0.79) 37.24 (0.96) -0.09 (0.11)

Non-attainment (county level)

Non-attainment (2004) 0.37 (0.48) 0.20 (0.41) 0.16 (0.05)∗∗∗

Count of pollutants violating NAAQS (2004) 0.53 (0.78) 0.41 (0.85) 0.12 (0.10)

Time-varying covariates (state level)

Cooling degree day (cdd) 123.78 (65.21) 80.41 (64.98) 43.36 (7.71)∗∗∗

Heating degree day (hdd) 386.31 (154.35) 511.28 (168.50) -124.97 (19.60)∗∗∗

GDP (real), 1000 USD 427.68 (296.23) 153.18 (102.38) 274.50 (20.08)∗∗∗

Notes: Table shows the means and standard deviations, by CAIR and non-CAIR facilities. Unless stated otherwise, values
are for the year 2005. The two last columns show the difference in means and the standard errors from a t-test on the
equality of means. The sample is balanced over the period 2003-2014 and is restricted to non-gas units.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.7: Plant characteristics, by high and low median income

Below 25th pct Above 75th pct Difference

Mean (sd) Mean (sd)

SO2 (tons) 1,926 (2,540) 2,249 (2,534) -323
NOx (tons) 689 (786) 608 (505) 81

log SO2 (tons) 6.49 (1.95) 6.80 (2.01) -0.31
log NOx (tons) 5.74 (1.53) 5.88 (1.41) -0.13

SO2 rate (tons/GWh) 4.83 (3.70) 5.27 (4.72) -0.44
NOx rate (tons/GWh) 1.74 (0.95) 1.49 (0.78) 0.25∗

Gross load (GWh) 437 (476) 441 (400) -4
Heat input (MMBtu) 4,256 (4,279) 4,376 (3,628) -120

Coal (primary) 0.91 (0.29) 0.77 (0.40) 0.14∗∗

Oil (primary) 0.08 (0.27) 0.23 (0.40) -0.15∗∗∗

Gas (secondary) 0.28 (0.45) 0.35 (0.46) -0.08
Oil (secondary) 0.23 (0.42) 0.24 (0.42) -0.01

Startyear 1972 (14) 1970 (12) 1.3

SO2 technology (any) 0.24 (0.42) 0.19 (0.37) 0.05
NOx technology (any) 0.81 (0.38) 0.85 (0.31) -0.04

Number of facilities 77 72
Number of states 21 21

Notes: Balanced sample for the years 2003-2014. Only CAIR units. Only non-gas. Year 2005. Observations are collapsed
by year and facility.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.8: Demographics. Summary statistics, by gas and non-gas.

Coal/Oil Gas Difference

Census year(s): 2005-2009 (1 mile radius)

Median household income (USD 1000) 49.26 49.44 -0.18
Below poverty line (%) 0.13 0.15 -0.02∗∗

Top income (above USD 100 000) (%) 0.15 0.16 -0.00
High school or less (%) 0.55 0.56 -0.01
College degree (%) 0.25 0.24 0.01
Population within 1 mile (1000) 2.68 3.85 -1.17
Median house value (USD 1000) 143.12 150.54 -7.42

Census year(s): 2010-2014 (1 mile radius)

Median household income (USD 1000) 53.07 50.61 2.46∗

Top income (above USD 100 000) (%) 0.19 0.20 -0.02∗∗

Below poverty line (%) 0.14 0.17 -0.02∗∗∗

High school or less (%) 0.50 0.53 -0.03∗∗

College degree (%) 0.29 0.26 0.02∗∗

Population within 1 mile (1000) 2.68 3.85 -1.17
Median house value (USD 1000) 142.84 144.81 -1.97

Notes: Balanced sample (2003-2014). Demographic data is from the 2005-2009 and 2010-2014 American Community
Survey. The one mile circle data is constructed using population-weighted block group level data.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table B.9: Home-ownership rate, by median income

Below 25th pct Above 75th pct Difference

Mean (sd) Mean (sd)

Home-ownership rate (05-09) 0.70 (0.18) 0.86 (0.09) -0.15∗∗∗

Notes: The table shows the mean of home-ownership rate in the 1 mile radius circle surrounding each power plant. The
sample is split into a low-income group and a high income group. Below 25th pct indicates neighborhoods with median
income below the 25th percentile, while Above 75th pct indicate neighborhoods with median income above the 75th

percentile. The sample is restricted to CAIR facilities. Median income and the home-ownership rate is from the 2005-
2009 American Community Survey (ACS).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.3 Robustness checks: average effects

To test the sensitivity of the average treatment effects, we run a battery of robustness checks.

The tests are summarized in Table B.10. More detailed tables and figures are provided in the

following subsections.

Table B.10: The effect of the CAIR markets on emissions. Robustness checks

SO2 NOx

DiD DiD DiDiD

No. Different specifications: level log level log level log
1 Baseline -945.8∗∗∗ -0.456∗∗ -201.0∗∗ -0.369∗∗ -323.1∗∗∗ -0.427∗∗∗

2 Control for hdd and cdd -943.1∗∗∗ -0.454∗∗ -200.8∗∗ -0.365∗∗ -325.4∗∗∗ -0.433∗∗∗

3 Control for gdp -986.0∗∗∗ -0.393∗ -214.8∗∗∗ -0.290∗ -323.5∗∗∗ -0.426∗∗∗

4 Both coal and gas plants -546.4∗∗∗ -0.300∗ -150.4∗∗ -0.224∗∗ -168.9∗∗∗ -0.224∗∗∗

5 Only gas plants -5.913 0.0539 -1.656 0.101 -0.205 0.00111
6 Exclude border states (c) -1021.8∗∗∗ -0.552∗∗ -196.6∗∗ -0.492∗∗∗ -333.4∗∗∗ -0.473∗∗∗

7 Exclude border states (t) -1369.5∗∗∗ -0.516∗∗ -301.5∗∗∗ -0.402∗∗ -429.7∗∗∗ -0.546∗∗∗

8 Exclude border states (c and t) -1446.0∗∗∗ -0.611∗∗ -297.1∗∗∗ -0.524∗∗∗ -439.9∗∗∗ -0.592∗∗∗

9 Placebo (border states) -168.7 0.0340 9.846 -0.000673 -17.70 -0.0601
10 Only former NBP (t) -1213.6∗∗∗ -0.525∗∗ -286.5∗∗∗ -0.421∗∗∗ -468.4∗∗∗ -0.591∗∗∗

11 Unbalanced -927.5∗∗∗ -0.461∗∗ -180.5∗∗ -0.375∗∗ -294.2∗∗∗ -0.389∗∗∗

12 Unbalanced and impute zeros -938.2∗∗∗ -0.587∗∗∗ -188.8∗∗ -0.441∗∗∗ -294.8∗∗∗ -0.391∗∗∗

13 Drop bottom and top 1 pct -864.2∗∗∗ -0.466∗∗ -149.1∗∗ -0.390∗∗∗ -268.4∗∗∗ -0.425∗∗∗

14 Drop bottom and top 5 pct -578.2∗∗∗ -0.390∗∗∗ -128.8∗∗∗ -0.386∗∗∗ -186.3∗∗∗ -0.378∗∗∗

15 Drop bottom and top 10 pct -375.4∗∗∗ -0.256∗∗ -122.7∗∗∗ -0.375∗∗∗ -167.0∗∗∗ -0.359∗∗∗

16 Exclude deregulated plants -971.3∗∗∗ -0.792∗∗∗ -212.7∗∗ -0.635∗∗∗ -316.9∗∗∗ -0.411∗∗∗

Notes: Each row shows the estimated treatment effect from either equation 2.3 (DiD) or 2.5 (DiDiD). The baseline sample
is a balanced sample (2003-2014) of non-gas power plants (unless stated otherwise). We restrict the sample to the years
2004-2005 (pre) and 2009-2014 (post). For NOx DiD we only use the winter months. All regressions include facility fixed
effects and month-year fixed effects. Standard errors are clustered at the state level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

We might worry that lower emissions in the CAIR region led to higher emissions in the

non-CAIR region. In other words, there could be emissions leakage to the control group,

which would overstate effects of the policy. One potential leakage channel could be that

lower electricity production under CAIR is offset by higher electricity production in the non-

CAIR region. If this is the case, we would expect leakage to be most pronounced for CAIR

facilities sharing an electricity grid with facilities not covered by CAIR. To test for this, we

restrict the sample by (i) excluding control states that border CAIR states (row 6), excluding
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treated states bordering non-CAIR states (row 7), or both (row 8). Restricting the sample

actually leads to higher estimated treatment effects, suggesting that leakage is not leading us

to overestimate the effects of the trading programs.

We also try to restrict the sample to power plants that were also part of the former NOx

Budget Trading Program. In principle, the triple difference strategy should only work for

these facilities, as they exhibit a pre-treatment difference in summer and wintertime emis-

sions. Overall, the treatment effect is somewhat larger when only looking at former NOx

Budget Trading Program units (row 10).

Next, we use an unbalanced version of the dataset, meaning that we include plants that

open up or shut down during the period 2003-2014. Using an unbalanced panel has small

effects on the treatment estimates (see row 11). When plants shut down, they exit dataset.

This could mean that the overall effect of CAIR is understated, as plants that shut down

in principle generate zero emissions. To take this into account, we construct a modified

dataset where we impute zero SO2 and NOx emissions for plants that shut down (see row

12). Imputing the zeros leads to a slightly higher treatment effect for SO2 (compared to the

unbalanced panel), while the effect on NOx is mixed.

The density curves in Figure B.4 show that there is not a complete overlap in the outcome

variables across the treatment and control group. To try to account for this, we restrict the

sample by dropping the top and bottom 1, 5 and 10 percentiles of the distribution (see rows

13-15). Overall, the treatment effects in log points in the different samples are somewhat

lower than the baseline. The treatment effects in levels are substantially lower, partly due to

a lower pre-treatment mean of the dependent variable.
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B.4 Robustness checks: heterogeneous effects

B.4.1 Summary of robustness checks

Table B.11 presents results from a battery of robustness checks. Each row in the table reports

the slope β̂2 estimated from equation 2.7.

Table B.11: Heterogeneous effects, by median income. Robustness checks.

Heterogeneous effect

No. Specification log SO2 log NOx

1 Baseline -0.0142∗∗∗ -0.00466∗∗

2 Control for pre emissions level -0.0141∗∗∗ -0.00539∗∗

3 Drop bottom and top 1 pct -0.0147∗∗∗ -0.00623∗∗

4 Drop bottom and top 5 pct -0.0173∗∗∗ -0.00671∗∗∗

5 Drop bottom and top 10 pct -0.0159∗∗ -0.00660∗∗∗

6 0.5 mile radius -0.0130∗∗∗ -0.00483∗∗

7 2 mile radius -0.0168∗∗∗ -0.00404
8 3 mile radius -0.0190∗∗∗ -0.00435
9 10-14 Census -0.0111∗∗ -0.00322
10 2000 Census -0.0119∗ -0.00187
11 Control for high school -0.0147∗∗∗ -0.00639
12 Control for college degree -0.0135∗∗ -0.00564
13 Control for % Blacks -0.0151∗∗∗ -0.00523∗∗

14 Control for % Hispanics -0.0145∗∗∗ -0.00501∗∗

15 Control for SO2 AQI -0.0150∗∗∗ -0.00458∗

16 Control for O3 AQI -0.0161∗∗∗ -0.00473∗

17 Control for population density -0.0139∗∗∗ -0.00487∗∗

18 Exclude deregulated plants -0.0174∗∗∗ -0.00305

Notes: Each row shows the interaction term β2CAIRj,t ×Demoj estimated from equation 2.7. The baseline sample is a
balanced sample (2003-2014) of non-gas units. We restrict the sample to the years 2004-2005 (pre) and 2009-2014 (post).
For NOx we only use the winter months. All regressions include facility fixed effects and month-year fixed effects. Standard
errors are clustered at the state level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Including an interaction term between pre-treatment emissions levels and post have mi-

nor effects on the estimate (see row 2). Restricting the sample by excluding the top and

bottom 1, 5 and 10 percentiles slightly increase the estimated interaction terms (see rows

3-5). Expanding the circle radius around the power plants to 2 and 3 miles increases the

estimated slope for SO2 somewhat, while shrinking the circle to 0.5 mile lowers the estimate
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(see rows 6-8).10 For NOx, the interaction term is less precisely estimated when expanding

the radius to 2 and 3 miles.

Using the 2014 American Community Survey, which is based on the 5-year average from

2010-2014, leads to a slightly less steep but still significant slope coefficient for SO2 (see

row 9). For NOx the interaction term is no longer statistically significant. The American

Community Surveys only dates back to 2009, which provides an average from 2005-2009.

However, before this there were decennial surveys. The last one was conducted in they year

2000, and reports values from 1999. Using the median income from the 2000 Census, the

interaction term for SO2 is about the same as for the 2014 ACS (see row 10). The coefficient,

however, is less precisely estimated. For NOx there is no heterogeneous effect when using

the 2000 Census.

Next, we include controls for education and share of minorities to see to what degree

the different variables are picking up the same effects. Controlling for education has small

impacts for SO2, while it lowers the precision for NOx (see rows 11-12). Controlling for

minorities (% blacks and % Hispanics) also has little effect on the interaction term (see rows

13-14). This suggests that income and race/ethnicity may have separate effects.

What is more, we control for measures of the ambient air quality and population density,

which can be seen as proxies for the marginal damage of pollution in the area around the

power plants. This has minor effects of the estimated slope coefficients (see rows 15-17)

Lastly, we exclude all deregulated plants from the sample to ensure that differential own-

ership structure across neighborhoods is not driving the results.11 This leads to a slightly

stronger heterogeneous effect for SO2, while the slope coefficient for NOx is smaller and

insignificant (see row 18).

Overall, the heterogeneous effect is large and robust for SO2, while small and not very

10Expanding the circle radius means that we calculate weighted neighborhood characteristics for a larger
area around the power plant.

11As previously noted, deregulated plants tend to react differently to stricter regulation than publicly owned
ones (Fowlie, 2010; Cicala, 2015).
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robust for NOx. In addition to the robustness checks presented above, we estimate non-

linear versions of the heterogeneous effects for the three income measures. The results are

presented in Appendix B.4.2, and show similar patterns as the linear specification.

B.4.2 Non-linear specifications

Figure B.7: Non-linear effects of CAIR on emissions, by three income measures.

log SO2 log NOx

Notes: Figures plot the treatment effects for different income bins estimated from equation 2.9. The dependent variable yj,t
is log SO2 emissions (first column) or log NOx emissions (second column). The horizontal axis indicates different values
of the demographic variable Demoj . The y-axis reports the net treatment effects. Vertical lines represent 95% confidence
intervals. Standard errors are clustered at the state level in all regressions. The sample is balanced over the period 2003-
2014, restricted to non-gas units and to the years 2004-2005 (pre period) and 2009-2014 (post period). Demographic
variables are from the 2005-2009 American Community Survey (ACS).
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B.4.3 Investigating group-specific pre-trends

One might worry that low and high income neighborhoods were on very different paths prior

to the policy implementation. If this was the case, the heterogeneous effects might merely

reflect an underlying trend for the two groups. To investigate this, we focus on CAIR facilities

located in neighborhoods with a median income either below the 25th percentile or above the

75th percentile. We then plot the development in mean emission levels of facilities in the

two groups, as well as estimate the leads and lags versions of the DiD (equation 2.4) for

the two groups separately. The results are shown in Figure B.8. Panel (a) reveals fairly

similar pre-treatment trends for the two income groups. Panels (b) and (c) show that the Rule

induced larger reductions in SO2 emissions for the high income group. For NOx there was a

significant treatment effect for both the high and low income groups (see panel (e) and (f)).
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Figure B.8: Trends in emissions and average yearly treatment effects, by high and low me-
dian income

(a) CAIR: log SO2 - 75th/25th (b) DiD, CAIR<25th percentile (c) DiD, CAIR>75th percentile

(d) CAIR: log NOx - 75th /25th (e) DiD, CAIR<25th percentile (f) DiD, CAIR>75th percentile

Notes: Panel (a) shows the mean of log SO2 emissions by month-year for CAIR facilities located in neighborhoods with
median income in the 25th percentile (dashed line) and median income in the 75th percentile (solid line). Panel (d) depicts
the same for log NOx emissions. Panel (b) and (c) reports the coefficients

∑M
m=0 β̂−m and

∑K
k=1 β̂+k estimated from

equation 2.4 (DiD), but where we restrict the treatment group to facilities located in neighborhoods with median income
in the lower 25th percentile (b) or in the upper 75th percentile (c). Panel (e) and (f) shows the same, only for log NOx

emissions. Standard errors in all regressions are clustered at the state level. The gray areas are 95% confidence intervals.
The sample is balanced over the period 2003-2014 and is restricted to non-gas units. Demographic variables are from the
2005-2009 American Community Survey (ACS).

B.4.4 Taking into account plant shutdown

Up until now, the analysis has focused on plants that did not shut down during the treatment

period. In the following subsections, we investigate effects of the CAIR on the probability of

a plant shutting down, and whether this probability varies with neighborhood demographics.

We then test if results on emissions are robust to the inclusion of power plants that shut down.

Are power plants in low-income areas more likely to shut down?

To investigate the effects of the CAIR on plants retiring, we construct a time-varying, binary

variable labeled shutdown that takes the value of 0 if a plant is operative in a given year
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and a value of 1 if the plant shuts down in a given year. Using a linear probability model,

we estimate the effect of CAIR on the probability of a plant shutting down in a given year.

Results from the estimation are presented in Figure B.9, and reveal that non-gas plants located

in low-income neighborhoods are more likely to shut down. For high-income neighborhoods,

the probability is close to zero and not statistically significant. For gas power plants, the CAIR

did not affect the probability of a plant shutting down (see Figure B.9b).12

Figure B.9: Heterogeneous treatment effects on facility shutdowns, by median income

(a) Pr(coal/oil shutting down) (b) Pr(gas shutting down)

Notes: Panel (a) shows the estimated probability of a coal or oil plant shutting down, while panel (b) shows the estimated
probability of a gas plant shutting down. The solid blue lines in both figures are the estimated net treatment effects using
the empirical specification in equation 2.7, i.e., β1 + β2 × Demoj . The solid black lines hence show the estimated net
treatment effect given the different values of the demographic variable indicated on the horizontal axis. The outcome
variable is a binary variable indicating plant shutdown in a given year. Standard errors are clustered at the state level. The
histogram of the demographic variable is shown in the background. Dashed lines represent 95 percent confidence intervals.
Demographic variables are from the 2005-2009 American Community Survey (ACS). All demographics are constructed
for 1 mile radii circles around the power plant.

Why are plants in poorer areas more likely to shut down?

Owners may decide to shut down their power plants as a response to the CAIR. They could

make such a decision if under any positive retirement date (Tr,i), the cost minimization prob-

lem yields zero or negative present value profits. Given uncertainty around the price profile

of allowances (pt), owners may find upfront investments in abatement technology too expen-

12We also estimate the effects of non-gas and gas plants opening up, and find that the CAIR lowered the
probability of a non-gas plant opening up, but the effect does not vary with income. For gas plants, the effect is
not statistically different from zero.

159



APPENDIX B. APPENDIX TO CHAPTER 2

sive or too risky.13 Power plants located in poorer areas could face such constraints in higher

proportion than plants in higher income neighborhoods.14 Beyond financial constraints, the

local population may also put pressure on plant owners to install technology instead of shut-

ting down, as the latter could result in job losses. If such pressure is stronger in more af-

fluence neighborhoods, it could help explain the lower probability of shutdown in higher

income areas. These proposed explanations remain conjectures, as it is difficult to test for

such mechanisms.

B.4.5 Different circle radii. Reduced form

Table B.12: Effects of CAIR markets on socioeconomic variables. 0.5 mile radii

House Rent Income Poor College PopDen
Coal*post 0.0580∗∗ -0.000863 0.0339 -0.0128 0.00973∗∗ -0.00134

(0.0221) (0.0328) (0.0253) (0.00819) (0.00455) (0.00371)
Obs 1284 1168 1286 1286 1302 1300
Number of facilities 642 584 643 643 651 650
Clusters (state) 24 24 24 24 24 24
Mean dep.var (pre) 11.67 6.571 3.850 0.131 0.215 0.148

Notes: Balanced sample (2003-2014). Both non-gas and gas units. Units are averaged over facility. The outcome variable
is the log of demographics variables from the 2009 and 2014 American Community Survey (ACS). All regressions include
an interaction term between post and state ID and post and log of the demographic variable. Standard errors clustered at the
state level in parenthesis.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

13Only 15% of plants shutting down during the CAIR had installed scrubbers.
14E.g., they may face higher costs of upgrading technology, or binding budget constraints.
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Table B.13: Effects of CAIR markets on socioeconomic variables. 2 mile radii

House Rent Income Poor College PopDen
Coal*post 0.0374∗∗ 0.00470 0.0359∗∗ -0.0115∗∗ 0.00883∗∗ -0.00157

(0.0151) (0.0201) (0.0141) (0.00504) (0.00418) (0.00226)
Obs 1308 1282 1302 1298 1306 1302
Number of facilities 654 641 651 649 653 651
Clusters (state) 24 24 24 24 24 24
Mean dep.var (pre) 11.74 6.599 3.905 0.126 0.229 0.216

Notes: Balanced sample (2003-2014). Both non-gas and gas units. Units are averaged over facility. The outcome variable
is the log of demographics variables from the 2009 and 2014 American Community Survey (ACS). All regressions include
an interaction term between post and state ID and post and log of the demographic variable. Standard errors clustered at the
state level in parenthesis.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table B.14: Effects of CAIR markets on socioeconomic variables. 3 mile radii

House Rent Income Poor College PopDen

Coal*post 0.0216 0.00138 0.0207 -0.00946∗∗ 0.00642 -0.00111
(0.0132) (0.0173) (0.0131) (0.00381) (0.00420) (0.00185)

Obs 1306 1296 1300 1298 1308 1300
Number of facilities 653 648 650 649 654 650
Clusters (state) 24 24 24 24 24 24
Mean dep.var (pre) 11.76 6.608 3.928 0.122 0.235 0.223

Notes: Balanced sample (2003-2014). Both non-gas and gas units. Units are averaged over facility. The outcome variable
is the log of demographics variables from the 2009 and 2014 American Community Survey (ACS). All regressions include
an interaction term between post and state ID and post and log of the demographic variable. Standard errors clustered at the
state level in parenthesis.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B.5 Heterogeneous effects: potential explanations

In this section, we investigate potential hypotheses as to why policy-induced reductions in

SO2 emissions are smaller in low-income, poorly-educated and minority neighborhoods.

Pre-policy power plant characteristics

In theory, a cap-and-trade system will lead plants with lower marginal abatement costs to

reduce their emissions and sell unused allowances on the market to plants with higher abate-

ment costs. Marginal abatement costs can depend on e.g., the age, size, fuel mix, and installed

abatement technologies of the power plant. Initial levels of emissions may also be correlated

with a higher potential for emissions reductions (Fowlie et al., 2012). As the geographic dis-

tribution of socioeconomic groups is not random, we might expect systematic differences in

plant characteristics across neighborhoods.15

Table B.15: Heterogeneous treatment effects when controlling for plant characteristics

.

Heterogeneous effect

Independent variable: CAIRj,t × median incomej log SO2 log NOx
Baseline -0.0142∗∗∗ -0.00466∗∗

Control for pre emissions level -0.0141∗∗∗ -0.00539∗∗

Control for pre gross load -0.0137∗∗∗ -0.00440∗

Control for start year -0.0134∗∗∗ -0.00412∗∗

Control for pre intensity -0.0140∗∗ -0.00676∗∗∗

Control for pre technology -0.0127∗∗∗ -0.00432∗

Control for pre non-coal -0.0112∗∗ -0.00445∗

Notes: Table reports the results from 7 different regressions: each row reports the coefficient β̂2 estimated from equation
2.7, but where we control for different plant characteristics. The plant characteristics are controlled for by including an
interaction terms between CAIRj,t and the level of the plant characteristics in the year 2005. All regressions include facility
fixed effects and month-year fixed effects. Standard errors are clustered at the state level. The sample is balanced over the
period 2003-2014, includes only non-gas units and is restricted to the years 2004-2005 (pre period) and 2009-2014 (post
period). Only winter months are included in the DiD estimation for NOx. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

To see if systematic differences in plant characteristics can explain the pattern of smaller

SO2 reductions in low-income neighborhoods, we re-estimate equation 2.7 for median in-

15In particular, previous studies have found that lower socioeconomic groups tend to scatter around dirtier
emissions sources (Hanlon, 2014; ?). If dirtier emissions sources also have higher marginal abatement costs,
the finding that the new rule triggered larger reductions of SO2 emissions for power plants located in relatively
richer neighborhoods may reflect such historical sorting.
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come, but control for a variety of plant characteristics that are likely to be associated with

abatement costs. Specifically, we include separate interaction terms between the treatment

variable (CAIRjt) and initial plant characteristics. The coefficients of the interaction term

CAIRjt×Demoj for different regressions are presented in Table B.15.16 The results suggest

that plant characteristics cannot account for the observed heterogeneity in reductions of SO2

emissions under the CAIR. Controlling for pre-policy emissions levels, gross load, age, emis-

sions intensity and technology stock all have minor effects on the slope β̂2 estimated from

equation 2.7. However, controlling for the primary fuel category (oil versus coal) slightly

attenuates the effect of income. This suggests that the income variable is partly picking up

on systematic differences in fuel input. If the marginal abatement cost is lower for oil plants

than coal plants, this could explain some of the differences across facilities located in rich

and poor neighborhoods.

16Summary statistics by high and low median income is provided in Table B.7, and show that plant char-
acteristics for the two groups are very similar. The only variables that are statistically different across the two
groups are the share of facilities using coal or oil as their primary input: relatively richer neighborhoods have a
higher share of facilities relying on oil instead of coal as the primary input.
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Figure B.10: Heterogeneous treatment effects on technology adoption, by poverty rate

(a) SO2 technology (any) (b) NOx technology (any)

Notes: Figures show the estimated treatment effect of the CAIR on technology adoption. The solid blue lines in both
figures are the net treatment effects β̂1 + β̂2 × Demoj estimated from equation 2.7 (DiD). The dependent variable yj,t
is a binary variable indicating the installation of any SO2-specific technology (panel a) or NOx-specific technology (panel
b). Both regressions include an interaction term between CAIRj,t and the pre-treatment technology stock. The horizontal
axis indicates different values of the demographic variable Demoj , where a histogram of the variable is shown in the
background. The left y-axis reports the density of Demoj in percent, while the right y-axis reports the net treatment
effects β̂1 + β̂2 × Demoj . Dashed lines represent 95% confidence intervals. Standard errors are clustered at the state
level in all regressions. The sample is balanced over the period 2003-2014, includes only non-gas units and is restricted to
the years 2004-2005 (pre period) and 2009-2014 (post period). Demographic variables are from the 2005-2009 American
Community Survey (ACS). Below poverty level is defined at the share of people living below the poverty level within a 1
mile radius of the power plant. The demographic variable is constructed for 1 mile radii circles around the power plants.
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C.1 Additional figures and tables

Figure C.1: The geography of local air pollution improvements

(a) Mineral Dust

(b) Sea Salt

(c) Black Carbon

(d) Organic Matter

Notes: The maps display air concentrations of major air pollutants produced by industrial activity. The left panels represent
yearly average air concentrations in the year 2000, and the right panels represent yearly average air concentrations for year
2016. For each pollutant, scales for left and right panels are identical. Geographic resolution is of 0.01 by 0.01 degrees
(approximately 1km by 1km).
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Figure C.2: Evolution of US population exposure to air pollution

(a) Particulate Matter (b) Sulfate (c) Ammonium (d) Nitrate

(e) Black Carbon (f) Organic Matter (g) Mineral Dust (h) Sea Salt

Notes: The figures display the population-weighted averages over the contiguous United States.
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Table C.1: Correlations between pollutants—across years

Pollutant Particulate Matter Nitrate Sulfate Ammonium Black Carbon Organic Matter Mineral Dust Sea Salt

Particulate Matter 1

Sulfate 0.709 1

Ammonium 0.864 0.800 1

Nitrate 0.697 0.175 0.669 1

Black Carbon 0.727 0.207 0.533 0.690 1

Organic Matter 0.668 0.146 0.425 0.671 0.846 1

Mineral Dust 0.159 -0.121 -0.079 0.093 0.239 0.312 1

Sea Salt 0.170 -0.079 -0.037 0.153 0.146 0.211 0.074 1

Notes: The table displays correlations between every pollutant in the dataset. Correlations were computed across block-
groups from the 2010 census, and across years 2000 to 2016. Data are derived from
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Figure C.3: Monitoring stations measurements

(a) Number of Monitoring Stations (b) Evolution of Monitoring Stations Measures

Notes: Subfigure (a) plots the number of counties that have at least one monitor for PM2.5 (in blue) and the number of
counties with no monitors (black). The x-axis represent the quartiles of counties, ranked by satellite imagery pollution
measures in 2005. Subfigure (b) plots the average monitoring station measures for PM2.5 pollution for counties that have
monitors in each of the quartiles of the distribution of satellite imagery pollution measures across years.

Figure C.4: Location of monitoring stations — PM2.5

Notes: Each dot represents the location of one EPA monitoring station taking measurements of PM2.5 concentrations.
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C.2 Additional results

Table C.2: Treatment effects of PM2.5 concentration on real estate prices—County

(1) (2) (3) (4) (5) (6)
Panel A - Corelogic/Satellite
House Prices -1.159∗∗∗ -1.378∗∗∗ -1.291∗∗∗ -1.291∗∗∗ -1.291∗∗∗ -1.157∗∗∗

(0.095) (0.114) (0.082) (0.082) (0.082) (0.091)

N 31,874 31,874 31,874 31,874 31,874 27,443
Adjusted R2 0.01 0.09 0.10 0.10 0.10 0.07
Number of Units 2,296 2,296 2,296 2,296 2,296 2,290
Number of Clusters 48 48 48 48 48 48

Panel B - Corelogic/Monitoring Stations
House Prices -1.064∗∗∗ -1.259∗∗∗ -0.751∗∗∗ -0.751∗∗∗ -0.751∗∗∗ -0.529∗∗∗

(0.131) (0.139) (0.143) (0.143) (0.143) (0.128)

N 7,335 7,335 7,335 7,335 7,335 6,809
Adjusted R2 0.02 0.06 0.07 0.07 0.07 0.07
Number of Units 698 698 698 698 698 693
Number of Clusters 48 48 48 48 48 48

County FE X X X X X
State Trends X X
Temperatures Data X X X X
Demographics X X X
NAAQS dummies X

Notes: This table reports regression coefficients from 12 separate regressions, 6 per panel. The dependent variable is the
log of the county-average sale prices from corelogic. The independent variables includes measures of PM2.5 concentrations
derived from satellite imagery (Panel A) or monitoring stations measures (Panel B). I restrict monitoring stations measures
derived from the Federal Reference Method, to allow comparison accross monitors. All variables are averaged at the
county-year level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C.3: Treatment effects of PM2.5 concentration on real estate prices—Block

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Controlling for all other pollutants
House Values -0.973∗∗∗ 0.758∗∗ -1.109∗∗∗ -1.109∗∗∗ -0.005 -0.799∗∗∗ -0.799∗∗∗ -0.654∗∗∗ 0.040

(0.009) (0.326) (0.181) (0.181) (0.088) (0.216) (0.216) (0.192) (0.075)

N 1,802,716 1,802,334 1,800,263 1,800,263 1,799,855 1,796,353 1,796,353 1,796,353 1,795,945
Adjusted R2 0.02 0.43 0.64 0.64 0.72 0.64 0.64 0.64 0.72
Number of Units 149,652 149,650 147,199 147,199 147,172 146,905 146,905 146,905 146,878
Number of Clusters 47 47 47 47 47 47 47 47 47

Block Group FE X X X X X X X
CBSA FE X X X X X
CBSA Trends X X X
Temperatures Data X X X X
Demographics X X X
NAAQS dummies X

Notes: This table reports regression coefficients from 9 separate regressions from equation 3.1. Controls for measures of all
pollutants in the satellite-derived dataset are included. Coefficients are reported for PM2.5, controlling for concentrations
of black carbon, amonium, nitrate, sea salt, dust, organic matter and sulfate.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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