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ABSTRACT

Sustainable dairy cow performance relies on coevo-
lution in the development of breeding and manage-
ment strategies. Tailoring breeding programs to herd 
performance metrics facilitates improved responses to 
breeding decisions. Although herd-level raw metrics on 
performance are useful, implicitly included within such 
statistics is the mean herd genetic merit. The objective 
of the present study was to quantify the expected re-
sponse from selection decisions on additive and nonad-
ditive merit by herd performance metrics independent 
of herd mean genetic merit. Performance traits con-
sidered in the present study were age at first calving, 
milk yield, calving to first service, number of services, 
calving interval, and survival. Herd-level best linear 
unbiased estimates (BLUE) for each performance trait 
were available on a maximum of 1,059 herds, stratified 
as best, average, and worst for each performance trait 
separately. The analyses performed included (1) the 
estimation of (co)variance for each trait in the 3 BLUE 
environments and (2) the regression of cow-level phe-
notypic performance on either the respective estimated 
breeding value (EBV) or the heterosis coefficient of 
the cow. A fundamental assumption of genetic evalua-
tions is that 1 unit change in EBV equates to a 1 unit 
change in the respective phenotype; results from the 
present study, however, suggest that the realization of 
the change in phenotypic performance is largely depen-
dent on the herd BLUE for that trait. Herds achieving 
more yield, on average, than expected from their mean 
genetic merit, had a 20% greater response to changes 
in EBV as well as 43% greater genetic standard devia-
tion relative to herds within the worst BLUE for milk 
yield. Conversely, phenotypic performance in fertility 
traits (with the exception of calving to first service) 
tended to have a greater response to selection as well 
as a greater additive genetic standard deviation within 

the respective worst herd BLUE environments; this is 
suggested to be due to animals performing under more 
challenging environments leading to larger achievable 
gains. The attempts to exploit nonadditive genetic ef-
fects such as heterosis are often the basis of promoting 
cross-breeding, yet the results from the present study 
suggest that improvements in phenotypic performance 
is largely dependent on the environment. The largest 
gains due to heterotic effects tended to be within the 
most stressful (i.e., worst) BLUE environment for all 
traits, thus suggesting the heterosis effects can be ben-
eficial in mitigating against poorer environments.
Key words: best linear unbiased estimates, dairy, 
management, genotype by environment

INTRODUCTION

Genetic effects (i.e., additive and nonadditive) and 
environmental effects (i.e., permanent and temporary) 
as well as their interaction and, where relevant, their 
covariance, determine an animal’s phenotypic per-
formance (Visscher et al., 2008). Dairy cow breeding 
programs have focused almost exclusively on exploiting 
the additive genetic portion of the phenotype; cross-
breeding strategies attempt to also exploit nonadditive 
genetic effects. Dairy cow genetic evaluations calculate 
the EBV of traits independent of measurable manage-
ment effects through a process called BLUP.

The EBV, generally within the framework of an 
overall breeding objective, are used to rank animals as 
candidate parents of the next generation. Such ranking 
on EBV is undertaken irrespective of the environment/
management system their progeny are likely to be ex-
posed to. Moreover, the expectation is that a 1 unit 
difference in EBV should equate to a 1 unit difference 
in performance (in the average environment). The ex-
istence of genotype by environment (G × E) interac-
tions contributes to a deviation from the expectation 
and such deviations have been documented in dairy 
cattle (Craig et al., 2018), beef cattle (Ferreira et al., 
2015), and sheep (Pollott and Greeff, 2004). Previous 
studies, however, stratified herds based on performance, 

How herd best linear unbiased estimates affect the progress 
achievable from gains in additive and nonadditive genetic merit
F. L. Dunne,1,2 S. McParland,1 M. M. Kelleher,3 S. W. Walsh,2 and D. P. Berry1*
1Teagasc, Animal and Grassland Research and Innovation Center, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
2Waterford Institute of Technology, Cork Road, Waterford, Co. Waterford, Ireland X91 K0EK
3Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland P72 X050

 

Received December 7, 2018.
Accepted February 12, 2019.
*Corresponding author: donagh.berry@ teagasc .ie

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by T-Stór

https://core.ac.uk/display/231878491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 DUNNE ET AL.

Journal of Dairy Science Vol. 102 No. 6, 2019

which implicitly encapsulates the total genetic merit 
of the contributing animals. In the process of genetic 
evaluations, both fixed effects solutions (best linear un-
biased estimates; BLUE) and random effects solutions 
(BLUP) are generated, each being independent of the 
other. Therefore, arguably, a more logical strategy to 
quantify the extent of G × E interactions would be 
to compare the expected response to selection across 
herds divergent on BLUE. To our knowledge, there is 
a void in the scientific literature on such an approach. 
Furthermore, interest in dairying is intensifying in 
crossbreeding strategies as a means to introduce added 
benefit from the resulting heterosis; whereas the pres-
ence of heterosis by environment (H × E) interactions 
has been cited in dairy cow populations (Bryant et al., 
2007; Penasa et al., 2010; Kargo et al., 2012), there 
is a paucity of information on such interactions where 
the environments investigated are based on herd-level 
BLUE.

The objective of the present study was first to inves-
tigate the existence of G × E interactions across fertil-
ity, production, and survival traits by stratifying herds 
based on BLUE performance rather than phenotypic 
performances, thus excluding genetic effects. Second, 
the results from the present study aim to estimate the 
gains achievable when improving animal-level breed-
ing values within 3 environments stratified on BLUE. 
Finally, the third objective of the present study was to 
identify the type of environment (e.g., superior versus 
poor) stratified on BLUE that expressed nonadditive 
genetic effects such as heterosis and estimate gains at-
tainable within each environment from heterotic effects.

MATERIALS AND METHODS

Data used in the present study were obtained from 
the Irish Cattle Breeding Federation national database, 
Bandon, Co. Cork, Ireland (http: / / www .icbf .com).

Quantifying BLUE

The Irish national fertility genetic evaluation for 
dairy cows is a 23 × 23 multi-trait and multi-breed 
evaluation operated using the Mix99 software suite 
(MiX99 Development Team, 2015) in which each par-
ity is treated as a separate trait. Traits evaluated in 
the multi-trait evaluation include age at first calving 
(AFC; i.e., the number of days from birth to first calv-
ing), milk yield (kg; based on a 305-d lactation yield) for 
parity 1 to 5 inclusive, calving to first service interval 
from parity 1 to 3 inclusive (CFS; i.e., the number of 
days from calving to the cow receiving her first service), 
number of services (NS) from parity 1 to 3 inclusive, 
and calving interval from parity 1 to 5 inclusive (CIV; 

i.e., the number of days between subsequent calving 
events). Survival is evaluated as a binary trait based 
on parity 1 to 5 (inclusive) and is recorded as 1 for 
lactation x − 1 where a recorded calving date existed 
for lactation x, otherwise as 0 (Berry et al., 2013). 
Fixed effects included in all models are age at calving 
(unless age at first calving is the dependent variable), 
heterosis, and recombination loss coefficients; heterosis 
coefficients were split into separate Holstein × Friesian 
(HO × FR), Holstein × Jersey (HO × JE), Holstein 
× Montbelliarde (HO × MO), Holstein × Meuse 
Rhine Yssel (HO × MY), and Shorthorn × Holstein-
Friesian (SR × HF) coefficients. Contemporary group 
of herd-year-season of calving or birth (AFC) is also 
included as a fixed effect. Within the genetic evalua-
tion, contemporary group (HYS) effects are defined us-
ing methodology outlined in Berry et al. (2013) formed 
based on algorithms proposed by Schmitz et al. (1991) 
and Crump et al. (1997); animals within the same herd 
are grouped based on their calving dates or birth dates 
(in the case of AFC). The fixed effects and random 
effects solutions of 3,445,158 dairy cows were obtained 
from the August 2017 national genetic evaluation for 
use in the present study.

Data Editing for Herd-Level BLUE

Contemporary group BLUE for the years 2012 to 2014 
(inclusive) and individual animal EBV were extracted 
from the national genetic evaluation, for actively milk 
recording, spring-calving herds. Spring-calving herds, 
which predominate in Ireland (Berry et al., 2013), were 
defined as herds calving at least 80% of their cows be-
tween January and June (inclusive). Data from 4,129 
herds were available for analysis. Parity-level BLUE 
solutions for each trait were initially base-adjusted to 
a common base population; the base population con-
sisted of 152 milk recording herds that had a minimum 
of 3 records for AFC as well as a minimum of 4 records 
available for parity 1 to 3 inclusive for NS, CFS, and 
parity 1 to 5 for CIV, survival, and milk yield between 
the years 2012 to 2014 inclusive. A single collapsed 
herd-year BLUE for each trait was calculated as the 
average of each HYS estimate in the herd, weighted by 
the number of animal records within each HYS (Dunne 
et al., 2018). Subsequently, the single collapsed herd-
year BLUE was calculated to be relative to the mean of 
the sample population.

Herds were removed from the study if they did not 
meet the following criteria during the study period: (1) 
herds were required to have a BLUE available for all 
6 investigated traits; 2,185 herds remained; (2) a mini-
mum of 5 records within each contemporary group were 
required for at least 2 of 3 parities for CFS or NS, and 
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4 of 5 parities for CIV, SU, and milk yield (Dunne et 
al., 2018); 1,911 herds remained; and (3) herds were re-
quired to have phenotypic data available on a minimum 
of 45 animals and 30 calving events per year; where 
AFC was the trait analyzed, herds were required to 
have at least 10 heifers calving for the first time each 
year. The final data set consisted of 1,764 herds with 
124,352 animals available for the AFC analysis and 
216,270 animals available for the analysis of the other 
performance traits.

Stratifying Herd BLUE for Validation Population

A single weighted herd BLUE was calculated by av-
eraging the respective herd-year BLUE across the 3 yr 
of data. Herds were ranked on each trait separately. 
After stratifying the herd-BLUE into 5 strata, only the 
first, third, and fifth stratum which represented the 
top, average, and bottom performing 20 percentiles, 
respectively, were retained. As herd BLUE were strati-
fied based on each trait individually, herds could rank 
differently for each trait. The final data set analyzed for 
AFC, CFS, NS, CIV, survival, and milk yield contained 
1,059 herds (71,721 animals), 1,058 herds (125,736 
animals), 1,058 herds (130,607 animals), 1,059 herds 
(125,035 animals), 1,058 herds (125,934 animals), and 
1,058 herds (131,695 animals), respectively.

The phenotypic records of animals within the re-
tained herds were masked and the genetic evaluation 
rerun with the remaining 3,234,629 animals; this was 
done to generate EBV for animals within the retained 
herds without their own performance data contributing 
to their EBV. The EBV generated from the subsequent 
genetic evaluation were then base-adjusted to a base 
population of 414 Holstein-Friesian AI sires that were 
born between 2000 and 2005, inclusive.

Statistical Analyses

Two separate approaches were used to quantify 
the extent of G × E interactions. First (co)variance 
component analyses were undertaken using a series of 
within-trait bivariate sire linear mixed models in AS-
Reml (Gilmour et al., 2009) where the phenotypic per-
formance in each herd BLUE stratum was considered a 
different trait. The linear mixed model applied to each 
trait was
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in which Yijklmnx = the observed phenotypic performance 
for AFC, CFS, NS, CIV, survival, or milk yield of ani-

mal i in a given BLUE stratum; HYSj = the fixed effect 
of contemporary group; Parityk = the fixed effect of the 
kth parity (i.e., 1, 2, 3, 4, 5) of the animal i (not in-
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representing the recombination coefficient m of animal 
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A the additive genetic relationship matrix among sires; 
eijklmno = random residual effect, where e N e~ ,0 Iσ2( ) 
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2 representing the residual variance with a sepa-
rate residual variance fitted for each BLUE stratum 
and I representing the identity matrix. While a sepa-
rate residual variance was estimated in each environ-
ment, no residual covariance was assumed between re-
cords in the different environments. Therefore, the de-
tailed (co)variance structure for a 2-trait bivariate 
analysis between trait x and y was
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where A is the numerator relationship matrix; σsx
2 , σsy

2 , 

σsxy , and σsyx  represent the sire genetic (co)variance 

parameters of the sires in BLUE stratum x and y, re-
spectively; and σex

2  and σey
2  are the residual variance in 

BLUE stratum x and y, respectively. The estimated 
genetic variance in each stratum was obtained as 4 
times the estimated sire variance. Whether the vari-
ance components in each herd BLUE stratum differed 
from each other was determined using a likelihood ratio 
test of nested models comparing an unconstrained 
model to a model where the genetic variance in each 
stratum of the bivariate analysis was constrained to be 
equal. Heritability estimates were calculated using AS-
Reml (Gilmour et al., 2009) by dividing the genetic 
variance (i.e., 4 times the sire genetic variance) by the 
phenotypic variance (i.e., the sum of the residual and 
genetic variance).

In the second analysis strategy, multivariate linear 
regression models were used to regress each phenotypic 
performance trait on its respective EBV in each of the 
3 BLUE strata for all performance traits using PROC 
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MIXED in SAS 9.4 software (SAS Institute Inc., Cary, 
NC). The linear regression model fitted for all traits 
was

 

Y HYS Parity BLUE Heterosis

age B

ijklmnop j k l
m

m

n

n

= + +

+ +

=

=

∑

∑

|
1

6

1

2

LLUE EBV BLUE recombintation

e

l o l p

ijklmnop

+

+ ,

where Yijklmnop = the observed phenotypic performance 
for AFC, CFS, NS, CIV, survival, or milk yield of 
animal i in BLUE stratum l; HYSj = the fixed contem-
porary group effect; Parityk = the fixed effect of the 
kth parity (i.e., 1, 2, 3, 4, 5) of animal i (not included 
when the dependent variable was AFC); BLUEl = the 
fixed effects of lth BLUE stratum (n = 3); Heterosism 
= the covariate representing the heterosis coefficient 
m of animal i for the breed crosses HO × FR, HO 
× JE, HO × MO, HO × MY, SR × HF, and other; 
agen = the covariate of age (linear and quadratic) of 
animal i (not included when the dependent variable 
was AFC); EBVo = the estimated breeding value o for 
animal i; recombinationp = the covariate representing 
the total recombination coefficient value p of animal i; 
and eijklmnop = the residual error effect.

RESULTS

Mean phenotypic performance for all traits improved 
as the respective herd mean BLUE stratum improved 
(Table 1). Similarly, the mean EBV for 305-d milk 

yield improved as herd stratum for mean milk BLUE 
improved, differing by 163 kg between the best and 
worst strata. Herds with the shortest EBV for AFC 
and CIV were within the respective average stratum, 
the longest (i.e., worst) EBV for AFC was within the 
best stratum, whereas the longest (i.e., worst) EBV for 
CIV was within the worst stratum (Table 1). The mean 
EBV for CFS was longest (i.e., worst) in the best stra-
tum for CFS, whereas no differences existed between 
the average and worst strata for CFS (P = 0.535). The 
mean EBV for NS differed (P < 0.05) between the 3 
BLUE strata for NS, whereas the EBV for survival only 
differed (P < 0.001) between the best and worst herd 
BLUE strata for survival (Table 1).

G × E Interactions

The largest genetic standard deviation for AFC was 
within the worst stratum for AFC, being 2.5 times 
greater (P = 0.001) than the genetic standard deviation 
of AFC in the average stratum. As the BLUE for milk 
yield improved, the genetic standard deviation of milk 
yield increased by a factor of 1.43 (P < 0.001) between 
the worst and best strata for milk yield (Table 2). The 
genetic standard deviation for NS was 3.25 times larger 
(P < 0.001) in the worst NS BLUE stratum than in 
the best stratum for NS BLUE. No differences existed 
in the genetic standard deviation of survival between 
the 3 BLUE strata for survival (Table 2). With the 
exception of AFC, the genetic correlations between 
strata for the remaining traits were all ≥0.827, thus 
indicating that re-ranking effects are absent across the 
different BLUE strata (Table 2). Genetic correlations 

Table 1. Mean (SD in parentheses) phenotypic performance, herd best linear unbiased estimate (BLUE), and EBV of animals within herds 
stratified as best (top 20%), average (middle 20%), and worst (bottom 20%) for the BLUE of the respective performance trait

Trait  Mean

Herd rank

Best Average Worst

Age at first calving (d)  Phenotype 727.10 (34.51)a 743.59 (55.30)b 809.63 (133.29)c

 BLUE −35.16 (7.17)a −18.70 (11.87)b 47.23 (66.80)c

 EBV 10.31 (4.86)a 9.86 (4.81)b 10.04 (5.14)c

Milk yield (kg)  Phenotype 7,130.95 (1,254.17)a 6,060.68 (1,077.15)b 4,941.22 (1,081.84)c

 BLUE 1,004.88 (515.95)a −10.94 (224.23)b −1,043.69 (429.05)c

 EBV −451.33 (292.13)a −511.94 (280.94)b −614.27 (304.03)c

No. of services  Phenotype 1.132 (0.37)a 1.434 (0.68)b 1.744 (0.98)c

 BLUE −0.302 (0.10)a −0.013 (0.10)b 0.298 (0.20)c

 EBV −0.049 (0.06)a −0.050 (0.06)b −0.047 (0.06)c

Calving to first service (d)  Phenotype 67.789 (23.16)a 76.294 (21.91)b 84.299 (23.67)c

 BLUE −8.739 (5.77)a 0.325 (4.10)b 8.730 (6.64)c

 EBV −2.642 (1.89)a −2.800 (1.80)b −2.796 (1.82)b

Calving interval (d)  Phenotype 368.24 (34.35)a 376.43 (48.10)b 395.85 (83.12)c

 BLUE −11.69 (5.49)a −2.09 (6.65)b 17.45 (15.93)c

 EBV −7.02 (4.37)a −7.41 (4.46)b −6.25 (4.60)c

Survival  Phenotype 0.918 (0.27)a 0.865 (0.34)b 0.794 (0.40)c

 BLUE 0.060 (0.03)a 0.000 (0.03)b −0.072 (0.05)c

 EBV 0.007 (0.02)a 0.007 (0.02)ab 0.009 (0.02)b

a–cValues within a row with different superscripts differ (P < 0.05).
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for AFC ranged from −0.504 (between the best and 
worst stratum) to 0.514 (between the average and worst 
stratum; Table 2).

A tendency was observed for the largest residual 
standard deviation to be within the worst BLUE envi-
ronment and the smallest residual variance to be within 
the best environment for all traits with the exception 
of milk yield and CFS (Table 3). The heritability of 
milk yield increased as the herd environment BLUE 
improved ranging from 33 to 50% (Table 3). With the 
exception of CIV, the heritability estimates for the re-
maining fertility traits tended to increase as the respec-
tive environment worsened, ranging from 0.01 to 0.02 
(Table 3).

EBV Regression Analyses

The regression of phenotypic survival on the EBV 
for survival did not differ by herd BLUE strata for 
either milk yield, CIV, or CFS (Table 4). Similarly, the 
relationship between CFS phenotype and the EBV for 
CFS did not differ by BLUE strata for either CFS or 
survival (Table 4). The regression coefficient of phe-
notypic AFC on the EBV for AFC within the worst 
BLUE stratum for AFC was 4 times that in the best 
BLUE stratum for AFC.

The response in phenotypic milk yield per kilogram 
increase in milk EBV in the best milk BLUE stratum 
was 20% greater than observed in the worst milk BLUE 
stratum (P < 0.001). The regression of phenotypic CIV 
on the EBV for CIV in the best milk yield BLUE stra-
tum was 1.63 times (P < 0.001) that of the regression 
coefficient in the worst milk BLUE stratum; the cor-
responding factor for NS was 2.52 (P < 0.001). The 
improvement in phenotypic CFS regressed on the EBV 
for CFS within the worst milk yield BLUE stratum was 
1.69 (P < 0.01) times greater than that in the average 
stratum for milk yield (Table 4).

As the BLUE for CIV worsened, the regression coef-
ficient of phenotypic CIV on the EBV for CIV became 
greater, differing by a factor of 1.63 (between the best 
and average strata; P < 0.05) to 2.63 (between the 
average and worst strata; P < 0.001) compared with 
the more superior BLUE (Table 4). Phenotypic milk 
yield, CFS, and NS regressed on the respective EBV 
ranged between 1.27 (milk yield; P < 0.001) to 1.93 
(NS; P < 0.001) times greater within the worst stratum 
BLUE for CIV than the best BLUE stratum for CIV 
(Table 4).

Although no differences existed between the regres-
sion coefficients of phenotypic CFS on the EBV for 
CFS within the 3 BLUE strata for CFS, the regression 

Table 2. Additive genetic SD for each performance trait within herds stratified as best (top 20%), average (middle 20%), and worst (bottom 
20%) based on the best linear unbiased estimates (BLUE) for the respective performance trait as well as the genetic correlations (SE in 
parentheses) between the strata

BLUE trait

Genetic SD

 

Correlation

Best Average Worst Best – average Best – worst Average – worst

Age at first calving 14.05ab 12.64a 31.67b  0.275 (0.163) −0.504 (0.132) 0.514 (0.167)
Milk yield 607.65a 519.96b 423.84c  0.953 (0.014) 0.881 (0.024) 0.936 (0.016)
Calving to first service 2.39 2.23 2.83  0.869 (0.465) 0.983 (0.142) 0.827 (0.161)
No. of services 0.04a 0.09a 0.13b  0.912 (0.226) 0.960 (0.216) 0.898 (0.137)
Calving interval 3.07 5.08 6.81  0.932 (0.276) 0.961 (0.206) 0.905 (0.291)
Survival 0.03 0.04 0.05  0.982 (0.154) 0.882 (0.167) 0.887 (0.151)
a–cUsing the chi-squared test with 1 df to compare likelihood ratio test, different superscripts within a row indicate a significant difference at P 
< 0.05.

Table 3. Residual SD for each performance trait within herds stratified as best (top 20%), average (middle 20%), and worst (bottom 20%) 
based on the best linear unbiased estimates (BLUE) for the respective performance trait as well as the heritability estimates of each trait within 
the best, average, and worst strata

BLUE trait

Residual SD

 

Heritability

Best Average Worst Best Average Worst

Age at first calving 31.59a 52.63b 111.71c  0.189 (0.028) 0.057 (0.014) 0.079 (0.018)
Milk yield 802.85a 729.98b 710.48c  0.501 (0.029) 0.450 (0.027) 0.327 (0.021)
Calving to first service 18.18a 17.28b 19.44c  0.017 (0.006) 0.017 (0.005) 0.021 (0.006)
No. of services 0.36a 0.68b 0.95c  0.010 (0.005) 0.016 (0.005) 0.018 (0.005)
Calving interval 32.59a 46.66b 80.49c  0.009 (0.005) 0.012 (0.004) 0.007 (0.003)
Survival 0.26a 0.33b 0.39c  0.011 (0.004) 0.013 (0.004) 0.018 (0.004)
a–cUsing the chi-squared test with 1 df to compare likelihood ratio test, different superscripts within a row indicate a significant difference at P 
< 0.05.
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coefficient of milk yield on the EBV for milk yield was 
1.10 times greater (P < 0.001) within the best BLUE 
stratum for CFS compared with the average BLUE 
stratum for CFS (Table 4). Within the best stratum 
for CFS, the regression coefficients of CIV and NS on 
the respective EBV were 1.29 (CIV; P = 0.002) and 
1.78 (NS; P = 0.001) times greater than that of the re-
spective regression coefficients within the worst BLUE 
stratum for CFS (Table 4).

Phenotypic NS regressed on the EBV for NS was 
3.52 times greater (P < 0.001) within the worst BLUE 
stratum for NS relative to the best stratum for NS, 
whereas the regression coefficient of phenotypic milk 
yield and CIV regressed on the respective EBV was 
1.21 (P < 0.001) and 2.67 (P < 0.001) times greater 
within the worst BLUE stratum for NS than the aver-
age stratum for NS (Table 4). Within the best stratum 
for NS, the regression coefficient of CFS on the EBV 
for CFS was 1.92 (P < 0.001) times greater than in 
the average stratum for NS. Conversely, within the 
average stratum for NS, the regression coefficient of 
survival on the EBV for survival was 1.28 (P = 0.01) 
times greater than that in the best BLUE stratum for 
NS (Table 4).

The response in phenotypic survival per unit increase 
in the EBV for survival was 1.30 times (P = 0.006) 

greater within the worst stratum for survival relative 
to the best BLUE stratum. Within the average stratum 
for survival, the regression coefficients of phenotypic 
milk yield and NS were 1.13 (P < 0.001) and 1.61 (P 
= 0.004) times greater, respectively, than in the best 
stratum for survival. Although the regression coeffi-
cient of CIV regressed on the EBV for CIV was 1.58 
times greater (P < 0.001) within the average stratum 
for survival in comparison to the worst stratum, no dif-
ferences existed between the best and average stratum 
for survival (Table 4).

Heterosis Coefficient Regression Analysis  
Within BLUE Stratum

The regression of phenotypic AFC on the HO × JE 
heterosis coefficient was 3.65 times greater (P = 0.04) 
within the worst BLUE stratum for AFC than within 
the best BLUE stratum for AFC (Table 5). Phenotypic 
milk yield regressed on the HO × JE heterosis coef-
ficient was greatest in the average milk BLUE stratum, 
being 4.37 times greater than in the best milk BLUE 
stratum (P < 0.001) and 1.40 times greater (P < 0.05) 
than in the worst milk BLUE stratum. The regression 
coefficient of phenotypic milk yield on the HO × FR 
heterosis coefficient was 1.86 times greater (P < 0.001) 

Table 4. Regression coefficients (SE within parentheses) of phenotypic values of each trait regressed on EBV for each respective trait across the 
best (top 20%), average (middle 20%), and worst (bottom 20%) strata of best linear unbiased estimates (BLUE)

BLUE trait  Trait

Herd rank

 P-valueBest Average Worst

Age at first calving (d)  Age at first calving (d) 0.22 (0.12)a 0.46 (0.11)a 0.88 (0.11)b ***
Milk yield (kg)  Milk production (kg) 1.16 (0.01)a 1.01 (0.01)b 0.97 (0.01)c ***
  Calving interval (d) 1.24 (0.06)a 0.82 (0.06)b 0.76 (0.06)b ***
  Calving to first service (d) 0.45 (0.06)ab 0.36 (0.06)a 0.61 (0.06)b *
  No. of services 0.83 (0.06)a 0.64 (0.07)b 0.33 (0.06)c ***
  Survival 1.15 (0.07) 0.99 (0.07) 1.10 (0.07)  
Calving to first service (d)  Calving to first service (d) 0.64 (0.07) 0.53 (0.06) 0.59 (0.06)  
  Milk production (kg) 1.28 (0.02)a 1.16 (0.02)b 1.24 (0.02)a ***
  Calving interval (d) 1.20 (0.06)a 0.78 (0.06)b 0.93 (0.06)b ***
  No. of services 0.73 (0.07)a 0.47 (0.06)b 0.41 (0.06)b **
  Survival 1.05 (0.07) 1.10 (0.07) 1.17 (0.07)  
No. of services  No. of services 0.27 (0.08)a 0.49 (0.06)b 0.95 (0.06)c ***
  Milk production (kg) 1.15 (0.02)a 1.11 (0.02)a 1.34 (0.01)b ***
  Calving interval (d) 0.79 (0.06)a 0.48 (0.06)b 1.28 (0.06)c ***
  Calving to first service (d) 0.69 (0.08)a 0.36 (0.06)b 0.59 (0.05)a **
  Survival 0.89 (0.07)a 1.14 (0.07)b 1.11 (0.06)b *
Calving interval (d)  Calving interval (d) 0.35 (0.07)a 0.57 (0.06)b 1.50 (0.06)c ***
  Milk production (kg) 1.19 (0.02)a 1.24 (0.02)a 1.51 (0.02)b ***
  Calving to first service (d) 0.38 (0.07)a 0.35 (0.06)a 0.65 (0.06)b **
  No. of services 0.42 (0.08)a 0.60 (0.06)a 0.81 (0.08)b **
  Survival 1.07 (0.08) 1.07 (0.07) 0.92 (0.07)  
Survival  Survival 0.94 (0.08)a 1.07 (0.06)ab 1.22 (0.07)b *
  Milk production (kg) 1.20 (0.02)a 1.36 (0.01)b 1.24 (0.01)a **
  Calving interval (d) 1.02 (0.07)a 1.12 (0.05)a 0.71 (0.06)b ***
  Calving to first service (d) 0.57 (0.08) 0.42 (0.06) 0.52 (0.06)  
  No. of services 0.46 (0.08)a 0.74 (0.06)b 0.59 (0.06)ab *
a–cValues within a row with different superscripts differ (P < 0.05).
*P < 0.05, **P < 0.01, ***P < 0.001.



Journal of Dairy Science Vol. 102 No. 6, 2019

BEST LINEAR UNBIASED ESTIMATES 7

in the worst milk BLUE stratum relative to the best 
stratum (Table 5). The regression of phenotypic CFS, 
NS, and CIV on the HO × JE heterosis coefficient 
was 1.86 (CIV) to 2.40 (NS) times greater within the 
respective worst BLUE stratum than the best BLUE 
stratum. Within the worst BLUE stratum for CIV, the 
regression coefficient of phenotypic CIV on the HO 
× FR heterosis coefficient was almost 12 times (P < 
0.001) that in the best BLUE stratum for CIV. Phe-
notypic survival regressed on the HO × FR heterosis 
coefficient was 4 times greater (P < 0.001) within the 
worst stratum for survival in comparison to the best 
BLUE stratum (Table 5). The regression coefficients of 
phenotypic performance on each of the heterosis coef-
ficients stemming from the breed combinations HO × 
MO, HO × MY, and SR × HF are in Supplemental 
Table S1 (https: / / doi .org/ 10 .3168/ jds .2018 -16119). 
Although a similar trend existed for all traits (with the 
exception of CIV), the associated standard errors were 
large owing to the small representation of these breed 
crosses in the data set.

Recombination Coefficient Regression Analysis 
Within BLUE Stratum

The regression of phenotypic AFC on the recombina-
tion coefficient was 4.47 times greater (P < 0.001) in 

the worst stratum than in the best stratum for AFC 
(Table 5). Phenotypic milk yield regressed on the re-
combination coefficient was 4.56 times greater (P < 
0.001) in the best BLUE stratum for milk yield than 
the respective average stratum (Table 5). The regres-
sion coefficient of phenotypic NS on the recombination 
coefficient was 2.4 times greater (P < 0.001) in the 
opposite direction within the best BLUE stratum than 
in the worst BLUE stratum for NS (Table 5). Phe-
notypic survival regressed on the recombination coef-
ficient ranged from 0.00 (in the average stratum) to 
−0.043 (in the best stratum; Table 5).

DISCUSSION

Breeding programs tailored to the requirements of in-
dividual dairy producers are increasingly sought after. 
The expected performance of the progeny from a given 
mating is traditionally predicted from the EBV of the 
progeny converted to a deviation from the mean pheno-
typic performance of the base animal; such an approach 
assumes that a 1 unit difference in EBV equates to a 
1 unit phenotypic difference for that trait. Similarly, if 
the progeny is crossbred, then a predetermined heterosis 
effect is added to the respective predicted phenotypic 
performance to generate an estimate of expected per-

Table 5. Linear regression coefficients of phenotypic performance for each trait on Holstein × Friesian heterosis coefficient (HO × FR), Holstein 
× Jersey heterosis coefficient (HO × JE), and recombination coefficient within each herd best linear unbiased estimate (BLUE) stratum 
including the significance of the interaction

BLUE trait

Herd rank

 P-valueBest Average Worst

Age at first calving (d)     
 HO × FR −3.08 (2.88) −2.70 (2.65) 4.54 (2.74)  
 HO × JE −3.98 (2.58)a −7.12 (3.13)ab −14.53 (4.34)b *
 Recombination −10.70 (3.66)a −11.93 (3.6)a −47.83 (4.28)b ***
Milk yield (kg)    
 HO × FR 180.34 (15.96)a 224.09 (16.08)a 336.06 (16.12)b ***
 HO × JE 48.62 (30.34)a 212.60 (21.87)b 151.36 (14.89)c *
 Recombination −357.52 (30.34)a −78.35 (28.15)b −127.3 (22.94)b ***
Survival    
 HO × FR 0.01 (0.01)a 0.02 (0.01)a 0.04 (0.01)b ***
 HO × JE 0.03 (0.01) 0.04 (0.01) 0.04 (0.01)  
 Recombination −0.04 (0.01)a 0.00 (0.01)b −0.02 (0.01)b **
No. of services    
 HO × FR −0.03 (0.02) −0.04 (0.02) −0.09 (0.02)  
 HO × JE −0.05 (0.03)a −0.05 (0.02)a −0.12 (0.02)b ***
 Recombination 0.05 (0.03)a 0.05 (0.03)a −0.12 (0.03)b *
Calving to first service interval (d)   
 HO × FR −0.60 (0.56) −0.31 (0.49) 0.65 (0.52)  
 HO × JE 2.75 (0.92)a 0.13 (0.56)b −2.40 (0.51)c ***
 Recombination −1.88 (1.03) −2.10 (0.82) −2.79 (0.77)  
Calving interval (d)    
 HO × FR −0.82 (1.26)a −2.64 (1.09)a −9.77 (1.22)b *
 HO × JE −3.26 (1.91)a −3.31 (1.41)a −6.04 (1.42)a *
 Recombination 1.07 (2.30) −0.47 (1.82) −6.42 (1.95)  
a–cValues within a row with different superscripts differ (P < 0.05).
*P < 0.05, **P < 0.01, ***P < 0.001.

https://doi.org/10.3168/jds.2018-16119
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formance (Kelleher et al., 2016). Results from the pres-
ent study reveal that such simple mathematics are not 
always valid, and not only does the association between 
EBV and phenotype differ by environment, but also the 
association between the heterosis coefficient and pheno-
type differs by environment. The former phenomenon, 
commonly known as G × E, has been well publicized 
(Fikse et al., 2003; Haile-Mariam et al., 2008; Craig et 
al., 2018), whereas the latter, known as H × E interac-
tion, is less well documented in dairy cows (Penasa et 
al., 2010; Kargo et al., 2012). To our knowledge no 
study has attempted to quantify the extent of either 
G × E or H × E where the environment (i.e., E) was 
represented by a BLUE from a genetic evaluation.

Dunne et al. (2018), using a subset of the data used 
in the present study, proposed the use of herd-level 
BLUE to categorize dairy herds based on performance 
independent of genetic effects and systematic environ-
mental effects. The motivation for using the BLUE was 
to provide informed decision support systems especially 
for the identification of herds performing below their 
genetic potential and, by using the fixed effects solu-
tions from the underlying statistical model, attempt to 
explain some of the apparent inconsistencies (Dunne et 
al., 2018). Once diagnosed, the next step in a decision 
support system is to provide solutions to help improve 
herd performance. Although management strategies 
such as improved animal nutrition, vaccination, or 
greater attention to reproductive performance could 
help bridge some of the gap in the difference between 
expectation and realization, breeding strategies could 
also form part of the solution. Results from the present 
study clearly showed that the realization of breeding 
decisions is associated with the environment the animal 
is/was exposed to, and therefore incorporating such in-
formation in a mating advice tool may be beneficial in 
the prediction of realistic offspring performance. Being 
able to derive expected performance of offspring for al-
ternative scenarios may also be useful in the evaluation 
of alternative breeding strategies such as, for example, 
evaluating the benefit of a cross-breeding program.

Genetic Variability Differs by Environment

The observation of a larger genetic standard devia-
tion for milk yield in the high milk BLUE environment 
(1.43 times than that of the worst milk BLUE; Table 
2) was consistent with the greater regression coefficient 
of phenotypic milk yield on the milk yield EBV (1.2 
times greater) in the high BLUE than in the worst milk 
BLUE (Table 4); this indicates that the mean response 
to selection for milk yield is greater in the best BLUE 
for milk yield. The converse was true, however, for the 
remaining traits representing fertility (with the excep-

tion of CFS), AFC, and survival, in that the regression 
coefficient of the phenotypic performance on the respec-
tive EBV ranged from 1.30 (survival) to 4.28 (CIV; d) 
times larger in the respective worst BLUE environment 
relative to the best BLUE environment. Similarly, the 
genetic standard deviation of each trait (except milk 
yield) was 1.18 (CFS; d) to 3.25 (NS; serves) times 
larger in the respective worst BLUE environment rela-
tive to the respective best BLUE environment. Craig 
et al. (2018) reported a similar range (1.2 to 3.6 times 
greater) when estimating the genetic standard devia-
tions of fertility traits (i.e., calving rate within the first 
42 d of the calving season, calving season day, and the 
percentage mated in the first 21 d of the calving season) 
within low-fertility herd environments relative to high-
fertility environments. Low genetic standard deviations 
for survival within the best respective stratum relative 
to the worst stratum may be an indication of more 
stringent voluntary culling decisions and may explain 
why the mean EBV for survival was greatest in the 
worst stratum for survival.

The differential in genetic standard deviations and 
the regression coefficients of the phenotypic perfor-
mance on the respective EBV by environment is not 
novel and has been reported elsewhere in dairy cattle 
(Craig et al., 2018), beef cattle (Ferreira et al., 2015), 
and sheep (Pollott and Greeff, 2004). The novelty 
here, however, was that no study to date has strati-
fied environments based on BLUE and therefore there 
was an implicit link between the herd stratum for the 
performance trait and genetic merit because the mean 
genetic merit of the herds would have contributed to 
their eventual phenotypic performance; this is espe-
cially true for highly heritable traits such as milk yield. 
Dunne et al. (2018) analyzed BLUE in the form of HYS 
effects and reported that from the sum of the regression 
coefficient of BLUE and BLUP fitted through 10 yr of 
data, 69% of the improvement in phenotypic milk yield 
was as a result of BLUE effects. The greater genetic 
standard deviation of milk yield in the best BLUE milk 
yield environment therefore clearly suggests that it is 
largely a function of the superior management employed 
in these environments, which in Ireland could include 
superior grassland management but also could be due 
to increased concentrate input. From a controlled ex-
perimental study on grazing dairy cows, Coleman et al. 
(2010) documented a greater response in milk solids to 
feed intake in higher genetic merit animals (based on 
a total merit index) from either a greater inclusion of 
concentrate or grass allowance in the diet.

Greater regression coefficients of fertility phenotypic 
performances on the respective EBV within the respec-
tive worst BLUE stratum are indicative of a greater 
response to selection for fertility traits in such envi-
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ronments. Yet, unlike milk yield, where poor response 
to selection is reflective of sub-optimum management, 
the poor response to selection within the best BLUE 
fertility trait stratum is reflective of superior manage-
ment under optimal environmental conditions leading 
to animals approaching their biological limit or the 
limit of the production system (i.e., calving intervals 
of less than 365 are generally not sought at a herd 
level). Management practice obviously have an effect 
on reproductive performance as evidenced by a mean 
phenotypic difference of 27.61 d between the best and 
worse CIV BLUE despite a mean difference of less than 
1 d in EBV for CIV (Table 1).

With the exception of AFC, genetic correlations for 
the same trait in different strata were in the range 
of 0.827 (between average and worst strata for CFS 
BLUE; SE = 0.161) to 0.983 (between best and worst 
strata for CFS BLUE; SE = 0.142; Table 2). Mulder 
et al. (2006) suggested that only genetic correlations 
between environments of <0.61 justified consideration 
of a separate breeding program to optimize genetic 
gain in the different environments. Although the cor-
relations between BLUE strata for AFC were less than 
0.61, AFC is a trait that may reflect largely upon the 
breeding decisions of the manager and not necessarily 
the animal’s genetic capability; the mating of heifers 
may be suspended to have the animals calving at a 
particular time of the year, especially in seasonal calv-
ing programs (Berry et al., 2013).

Benefits of Heterosis Differ by Environment

Heterosis is a nonadditive genetic phenomenon 
whereby the performance of crossbred progeny, on av-
erage, surpasses the mid-parent mean (Simm, 1998). 
Interest in crossbreeding strategies is increasing in 
dairy cow production systems as a means to rapidly 
improve performance, especially for traits associated 
with viability and fertility (McAllister, 2002; Wall et 
al., 2005; Sørensen et al., 2008). In some populations, 
however, the additive genetic merit of one dairy breed 
may actually be substantially inferior to that of the best 
available dairy breed. A decision is therefore required 
as to whether the direct progeny performance would be 
expected to be superior if crossbreeding was embarked 
upon (taking cognizance of expected heterosis) versus 
if straight-breeding with the genetically superior breed 
was undertaken. An estimate of the mean heterosis 
effect for different breed combination can be derived 
from published studies (Dezetter et al., 2015; Coffey et 
al., 2016) or simply as the fixed effects solutions from 
routine genetic evaluations.

Results from the present study clearly demonstrate 
that the benefit of heterosis differs by environment, 

which is consistent with reports elsewhere on produc-
tion traits in dairy cows (Penasa et al., 2010; Kargo et 
al., 2012); however, there is a lack of H × E studies for 
fertility traits. Based on the results from the present 
study, (1) genetic evaluations should take cognizance of 
this H × E interaction, and (2) mating-based decision 
support systems need to apply the correct heterosis ef-
fects, based on herd BLUE, when comparing the mat-
ing of parents of the same or different breeds.

Animals within the best BLUE herds for production, 
fertility, and survival tended to experience the least 
benefit from heterosis, suggesting that heterotic effects 
are expressed more as the environment becomes in-
creasingly stressful. The extent of heterosis expression, 
however, seems to be dependent on the breed com-
position of the F1 crosses when analyzing production 
traits. Based on Friesian crosses, Penasa et al. (2010) 
reported a similar trend to the present study whereby 
the greatest heterosis benefit was within the worst 
environment for milk yield. Nonetheless, the greatest 
benefit in milk yield from heterosis when Jersey formed 
a component of the cross in the present study was 
within the average herd BLUE for milk yield, which is 
consistent with Bryant et al. (2007) and Kargo et al. 
(2012). The heterosis coefficients of the fertility and 
survival traits were consistently larger in the respective 
worst BLUE strata (i.e., more stressful environment) 
relative to the best BLUE strata. This suggests that 
not only can performance (and profit) be increased in 
herds with poor BLUE for fertility and survivability 
with the exploitation of heterosis effects, but such ef-
fects may also promote robustness and resilience among 
animals within challenging environments. Within the 
Irish national economic breeding index, calving interval 
has a negative economic value of €12.59 per day (Irish 
Cattle Breeding Federation, 2017). Therefore, the eco-
nomic benefit of heterosis in an F1 HO × FR cross is 
expected, on average, to be €123 in herds within the 
poorest BLUE for calving interval but only €10.32 in 
the herds that are best for calving interval.

CONCLUSIONS

Phenotypic performance is inherently influenced by 
both the environment and genetic effects as well as how 
both effects interact with each other. Thus, predicting 
the additive genetic merit of a progeny from a given 
mating is suggested to be too simplistic and does not 
take cognizance of the environmental factors that are 
likely to influence the realization of the genetic merit. 
By stratifying herds on BLUE for each trait, the phe-
notypic response to changes in EBV differed for milk 
yield, CIV, NS, and AFC between at least 2 of the 
3 environments investigated. Additive genetic variance 
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for milk yield, AFC, and NS was greatest within the en-
vironment that had the largest scope for improvement 
(e.g., the best herd BLUE environment for milk yield 
and the worst herd BLUE environment for AFC and 
NS). Hence, accounting for the heterogeneity of vari-
ances in the genetic evaluation process is important. 
With the exception of the HO × JE heterosis for milk 
yield, the benefits of nonadditive heterotic effects were 
greatest in the most stressful environment for each re-
spective trait. Ultimately, the results from the present 
study reiterate that heterosis is an effect that promotes 
robustness and resilience and is emphasized when con-
ditions deteriorate. Clear benefits from incorporating 
BLUE into a breeding-specific decision support tool 
can facilitate more precise breeding decisions specific 
to individual herds.
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