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1. Introduction 

 

1.1 Gene therapy 

 

Gene therapy is a promising strategy to use the genes as a therapeutic agent. It has been 

effectively used against various acquired and inherited diseases including cancer, acquired 

immunodeficiency syndrome (AIDS), cardiovascular diseases, infectious diseases, cystic 

fibrosis and X-linked severe combined immune deficiency (X-linked SCID).  

Gene therapy can be categorized into somatic and germline gene therapy. In the case of somatic 

gene therapy, the modifications in the genes are not being the part of the next generation while 

germline therapy sustains the changes in the upcoming lot [1].  

Theoretically, the gene therapy can be done by either replacing the defected gene, with a healthy 

copy of the gene or by completing the missing part of the gene to get the desired protein 

expression. However, there are several obstacles that have to be passed by therapeutic genes to 

reach their targeted sites.  

Direct administration of free nucleic acids into the tumors or intravenous delivery can be used 

for efficient delivery of therapeutic gene but the insufficiency to cross the cell membrane and 

the intracellular enzymatic degradation limit their application [2]. Thus, the main objective of 

gene therapy is to develop an efficient and non-toxic carrier system that can protect the cargo 

from enzymatic degradation and help them to pass through the plasma membrane to their site 

of action [3-5].  

 

1.2 Viral vectors 

 

For in vivo gene delivery, viruses represented the first and most efficient vector system for 

the transfer of genetic information to the cells. For this reason, a lot of attempts has been 

already made to design engineered viral vectors (lentiviruses, retroviruses, adenoviruses) to 

transfer therapeutic genes into the diseased cells [6]. Hence, by getting the benefit from viral 

life cycle, one can achieve a higher gene transfection efficiency [5] but on the other hand, 

such system can provoke a strong immune response inside the host cellular system. Therefore, 

due to the safety concerns, high cost and limitations in the sequences of the inserted gene 

restricted its application in a biological system and urged to the development of a safe and cheap 

alternative [7-9]. 
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1.3 Non-viral vectors 

 

Gene therapy with non-viral vectors was considered clinically unfeasible during the early stages 

of their development due to their poor efficiency to deliver the cargo in comparison to viral 

vector systems. However, in recent years, the continuous efforts of the researcher and the 

advancement of the techniques have brought these vectors to clinical studies.  

Non-viral vectors have several advantages over viral vectors in term of safety, non-

immunogenicity, cost-effectiveness and customized functionality. Various physical methods 

have been devised to deliver the naked gene (such as plasmid DNA) to the targeted sites 

including direct injection, electroporation, gene gun and ultrasound trigged gene delivery [10]. 

On the other hand, the gene delivery by chemical methods involves the condensation of the 

naked gene with other carriers such as cationic liposomes, [11] polycationic polymers, [12] 

aptamers, [13] conjugates, [14] nanoparticles [15, 16] and by hybrid vector systems [17, 18]. 

 

1.3.1 Plasmid based non-viral vectors  

 

Plasmid based non-viral vectors have some advantages over the viral vectors in terms of safety, 

ease of construction for large therapeutic genes and cost-effectiveness. However, the larger size 

and rapid enzymatic degradation can limit its cellular uptake and may result in lower gene 

expression [17, 19]. Therefore, a protective shielding of the plasmids can be accomplished by 

a stable complex formation with a positively charged non-viral vector system [20]. These stable 

complexes can thus efficiently cross the cell membrane and release the cargo for the desired 

therapeutic effects [2]. 

 

1.3.2 Polymer based gene delivery 

 

Among the polymers used for gene delivery research, cationic polymers are gaining more 

attention due to their ability to condense large nucleic acid molecule (polyplexes) and mask 

their negative charge to facilitate their cellular uptake [21]. Cationic polymers having the 

different chemistry of linear, branched or dendritic structure, can make a complex with nucleic 

acid by their primary, tertiary or quaternary amine groups. Therefore, the flexibility, 

monodispersity, reproducibility and facile manufacturing of cationic polymers make them a 

potential candidate for gene therapy [22]. Different polyamine polymers including polylysine 

and its conjugates [23], polyethylenimines [24, 25] and dendrimers [26-28] have been explored 
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due to their ability to form stable complex with nucleic acid via electrostatic interaction between 

the negatively charged phosphate groups of nucleic acid and terminal amino groups of the 

cationic polymers [29].  

Among the synthetic cationic polymers, poly(amidoamine) (PAMAM) dendrimer and 

polyethylenimine (PEI) are “off-the-shelf polymers” and most extensively used for efficient 

gene delivery [30]. PAMAM dendrimers, with ethylenediamine core is a safe, non-

immunogenic, well-characterized cationic system and has used for efficient therapeutic gene 

delivery [31, 32]. Contrary to PEI, which is a non-degradable polymer (with vinyl bonds in its 

backbone), PAMAM is a biodegradable polymer (with peptide bonds in its backbone) and is 

less cytotoxic than PEI [33, 34]. The primary amine groups of the PAMAM mostly participate in 

the interaction with the nucleic acid to make a stable nano-complex (dendriplexes) (Fig. 1), for 

subsequent transfection of the complexes into the cells while the tertiary amino groups act as a proton 

sponge in the endosomal environment and facilitate the release of cargo in the cytoplasm [35-38].  

However, due to their polycationic nature, they may exhibit some cytotoxicity. They can also 

interact with oppositely charged macromolecules in plasma (like heparin) to prematurely 

displacement of the nucleic acid from the complex [39], leading to their enzymatic degradation 

and lower gene expression [14].  

Some researchers have reported the unusual biodistribution of higher generation PAMAMs 

including high hepatic or renal clearance and short plasma circulation time [40]. They also 

proposed that the autophagy caused by PAMAM can be responsible for hepatocellular toxicity 

[41, 42], but the exact mechanism of PAMAM dendrimers induced hepatotoxicity is still 

unclear. On the other hand, PAMAM can also initiate the blood clot formation by disrupting 

the key platelet functions [43]. 

  

Figure 1. Schematic representation of PAMAM based dendriplex formation. 
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Many strategies have been proposed to mask the terminal amino groups inherit toxicity of 

PAMAM by modifying their physicochemical properties to make them suitable for the systemic 

application [44-46]. To shield the cationic polymeric system, the most promising approach is 

the lipid modification. A non-covalent interaction of dendriplexes with the lipid membrane has 

been proposed as a useful tool to overcome the demerits associated with this polymeric system.  

 

1.3.3 Liposomes based gene delivery 

 

Liposomal formulations are well known to deliver a variety of drugs and genetic materials to 

the intracellular system [47-49]. A cationic lipid comprised of a hydrophobic part, containing 

aliphatic chains, a cationic hydrophilic head and a linker group that combines hydrophobic part 

with the head and played an important role in maintaining lipid’s integrity [5]. Cationic lipids 

have been extensively used as non-viral gene vectors. They can condense large nucleic acid 

molecule to form stable complexes (lipoplexes) and subsequently promote transfection 

efficiency [9]. However, the in vivo use of cationic lipoplexes is hampered due to the presence 

of high positive charge and may lead to cytotoxicity. This may also induce some cellular 

changes even at the chromosomal level, like reduction in mitotic cycle number and increased 

vacuole formation in the cell cytoplasm [7, 49]. 

While neutrally or negatively charged liposomes are supposed to overcome the cytotoxicity, 

serum instability or rapid clearance by the reticular endothelial system which are the major 

hurdles for the cationic gene delivery vectors [50]. On the contrary, negative electrostatic charge 

repulsion of anionic liposome with the nucleic acid may also lead to poor entrapment of genetic 

material [51]. 

 

1.3.4 Lipodendriplexes 

 

To overcome the associated drawbacks of these two individual systems (polymeric complexes 

or liposome), a new non-viral vector system was developed by hybridization the liposome with 

the dendriplexes to get the benefits of both moieties [52]. The hybrid of these two systems 

(lipodendriplexes) can thus improve their individual demerits by reducing the associated side 

effects with enhanced gene delivery. Lipodendriplexes are novel vesicular, spherical, 

supramolecular complexes, in which PAMAM-nucleic acid complexes (dendriplexes) core has 

encapsulated within a lipid shell by a non-covalent interaction [39, 51, 53, 54]. The inner lipid 

layer may confer the biocompatibility of naked dendriplexes and also decrease chances to 
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degrade in an outer environment. The outer lipid layer provides steric stabilization and assists 

in the attachment to the cellular site [55]. Such triblock non-viral vectors exhibit dual 

interactions viz. the nucleic acid (dendriplexes formation) and also with the negatively charged 

surface of the cell membrane to facilitate its cellular internalization (Fig. 2) [54, 56]. By doing 

so, this robust platform exhibited negligible hemolytic toxicity, higher transfection efficiency 

with better in vivo tolerance, as compared to the naked dendrimeric system [57].  

 

 

 

 

Figure 2. Schematic diagram of lipodendriplex formation and its cellular internalization.          

(1) Endocytosis of lipodendriplex and release of nucleic acid into the cytoplasm. (2) Gene 

encoded DNA is transcribed in to mRNA. (3) Export of mRNA from the nucleus to cytoplasm. 

(4) Required protein expression. 
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1.4. Multidrug resistance and RNA interference 

 

Multidrug resistance (MDR) is a phenomenon to develop a cross-resistance in tumor cells 

accompanied by a decreased or altered intracellular accumulation of chemotherapeutic drugs. 

In many cases, MDR of chemotherapeutic drugs is highly associated with the overexpression 

of P-glycoproteins (P-gp), encoded by the MDR1 gene. The P-gp are overexpressed on the 

plasma membrane of the cancerous cells, where it can trigger the ATP driven efflux of most of 

the anti-tumor drugs, lead to a reduced accumulation of the drug in the targeted tumor cells and 

failure of the chemotherapy [58, 59]. However, in some other case, amplification of BCR-ABL 

gene can also play a role in the development of MDR [60].  

P-gp associated MDR can be tackled by the use of many P-gp inhibitors [61] or substrates [62], 

however, the side effects, off-targeting to tissues and interaction with many chemotherapeutic 

drugs limit their use for clinical purpose. Therefore, a safe alternative tool to downregulate the 

expression of P-gp, by silencing the MDR1 gene, can be a double-stranded small interfering 

RNA (siRNA) [63].  

P-gp is also present in the normal healthy tissue of the body and have a crucial role to perform 

different vital functions. Therefore, in order to avoid off-targeting to normal cells, the                  

si-MDR1 needs to be carefully designed to only downregulate the tumor associated P-gp [64, 

65]. 

Imatinib mesylate (IM), a BCR-ABL tyrosine kinase inhibitor [66] has been approved by FDA 

in the treatment of chronic myeloid leukemia (CML) [67]. Recently, it has also been 

investigated against other tumors like gastrointestinal stromal tumors (GIST) [68] and colon 

carcinoma [69]. Imatinib mesylate is also a substrate of P-gp, therefore the overexpression of 

P-gp and deregulation of BCR-ABL in a cell line can elicit resistance against IM [60, 70]. 

However, a sequential treatment to deliver si-MDR1 (MDR modulation) and imatinib mesylate 

(apoptotic inducer) can be a promising strategy against MDR cancer therapy [29, 71, 72]. 

Downregulation of P-gp by si-MDR1 can re-sensitize the tumor resistant cell and contributes 

to apoptotic induction of IM by increasing its intracellular accumulation (Fig. 3) [73, 74]. 
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Figure 3. MDR1 gene knockdown contribution to tyrosine kinase inhibitor (imatinib mesylate) 

induced apoptosis: (1) Generation of MDR1 gene carrier mRNA. (2) Endocytosis of si-MDR1 

complexes and release of si-MDR1 into the cytoplasm. (3) Formation of RNA induced 

silencing complex (RISC). (4) Selective silencing of MDR1 gene after binding with 

complementary mRNAs followed by P-gp downregulation leading to reversal of MDR by 

increasing the intracellular accumulation of IM and subsequent apoptosis [75].  

 

1.5 Aims and objectives 

 

The aim of the study was to establish an optimized lipodendriplexes system, using a broad range 

of lipid combination with polymeric system, to get the full benefit of liposome (enhanced 

cellular uptake and low toxicity) and PAMAM dendrimer (optimum nucleic acid complexation, 

facilitated endosomal release) for enhanced gene delivery with minimal toxicity profile. The 

formulations were characterized using dynamic light scattering, laser Doppler anemometry and 

atomic force microscopy. In vitro studies were performed to establish the transfection efficiency 

using luciferase and GFP expression assays. MTT, ROS, lysosomal disruption, DNA damage 

and hemocompatibility studies were performed to investigate the biocompatibility of the 

formulations.  
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After establishing a safe and efficient nano carrier system, the next step was to investigate 

the efficacy of the complexes for RNA interference to silence the MDR1 gene using Caco-2 

cell line (having overexpression of P-gp). By using our optimized system, we were expecting 

to (i) increased intracellular uptake of si-MDR by endocytosis mechanism, (ii) downregulation 

of P-gp expression after knockdown of MDR1 gene (iii) inhibition in MDR1 regulated cell 

migration (iv) reversal of MDR and (v) subsequently enhanced apoptosis. Therefore, a 

sequential therapy was planned, involving an efficient delivery of si-MDR1 to knockdown the 

MDR1 gene (responsible for the drug efflux mechanism) followed by the delivery of a tyrosine 

kinase inhibitor (IM), to investigate the contribution of MDR1 gene silencing for enhanced 

intracellular accumulation of drug. 

After investigating the gene silencing effects in 2D culture, a similar analysis was planned in 

3D cell culture that portrays an in vivo like situation, using tumor spheroid and ring bioprinting 

model, to further establish the efficacy of the optimized complexes.  

After establishing the in vitro safety profile of the optimized complexes, the next strategy was 

to evaluate them in preclinical environment. However, in order to reduce the exposure of 

complexes on the animal models, in ovo studies were first carried out to study the behaviour of 

formulations in CAM model.  

Afterward, the efficient and safe non-viral vectors were tested in animal models. The 

comprehensive biodistribution and acute toxicity profile of optimized complexes were studied 

in vivo using female BALB/c mice. The in vitro and in ovo profile was then correlated with      

in vivo results to get the full benefit of optimized lipid triblock nanocarrier system.

https://www.sciencedirect.com/topics/medicine-and-dentistry/in-vivo
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2.1 Materials 

 

List of materials 

 

Materials and Instruments            Sources 

A 

AFM Probe; NSC14/Al BS                           Micromasch, Tallinn, Estonia 
Ampicillin               Sigma Aldrich Chemie GmbH, Taufkirchen,   

                                                                       Germany  

Anti-luc siRNA       GE Dharmacon, Lafayette, USA 

Atomic force microscope; Nanowizard® 3   JPK Instruments AG, Berlin, Germany 

Autoclave, Tuttnauer 3850 ELC                    Tuttnauer GmbH, Linden, Germany 

B 

Bath sonicator; Transonic Digital S               Elmasonic P30H Schmidbauer GmbH,  

       Singen, Germany 

Beetle luciferin    Synchem UG & Co. KG, Felsberg, Germany 

C 
 

Caco-2 cell line                                              A kind gift from Institute for Lung Research,  

                                              University of Marburg, Germany 

Cell counter R1                                              Olympus Corporation, Tokyo, Japan 

Cell counting slides R1-SLI                           Olympus Corporation, Tokyo, Japan 

Cell Culture Lysis Reagent   Promega GmbH, Mannheim, Germany 
Centrifugation machine II    Centurion Scientific, Chichester, UK 

Cholesterol     Sigma Aldrich Chemie GmbH, Taufkirchen,  

Germany  

CO2 incubator, HeraCell   Heraus GmbH & Co. KG, Hanau, Germany 

Confocal laser scanning microscope;             Carl Zeiss Microscopy GmbH, Jena, Germany 

LSM 700 

Constant power supply LKB 2197   LKB Bromma, Bromma, Sweden  
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D 
 

DAPI Sigma Aldrich Chemie GmbH, Taufkirchen,  

           Germany 

Disposable folded capillary cell;            Malvern Instruments Ltd, Malvern, UK 

DTS1060  

DMEM       Capricon Scientific, Ebsdorfergrund, Germany 

DMSO; ≥ 99%              Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

DOPE, DOTAP, DPPC and DPPG Gift samples from Lipoid AG, Steinhausen, 

Switzerland. 

E 

Ethanol               Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Extruder; Avanti Mini              Avanti Polar Lipids Inc., Alabaster, USA 

 

F 
 

Female BALB/c, mice                                   National Institute of Health, Islamabad, Pakistan 

Fetal bovine serum       Capricon Scientific, Ebsdorfergrund, Germany 

Fertilized eggs       Mastkükenbrüterei Brormann, Rheda-          

       Wiedenbruck, Germany 

Formaldehyde        Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Fluorescence microscope I CKX-53        Olympus Corporation, Pennsylvania, USA 

Fluorescence microscope II        EVOS FL cell imaging system, Thermo  

       Scientific, San Diego, CA, USA 

G 

Gene JET Plasmid Miniprep kit         Thermo Fischer Scientific, Dreieich, Germany 

Guava®easyCyteTM       Millipore Sigma, USA 

H 
 

H2DCFDA             Sigma Aldrich Chemie GmbH, Taufkirchen,      

                                                                       Germany 
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Hatching incubator; Ehret KMB 6  Dipl. Ing. W. Ehret GmbH, Emmendingen,  

Germany 

HEK-293 cell line    ATCC®, Manassas, USA 
HeLa LG cell line    GenTarget Inc., San Diego, USA 

Hematology analyser     Icon-3, Norma Instruments, Budapest, Hungary 

Heparin sodium salt    Thermo Fischer Scientific, Dreieich, Germany 

HEPES                                                 Sigma Aldrich Chemie GmbH, Taufkirchen,  

Germany 

High Capacity cDNA Reverse                       Thermo Fischer Scientific, Dreieich, Germany 

Transcription Kit 

I 

IMDM       Capricon Scientific, Ebsdorfergrund, Germany 

J 
 

Jet prime® transfection reagent  Polyplus, Illkirch, France 

K 
 

Kanamycin                Sigma Aldrich Chemie GmbH, Taufkirchen,  

Germany 

L 

Laminar Flow Hood; Labogene   LMS GmbH &Co.KG, Brigachtal, Germany 

Liquid CO2     Praxair Deutschland GmbH, Düsseldorf,  

Germany  

Live / Dead assay staining kit   InvitrogenTM, Oregon, USA 

Low melting agarose    Carl Roth GmbH & Co. KG, Karlsruhe,  

Germany 

Luminometer; FLUOstar® Optima                 BMG Labtech, Ortenberg, Germany 

Lyso® tracker red DND-99                             Thermo Fischer Scientific, Dreieich, Germany 
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M 
 

Magnetic Stirrer; MCS 66             CAT Scientific, Paso Robles, USA 

Megafuge 1.0 R                            Thermo Fischer Scientific, Dreieich, Germany 

Mounting medium; FluorSave™            Calbiochem Corporation, San Diego, USA 

MTT dye               Sigma Aldrich Chemie GmbH, Taufkirchen,  

           Germany 

Microscopy Slides               Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Micro-Dish with inserts             Ibidi, Martius, Germany 

MPEG5000-DPPE A gift sample from Lipoid AG, Steinhausen, 

Switzerland 

Magpen                                                       Greiner Bio-One GmbH, Frickenhausen,  

                       Germany 

N 
 

Nano-100 Micro-Spectrophotometer  Hangzhou Allsheng Instruments Co., Ltd, 

Hangzhou, China 

Nano3D Biosciences NanoShuttleTM-PL     Greiner Bio-One GmbH, Frickenhausen, 

Germany 

Normal Melting Agarose Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany 

P 
 

PAMAM dendrimer, ethylenediamine  Sigma Aldrich Chemie GmbH, Taufkirchen, 

core, generation 5.0 solution   Germany 

pCMV-luc     Plasmid Factory GmbH & Co. KG, Bielefeld, 

Germany 

pCMV-GFP     Plasmid Factory GmbH & Co. KG, Bielefeld, 

Germany 
Petri Dishes; Tissue Culture grade  Sarstedt AG & Co., Nümbrecht, Germany 

Phalloidin FITC    Sigma Aldrich Chemie GmbH, Taufkirchen, 

       Germany 

Pierce BCA assay kit    Thermo Fischer Scientific, Dreieich, Germany 
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Pneumatic egg puncher    Schuett Biotech, GmbH, Göttingen, Germany 

Polycarbonate membranes   WhatmanTM plc, Buckinghamshire, UK 

PowerUp™ SYBR® Green                   Thermo Fischer Scientific, Dreieich, Germany 

Master Mix  

PURELAB flex II dispenser                           ELGA LabWater, High Wycombe, UK 

Q 

QuantStudio® 3 RT-PCR System   Applied Biosystems, Foster City, CA, USA 

R 

RNAse free water    GE Dharmacon, Lafayette, USA 

RNA dilution buffer    GE Dharmacon, Lafayette, USA 

RNeasy mini kit                Qiagen, Hilden, Germany 

Rotary Evaporator; Laborota efficient  Heidolph Instruments GmbH & Co. KG, 

4000       Schwabach, Germany 

S 

Scrambled siRNA I    GE Dharmacon, Lafayette, USA 

Scrambled siRNA II                                       Eurogentec, Seraing, Belgium 

Serum biochemical marker analyser   Micro lab 300, Merck, Germany  

Shaking Incubator; IKA KS4000 IC  IKA Werke & Co. KG, Staufen, Germany 

si-GFP                                              GE Dharmacon, Lafayette, USA 

si-MDR1     Eurogentec, Seraing, Belgium 

SKOV-3 cell cline    ATCC®, Manassas, USA 

Stereomicroscope     Stemi 2000-C, Carl Zeiss GmbH, Germany 

SYBR® Safe DNA gel stain                           Thermo Fischer Scientific, Dreieich, Germany 

 

T 

Thermo Hybaid Electro 4 gel system  Thermo Electron Corporation, Ulm, Germany  

Trans-Illuminator; BioDoc Analyse Ti5 WhatmanTM Biometra GmbH, Göttingen, 

Germany 
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Transwell chamber, 8μm pore size,   Corning, New York, USA 

polyester membrane (PET)  

Tris      Merck KGaA, Darmstadt, Germany 

Triton™ X-100    Sigma Aldrich Chemie GmbH, Taufkirchen, 

        Germany 

U 
 

UVP iBox® Explorer2TM  Analytik Jena US LLC, Jena, Germany 

V 
 

Vacuum Pump; SC 920   KNF Neuberger GmbH, Freiburg, Germany  

 
 

W 
 

Water Bath     Kottermann GmbH & Co. KG, Hänigsen, 

Germany 

White opaque 96-well plates   Brand GmbH & Co. KG, Wertheim, Germany 

Z 
 

Zetasizer Nano ZS    Malvern Instruments Ltd, Malvern, UK 

 

Others 
 

0.2 µm PES syringe filters       Sarstedt AG & Co. KG, Nümbrecht, Germany 

15 mm cover slips                                          Gerhard Menzel B.V. & Co. KG, Braunschweig, 

        Germany  

6-well plates; TC Standard. F       Sarstedt AG & Co. KG, Nümbrecht, Germany 

6-well ultra-low attachment plates                 Greiner Bio-One GmbH, Frickenhausen,  

Germany  

12-well plates; Nunclon Delta       Nunc GmbH & Co. KG, Wiesbaden, Germany 

24-well plates, TC Standard. F                       Nunc GmbH & Co. KG, Wiesbaden, Germany 

96-well microtiter plates, Nunclon Delta       Thermo Fischer Scientific, Dreieich, Germany 

96-well ultra-low attachment plates               Greiner Bio-One GmbH, Frickenhausen,  

Germany  

https://www.nuembrecht.de/
https://www.nuembrecht.de/
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2.1.1 Polymer 

 

2.1.1.1 Polyamidoamine (PAMAM) 

 

Dendrimers are highly branched molecular entities of a specific size, shape and functionality. 

They are synthesized by a repetitive sequential reaction, radiating from a central core, to 

generate a monodisperse polymeric system. These macromolecules comprise of three structural 

components including a central core, interior branches and exterior branches possessing surface 

groups [76]. 

PAMAM dendrimers are the first well-characterized dendrimeric system. These dendrimers 

consist of an ethylenediamine core with a repeating amidoamine branching system which upon 

controlled addition of monomer units can give rise to different generations of PAMAM             

[77, 78]. 

In this work, we have used PAMAM dendrimer of generation 5.0 solution (5 weight % in 

methanol) with a molecular weight of 28,824.81 g/mol. They are polycationic in nature due to 

the presence of 128 terminal amino groups. At neutral pH, all the terminal primary amino 

groups are protonated to react with negatively charged nucleic acids. A stock solution of                

1 mg/ml was prepared in purified water and its pH was adjusted to 7.4 with 0.1 N HCl. The 

solution was sterilized using a 0.2 µm syringe filter (WhatmanTM) and aliquots were stored at  

-20 °C till further use. 

 

2.1.2 Nucleic acids 

 

2.1.2.1 Plasmid DNA 

 

2.1.2.1.1 pCMV-luc  

 

Luciferase encoding pCMV-luc (6233 base pairs) was obtained from Plasmid Factory 

(Bielefeld, Germany). pCMV-luc was amplified in Escherichia coli (DH5α strain) using 

ampicillin resistant antibiotic and purified using a Gene JET Plasmid Miniprep kit, according 

to the manufacturer’s protocol. The concentration and purity of nucleic acids were determined 

by A260/280 using Nano-100 (Allsheng, China). The Integrity of plasmids was confirmed by 0.9% 

agarose gel electrophoresis and was stored at -20 °C for further experiments. 
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2.1.2.1.2 pCMV-GFP  

 

Green fluorescence protein encoding pCMV-GFP plasmids (3487 base pairs) was obtained 

from Plasmid Factory (Bielefeld, Germany). Isolation and amplification of pCMV-GFP were 

similar to pCMV-luc, except the difference in antibiotic used i.e. kanamycin. 

 

2.1.2.2 Oligonucleotides 

 

siRNA duplexes against MDR1 gene (si-MDR1) (sense 5´-GAUGAUGUCUCCAAGAUU 

AdTdT-3´; sense 5´-GUCACUGCCUAAUAAAUAUdTdT-3´; sense 5´-GAUCGCUACUGA 

AGCAAUAdTdT-3´), a non-specific scrambled siRNA with no gene silencing effects on 

mouse, rat and human genes and gene-specific primers (forward 5′-

TTCAGGTGGCTCTGGATAAG-3′ and reverse 5′-TCAGCATTACGAACTGTAGACA-3′) 

were purchased from Eurogentec (Seraing, Belgium). While the siRNA duplexes against the 

green fluorescent protein (sense 5´-GACGUAAACGGCCACAAGUUC-3´) and firefly 

luciferase gene (sense 5´-GCCAUUCUAUCCUCUAGAGGAUG-3´) were obtained from 

Dharmacon (Lafayette, USA). 

 

2.1.3 Lipids 

 

2.1.3.1 DPPC 

 

DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) is a saturated phospholipid which is 

composed of phosphatidylcholine head-group having two palmitic acid groups with a molecular 

weight of 734.039 g/mol. The presence of negatively charged phosphate groups and positively 

charged quaternary ammonium groups make its zwitterion chemistry. Fully hydrated DPPC 

phospholipid bilayers undergo four distinct phases including sub-gel, gel, ripple and fluid [79]. 

At 41 °C lipid bilayers of DPPC get a phase transition from a gel state to fluidic state. In our 

work, we used DPPC lipid (a gift sample from Lipoid AG, Steinhausen, Switzerland) with a 

purity of more than 99%. A stock solution of 10 mg/ml was prepared by dissolving the lipid 

contents in chloroform: methanol solution (2:1; v/v) and stored at -20 °C till further use. 

 

https://www.ncbi.nlm.nih.gov/pcsubstance/?term=%221%2C2-Dipalmitoyl-sn-glycero-3-phosphocholine%22%5bCompleteSynonym%5d%20AND%20452110%5bStandardizedCID%5d
https://en.wikipedia.org/wiki/Phospholipid
https://en.wikipedia.org/wiki/Phosphatidylcholine
https://en.wikipedia.org/wiki/Zwitterionic
https://www.sciencedirect.com/topics/materials-science/lipid-bilayers
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Figure 4. Chemical structure of DPPC. 

 

2.1.3.2 DOTAP 

 

DOTAP (1,2-dioleoyloxy-3-trimethylammonium propane) is an unsaturated lipid consists of a 

quaternary amine head group with two oleoyl chains to make its backbone, with a molecular 

weight of 698.542 g/mol. Due to its cationic nature, it can be used as a promising carrier for an 

efficient stable transfection of the nucleic acids (including DNA, RNA and other 

oligonucleotides) into the mammalian cells. However, strong affinity with the nucleic acid may 

hamper the release of cargo from the cationic carrier. Therefore, DOTAP is mostly used with 

the aid of helper lipids (i.e. DOPE) for effective gene delivery [80]. In our work, we used 

DOTAP lipid (a gift sample from Lipoid AG, Steinhausen, Switzerland) with a purity of more 

than 99%. A stock solution of 10 mg/ml was prepared by dissolving the lipid contents in 

chloroform: methanol solution (2:1; v/v) and stored at -20 °C till further use. 
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Figure 5. Chemical structure of DOTAP. 

 

2.1.3.3 DOPE 

 

DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) is a neutral unsaturated phospholipid 

having a transition temperature of -16 °C with molecular weight of 744.034 g/mol. It has been 

mostly used as co-lipid or helper lipid with other lipid combinations [81]. It can exhibit 

structural transitions upon a change in different environmental pH. At alkaline pH, they can 

form micelles while at acidic pH they can transformed into an inverted hexagonal structure. The 

https://www.ncbi.nlm.nih.gov/pcsubstance/?term=%221%2C2-Dioleoyl-sn-glycero-3-phosphoethanolamine%22%5bCompleteSynonym%5d%20AND%206437392%5bStandardizedCID%5d
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hexagonal chemistry allows the destabilization of endosomal membrane and results in an 

efficient escape of nucleic acid from the carrier [82]. In our work, we used DOPE lipid (a gift 

sample from Lipoid AG, Steinhausen, Switzerland) with a purity of more than 99%. A stock 

solution of 10 mg/ml was prepared by dissolving the lipid contents in chloroform: methanol 

solution (2:1; v/v) and stored at -20 °C till further use. 
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Figure 6. Chemical structure of DOPE. 

 

2.1.3.4 MPEG5000-DPPE 

 

MPEG5000-DPPE (N-(methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-sn-

glycero-3-phosphatidylethanolamine) is a saturated phospholipid having a covalent linkage 

with the linear polyethylene glycol (PEG) molecule. PEG modified lipids are supposed to 

improve the blood circulation times of liposomal formulation to deliver various drugs 

(doxorubicin, paclitaxel, mitoxantrone) and proteins (insulin, streptokinase). MPEG5000-DPPE 

has a transition temperature of 63 °C with molecular weight of 5736 g/mol. In our work, we 

used MPEG5000-DPPE lipid (a gift sample from Lipoid AG, Steinhausen, Switzerland) with a 

purity of more than 99%. A stock solution of 10 mg/ml was prepared by dissolving the lipid 

contents in chloroform: methanol solution (2:1; v/v) and stored at -20 °C till further use.  
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Figure 7. Chemical structure of MPEG5000-DPPE. 

 

2.1.3.5 DPPG 

 

DPPG (1,2-dipalmitoylphosphatidylglycerol) is a saturated lipid consisting of 

phosphorylglycerol acylated chain with palmitic acids. It has a molecular weight of 744.952 

g/mol with a transition temperature of 41°C. In our work, we used a DPPG lipid (a gift sample 
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from Lipoid AG, Steinhausen, Switzerland) with a purity of more than 99%. A stock solution 

of 10 mg/ml was prepared by dissolving the lipid contents in chloroform: methanol solution 

(2:1; v/v) and stored at -20 °C till further use.  
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Figure 8. Chemical structure of DPPG. 

2.1.3.6 Cholesterol 

 

Cholesterol is a natural lipid consist of a sterol rings having a double bond at the 5,6-position 

as well as a 3 beta-hydroxyl group, with a molecular weight of 386.65 g/mol. The addition of 

cholesterol in liposomal formulations modify their membrane in term of stability and flexibility. 

Furthermore, it also reduces the leakage of water soluble entities from the lipid bilayer and 

strengthens its stability in the presence of biological fluids [83]. A stock solution of 10 mg/ml 

was prepared by dissolving the lipid contents in chloroform: methanol solution (2:1; v/v) and 

stored at -20 °C till further use.  
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Figure 9. Chemical structure of cholesterol. 

 

2.1.4 Imatinib mesylate  

 

Imatinib methanesulfonic acid (4-[(4-methylpiperazin-1-yl) methyl]-N-[4-methyl-3-[(4-

pyridin-3-ylpyrimidin-2-yl) amino] phenyl] benzamide) is a monomesylate salt of imatinib with 

a molecular weight of 589.7 g/mol. It is a selective inhibitor of the BCR-ABL tyrosine kinase, 

where it block the ATP binding pocket to prevent the phosphorylation process and different 

https://pubchem.ncbi.nlm.nih.gov/compound/tyrosine
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signal transduction pathways, responsible for tumour metastasis. A stock solution of 1 mg/ml 

was prepared by dissolving the drug in purified water and stored at -20 °C till further use.  
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 Figure 10. Chemical structure of imatinib mesylate. 

 

2.2 Methods 

 

2.2.1 Formulations  

 

2.2.1.1 Preparation of liposomes 

 

For the preparation of liposomal formulations, lipids with different molar ratios were dissolved 

in chloroform: methanol (2:1, v/v) solution. The organic phase was removed by using a rotary 

evaporator (Heidolph, Germany) and the resulting thin lipid film was rehydrated using 20 mM 

HEPES buffer (pH 7.4) containing 5% glucose (HBG buffer). The pre-formed liposomal 

suspension was sonicated for 10 min in an ultrasonic water bath (Elmasonic P30H, Elma 

Schmidbauer GmbH, Singen, Germany) to obtain a homogenous suspension. The multilamellar 

liposomes were then slowly extruded (15x) through a 100 nm polycarbonate membrane, using 

a pre-heated Avanti mini extruder (Avanti Polar Lipids, Alabaster, USA) to obtain unilamellar 

vesicles. Prior to use, the liposomal formulations were passed through 0.2 µm syringe filters 

[84]. 

 

2.2.1.2 Preparation of dendriplexes 

 

Dendriplexes were formulated at different N/P ratios (the ratio of terminal amino groups in the 

PAMAM dendrimer to the phosphate groups of the nucleic acid). For the dendriplex formation, 

equal volumes of pDNA or siRNA and PAMAM dendrimer in HBG buffer were mixed with 

vigorous pipetting and incubated for 30 min under a laminar airflow hood at room temperature. 
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2.2.1.3 Preparation of lipodendriplexes 

 

For the preparation of lipodendriplexes, a fine dispersion of liposomes at different liposome to 

PAMAM dendrimer mass ratios (0.1-1) were pipetted with dendriplexes solution (equal 

volumes) and incubated under the laminar airflow hood for 1 h at room temperature [85]. 

 

2.2.2 Physicochemical characterization 

 

2.2.2.1 Dynamic light scattering (DLS) 

 

The hydrodynamic diameter of the liposomes and of the complexes was measured by dynamic 

light scattering (DLS) technique using Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). 

Detection of light scattering was measured at the angle of 173° by an automatically positioned 

laser attenuator (10 mW HeNe), using a clear disposable folded capillary cell (DTS1060, 

Malvern Instruments). The samples were diluted (1:100 ratio) using purified water prior to 

measurement. The average size was calculated with the data of three independent formulations 

(mean ± standard deviation). The results were expressed as size distribution by intensity. 

 

2.2.2.2 Laser Doppler anemometry (LDA) 

 

The zeta potential of the liposomes and of different complexes was measured with laser Doppler 

anemometry (LDA) at a scattering angle of 17° on a Zetasizer Nano ZS. Depending upon the 

intensity signals of the sample, the instrument automatically performs 15-100 runs per 

measurement. The average value of the zeta potential was calculated with data of three 

individual formulations (mean ± standard deviation). 

 

2.2.3 Complex stability assay 

 

2.2.3.1 Gel retardation assay 

 

To check the complex forming ability of pDNA with PAMAM dendrimer, the dendriplexes 

with various N/P ratios were subjected to gel electrophoresis using 0.9% agarose gel containing 

SYBR® safe DNA dye (1: 10,000 in the 1x TAE buffer). Dendriplexes containing 0.5 µg of 

pDNA with varying PAMAM dendrimer ratios (0.5-20) were transferred onto the gel. The gels 
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were subjected to electrophoresis using a Thermo Hybaid Electro 4 gel system (Thermo 

Electron Corporation, Ulm, Germany) connected to a constant power supply (LKB Bromma, 

Bromma, Sweden) at 80 V for 1 h. The pDNA localization was visualized on a UV 

transilluminator (WhatmanTM Biometra, Gottingen, Germany) at a wavelength of 312 nm. 

 

2.2.3.2 Fluorescence quenching assay 

 

The intercalation of the pDNA with dendrimer was also evaluated by fluorescence quenching 

assay. The quenching of the fluorescence of SYBR® safe DNA dye from pDNA, resulting from 

the complexation with positively charged PAMAM dendrimer, was the signal of the dendriplex 

formation [86]. Complexes containing 0.5 μg pDNA with SYBR® Safe DNA dye (1: 10,000 in 

1x TAE buffer) were prepared at different N/P ratios. A microplate reader (FLUOstar Optima, 

BMG Labtech, Offenburg, Germany) was used for fluorescence measurements at an excitation 

and emission wavelengths of 502 nm and 520 nm, respectively. The fluorescence measurement 

of the pDNA complex with SYBR® safe DNA dye without PAMAM dendrimer was considered 

as 100%. The fluorescence measurement of the complexes was estimated using the following 

equation [51]. 

FR =
FOBS − FD

F0 − FD
 × 100 … Eq. (1) 

 

FR depicts relative fluorescence measurement, FOBS is the observed fluorescence of the given 

sample, FD is the fluorescence of SYBR® Safe dye without pDNA in HBG buffer, and F0 is the 

initial fluorescence without PAMAM dendrimer. 

 

2.2.4 Surface morphology 

 

2.2.4.1 Atomic force microscopy (AFM) 

 

Atomic force microscopy was performed with a NanoWizard® 3 NanoScience (JPK 

Instruments, Berlin, Germany). 20 µl of the sample dispersions were placed onto a silicon 

wafer, fixed on a glass slide, and allowed them to settled on the surface for 10 min. After this, 

the supernatant was removed and the sample was allowed to dry. Cantilever tips (NSC 14 AlBS, 

Micromash, Tallinn, Estonia) having a length of 125 mm with a resonance frequency of           

about 160 kHz and nominal force constant of 5 N/m were used. The measurements were carried 
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out in intermittent contact mode (tapping mode) at a scan rate between 0.5 to 1.5 Hz, to avoid 

the damaging of samples. 

 

2.2.5 In vitro cell culture experiments 

 

2.2.5.1 Maintenance of cells 

 

A wild-type human ovarian adenocarcinoma (SKOV-3) cell line and human embryonic kidney 

(HEK-293) cell line were purchased from American Type Culture Collection (ATCC®, 

Manassas, USA). HeLa co-expressing firefly luciferase and GFP under CMV promoter      

(HeLa LG) were purchased from GenTarget Inc (San Diego, USA). Homosapiens colorectal 

adenocarcinoma (Caco-2) cell line was a kind gift from Institute for Lung Research, University 

of Marburg, Germany. SKOV-3 cell line was cultured in IMDM (containing 10% FBS) at          

37 °C and 7% CO2 under humid conditions. HeLa LG, Caco-2 and HEK-293 cell lines were 

cultured in DMEM (containing 10% FBS supplemented with 10% NEA) at 37 °C and 8.5% 

CO2 under humid conditions.  All cells were cultivated as monolayers and passaged upon 

reaching 80% confluency. 

 

2.2.5.2 pDNA transfection studies  

 

For gene transfection studies, HEK-293 and SKOV-3 cells were seeded at a seeding density of 

10,000 cells per well in a 96-well microtiter plate and were allowed to grow overnight before 

transfection. The complexes containing 0.25 µg pDNA (25 µl) were added in each well 

containing 75 µl of medium. The additional 100 µl medium was added after 4 h and plates were 

evaluated 48 h after transfection. 

 

2.2.5.3 Transgene luciferase expression analysis 

 

After 48 h incubation period, the complexes were removed and cells were washed twice with 

200 µl of phosphate buffer pH 7.4 (PBS) containing calcium (Ca2+) and magnesium (Mg2+). 

The buffer was then replaced by 50 µl cell culture lysis reagent (CCLR) (Promega, Mannheim, 

Germany). 20 µl of lysate was then transferred to a 96-well white plate for luciferase reporter 

gene expression assay. 50 µl of luciferase assay reagents (Synchem OHG, Felsberg, Germany) 
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were pumped into each well by the automatic injection system of FLUOstar Optima microplate 

reader and luminescence was recorded after a 10 s integration time [87].  

 

2.2.5.4 Protein quantification assay 

 

For protein quantification, Pierce protein BCA assay kit was used, according to the 

manufacturer’s protocol. A portion of 20 µl lysate was transferred to an opaque 96-well 

microtiter plate and 180 µl of BCA mixture was added to each well. The lysates were incubated 

at 37 °C for 30 min. The absorbance was measured at 570 nm using a microplate reader 

(FLUOstar Optima) and the values were compared against the bovine serum albumin (BSA) 

standard curve. The results obtained from these two experiments were expressed as relative 

luminescence units (RLU) / mg protein.  

 

2.2.5.5 Cellular uptake studies  

 

For the cellular uptake analysis, HEK-293 and SKOV-3 cells were seeded in 12-well cell culture 

plates (Nunclon Delta, Nunc GmbH & Co. KG, Wiesbaden, Germany) containing coverslips 

(15 mm diameter) at the seeding density of 90,000 cells per well. After 24 h, the complexes 

containing 2 μg of pCMV-GFP (200 µl) were added dropwise into each well containing 800 µl 

of medium and incubated for 4 h. After incubation, an additional 1 ml of medium was added to 

the wells and incubated up to 48 h. The cells were washed thrice with 300 µl ice-cold PBS 

containing Ca2+ and Mg2+. The cells were then fixed with 300 µl of 4% formaldehyde solution, 

followed by incubation for further 20 min at room temperature. The cells nuclei were then 

counterstained with 300 µl of DAPI (0.1 µg/ml). The cells were then washed with 300 µl PBS 

containing Ca2+ and Mg2+ and the coverslips were placed onto a clear glass slide and sealed 

with fluorescence-free glycerol-based mounting medium (FluorSave™, Calbiochem, San 

Diego, USA). Finally, the cells were analysed under a microscope (CKX-53 Olympus, USA), 

equipped with fluorescence detection filters for GFP (ex.505 nm - em.530 nm) and DAPI 

(ex.385 nm - em.470 nm).  
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2.2.6 Cytotoxicity studies 

 

2.2.6.1 MTT assay 

 

For in vitro cell viability assay, HEK-293 and SKOV-3 cells were seeded at a seeding density 

of 10,000 cells per well in a 96-well microtiter plate and were incubated overnight. On the 

following day, the complexes containing 0.25 µg pDNA (25 µl) were added in each well 

containing 75 µl of medium for 4 h. 1% TritonTM X-100 was used as a positive control. 

Additional 100 µl medium was added after 4 h and incubated for further 24 h. The medium was 

replaced with MTT dye (2 mg/ml) containing medium (200 µl) and incubated for further 4 h. 

After the incubation, 200 µl of DMSO was added to dissolve the formazan crystals formed by 

the metabolism of the MTT dye by viable cells. The plate was incubated on a shaking incubator 

(IKA KS4000 IC, Staufen, Germany) for 15 min. The absorbance of formazan was measured 

at 570 nm (FLUOstar Optima). The cell viability of the cells was expressed as a percentage of 

viability in comparison to untreated cells [88]. 

 

2.2.6.2 Determination of reactive oxygen species (ROS)  

 

For reactive oxygen species generation studies, HEK-293 and SKOV-3 cells were seeded at the 

seeding density of 25,000 cells per well in a 96-well microtiter plate (black plate with clear 

bottom) and were incubated overnight before the experiment. For the measurement of ROS 

production, cellular ROS protocol by Abcam (Cambridge, UK) was used, with slight 

modification. Briefly, 100 µl of 25 µM cell permeant reagent 2,7-dichlorofluorescein diacetate 

(H2DCFDA) was added to the cells 1 hour before adding the complexes. After washing with 

PBS, the complexes containing 0.25 µg pDNA (25 µl) were added in each well containing         

75 µl of medium for 1 h, using 50 μM TBHP as a positive control. The cells were washed again 

with PBS and detectable green fluorescence of dichlorofluorescein (DCF) was recorded using 

excitation and emission wavelength of 485 nm and 520 nm, respectively (FLUOstar Optima). 

The intracellular fluorescence visualization was analysed using a microscope (CKX-53 

Olympus, USA), equipped with GFP fluorescence detection filters (ex.505 nm - em.530 nm) 

[89, 90]. 
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2.2.6.3 Lysosomal disruption and actin polymerization  

 

SKOV-3 cells were seeded at the seeding density of 90,000 cells per well in a 12-well cell 

culture plate containing coverslips (15 mm diameter). After 24 h incubation, the old culture 

medium was replaced with the 800 µl fresh medium and incubated with the complexes 

containing 2 µg pDNA (200 µl). Cells were incubated with the complexes for 4 h followed by 

incubation with 100 nM of LysoTracker® red DND-99 for 30 min at 37 °C to stain the lysosome. 

The cells were then washed with 300 µl PBS containing Ca2+ and Mg2+ before fixing with       

300 µl of 4% formaldehyde solution [91]. Thereafter, cells nuclei were stained with 300 µl of 

DAPI (0.1 µg/ml) followed by cytoskeleton staining with 300 µl of Phalloidin-FITC (50 µg/ml). 

The coverslip was placed on a clear glass slide and sealed with fluorescence-free glycerol-based 

mounting medium (FluorSave™, Calbiochem, San Diego, USA) before being analysed under 

a confocal laser scanning microscope (Zeiss LSM 700, Carl Zeiss GmbH, Jena, Germany). The 

untreated cells were considered as blank.  

 

2.2.6.4 DNA damage assay 

 

DNA damage was analysed by the comet assay. Briefly, SKOV-3 cells were seeded at the 

seeding density of 90,000 cells per well in a 12-well cell culture plate and incubated overnight. 

After incubation, old culture medium was replaced with the 800 µl fresh medium and incubated 

with the complexes containing 2 µg pDNA (200 µl) for 4 h. After incubation, additional 1 ml 

of medium was added to the wells and incubated up to 48 h. The cells were washed thrice with 

300 µl ice-cold PBS containing Ca2+ and Mg2+. The cells were then trypsinized and suspended 

(8,000 cells in 25 μl of PBS) in 75 μl of low melting agarose 1% (LMA) and placed on pre-

coated microscopic slides (Super frost microscopic slides were coated with 1% normal melting 

point agarose (NMA) and the lower surface was wiped before the settling of gel). The gel was 

covered with glass coverslips and allowed to set on an ice block. The coverslips were carefully 

removed and the settled gel was sandwiched by addition layer of LMA. The slides were then 

gently placed in ice cold lysis buffer (2.5 M NaCl, 100 mM EDTA, 10 mM Tris, 1% TritonTM 

X-100; pH 10) and incubated overnight at 4 °C under dark condition. Afterward, the 

microscopic slides were placed in alkaline electrophoresis solution (300 mM NaOH, 1 mM 

EDTA; pH > 13) for 20 min to start the DNA unwinding process. Gel electrophoresis was 

performed under refrigerating condition at 25 V and 250 mA for 30 min. The level of the 

electrophoresis solution should not be more than 5 mm above the gel. Subsequently, the slides 



 

 

                 Chapter II: Materials and Methods 
 

29 

 

were removed from electrophoresis chamber and rinsed with ice cold neutralizing buffer (400 

mM Tris buffer; pH 7.5) for 5 min to remove the alkaline traces. The slides were dried and fixed 

with 70% ethanol for 15 min. Thereafter, slides were stained with SYBR® safe DNA gel stain 

for 20 min in dark condition. The cells were analysed by scoring 50 comets per slide using a 

microscope (CKX-53 Olympus, USA), equipped with GFP fluorescence detection filters 

(ex.505 nm - em.530 nm). The comets were analysed using Comet IV software (Instem, 

Staffordshire, UK). 

 

2.2.7 Biocompatibility assay 

 

2.2.7.1 Ex vivo hemolysis assay 

 

To determine the hemolytic effect of the complex in blood, human erythrocytes were isolated 

from fresh blood [92]. The blood was transferred into tubes containing EDTA to avoid 

coagulation and centrifuged to separate the plasma fraction. The erythrocyte pellet was washed 

thrice with PBS and diluted to 1:50 with PBS. 180 µl of erythrocytes dispersion were mixed 

with 20 µl complexes, containing 0.25 µg pDNA in a V-bottomed 96-well plate and incubated 

for 1 h at 37 °C in a shaking incubator (IKA KS4000 IC). The plates were then centrifuged and 

the supernatant was collected to measure the absorbance at 540 nm (FLUOstar Optima). PBS, 

NaCl 0.9% solution, untreated erythrocytes and 1% TritonTM X-100 were used as controls. The 

absorbance value of 1% TritonTM X-100 was considered as 100% hemolysis [89, 93]. 

 

2.2.7.2 Heparin competition assay 

 

The nucleic acid stability of the dendriplexes and lipodendriplexes, against the natural 

polyanion (heparin) was evaluated by heparin competition assay. The complexes containing 

0.25 µg pDNA were used for analysis and incubated for 30 min with increasing amounts of 

heparin. The complexes were then loaded onto 0.9% agarose gel containing SYBR® safe DNA 

dye and subjected to electrophoresis for 1 h at 80 V and visualized using a UV trans-illuminator 

(WhatmanTM Biometra) at 312 nm [51, 94]. 
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2.2.8 RNA interference experiments 

 

2.2.8.1 Luciferase knockdown assay 

 

For luciferase gene knockdown assay, stably transfected HeLa LG cells were seeded at a 

seeding density of 10,000 cells per well in a 96-well microtiter plate and were allowed to grow 

overnight. The complexes were added to the cell at the si-Luc concentration of 36 nM (7.2 pmol 

si-Luc in 200 µl) and incubated for 48 h. Luciferase expression was determined in the same 

manner described in section 2.2.5.3. The knockdown produced by si-Luc complexes was 

expressed as a percentage of luciferase expression by control siRNA (si-Control). 

 

2.2.8.2 GFP silencing  

GFP reporter gene knockdown experiments were performed in stably transfected HeLa LG cell 

line. Briefly, 50,000 cells per well were seeded overnight in 24-well cell culture plates (Nunclon 

Delta, Nunc GmbH & Co. KG, Wiesbaden, Germany). The complexes were added to the cell 

at the si-GFP concentration of 36 nM (36 pmol in 1 ml) and incubated for 48 h. After incubation, 

the cells were washed thrice with 300 µl ice-cold PBS containing Ca2+ and Mg2+. The cells were 

then fixed with 300 µl of 4% formaldehyde solution and then washed again with PBS containing 

Ca2+ and Mg2+ Thereafter, the cells were analysed for GFP silencing under a microscope (CKX-

53 Olympus, USA), equipped with GFP fluorescence detection filters (ex.505 nm - em.530 nm). 

2.2.8.3 MDR1 silencing 

 

Knockdown of MDR1 gene experiment was conducted in MDR1 gene expressing Caco-2 cell 

line. Cells were seeded in 6-well cell culture plates (Sarstedt AG & Co. KG, Nümbrecht, 

Germany) at the seeding density of 1,00,0000 cells per well. After overnight incubation, the 

cells were transfected with complexes at the si-MDR1 concentration of 36 nM (108 pmol in      

3 ml) and incubated for 48 h. After incubation, the cells were washed with PBS followed by the 

trypsinization of the cells. The cells were collected and re-suspend in PBS and subjected to 

RNA isolation. 
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2.2.8.3.1 RNA isolation, reverse transcription and real time quantitative PCR 

 

Total RNA was isolated using the RNeasy Mini Kit, according to the manufacturer’s 

instruction. After measuring the amount of isolated RNA, cDNA was synthesized using a High 

Capacity cDNA Reverse Transcription Kit, according to the manufacturer’s instructions. 20 µl 

reactions mixture was subjected to a thermal cycler program as follows, 25 °C for 10 min,           

37 °C for 120 min, 85 °C for 5 min and then held at 4 °C. Quantitative real time PCR was 

performed with Quant studio 3 RT-PCR System (Applied Biosystems, Foster City, CA) using 

PowerUp™ SYBR® Green Master Mix, according to manufacturer’s protocol. 10 µl of the 

reaction mixture was used for RT-qPCR containing 15 ng of cDNA and 0.4 µl of 10 mM gene 

specific primers. GPDH (house-keeper gene) was used as positive control and Ct values were 

used to calculate the relative mRNA expression level. 

 

2.2.9 Cell Migration studies 

 

2.2.9.1 Scratch closure assay 

 

Caco-2 cells were seeded at the seeding density of 1,00,0000 cells per well in a 6-well cell 

culture plate. After overnight incubation, the cells were transfected with complexes at the          

si-MDR1 concentration of 36 nM (108 pmol in 3 ml) and incubated for 48 h. After 48 h of 

transfection period, the cells were trypsinized and washed with culture medium. Thereafter, 

25,000 cells with a seeding volume of 70 μl were transferred into each chamber of culture insert 

of μ-Dish (Ibidi, Martius, Germany) and incubated overnight for their confluency. After 

incubation, culture inserts were removed and additional medium (3 ml) was added in μ-Dish. 

Scratch closure was photographed to investigate the wound recovery at different time points  

(0, 16, 24, 48 h), using a microscope (CKX-53 Olympus, USA). Scratch closure area was 

calculated according to the gap filled by migrated cells in comparison to the scratch area at 0 h. 

Image J analysis software was used to calculate scratch closure. 

 

2.2.9.2 Transwell migration assay 

 

Caco-2 cells were grown in 6-well cell culture plates at a seeding density of 1,00,0000 cells per 

well. The cells were transfected with complexes at the si-MDR1 concentration of 36 nM        

(108 pmol in 3 ml) and incubated for 48 h. After 48 h of transfection period, the cells were 
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trypsinized and washed with serum free culture medium. Thereafter, 2,50,000 cells with a 

seeding volume of 200 μl were transferred to the upper chamber of transwell insert (8 μm pore 

size, PET membrane; Corning, New York, USA). 500 μl of culture medium with 20% FBS was 

added to lower chamber and incubated the plate for 48 h. After incubation, the old medium was 

aspirated from the upper chamber of the insert and unmigrated cells were removed by the help 

of wet cotton swab. The migrated cells attached to the lower part of the chamber were fixed 

with 70% ethanol and stained with 0.1% crystal violet dye. The cell migration was observed in 

five randomly selected stained area under a bright field microscope and analysed using Wimasis 

image analysis software. 

 

2.2.9.3 Plate colony formation assay  

 

Caco-2 cells were grown in 6-well cell culture plates at a seeding density of 1,00,0000 cells per 

well. The cells were transfected with complexes at the si-MDR1 concentration of 36 nM         

(108 pmol in 3 ml) and incubated for 48 h. After 48 h of transfection period, the cells were 

trypsinized and resuspended in the new medium. Thereafter, 1,000 cells were transferred into a 

well of 6-well cell culture plate and allowed to grow for the period of 14 days. The cells were 

then fixed with 70% ethanol followed by washing with PBS. The cells were then stained with 

0.1% crystal violet dye to detect the formation of colonies in the wells. The colony containing 

more than 50 cells was counted manually.  

 

2.2.9.4 Formation of 3D tumor spheroid and 3D ring bioprinting 

 

In two dimensional (2D) cell culture assays, the cells vasculatures are not in direct contact with 

the biochemical components of the media. On the other hand, it is also difficult to regulate the 

extracellular matrix (ECM) for the diffusion of extracellular compounds in 2D environment. To 

overcome these challenges, the 3D magnetic bioprinting can play a novel role to pattern a 3D 

cell culture structure by magnetizing the cells with biocompatible magnetic nanoparticles. The 

process of magnetic levitation initiates the cell aggregation and generates the ECM among the 

cells. Afterward, the induction of the magnetic field rapidly patterns the cells into a spheroidal 

or ring shape (Fig. 11). After the removal of the magnetic field, the cells tried to proliferate or 

migrate through ECM [95, 96]. 
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(A) 

(B) 
 

 
 

Figure 11. (A) Schematic representation of 3D tumor spheroid and 3D tumor ring bioprinting 

formation by magnetic levitation method. (B) Steps involved in spheroid formation: (a) 

Addition of NanoShuttlesTM-PL in the cells. (b) Trypsinization and washing of cells. (c) 

Addition of cells in 6-well ultra-low attachments plate and placement of the lid. (d) Placement 

of levitating drive. (e) Incubation for 5 h to generate the ECM among the cells. (f) Formation 

of cells aggregate and break down. (g) Placement of 96-well ultra-low attachment plate on 

spheroid magnetic drive.  (h) Addition of cells under the influence of magnetic field. (i) Incubate 

the plate for 15 minutes to print spheroids. 

Incubation of the cells with  

NanoShuttlesTM-PL for 24 h 

Magnetic levitation for 5 h 

Break up 

Distribution of cells on  

magnetic drive  

 3D Tumor Spheroid Printing 

 
3D Tumor Ring Bio-printing 
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2.2.9.4.1 3D tumor spheroids cell migration 

 

3D tumor spheroids were prepared by magnetic levitation method using the 96-well Bio 

assayTM kit (Greiner Bio-One GmbH, Frickenhausen, Germany). Caco-2 cells were seeded in 

a 6-well cell culture plate at the seeding density of 1,00,0000 cells per well. After overnight 

growth, the cells were transfected with complexes at the si-MDR1 concentration of 36 nM    

(108 pmol in 3 ml) and incubated for 48 h. Afterward, the cells were incubated overnight with 

Nano3D Biosciences NanoShuttleTM-PL (Greiner Bio-One GmbH, Frickenhausen, Germany) 

(8 μl/cm2 of cell culture area) to crosslink the nanoparticles with the cells. On the following 

day, the cells were washed, trypsinized and resuspended in the media. 2 ml of cell suspension 

was then distributed in the 6-well ultra-low attachment plate (Greiner Bio-One GmbH, 

Frickenhausen, Germany) at the cell density of 2,50,000 cells per ml. The plates were then 

covered with the lid and the levitating drive was placed at the top of the lid. The plates were 

then rotated 3-4 times and observed under the microscope to check the initiation of the 

levitating process. The plate was then incubated for 5 h to generate the extra cellular matrix 

(ECM) among the levitating cells. The levitating cells were then broken by pipetting action. 

Afterward, a 96-well ultra-low attachment plate (Greiner Bio-One GmbH, Frickenhausen, 

Germany) was placed on the magnetic spheroid drive and broken cells were distributed at 

the cell density of 50,000 cells per well. The cells were then allowed to print on the magnetic 

spheroid drive for 15 min to obtain a loose connected spheroidal structure. The magnetic 

spheroid drive was then removed from the bottom and plate was incubated overnight to grow 

the tumor spheroid. The migration of cells through the ECM was then recorded for 48 h and 

the percentage of cell migration was calculated according to the following formula:  

 

Cell migration (%) =
Area covered by migrating cells (µm)

 Total area covered by bioprinted region (µm)
x 100 … Eq. (2) 

 

2.2.9.4.2 Cytoskeleton staining of spheroids 

Spheroid formation was done in the same manner discussed in section 2.2.9.4.1. After the 48 h 

of incubation, the spheroids were washed with PBS containing Ca2+ and Mg2+ and fixed with 

4% formaldehyde solution for 1 h. The spheroids were then washed twice with PBS and 

counterstained with DAPI followed by Phalloidin-FITC for nuclei and cytoskeleton 

visualization, respectively. For every step, the spheroids were anchored by a magnetic 

spheroid drive in order to maintain the structural integrity. The magnetic spheroids were then 
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carefully pulled out using a Magpen (Greiner Bio-One GmbH, Frickenhausen, Germany) and 

placed on a clear glass slide under the influence of magnetic field. A coverslip was then placed 

over the spheroids and sealed with fluorescence-free glycerol-based mounting medium. The 

spheroids were then analysed under a microscope (CKX-53 Olympus, USA), equipped with 

fluorescence filters. 

2.2.9.5 3D tumor ring closure assay 

 

Levitation of the cells was performed in the same manner mentioned in subsection 2.2.9.4.1. 

The levitating cells were then broken by pipetting action. Afterward, a 96-well ultra-low 

attachment plate was placed on the magnetic ring drive and broken cells were distributed at 

the cell density of 100,000 cells per well. The cells were then allowed to print on magnetic 

ring drive for 15 min to obtain a loosely connected ring structure. The magnetic ring drive 

was then removed from the bottom and plates were incubated overnight to grow the tumor 

ring. Ring closure area was recorded for 48 h and compared with the si-Control. The % of 

ring closure area was determined using the following formula: 

 

Ring closure area (%) =
Inner diameter (µm) of ring after specified time interval

Initial inner diameter (µm) of the ring  
x 100 … Eq. (3) 

 

2.2.10 Apoptosis assay by flow cytometry 

 

Cell apoptosis was investigated, according to the sequential treatment protocol, by flow 

cytometry (FACS) technique. Briefly, 90,000 Caco-2 cells per well were seeded overnight in 

12-well cell culture plates. The cells were transfected with complexes at the si-MDR1 

concentration of 36 nM (72 pmol in 2 ml) and incubated for 48 h. After incubation, the media 

was replaced by 75 μM of IM (2 ml drug solution in medium) and incubated for further 24 h. 

The controlled cells were incubated without any addition of the drug. Afterward, the cells were 

collected, washed with cold PBS and resuspended in 1 x binding buffer. 50 μl of binding buffer 

supplemented with 1 μl (10 μg/ml) of APC Annexin V were gently mixed with equal volume 

of cell suspension and incubated at room temperature for 15 min under dark condition. 

Afterward, 300 μl of binding buffer containing 0.4 μl (5 mg/ml) of propidium iodide (PI) was 

added and placed on ice for 5 min before analyse by flow cytometer (Guava®easyCyteTM, 

Millipore Sigma, USA). The data was processed by flowjo 10 software. 
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2.2.11 Apoptosis determination in spheroids by live dead viability assay  

 

Tumor spheroids were formed in the manner discussed in section 2.2.9.4.1. After the 24 h of 

spheroids formation, the media was replaced by 200 μl of IM (75 μM) and incubated for 24 h. 

The controlled spheroids were incubated without any addition of the drug. The spheroids were 

then washed with PBS before staining with a solution containing 3 μM syto 9 and 7.5 μM PI 

for live dead viability assay, using Live/Dead viability kit (InvitrogenTM, Oregon, USA). The 

spheroids were then again washed with PBS and analysed under a microscope (CKX-53 

Olympus, USA) equipped with fluorescence filters. 

 

2.2.12 Cell cycle analysis by flow cytometry 

 

For cell cycle analysis, briefly, 1,00,0000 Caco-2 cells per well were seeded overnight in 6-well 

cell culture plates. The cells were transfected with complexes at the si-MDR1 concentration of 

36 nM (108 pmol in 3 ml) and incubated for 48 h. After incubation, the media were replaced 

by 75 μM of IM (3 ml drug solution in medium) and further incubated for further 24 h. The 

controlled cells were incubated without any addition of the drug. Afterward, the cells were 

trypsinized and washed with ice-cold PBS. The cells were then fixed by a dropwise addition of 

70% ice-cold ethanol and stored at -20 °C for at least one hour. At the time of analysis, the cells 

pellet was washed twice with ice-cold PBS and suspended in 1 ml of PI / 0.1% TritonTM X-100 

staining solution (PI 20 μg and RNase 50 μg in 1 ml of 0.1% TritonTM X-100 solution). Keep 

the cell suspension in the dark condition at the room temperature for 30 min.  Just before the 

analysis, the cells suspension was vortexed and filtered using a polystyrene round bottom tube 

equipped with a cell strainer cap. The cell suspension was poured in the cap and centrifuged for 

a short period of time. The cell cycle distribution was then analysed using a PE-A channel with 

a flow cytometer (BD Biosciences LSR II FACS, San Francisco, USA). A minimum of 20,000 

events were measured per sample and data was analyzed using ModFit LT V 5.0 software (with 

special updated file for Sub-G1 phase calculation). 

 

2.2.13 In ovo chorioallantoic membrane (CAM) assay 

 

Fertilized eggs were purchased from Mastkükenbrüterei Brormann (Rheda-Wiedenbruck, 

Germany). The eggs were disinfected with 70% ethanol and incubated in an egg hatching 

incubator, equipped with an automatic rotator (rotation after every 4 h) at a temperature of           
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37 °C with a relative humidity of about 60%. On the egg development day (EDD) 4, a hole of 

30 mm diameter was made into eggshell using a pneumatic egg punch (Schuett Biotech, 

Germany), to expose the CAM surface. The exposed part of the egg was then covered with a 

small Petri dish and placed back into the incubator. On the EDD 11, 50 μl of dendriplexes or 

lipodendriplexes containing 0.5 μg of pCMV-GFP were injected under the stereomicroscope 

(Stemi 2000-C, Carl Zeiss GmbH, Germany) into the mesoderm of CAM with the help of glass 

cannulas. The eggs were further incubated for 48 h. On EDD 13, about 1 cm of the CAM was 

dissected and placed on a clear glass slide after washing with 0.9% NaCl. Finally, the GFP 

expression was observed under a confocal laser scanning microscope (Zeiss LSM 700, Carl 

Zeiss GmbH, Jena, Germany). 

 

2.2.14 In vivo experiments 

 

2.2.14.1 Animals 

 

7-8 weeks old, female BALB/c, mice were purchased from the National Institute of Health, 

Islamabad, Pakistan and handled according to the protocols approved by the Ethical committee 

of Punjab University College of Pharmacy, University of the Punjab (Protocol No. 

AEC/PUCP/1085 dated 03.09.2018). Total 15 animals were used in study and divided into 5 

groups (each having 3 animals per cage). The animals were maintained in a controlled 

environment (between 20 °C to 25 °C), with standard condition of food and water (ad libitum).  

 

2.2.14.2 Acute in vivo toxicity 

 

For in vivo acute toxicity studies, the untreated mice were served as negative control (group 1), 

while the groups of the mice injected with the dendriplexes and lipodendriplexes (containing 

10 µg pDNA) by tail vein were categorized into group 2 and group 3, respectively. The first 

dose of the complexes was administered at day 1 while the second dose was given at day 4. The 

mice were kept under observation for 7 days to monitor any change in weight, behaviour and 

physical alteration to assess any kind of illness. The following parameters were evaluated for 

acute in vivo toxicity determination:  
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2.2.14.2.1 Serum biochemistry and hematological analysis 

 

To check the biocompatibility of the complexes, the blood was collected under anaesthesia by 

cardiac puncture method at day 7, for serum biochemistry and hematological analysis. The 

serum was separated by centrifugation of the blood at 1200 g for 10 min, using a centrifuge 

(Centurion Scientific, Chichester, UK). The supernatant was collected and stored at -20 °C for 

further experiments. Serum biochemical parameters like liver function tests (LFTs), renal 

functions tests (RFTs), total bilirubin, blood glucose and total protein levels were evaluated 

using serum biochemical marker analyser (Micro lab 300, Merck, Germany).  

Hematology parameters, included the red blood cells count (RBCs), hemoglobin (Hb), 

hematocrit (HCT), white blood cells count (WBCs), mean corpuscular volume (MCV), 

neutrophils, eosinophils, lymphocytes, monocytes, platelets count (PLT), mean corpuscular 

hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean platelet 

volume (MPV) were measured using a hematology analyser (Icon-3, Norma Instruments, 

Budapest, Hungary).  

 

2.2.14.2.2 Organ to body ratio  

 

The relative organ to body ratio was considered as a tool to evaluate any toxic effect of the 

complexes on mice organ after their repeated administration. The animals were sacrificed by 

cervical dislocation method and vital organs (liver, lungs, heart, kidney and spleen) were 

removed carefully. The organs were washed with normal saline and weighed individually for 

the organ to body index calculation, which is the percentage of the organ weight to the total 

body weight ratios.  

 

2.2.14.2.3 Erythrocyte aggregation assay 

 

For the erythrocytes aggregation assay, erythrocytes of the mice were washed three times with 

PBS by centrifugation at 5,000 g for 5 min. The erythrocytes pellet was then re-suspended with 

PBS to make a final stock suspension of 2% (v/v). A 100 μl of the erythrocyte suspension was 

mixed with 100 μl of the complexes containing 1 μg pDNA and incubated for 2 h at room 

temperature. A 10 μl sample of the mixture was placed on a glass slide and observed under 

bright field microscopy. 
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2.2.14.2.4 Histopathology of vital organs 

 

The macroscopic necropsies were evaluated in the organ tissues of sacrificed mice. The vital 

organs like heart, lungs, liver and kidneys were collected for tissue histopathology and fixed in 

10% formalin solution before embedding into a paraffin block. Thin tissue sections (0.5 μm) 

were then obtained with the help of rotary microtome (Hunan Kaida scientific instruments, 

Changsha, China) and were stained using hematoxylin and eosin (H & E staining) dyes for 

microscopic evaluation (Olympus BX51M, Tokyo, Japan). 

 

2.2.14.3 In vivo biodistribution and imaging experiments  

 

For the in vivo biodistribution analysis, the mice were i.v. injected with the complexes 

(dendriplexes; group 4 and lipodendriplexes; group 5) containing pCMV-GFP (10 μg) by tail 

vein route. The mice were sacrificed after 24 h post injection and the vital organs were collected 

for ex vivo imaging. A UVP iBox® Explorer2TM (Analytik Jena US LLC, Jena, Germany) small 

animal imaging system, having customized wavelength filters for green fluorescence (ex.455 

nm - 495 nm, em.503 nm - 523 nm) was used for the measurement of the GFP expression in 

vital organs. The results were analysed by using VisionWorks® LS software. 

 

2.2.14.4 Frozen tissues GFP distribution analysis 

The organs of the mice were stored in 10% formalin solution for the fixation of the cells and 

freezed at -20 °C. GFP expression was then observed in the thin sections of frozen tissues under 

the fluorescence microscope (EVOS FL Cell Imaging System, Thermo Scientific, San Diego, 

CA, USA). 

2.2.15 Statistical analysis 

 

All the experimental evaluations were performed in triplicates and the values were given as a 

mean ± standard deviation. One-way ANOVA was performed to identify statistically significant 

differences using IBM SPSS software (Ver. 22). Dunnett’s test was used for multi-comparison 

between the results and control, whereas multi-comparison among the different groups was 

made using Tukey’s test. Probability values less than 0.05 were considered significant. 

Statistical significances are denoted as*p < 0.05, **p < 0.01, ***p < 0.001. 
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3.1 Physicochemical characterization and optimization of dendriplexes 

 

The characterization of dendriplexes is the prerequisite of lipodendriplexes preparation. It has 

been reported that PAMAM dendrimer of generation 5.0, has all of its 128 primary amines in 

the protonated form at physiological pH, and thus can electrostatically interact with the 

negatively charged nucleic acid to form dendriplexes [97]. To check the stable complex 

formation of PAMAM dendrimer with pDNA, N/P ratios from 0.5 to 20 were selected and 

analysed using gel electrophoresis and fluorescence quenching assay. Gel electrophoresis 

reveals that at N/P ratio 2, stable complex formation occurs, showing no DNA band on the gel 

(Fig. 12). Similar findings were observed by Movassaghian et al. [53].   

 

  

 

Figure 12. Gel retardation assay of dendriplexes at various N/P ratios from 0.5 to 20, showing 

complex formation at N/P ratio 2 with no band on the gel. Free pDNA was used as a control. 

 

Further analysis with fluorescence quenching assay, indicated similar results. The quenching in 

relative fluorescence was observed upon the increase in N/P ratios (Fig. 13). The results 

suggested the complexation at N/P ratio 2 which is indicated by the reduction in fluorescence 

intensity. This also suggests that the PAMAM dendrimer´s binding on pDNA was very strong 

and that the dendrimer cannot be displaced by the addition of the dye. A saturation point was 

then attained indicating a state of equilibrium [40].  
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Figure 13. Fluorescence quenching assay of dendriplexes at different N/P ratios showed a 

decrease in fluorescence with the increase in N/P ratio. About 85% fluorescence was reduced 

at N/P ratio 2 indicating the complex formation. Values are represented as means ± S.D (n=3). 

 

The size and zeta potential of the dendriplexes were measured by DLS and LDA, respectively. 

It was observed that with an increase in N/P ratio from 0.5 to 2, the size of the complexes 

decreased and the zeta potential changed from negative to positive, due to the decrease in pDNA 

mobility (as mentioned above). At greater N/P ratios, a state of equilibrium was observed      

(Fig. 14). Results showed that dendriplexes have a tendency to form aggregates at a zeta 

potential close to zero, but stabilized at the higher positive zeta potential. Therefore, the 

sufficiently high zeta potential was crucial for the stability of dendriplexes.  
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Figure 14. Size and zeta-potential of dendriplexes at different N/P ratios prepared in HBG 

buffer (pH 7.4) after 30 min of incubation. Values are represented as means ± S.D (n=3). 
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For the optimization of dendriplexes, pDNA transfection and cell viability experiments were 

performed on HEK-293 cell line [98] using different N/P ratios (Fig. 15 and 16). It was observed 

that by increasing the charge ratio, the transfection efficiency was increased, due to an increase 

in charge interaction between the complexes and the negatively charged surface of the cell 

membrane. Maximum pDNA transfection was observed at N/P ratio 12 as compared to lower 

N/P ratios. With a further increase in N/P ratio, transfection efficiency dropped because the 

induction of very high positive charge on the complexes can lead to enhanced cell membrane 

disruption and lower transfection efficiency [38]. The cytotoxicity assay also showed a 50% 

drop in the viability of the cells at N/P ratio 8 and a further increase in toxicity with increasing 

N/P ratios.  

 

Therefore, dendriplexes with N/P ratio 12, having a size of 160.7 ± 3.5 nm with a zeta potential 

of 28.9 ± 2.5 mV (suitable for incorporation into liposomes) and the highest transfection 

efficiency with least toxicity among the three best transfecting N/P ratios were selected for 

further studies to optimize lipodendriplexes. 
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Figure 15. pDNA transfection studies of dendriplexes at different N/P ratios in HEK-293 cell 

line using Jet Prime® as positive control. Untransfected cells were considered as negative 

control. Values are represented as means ± S.D (n=3). 
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Figure 16. Cytotoxicity studies of dendriplexes at different N/P ratios in HEK-293 cell line, 

using 1% TritonTM X-100 as positive control. Values are represented as means ± S.D (n=3). 

 

3.2 Physicochemical characterization of lipodendriplexes  

 

To find an optimal lipid composition for lipodendriplex formation, different lipids with various 

molar ratios were investigated. The physicochemical properties of a broad range of liposomal 

formulations were determined. All the extruded liposomes were in the size range of 87.8 nm to 

128.7 nm, with a narrow and monodisperse size distribution, having a polydispersity index 

(PDI) of approximately 0.1, except for pegylated liposomes, having a PDI of about 0.2         

(Table 1). The zeta potential of the liposomal formulations was in the negative range except for 

the positively charged DPPC:DOTAP (95:5) liposomes. 

 

Table 1. Size and zeta potential (mean ± S.D) of different liposomal formulations (n=3).        

  

Formulations (mol:mol) Size ± S.D [nm] (PDI) Zeta potential ± S.D [mV] 

DPPC:CH (85:15)  105.2 ± 17.3 (0.12) -7.5 ± 0.7 

DPPC:CH:MPEG5000-DPPE (85:14:1) 128.7 ± 59.8 (0.23) -17.9 ± 11.2 

DPPC:DPPG (92:8) 107.1 ± 32.8 (0.15) -14.0 ± 2.5 

DPPC:DOTAP (95:5) 87.8 ± 12.7   (0.15) 35.8 ± 5.8 

DPPC:DOPE:CH (45:40:15) 109.2 ± 22.2 (0.19) -12.6 ± 2.0 

DPPC:MPEG5000-DPPE (95:5) 125.6 ± 68.5 (0.21) -22.5 ±  2.2 
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In order to optimize the stoichiometry of lipodendriplexes, the DPPC:CH (85:15) formulation 

was initially selected, to complex with optimized dendriplexes. Different liposome to PAMAM 

dendrimer mass ratios from 0.1 to 1 were tested for lipodendriplexes formation. As shown in     

Fig. 17, the size of the resulting lipodendriplexes was increased compared to parent 

dendriplexes. It was also observed that by increasing the liposome mass ratio from 0.1 to 0.5, 

zeta potential of the lipodendriplexes decreased from +16.9 to +8.8 mV, showing the maximum 

liposome shielding over the dendriplexes at the mass ratio of 0.5. The maximum shielding is 

very important to minimize the PAMAM associated cytotoxicity and unwanted interaction of 

these complexes with the blood components [99]. With a further increase in liposome mass 

ratio, a slight increase in zeta potential of the complexes was observed, which was due to 

possible charge competition between negatively charged liposomes and pDNA for the binding 

sites on the positively charged PAMAM. These changes can cause a slight destabilisation of 

dendriplexes and expose some of the amino groups to the outer site. The additional positive 

charge may also lead to lower transfection efficiency with an increase in cytotoxicity, as 

depicted in Fig. 19 and 22. 
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Figure 17. Size (bar graph) and zeta potentials (line graph) of different liposome to PAMAM 

dendrimer mass ratios (0.1-1) of DPPC:CH-PAMAM lipodendriplexes (N/P ratio 12). Values 

are represented as mean ± S.D (n=3). 

 

The results of size analysis were in good correlation with the AFM findings. AFM images 

showed that the pure liposomes of DPPC:CH (85:15) were spherical and their size                      

(110.3 ± 7.2 nm) was similar to the hydrodynamic diameter obtained from DLS analysis        

(Fig. 18 A-C). While the lipodendriplexes settled on the silica surface showed a size of           

https://www.sciencedirect.com/topics/chemistry/reaction-stoichiometry


 

 

                                                                    Chapter III: Results and Discussion 
 

46 

 

259.6 ± 5.3 nm and a slight change in shape from spherical to oval. The non-covalent interaction 

of liposome with dendriplexes and the adsorption of lipid layer on the silica surface results in 

the broadening of the lipodendriplexes (Fig. 18 D-F) [100]. Fig. 18 E also showed the spreading 

of some lipid layer, with a height of 4 nm, representing a lipid bilayer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. AFM micrographs with lock in amplitude, height measured and lock in phase view 

of DPPC:CH (85:15) liposome (A-C) and DPPC:CH-PAMAM lipodendriplexes (liposome to 

PAMAM dendrimer mass ratio 0.5; N/P ratio 12) (D-F), respectively. Cross section view of 

spreading lipid layer (indicated by red arrow) showing a height of 4 nm, representing a lipid 

bilayer. Scale bar represents 500 nm. 
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3.3 DNA transfection experiments 

 

3.3.1 pDNA transfection experiments of lipodendriplexes 

 

After the establishment of optimized dendriplexes, the transfection efficiency of 

lipodendriplexes of DPPC:CH (85:15) using different liposomes to PAMAM dendrimer mass 

ratios (0.1 to 1) was tested in SKOV-3 cell line. It was observed that the liposome to PAMAM 

dendrimer mass ratio 0.5 showed the best transfection results (Fig. 19). Thereby, this ratio was 

further tested with lipodendriplexes of different liposomal formulations, in order to optimize 

the best transfecting formulation (Fig. 20). Lipodendriplexes of DPPC:CH (85:15),           

DPPC:CH:MPEG5000-DPPE (85:14:1) and also of positively charged DPPC:DOTAP (95:5) 

showed good transfection efficiencies. In contrast, lipodendriplexes of DPPC:CH (85:15) 

showed a significant improvement in transfection efficiency as compared to lipodendriplexes 

of DPPC:DPPG (92:8), DPPC:DOPE:CH (45:40:15) and DPPC:MPEG5000-DPPE (95:5) and 

of its parent dendriplexes. Surprisingly, DOPE containing lipodendriplexes exhibited lower 

transfection efficiency, which might be due to a change in the physicochemical properties of 

the resulting complex, while the large PEG chain containing liposome (DPPC:MPEG5000-

DPPE; 95:5) remarkably reduced the transfection efficiency, depicting a lower cellular 

internalization. This finding was in accordance to the work done by Schäfer et al. [101]. 
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Figure 19. pDNA transfection studies in SKOV-3 cell line with different liposome to PAMAM 

mass ratios (0.1-1) of DPPC:CH-PAMAM lipodendriplexes (N/P ratio 12). Values are 

represented as mean ± S.D (n=3) and statistical significance is indicated as *p < 0.05.  



 

 

                                                                    Chapter III: Results and Discussion 
 

48 

 

D
P

P
C

:C
H

 (
8

5
:1

5
) 

D
P

P
C

:C
H

:M
P

E
G

 5
0

0
0

-D
P

P
E

 (
8

5
:1

4
:1

)

D
P

P
C

:D
P

P
G

 (
9

2
:8

)

D
P

P
C

:D
O

T
A

P
 (

9
5

:5
)

D
P

P
C

:D
O

P
E

:C
H

 (
4

5
:4

0
:1

5
)

D
P

P
C

:M
P

E
G

 5
0

0
0

-D
P

P
E

 (
9

5
:5

) 

D
e

n
d

ri
p

le
x

e
s

0.0

5.0x10
4

1.0x10
5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

1.0x10
6

1.5x10
6

2.0x10
6

2.5x10
6

3.0x10
6

R
L

U
 /
 m

g
 p

ro
te

in

**
*

*
*

 

Figure 20. pDNA transfection studies in SKOV-3 cell line of lipodendriplexes of different 

liposome formulations (liposome to PAMAM dendrimer mass ratio 0.5) and dendriplexes (N/P 

ratio 12). Values are represented as mean ± S.D (n=3) and statistical significances are indicated 

as *p < 0.05, **p < 0.01.  

 

3.3.2 Cellular uptake studies 

  

To visualize the cellular uptake of the optimized dendriplexes and lipodendriplexes, GFP 

reporter gene expression assay was done. Internalization of complexes was monitored by GFP 

positive cells to estimate the transfection efficiency showing an overlay of DAPI treated cells 

coupled to the green fluorescence signal arising from the GFP expression. Cells transfected with 

lipodendriplexes exhibited a higher green fluorescence signal compared to dendriplexes alone. 

The higher cellular uptake could have contributed towards an increased plasmid GFP 

transfection through possible cellular events like interactions of nano-complexes with the cell 

membrane, cellular uptake and endosomal release which results in an efficient entry of 

pCMV-GFP to the cytoplasm and finally to the nucleus (Fig. 21) [87]. 
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(A) 

 

(B) 

 

Figure 21. Fluorescence micrographs with DAPI, GFP and Merged (DAPI + GFP) channels. 

GFP expression in (A) HEK-293 and (B) SKOV-3 cell lines with optimized dendriplexes and 

DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P 

ratio 12). Untransfected cells were considered as blank. Scale bar represents 20 μm. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dapi
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3.4 Cytotoxicity studies 

 

3.4.1 MTT assay 

 

In the case of lipodendriplexes, the liposomal layer covers the surface of the dendriplex and 

inhibit the binding of terminal amino groups to the surface of the cell membrane, thereby create 

a more favourable environment for the cells and consequently improve cell viability [53]. The 

lipodendriplexes of DPPC:CH (85:15) with different liposome to PAMAM dendrimer mass 

ratios (0.1-1), using optimized dendriplexes, were initially tested in cell viability assay. It was 

observed that lipodendriplexes with a liposome to PAMAM dendrimer mass ratio of 0.5 showed 

the highest cell viability (Fig. 22). Therefore, the liposome to PAMAM dendrimer mass ratio 

0.5 was further studied with lipodendriplexes of different liposomal formulations. The 

lipodendriplexes of DPPC:CH (85:15) showed a significant (p < 0.05) improvement in cell 

viability as compared to its respective optimized dendriplexes. The results also depicted a good 

cell viability profile for lipodendriplexes of DPPC:CH:MPEG5000-DPPE (85:14:1), 

DPPC:DOTAP (95:5) and DPPC:DPPG (92:8). While lipodendriplexes of DPPC:DOPE:CH 

(45:40:15) and DPPC:MPEG5000-DPPE (95:5) exhibited a lower cell viability profile           

(Fig. 23).  

Therefore, DPPC:CH (85:15) lipodendriplexes were considered to be the best formulation in 

terms of cell viability and DNA transfection efficiency, hence, they were used for all further 

investigations.  
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Figure 22. Cell viability studies in SKOV-3 cell line with different liposome to PAMAM mass 

ratios (0.1-1) of DPPC:CH-PAMAM lipodendriplexes (N/P ratio 12). Values are represented 

as mean ± S.D (n=3). 
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Figure 23. Cell viability studies in SKOV-3 cell line of lipodendriplexes of different liposomal 

formulations (liposome to PAMAM dendrimer mass ratio 0.5) and dendriplexes (N/P ratio 12) 

using 1% TritonTM X-100 as a positive control. Values are represented as mean ± S.D (n=3) 

and statistical significances are indicated as *p < 0.05, ***p < 0.001. 

 

3.4.2 Reactive oxygen species generation assay 

 

In the case of ROS assay, after the exposure of the complexes, the production of intracellular 

ROS was observed in the HEK-293 and SKOV-3 cells. It was observed that the dendriplexes, 

having exposed terminal amino groups, produce increased fluorescence signals of DCF as 

compared to lipodendriplexes (Fig. 24). This portrayed that the positively charged surface of 

the PAMAM dendrimers played a critical role of ROS generation, by the disruption of the 

mitochondrial electron transduction chain and may result in enhanced O2 production [102]. 
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HEK-293 

 

SKOV-3 

 

Figure 24. (A) Fluorescence micrograph and (B) relative fluorescence units of intracellular 

ROS generation in HEK-293 and SKOV-3 cell lines, respectively after the addition of 

optimized dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM 

dendrimer mass ratio 0.5; N/P ratio 12) using TBHP as a positive control. Higher DCF (green 

fluorescence) was produced from H2DCFDA after the addition of dendriplexes to the cells in 

comparison to lipodendriplexes. Values are represented as mean ± S.D (n=3) and statistical 

significance is indicated as **p < 0.05. Blank represents cells without treatment and scale bar 

represents 20 μm. 
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3.4.3 Lysosomal disruption and actin polymerization  

 

For an efficient nucleic acid delivery, the cargo should be stable during the endocytic uptake to 

release into the cytosol [103]. It has been reported that endocytosis is the main mechanism of 

cellular uptake of protonated PAMAM dendrimers which trafficked to lysosomes and buffer 

the endolysosomal pH (proton sponge effect) and can cause lysosomal rupturing by lysosomal 

membrane permeabilization (LMP) mechanism [104, 105]. Cell death associated with LMP is 

highly associated with mitochondrial membrane permeabilization that can result in enhanced 

reactive oxygen species (ROS) generation, cytosolic acidification and cellular necrosis [106].  

 

 

Figure 25. Lysosomal disruption and actin polymerization assay in SKOV-3 cell line of 

optimized dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM 

dendrimer mass ratio 0.5; N/P ratio 12). DAPI (blue) correspond to the nuclei staining while 

Lysotracker red (red) represents lysosomal staining. Phalloidin FITC (green) representing the 

cytoskeleton staining to monitor actin polymerization. Untreated cells representing as blank. 

Scale bar represents 20 μm. 
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It has also reported that the PAMAM dendrimer can interact with the cytoskeleton in a biphasic 

manner. At low concentration, they retard the actin polymerization by acting as G-binding actin 

protein while at higher concentration they behave as a nucleating protein to cause actin 

polymerization [107, 108]. Therefore, in order to investigate the intracellular trafficking of 

PAMAM based complexes, LysoTracker® red DND-99 (lysosomal marker) and Phalloidin 

FITC were used. Fig. 25 depicted that after the incubation period of 4 h, the cells treated with 

lipodendriplexes showed a higher fluorescence intensity of Lysotracker red as compared to 

dendriplexes suggesting a lower damaging of lysosomes by lipid modified system. It was 

further observed that the concentration of PAMAM used in the complexes does not alter the 

structure of cytoskeleton and inhibited the actin polymerization process.  

 

3.4.4 DNA damage assay   

 

It has been evaluated from section 3.4.2 and 3.4.3, the naked dendriplexes were responsible for 

enhanced oxidative stress and mitochondrial membrane permeabilization which are the key 

determinants of cellular toxicity. The free radical formation was further responsible for the 

damage of many biological components including cellular proteins and DNA, which may lead 

to apoptosis and cellular necrosis [109]. The alkaline comet assay, also called a single cell gel 

electrophoresis method, is a fast and reliable method for the determination of DNA damage. If 

there is some damage or fragments present in a negatively charged DNA, the broken part may 

migrate towards the anode to resolve into DNA head and tail, similar to a broken comet.  

The results of comet assay showed that the lipodendriplexes exhibited an olive tail moment of 

0.7 ± 0.8 while in the case of dendriplexes it was significantly (p < 0.01) high i.e. 6.2 ± 4.2 

indicating the damaging of DNA by naked dendriplexes system (Fig. 26). 

 

Therefore, the exposed terminal amino groups on the surface of naked dendriplexes were 

considered to be responsible for ROS generation, mitochondrial damage, cytotoxicity and DNA 

damage. 
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Figure 26. DNA damage assay in SKOV-3 cell line of optimized dendriplexes and DPPC:CH-

PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio12). (A) 

Comet IV software generated graphs and (B) olive tail moment representing the extent of DNA 

damage. Untreated cells represents as blank. Values are represented as mean ± S.D (n=50) and 

statistical significance is indicated as **p < 0.01. 

 

3.5 Biocompatibility studies 

 

3.5.1 Ex vivo hemolysis assay 

 

The free terminal amino groups of PAMAM contributed to the concentration-dependent 

hemolytic effect on red blood cells [110], consequently, by increasing the charge ratio of 

dendriplexes, a constant increase in toxicity was recorded. Therefore, the most efficient and 

less toxic non-viral vectors from pDNA transfection and in vitro cytotoxicity experiments 

were chosen for the hemolysis assay. Optimized lipodendriplexes were very stable and 
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showed hemolysis of about 7.3%, which was less than the hemolysis induced by dendriplexes 

alone (Fig. 27).  
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Figure 27. Ex vivo hemolysis assay of pDNA (0.25 μg) containing optimized dendriplexes and 

DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P 

12) using 1% TritonTM X-100 as a positive control. PBS, 0.9% NaCl and untreated erythrocytes 

were used as negative controls. Values are represented as mean ± S.D (n=3). 

 

3.5.2 Heparin competition assay  

 

pDNA stability of the charged complexes is the key factor to evaluate the integrity of the non-

viral gene carrier system. The stability of the complexes can be affected by the increasing 

concentrations of natural polyanions (heparin) that can competitively interact with the 

oppositely charged PAMAM dendrimer and may result in the initial release of pDNA. 

Therefore, the stability of the complexes was tested by in vitro pDNA stability assay, using 

heparin as a model molecule. It was observed that the optimized dendriplexes showed stability 

against heparin up to a concentration of 20 I.U./ 100ml (1mg=100 I.U.), while lipodendriplexes 

exhibited stability up to a concentration of 30 I.U./ 100 ml. The concentration of heparin in a 

healthy adult ranges from 5 - 15 I.U./ 100 ml [111]. Therefore, the optimized complexes were 

considered biocompatible. However, in comparison to dendriplexes, lipodendriplexes exhibited 

more resistance against natural polyanions (Fig. 28). 
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Figure 28. pDNA stability studies of optimized dendriplexes and DPPC:CH-PAMAM 

lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio 12) using different 

heparin concentrations (I.U./ 100 ml). 0 I.U. represents complexes without heparin treatment. 

 

3.6 RNA interference experiments 

 

3.6.1 Luciferase gene knockdown assay 

 

Knockdown experiments were performed to determine the gene silencing effect of the 

formulations. Based on the best transfection efficiency profile, lipodendriplexes of DPPC:CH 

(85:15) were selected for luciferase gene knockdown experiments. Lipodendriplexes showed a 

significant knockdown of luciferase gene in comparison to si-Control while an improved 

(insignificant) gene silencing was also observed as compared to dendriplexes group (Fig. 29). 
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Figure 29. Luciferase knockdown efficiency in HeLa LG cell line of optimized dendriplexes 

and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; 

N/P ratio 12). Luciferase gene knockdown of the complexes is expressed as the percentage of 

non-specific scrambled siRNA (si-Control). Values are represented as mean ± S.D (n=3) and 

statistical significance is indicated as ***p < 0.001.  

https://www.sciencedirect.com/topics/chemistry/silencing-rna
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3.6.2 GFP silencing  

Gene silencing efficiency mediated by si-GFP complexes was studied in GFP-expressing HeLa 

LG cell line, using fluorescence microscopy. Results of Fig. 30 depicted the higher knockdown 

efficiency, with good cells viability profile by lipodendriplexes as compared to unmodified 

dendriplexes. While the cells treated with a lipodendriplexes containing scrambled siRNA did 

not produce gene knockdown, confirming the silencing specificity by si-GFP. 

 

Figure 30. GFP silencing in HeLa LG cell line of optimized dendriplexes and DPPC:CH-

PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio 12). Cells 

tretaed with lipodendriplexes containig non- specific scrambled siRNA were used as si-Control. 

GFP channel (green) represents GFP expression in the cells. Scale bar represents 20 μm. 
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3.6.3 MDR1 silencing and RT-qPCR assay  

RT-qPCR assay was performed to measure the gene silencing mediated by si-MDR complexes. 

It was observed that lipid modified complexes exhibited 70% MDR1 gene silencing (p < 0.001) 

which was 1.7 higher than naked dendriplexes (p < 0.01) i.e. 41% knockdown, as shown in   

Fig. 31. 

si-Control Dendriplexes Lipodendriplexes

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

D
R

1
/G

P
D

H
 m

R
N

A
 l
e
v
e
l

***

*

**

 

Figure 31. MDR1 silencing in Caco-2 cell line of optimized dendriplexes and DPPC:CH-

PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio 12). Cells 

tretaed with lipodendriplexes containing non-specific scrambled siRNA were used as                  

si-Control. Values are represented as mean ± S.D (n=3) and statistical significances are 

indicated as *p < 0.05 **p < 0.01 ***p < 0.001. 

 

3.7 Cell Migration studies 

 

3.7.1 Scratch closure assay 

 

Cancer metastasis is the primary cause of morbidity and mortality and responsible for about 

90% of cancer deaths. The disseminated tumor cells play a major role in tumor metastasis, 

which is not a static process and can invade the nearby organs [112-114]. P-glycoproteins         

(P-gp), encoded by the MDR1 gene, are not only involved in the drug efflux mechanism, but 

they can also play a major role in the promotion of tumor metastasis and provide protection of 

tumor cells against caspase dependent apoptosis [115, 116]. To investigate the role of MDR1 

gene in tumor metastasis, Caco-2 cells were transfected with si-MDR1 complexes and tumor 

progression was evaluated by scratch closure assay using Ibidi culture inserts. It was observed 

that the knockdown of MDR1 gene by lipodendriplexes exhibited less scratch closure as 

compared to dendriplexes and si-Control groups (Fig. 32). Results showed that in comparison 
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to si-Control, the percentage of the scratch closure in lipodendriplexes and dendriplexes treated 

cells were 23% (p < 0.001) and 47% (p < 0.01), respectively. Therefore, it is evident from the 

findings, the enhanced downregulation of MDR1 by lipodendriplexes contribute to inhibition 

of metastatic progression. 
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Figure 32. Scratch closure assay in Caco-2 cell line of optimized dendriplexes and DPPC:CH-

PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio 12) using 

Ibidi culture inserts. (A) Process of scratch formation. (B) Scratch closure over the time period 

of 48 h. (C) Graphical presentation of scratch closure area over a time period of 48 h i.e. the 
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percentage of maximum area at 0 h. Cells treated with lipodendriplexes containing non-specific 

scrambled siRNA were considered as si-Control. Scale bar represents 100 μm. Values are 

represented as mean ± S.D (n=3) and statistical significances are indicated as *p < 0.05,             

**p < 0.01, ***p < 0.001. 

 

3.7.2 Transwell migration assay 

Cell migration was also investigated by transwell migration assay.  It has been observed that in 

comparison to si-Control the lipodendriplexes treated cells exhibited a significant reduction      

(p < 0.001) in cell migration (approximately 41% decreased) while 20% reduction (p < 0.01) 

was observed in the case of dendriplexes treated group (Fig. 33).  Therefore, the results of 

transwell migration assay were in good correlation with the results obtained in scratch closure 

assay. 
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Figure 33. Transwell cell migration assay in Caco-2 cell line of optimized dendriplexes and 

DPPC:CH-PAMAM lipodendriplexes (N/P ratio 12). (A) Phase contrast micrographs of the 

cells stained with 0.1% crystal voilet. (B) Graphical presentation of number of cells migrated 

per field. Cells treated with lipodendriplexes containing non-specific scrambled siRNA were 

considered as si-Control. Scale bar represents 20 μm. Values are represented as mean ± S.D 

(n=3) and statistical significances are indicated as **p < 0.01, ***p < 0.001. 

 

3.7.3 Plate colony formation assay 

 

Downregulation of MDR1 is also responsible for the reduction of cell proliferation and 

colonization [116]. To confirm this role of MDR1 in colon cancer, colony formation assay was 

performed in Caco-2 cell line. It was observed that after knockdown of MDR1 with 

lipodendriplexes, the number of colony formation was significantly (p < 0.001) reduced to         

63% in comparison to the si-Control group. Similar effects were recorded in dendriplexes 
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treated group with an inhibition effect of about 48% (p < 0.001). Nevertheless, the knockdown 

produced by lipodendriplexes exhibited more significant (p < 0.01) results as compared to the 

parent dendriplexes group (Fig. 34). These results depicted that MDR1 knockdown played an 

obvious role in the inhibition of cell proliferation and colonization of Caco-2 cells.  
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Figure 34. Colony formation assay in Caco-2 cell line of optimized dendriplexes and DPPC: 

CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio 12). 

(A) Photographs of the cells colony stained with 0.1% crystal voilet. (B) Graphical presentation 

of number of colony formation after 14 days of incubation. Cells treated with lipodendriplexes 

containing non-specific scrambled siRNA were considered as si-Control. Values are 

represented as mean ± S.D (n=3) and statistical significances are indicated as **p < 0.01,       

***p < 0.001. 

 

3.7.4 3D tumor spheroid cell migration 

 

Cell migration plays a vital role in tumor metastasis from their site of origin. Therefore, in order 

to investigate the cell metastasis in Caco-2 cells, magnetically levitated cells were patterned 

into a 3D tumor spheroidal model to establish a similar in vivo tumor like environment [117]. 

This 3D tumor model determines the impact of MDR1 silencing on tumor progression. The 
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cells treated with complexes containing si-MDR1 were pattern into 3D spheroidal structure and 

the cell migration through ECM, away from the original bioprinted area, over the incubation 

period of 48 h was recorded. The results showed that in the case of si-Control treated cells the 

percentage of cells migration was 28% while a significant reduction in cell migration was found 

in case of dendriplexes (p < 0.05) and lipodendriplexes (p < 0.01) i.e. 18% and 13%, 

respectively (Fig. 35). 
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Figure 35. (A) 3D tumor spheroid cell migration assay in Caco-2 cell line of optimized 

dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass 

ratio 0.5; N/P ratio 12). (B) Graphical presentation of percentage of cells migration from 

original bioprinted area. Cells treated with lipodendriplexes containing non-specific scrambled 

siRNA were considered as si-Control. Scale bar represents 200 μm. Values are represented as 

mean ± S.D (n=3) and statistical significances are indicated as *p < 0.05, **p < 0.01. 
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3.7.5 Cytoskeleton staining of spheroids 

 

It is difficult to handle the spheroids during the staining process. Therefore, in the case of 

magnetically printed spheroid for every step, including washing, fixing and staining the 

spheroid, magnetic drive was placed under the plate to maintain the integrity of the spheroids. 

The Magpen was used to lift the stained spheroid and to place them on the slide for analysis 

(Fig. 36). 

 

 

Figure 36. Steps involved in staining and transferring the 3D tumor spheroid on the glass slides. 

(A) Overview of spheroids in 96-well ultra-low attachment plate. (B) Placement of plate on 

spheroid magnetic drive to hold the spheroids during washing, fixing and staining. (C) Move 

the Magpen to a well of 96-well plate to pick up a spheroid. (D) Removal of Magpen out of 

well (with magnet) (E) A typical spheroid attached at the underside of the pen. (F) Move the 

Magpen (without magnet) on the glass slide to place the spheroid, under the influence of 

magnetic field.   

The visualization of actin, in 2D culture of Caco-2 cells, was analysed in section 3.4.4 to 

investigate the process of actin polymerization. Similarly, the staining of actin was conducted 

in 3D culture to observe the distribution of cytoskeleton, responsible for cell matrix adhesion 

and of their shape as well. Fig. 37 illustrated that that spheroids treated with si-Control 

showed a loose cellular distribution due to their ability to migrate in outer media as discussed 

in section 3.7.4. In lipodendriplexes, after the knockdown of MDR1 gene, the intracellular 

layer was strongly adhered to the extracellular matrix and anchored the spheroids, responsible 

for the reduction in cell migration. 
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Figure 37. Cytoskeleton staining of spheroids of Caco-2 cell line of optimized dendriplexes 

and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; 

N/P ratio 12). DAPI (blue) correspond to the nuclei staining while Phalloidin FITC (green) 

representing the cytoskeleton staining to monitor actin polymerization. Cells tretaed with 

lipodendriplexes containing non-specific scrambled siRNA were used as si-Control. Scale bar 

represents 200 μm. 

 

3.7.6 3D tumor ring closure assay 

Ring closure assay is similar to a scratch closure assay in which the void circular space tends to 

close in 3D fashion over the specific time period [118]. Ring closure assay was performed on 

the magnetically levitated cells to investigate the role of MDR1 gene in cell migration using 3D 

bioprinted cells. The cells treated with complexes containing si-MDR1 were patterned into 3D 

ring structure and the ring closure was recorded for 48 h to evaluate the gene silencing effect. 

The rate of ring closure was determined by measuring the inner diameter of the ring at specific 

time intervals (0, 16, 24, 36, 48 h). The results showed that the cells treated with 

lipodendriplexes slower the ring closure as compared to dendriplexes and si-Control treated 

cells (Fig. 38). After 48 h incubation, the cells treated with si-Control shrink the ring to 92% 
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while in comparison to si-Control, a significant reduction in ring closure was found in the case 

of dendriplexes (p < 0.01) and lipodendriplexes (p < 0.001) with a reduction in the inner 

diameter of 47% and 21%, respectively (Fig. 39). 

(A) 

 

 

Figure 38. Micrographs of 3D tumor ring closure assay in Caco-2 cell line of optimized 

dendriplexes and of DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer 

mass ratio 0.5; N/P ratio 12) at specified time intervals. Scale bar represents 200 μm. 
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Figure 39. Graphical representation of 3D tumor ring closure assay in Caco-2 cell line of 

optimized dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM 

dendrimer mass ratio 0.5; N/P ratio 12) at specified time intervals. Cells treated with 

lipodendriplexes containing non-specific scrambled siRNA were considered as si-Control. 

Values are represented as mean ± S.D (n=3) and statistical significances are indicated as             

*p < 0.05, **p < 0.01, ***p < 0.001. 
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3.7.7 3D tumor ring closure assay by mobile device 

 

Ring closure area was also determined by using a less expensive mobile device in comparison 

to the phase contrast imaging microscope. The dark brown colouration of the ring makes it 

possible to capture the change in diameter in individual well on a microtiter plate (Fig. 40). It 

was observed that the results obtained using a mobile device were similar to the phase contrast 

microscope, but the lower resolution power did not provide the exact results. About 91% of ring 

closure was recorded in si-Control treated cells while 45% (p < 0.01) and 23% (p < 0.001) were 

observed in the case of dendriplexes and lipodendriplexes, respectively (Fig. 41). 

 

 

 

Figure 40. Analysis of 3D tumor ring closure assay by mobile device in Caco-2 cell line of 

optimized dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM 

dendrimer mass ratio 0.5; N/P ratio 12) at specified time intervals. Cells treated with 

lipodendriplexes containing non-specific scrambled siRNA were considered as si-Control. 
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Figure 41. Graphical presentation of 3D tumor ring closure assay by mobile device in Caco-2 

cell line of optimized dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to 

PAMAM dendrimer mass ratio 0.5; N/P ratio 12) at specified time intervals. Cells treated with 

lipodendriplexes containing non-specific scrambled siRNA were considered as si-Control. 

Values are represented as mean ± S.D (n=3) and statistical significances are indicated as             

*p < 0.05, **p < 0.01, ***p < 0.001. 

 

3.8 Apoptosis assay by flow cytometry 

A sequential treatment using RNA interference and chemotherapy provides a synergistic effect 

to resolve the issue of multidrug resistance [119]. The overexpression of p-glycoprotein (P-gp) 

on Caco-2 cells are responsible for the efflux of imatinib mesylate (IM). Therefore, the effective 

downregulation of P-gp can enhanced intracellular accumulation of the IM and subsequent 

apoptosis of the cells.  

In order to investigate the apoptosis by flow cytometry (FACS), one group of the cells were 

incubated with si-Control, dendriplexes and lipodendriplexes and the other group of the cells 

were subjected to sequential treatment of si-Control, dendriplexes, lipodendriplexes followed 

by 75 μM of IM. It has been observed that the downregulation of P-gp was accountable for the 

increased apoptosis of the cells (Fig. 42). The results of Fig. 43 showed that the cells which 

were only incubated with si-Control, dendriplexes and lipodendriplexes exhibited                      

23.5 ± 5.5%, 25.3 ± 5.7% and 24.4 ± 6.7% cellular apoptosis (early + late apoptosis), 
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respectively. Contrary, a sequential treatment increased the subsequent cellular apoptosis. It has 

been observed that the lipodendriplexes aided sequential treatment significantly increased the 

apoptosis (54.9 ± 13.7%) in comparison to dendriplexes (p < 0.05) and si-Control group              

(p < 0.001) i.e. 35.7 ± 23.1% and 24.5 ± 12.3% respectively. Therefore, the downregulation of 

P-gp with the help of lipodendriplexes was responsible for re-sensitization of the cells for 

enhanced intracellular accumulation of drug (IM).  

 

 

Figure 42. Apoptosis assay (FACS micrographs) in Caco-2 cell line by optimized dendriplexes 

and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; 

N/P ratio 12) without or with IM (75 μM) treatment. Left bottom= healthy cells, right bottom= 

dead cells, left top= early apoptotic cells, right top= late apoptotic cells. Cells treated with 

lipodendriplexes containing non-specific scrambled siRNA were considered as si-Control. 
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Figure 43. Apoptosis assay (graphical representation) by flow cytometry in Caco-2 cell line by 

optimized dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM 

dendrimer mass ratio 0.5; N/P ratio 12) without or with IM (75 μM) treatment. Graphical 

representation of % positive cells (live, dead, early apoptotic and late apoptotic, respectively). 

Black bar graph; cells incubated only with si-Control, dendriplexes and lipodendriplexes. Red 

bar graph; cells incubated with sequential treatment with si-Control, dendriplexes and 

lipodendriplexes for 48 h and then with IM (75 μM) for 24 h. Cells treated with lipodendriplexes 

containing non-specific scrambled siRNA were considered as si-Control. Values are 

represented as mean ± S.D (n=3) and statistical significances are indicated as *p < 0.05,         

***p < 0.001. 

 

3.9 Apoptosis determination of spheroids by live dead viability assay  

In contrast to 2D culture, the live dead viability assay was performed in 3D tumor spheroidal 

model for apoptosis investigation. The live cells were stained with syto 9 while dead and late 

apoptotic cells were stained with PI. For the apoptotic determination, the equilibrated spheroids 

of si-Control, dendriplexes and lipodendriplexes were incubated with IM (75 μM) or without 

IM treatment for 24 h. The spheroids only incubated with si-Control, dendriplexes and 



 

 

                                                                    Chapter III: Results and Discussion 
 

71 

 

lipodendriplexes maintain their cellular integrity and showed a dense outer layer of live cells, 

with a small portion of dead cells while the IM treated spheroids exhibited a change in shape 

depicted a hollow cellular structure, indicating the loss of cell fragments from spheroids. Results 

of Fig. 44 showed that after the IM treatment, the lipodendriplexes treated cells exhibited 

maximum apoptotic effects and showed an enhanced red fluorescence of PI channel in 

spheroidal structure as compared to dendriplexes and si-Control treated group. These results 

further confirmed the enhanced intracellular accumulation of IM following the efficient 

knockdown by lipodendriplexes system. These results were in good correlation with the results 

obtained from apoptosis assay in 2D culture. 

 

Figure 44. Live dead viability assay of spheroids for apoptosis determination by fluorescence 

microscopy in Caco-2 cell line of optimized dendriplexes and DPPC:CH-PAMAM 

lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio 12) without or with 

IM (75 μM) treatment. Green fluorescence (syto 9) representing the live cells while red 

fluorescence (PI) indicating dead and late apoptotic cells. Cells treated with lipodendriplexes 

containing non-specific scrambled siRNA were considered as si-Control.  Scale bar represents 

200 μm. 
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3.10 Cell cycle analysis and accumulation of Sub-G1 phase 

 

The cell cycle analysis was performed to determine the cell phase distribution by flow 

cytometry analysis. Results of Fig. 45 depicted the effective downregulation of P-gp expression 

contributes to the apoptosis induced by IM and arrest the cell cycle at Sub-G1 phase [120].    

Fig. 46 showed that the cells incubated with si-Control, dendriplexes and lipodendriplexes 

exhibited 12.0 ± 5.5%, 8.6 ± 3.5% and 14.2 ± 7.7% Sub-G1 phase distribution. While an 

increased percentage in Sub-G1 phase was observed after the sequential treatment, depicting an 

increased Sub-G1 phase with lipodendriplexes treated group (34.7 ± 10.3%) in comparison to 

dendriplexes (28.2 ± 4.4%) and si-Control groups (23.4 ± 3.7%). These findings suggest that 

enhanced intracellular accumulation of IM arrests Caco-2 cells at the Sub-G1 phase and inhibit 

the cell cycle progression. 

      

 

 

Figure 45. Cell cycle analysis (FACS micrographs) by flow cytometry in Caco-2 cell line by 

optimized dendriplexes and DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM 

dendrimer mass ratio 0.5; N/P ratio 12) without or with IM (75 μM) treatment. Cells treated 

with lipodendriplexes containing non-specific scrambled siRNA were considered as si-Control. 
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Figure 46. Cell cycle analysis (graphical representation) by flow cytometry in Caco-2 cell line 

by optimized dendriplexes and of DPPC:CH-PAMAM lipodendriplexes (liposome to PAMAM 

dendrimer mass ratio 0.5; N/P ratio 12) without or with IM (75 μM) treatment. Graphical 

representation of % positive cells (G0/G1, S, G2/ M and Sub-G1 phases, respectively). Black 

bar graph; cells incubated only with si-Control, dendriplexes and lipodendriplexes. Red bar 

graph; cells incubated with sequential treatment with si-Control, dendriplexes and 

lipodendriplexes for 48 h followed by IM (75 μM) for further 24 h. Cells treated with 

lipodendriplexes containing non-specific scrambled siRNA were considered as si-Control. 

Values are represented as mean ± S.D (n=2). 

 

3.11 In ovo chorioallantoic membrane (CAM) analysis  

 

According to the strategy of 3Rs principle (i.e. replacement, refinement, and reduction), 

different alternative methods should be used to avoid the unethical use of animals. Therefore, 

at the initial level of research, an alternative method should be first evaluated, which can reduce 

the exposure of testing drug products on laboratory animal [121]. In the present study, the 

chorioallantoic membrane (CAM) model was used to evaluate the GFP expression and safety 

profile of the dendriplexes and lipodendriplexes. The results showed that the lipodendriplexes 
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exhibited an enhanced GFP expression as compared to its parent dendriplexes. The GFP 

expression was observed in the epithelial cells (Fig. 47). Similar results were obtained by 

Baghdan et al. [122]. In addition, 48 h post-transfection, the optimized complexes did not 

produce any toxicity in the developing embryo and showed no injury of the CAM 

microvasculature. Thereby, the optimized lipodendriplexes exhibited transfection efficiency 

with a good safety profile in ovo environment. 

 

 

 

Figure 47. Apical view of CAM on the egg development day 11 and CLSM micrographs of 

GFP expression in CAM (epithelial cells) with optimized dendriplexes and DPPC:CH-

PAMAM lipodendriplexes (liposome to PAMAM dendrimer mass ratio 0.5; N/P ratio 12). 

Green channel represents GFP expression. Scale bar represents 10 μm. 

 

3.12 In vivo experiments 

 

3.12.1 Acute in vivo toxicity 

 

3.12.1.1 Body weight and behaviour monitoring 

 

Acute in vivo toxicity was investigated in mice following i.v. injection of optimized complexes 

(dendriplexes and lipodendriplexes) containing at 10 µg of pDNA by tail vein route and 

compared to untreated group. The animal body weight was monitored daily for 7 days. There 

was no significant difference in the body weight found during the experimental period in both 

treated and untreated groups as shown in Fig. 48. The survival rate was 100% with no alteration 

in physical and social behaviours among the animals. 
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(A) 

 

 

 

 

 

 

 

(B) 

 

Figure 48. (A) Process of: i.v. administration, blood collection by cardiac puncture and sacrifice 

of mice by cervical dislocation method, respectively (B) Changes in body weight of mice for 7 

days in untreated group (mice 1-3) and after the administration of the complexes containing    

10 µg of pDNA (mice 4-6 dendriplexes and mice 7-9 lipodendriplexes of DPPC:CH-PAMAM; 

liposome to PAMAM dendrimer mass ratio 0.5 with N/P ratio 12). No changes in body weight 

of the mice were observed. (Arrows representing the repeated dose). 

 

3.12.1.2 Organ to body ratio 

 

At the termination of the study, mice were sacrificed by cervical dislocation and the major vital 

organs were carefully removed to calculate the organ index of heart, lungs, liver, spleen and 

kidneys. No significant increase in the organs index was found after the treatment with 

dendriplexes and lipodendriplexes except in the liver index, which was significantly reduced 
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after treatment with dendriplexes as depicted in Fig. 49. The results showed that the liver to 

body index in dendriplexes treated group was 4.9 ± 0.6% which was significantly less                   

(p < 0.05) than the liver index of untreated group (i.e. 6.2 ± 0.5%). PAMAM dendrimers induced 

autophagy process could be responsible for a reduced liver weight of the mice [68]. 
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Figure 49. The organ to body index (%) of untreated group (white bar graph) and treated groups 

(dendriplexes (DP): black graph bar; lipodendriplexes (LDP): grey bar graph) after the sacrifice 

of animals by cervical dislocation. Values are represented as mean ± S.D (n=3) and statistical 

significance is indicated as *p < 0.05. 

 

3.12.1.3 Serum biochemistry analysis 

 

Results of serum biochemistry markers showed a significant increase (p < 0.001) in the levels 

of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase 

(ALP) in dendriplexes treated group, as compared to lipodendriplexes treated and untreated 

groups as depicted in Fig. 50 A-C. In case of dendriplexes treated group, hepatocellular injury 

and necrosis may be responsible for an increased leakage of ALT and AST in the bloodstream 

while an increase in the level of ALP suggested a bile obstruction in the bile duct. Significant 

elevation in total bilirubin (p < 0.001) was also associated with hepatotoxicity induced by 

dendriplexes in comparison to other groups. Changes in blood glucose and total protein level 

by dendriplexes group were also indicated some of their interference with the liver functioning 
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and glucose metabolism (Fig. 51 A-C). The level of blood urea nitrogen and creatinine was also 

higher in dendriplexes treated groups, indicating the decreased efficiency of glomerulus or 

proximal tubule (Fig. 52 A-B). These findings were in agreement with the studies conducted by 

Tang et al. and Wang et al. [123, 124]. 
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Figure 50. Typical liver function tests (LFTs) parameters including (A) ALT, (B) AST and (C) 

ALP levels of untreated group and after i.v. administration of the complexes containing 10 μg 

of pDNA (dendriplexes (DP) and lipodendriplexes of DPPC:CH-PAMAM (LDP); liposome to 

PAMAM dendrimer mass ratio 0.5 with N/P ratio 12). Values are represented as mean ± S.D 

(n=3) and statistical significance is indicated as ***p < 0.001. 
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Figure 51. Typical serum biochemical parameters including (A) blood glucose, (B) total 

bilirubin and (C) total protein parameters of untreated group and after i.v. administration of the 

complexes containing 10 μg of pDNA (dendriplexes (DP) and lipodendriplexes of DPPC:CH-

PAMAM (LDP); liposome to PAMAM dendrimer mass ratio 0.5 with N/P ratio 12). Values are 

represented as mean ± S.D (n=3) and statistical significance is indicated as ***p < 0.001. 
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Figure 52. Typical renal function tests (RFTs) parameters including (A) blood urea nitrogen 

and (B) creatinine levels of untreated group and after i.v. administration of the complexes 

containing 10 μg of pDNA (dendriplexes (DP) and lipodendriplexes of DPPC:CH-PAMAM 

(LDP); liposome to PAMAM dendrimer mass ratio 0.5 with N/P ratio 12). Values are 

represented as mean ± S.D (n=3) and statistical significance is indicated as ***p < 0.001. 
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3.12.1.4 Hematological evaluation 

 

In hematological analysis, the major biomarkers including red blood cells count (RBCs), 

hematocrit (HCT), white blood cells count (WBCs), hemoglobin (Hb), mean corpuscular 

volume (MCV), neutrophils, eosinophils, lymphocytes, monocytes, platelets count (PLT), mean 

corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean 

platelet volume (MPV) and percentage of neutrophils, monocytes, lymphocytes, eosinophils 

were monitored (Table 2). The results revealed the cationic dendriplexes triggered hemolysis 

of RBCs, which was depicted by a lower RBC and hematocrit count with a decreased level of 

Hb. While lipodendriplexes exhibited a slight decrease in Hb level in comparison to untreated 

groups. Total leukocytes count was increased in both treated groups in comparison to untreated 

group, which has suggested the induction of some acute inflammatory response by the immune 

system. Neutropenia was observed in both treated group while an increase in lymphocytes was 

monitored in dendriplexes treated group. It was also observed that in the case of dendriplexes 

treated group the PLT count was high stating the role of cationic PAMAM dendrimers in 

activation of platelets and in blood clot formation. This finding was in agreement with the 

results obtained by Jones et al. [125]. 

 

Table 2. Hematological parameters of mice in treated (dendriplexes, lipodendriplexes) and 

untreated group (mean± S.D) (n=3).    

 

Blood parameter Untreated Dendriplexes Lipodendriplexes 

Hb (g/dl) 12.9 ± 1.4 12.1 ± 2.0 12.6 ± 1.6 

WBCs (109/L) 3.2 ±  1.2 4.4 ± 1.6 6.4 ± 0.8 

RBCs (1012/L) 7.1 ± 1.2 6.6 ± 1.2 7.19 ± 1.9 

HCT (PCV) % 35.6 ± 6.8 33.5 ± 6.2 39.2 ± 7.1 

MCV (fl) 49.6 ± 5.2 50.0 ± 6.0 54.5 ± 5.6 

MCH (pg) 18.0 ± 2.7 18.0 ± 3.1 17.5 ± 1.8 

MCHC % 36.3 ± 8.5 36.1 ± 7.4 32.1 ± 8.1 

PLT (109/L) 747.0 ± 25.2  794.0 ± 36.4 731.0 ± 19.2 

Neutrophils % 10 .0 ± 1.3 2.0 ± 1.4 2.0 ± 1.0 

Lymphocytes % 80.0 ± 9.4 95.0 ± 10.7 88.0 ± 8.1 

Monocytes % 7.0 ± 1.6 2.0 ± 0.5 8.0 ± 1.1 

Eosinophils % 3.0 ± 0.8 1.0 ± 0.4 2.0 ± 0.4 
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3.12.1.5 Erythrocytes aggregation assay 

 

An erythrocyte aggregation analysis was performed to check the ex vivo behaviour of 

complexes on the blood cells. The dendriplexes treatment with erythrocytes exhibited a high 

level of aggregation with some hemolysis of the cells while the lipodendriplexes exhibited very 

low levels of interaction among the erythrocytes (Fig. 53). Similar work was done by Ewe et 

al. [126]. 

 

 

 

 

 

 

 

 

 

 

Figure 53. Ex vivo erythrocytes aggregation assay after treatment of complexes (dendriplexes 

and lipodendriplexes of DPPC:CH-PAMAM; liposome to PAMAM dendrimer mass ratio 0.5 

with N/P ratio 12) with 100 μl of erythrocytes suspension (2% v/v) compared to untreated cells. 

Scale bar represents 20 μm. 

 

3.12.1.6 Histopathology of vital organs 

 

Histopathological analysis of major organs was done using H & E stained tissue sections         

(Fig. 54). No discriminable changes were seen among the vital organs (heart, lung, and kidneys) 

of all groups. However, some scattered hepatocytic necrosis dots with pronounced 

vacuolization were observed in the dendriplexes treated group, indicating PAMAM dendrimers 

induced damages of the liver tissue. In the case of dendriplexes treated group some thickness 

in the glomerulus was also observed. These hepatic damage and glomerulus thickness by 

dendriplexes were in compliance with the results, illustrated in Fig. 51 & 52, showed the high 

bilirubin, blood urea nitrogen and creatinine levels, respectively. There was no renal toxicity 

observed in the untreated and lipodendriplexes treated groups. 
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Figure 54. Histopathology studies: H & E stained sections of vital organs from mice (heart, 

lungs, liver and kidney) of untreated group and after i.v. administration of the complexes 

containing 10 μg of pDNA (dendriplexes and lipodendriplexes of DPPC:CH-PAMAM; 

liposome to PAMAM dendrimer mass ratio 0.5 with N/P ratio 12). All images were taken at 40 

x magnification. Scale bar represents 20 μm.  

 

Results of in vitro and acute in vivo toxicity showed that the lipid modification of cationic 

dendriplexes markedly reduces the toxic properties of naked dendriplexes such as their 

cytotoxicity towards cultured cells, blood cells and in vital organs as well [127]. 
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3.12.2 In vivo biodistribution and imaging analysis 

 

The precise biodistribution of GFP labeled DNA complexes following i.v. administration was 

assessed in vital organs, using a fluorescence iBox® Explorer2TM imaging system. The images 

of the dissected organs were taken 24 h after the administration of the complexes to detect the 

fluorescence signals of GFP expression. The higher fluorescence signals of GFP expression 

were observed in liver, lungs, kidneys and heart as shown in Fig. 55 A. In case of dendriplexes 

the highest signals were detected in liver (24,606 ± 1,047 a.u. per organ), followed by the lungs 

(19,953 ± 3,028 a.u. per organ), kidneys (7,652 ± 1,016 a.u. per organ), heart (4,923 ± 287 a.u 

per organ) and then in spleen (4,421 ± 932 a.u. per organ). The liposome modification with 

dendriplexes significantly increases the fluorescence intensity in all organs, except the spleen, 

in comparison to naked dendriplexes. The fluorescence signals in the liver appeared to be 

highest with lipodendriplexes treatment (1,43,916 ± 15,876 a.u. per organ), followed by lungs 

(54,517 ± 4,552 a.u. per organ), kidneys (41,582 ± 3,804 a.u. per organ), heart 

(10,483 ± 698 a.u. per organ) and then in spleen (4,623 ± 932 a.u. per organ) (Fig. 55 B).  

In vivo biodistribution of dendriplexes exhibited low gene expression, which was due to the 

rapid plasma clearance by reticuloendothelial system (RES) sites. Less uptake of dendriplexes 

was also due to possible interaction of some anionic blood and cell membranes components 

with the terminal amino groups on the complexes, to get clearance from blood circulation.  The 

short blood circulation time limits the possibility of effective delivery of dendriplexes. 

However, the protective shielding of liposome over the dendriplexes exhibited an increased 

cellular uptake with prolonged circulation time and decreased clearance. Similar results were 

described by Ko et al. [128]. 
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Figure 55. (A) Ex vivo fluorescence images of vital organs (heart, lungs, liver, kidneys and 

spleen) after i.v. administration of the complexes containing 10 μg of pCMV-GFP (dendriplexes 

and lipodendriplexes of DPPC:CH-PAMAM; liposome to PAMAM dendrimer mass ratio 0.5 

with N/P ratio 12). The mice were sacrificed 24 h after the administration of the complexes. 

The organs were collected carefully and washed with normal saline to remove any blood traces. 

Fluorescence intensity is demonstrated by a color scale bar (red depicting maximum 

fluorescence intensity; 65535, while dark blue is minimum fluorescence intensity; 0) and (B) 

quantitative biodistribution (fluorescence intensity a.u) of pCMV-GFP labeled DNA complexes 

in vital organs. Values are represented as mean ± S.D (n=3) and statistical significances are 
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indicated as **p < 0.01, ***p < 0.001. (Black graph bar represents dendriplexes (DP) and grey 

bar graph represents lipodendriplexes (LDP)). 

 

3.12.3 Frozen tissues GFP distribution analysis 

 

To investigate the GFP biodistribution in vital organs, a less expensive ex vivo fluorescence 

imaging technique was employed, using thin frozen sections of the organs. It has been observed 

that a marked distribution of GFP fluorescence was observed in all organs but with of different 

intensity. Results of Fig. 56 showed the same pattern of GFP expression, as observed in section 

3.12.2. The highest no. of green fluorescent signals was detected in liver followed by the lungs, 

kidneys, heart and then in spleen, respectively. These results also indicated that lipid modified 

complexes contributes to the efficient cellular internalization of the cargo as compared to naked 

dendriplexes system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56. Ex vivo fluorescence imaging in the frozen thin section of dissected vital organs 

(heart, lungs, liver, kidneys and spleen) after i.v. administration of the complexes containing  

10 μg of pCMV-GFP (dendriplexes and lipodendriplexes of DPPC:CH-PAMAM; liposome to 

PAMAM dendrimer mass ratio 0.5 with N/P ratio 12). Green spots indicating the GFP 

expression in the cells. Scale bar represents 100 μm
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4.1 Summary and outlook 

 

The main objective of the current study was to developed an optimized system for enhanced 

nucleic acid delivery with minimum cytotoxicity. For efficient therapeutic gene delivery, 

PAMAM dendrimer, with ethylenediamine core was chosen due to its biodegradable and non-

immunogenic nature. However, the cytotoxicity and unusual biodistribution by this 

polycationic polymeric system urged the need of protective shielding. Therefore, a non-covalent 

interaction of dendriplexes with lipids i.e. liposomal modification was chosen as a technique to 

overcome the associated drawbacks.  

The methodology section of the thesis deals with the preparation of liposomes, dendriplexes, 

lipodendriplexes, their subsequent physicochemical characterization and in vitro, in ovo and in 

vivo studies. 

In the results section, the characterization of dendriplexes has been discussed, which was the 

prerequisite of lipodendriplex formation. Dendriplexes formation was confirmed by gel 

retardation and fluorescence quenching assay. Dynamic light scattering and laser Doppler 

anemometry also confirmed the stable complex formation, with a desired size range suitable for 

cellular internalization. Based on highest pDNA transfection efficiency and appropriate cell 

viability profile, an N/P ratio of 12 has been chosen for complexation with the liposomal 

formulation. 

A broad range of liposomal formulations has been investigated and the influence of liposome 

to PAMAM ratios on surface charge and size of lipodendriplexes are described in detail. Surface 

morphology of the liposomes and lipodendriplexes has been analysed using atomic force 

microscopy and their sizes were compared with the results obtained from dynamic light 

scattering.  

Transfection studies have been discussed for different lipodendriplexes formulations. It has 

been observed that the DPPC:CH-PAMAM lipodendriplexes showed a significant 

improvement in pDNA transfection as compared to other lipodendriplexes formulations and 

their parent dendriplexes. The higher gene expression was also confirmed using fluorescence 

microscopy by GFP expression analysis. 

Cytotoxicity studies including MTT, ROS, lysosomal disruption and DNA damage assays has 

been discussed in detail. From the results, it has been depicted that the lipid modification of 

dendriplexes shields the terminal amino group induced toxicity and consequently improves the 

cell viability. 
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Biocompatibility studies has been performed to check to the compatibility of the complexes in 

the presence of blood components. Heparin competition and erythrocyte hemolysis assay 

revealed the biocompatible nature of the lipodendriplexes. 

Another objective of the study was to deliver the siRNA to investigate the gene silencing effect. 

Knockdown experiments showed a pronounced downregulation of luciferase, GFP and MDR1 

genes by lipodendriplexes compared to dendriplexes or the control siRNA groups. 

The role of MDR1 in cell migration and colonization of cancer cells has also been described in 

detail. Downregulation of MDR1 gene by lipodendriplexes exhibited significant inhibition of 

tumor metastasis and colonization. 

The knockdown effect of MDR1 gene was also investigated in 3D cell culture environment. 

Cell migration and ring closure assays were performed using 3D tumor spheroid and ring 

bioprinting model. A significant reduction in the cell migration was observed in the case of 

lipodendriplexes treated group. 

Next step was to investigate the enhanced intracellular accumulation of tyrosine kinase inhibitor 

(imatinib mesylate) after the downregulation of P-gp (responsible for drug efflux) and 

subsequent apoptosis in colon carcinoma.  Apoptosis assay was done in 2D and 3D cultures 

using flow cytometry and live dead staining, respectively. The results of 2D culture were in 

agreement with the data from 3D cell cultures. 

Cell cycle analysis also confirmed the imatinib mesylate induced apoptosis, indicated by an 

arrest of Sub-G1 phase depicting an effective downregulation of P-glycoprotein by 

lipodendriplexes. 

In order to minimise the unethical use of animals, an alternative in ovo chorioallantoic 

membrane model (an in vivo like environment) has been used to determine the efficacy and 

biocompatibility of the complexes. Lipodendriplexes exhibited successful reporter gene (GFP) 

expression in the CAM with no toxicity observed within the CAM vasculature. 

After establishing the improved gene transfection and toxicity profile in in vitro conditions,       

in vivo biodistribution and toxicity assessment of the complexes has performed in female 

BALB/c mice and discussed in detail. In vivo biodistribution has revealed that encapsulation of 

dendriplexes with liposomes has essentially increased the cellular uptake of the complexes, 

which was confirmed by ex vivo imaging of the dissected organs. Acute toxicity studies showed 

that the lipodendriplexes treated group did not produce any change in body weight, organ to 

body ratio and in organ tissue histopathology. Serum biomarkers and hematological studies also 

revealed the biocompatibility in an in vivo environment.  
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From the findings in this thesis, it can be concluded that development of such non-viral nano 

carrier system could serve for an efficient gene transfection with better safety profile, both for 

in vitro and in vivo therapeutics. Further in vivo studies using different pre-clinical models for 

specific targeted delivery against different types of cancer and genetic disorders will help to 

realise the therapeutic potential of this system. 
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4.2 Zusammenfassung und Ausblick 

 

Das Hauptziel der aktuellen Studie war die Entwicklung eines optimierten Gentransfersystems 

mit minimaler Zytotoxizität und maximaler Effizienz. Für einen effizienten Gentransfer dienten 

PAMAM-Dendrimere, die aus einem Ethylendiamin-Kern bestehen und biologisch abbaubar 

und wenig immunogen sind.  

Die Zytotoxizität und die ungewöhnliche Verteilung in biologischen Systemen erforderten 

jedoch eine Schutzabschirmung dieser polykationischen Polymersysteme. Die Ausnutzung von 

nichtkovalenten Wechselwirkungen von Dendriplexen mit Lipiden wurde als ein nützliches 

technologisches Instrument genutzt, um diese Nachteile zu überwinden. Der methodische Teil 

der Arbeit beschreibt die Herstellung von Liposomen, Dendriplexen, Lipodendriplexen und 

deren anschließende physikalisch-chemische Charakterisierung bis hin zu in-vitro-, in-ovo- 

bzw. in-vivo-Studien. 

Der Ergebnisabschnitt der Arbeit umfasst die Charakterisierung von Dendriplexen, welche  die 

Voraussetzung für die Bildung von Lipodendriplexen darstellen. Die Überprüfung der Integrität 

der Bildung stabiler Dendriplexen wurde mit Hilfe der Gel-Retardations Chromatographie und 

des Fluoreszenzlöschungsassays durchgeführt. Dynamische Lichtstreuung und Laser-Doppler-

Anemometrie bestätigten ebenfalls die stabile Komplexbildung in einem gewünschten 

Größenbereich (von unter 200 nm), der für eine optimale zelluläre Aufnahme geeignet ist. Auf 

Grund der höchsten pDNA-Transfektionseffizienz und einer geringen Zelltoxizität wurde ein 

N/P-Verhältnis von 12 für die Liposomenkomplexierung verwendet. Ein breites Spektrum 

liposomaler Formulierungen wurde zur Komplexierung mit Dendriplexen untersucht und der 

Einfluss des Liposom-PAMAM-Verhältnisses auf die Oberflächenladung und die Größe von 

Lipodendriplexen wurde detailliert beschrieben. 

Die Untersuchung der Oberflächenmorphologie der Liposomen und Lipodendriplexe fand mit 

Hilfe der Rasterkraftmikroskopie statt. Die gemessenen Durchmesser wurden mit den 

Ergebnissen  der dynamischen Lichtstreuung verglichen. 

Eine breite Vielfalt an verschiedenen Lipodendriplex-Formulierungen sind hergestellt, 

charakterisiert und deren Transfektionsstudien diskutiert worden. Die DPPC:CH-PAMAM-

Lipodendriplexe zeigten eine signifikante Verbesserung der pDNA-Transfektion im Vergleich 

zu anderen Lipodendriplex Formulierungen und Dendriplexen. Eine GFP-Expressionsanalyse 

bestätigte die erhöhte Genexpression. 

Untersuchungen zur Zytotoxizität, einschließlich MTT-, ROS-, Lysosomal-Disruptions und 

DNA-Schädigungs Assays, wurden ausführlich diskutiert. Aus den Ergebnissen ist ersichtlich, 
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dass die Lipidmodifikation, die für Zelltoxizität verantwortlichen terminalen Aminogruppen 

von Dendriplexen abschirmen und letztendlich zu einer erhöhten Zellüberlebensrate führen. 

Das Biokompatibilitätsprofil wurde untersucht, um die Verträglichkeit der Komplexe in 

Blutbestandteilen zu überprüfen. Der Heparin-Kompetitions- und Hämolysetest bestätigte die 

deutlich verbesserte Biokompatibilität von Lipodendriplexen im Vergleich zu den 

Dendriplexen. 

Ein weiteres Ziel der Arbeit bestand darin, den siRNA Gen-Silencing-Effekt zu untersuchen. 

Im Vergleich zu Dendriplexen und zu der siRNA-Kontrollgruppe zeigten Lipodendriplexe eine 

ausgeprägte Herunterregulierung des Luciferase-, GFP- und des therapeutisch relevanten 

MDR1-Gens. 

Die Rolle von MDR1 bei der Zellmigration und Kolonisierung von Krebszellen wurde ebenfalls 

ausführlich beschrieben. Die Herunterregulierung des MDR1 Gens durch Lipodendriplexe 

zeigte eine signifikante Hemmung des Tumormetastasenwachstums und deren 

Abwanderung/Weiterverbreitung. Die Untersuchung des Knockdown-Effekts des MDR1-Gens 

erfolgte in einer 3D-Zellkulturumgebung, die eine ähnliche Situation wie in-vivo simuliert. Die 

Zellmigrations- und Ringschluss-Assays wurden unter Verwendung eines 3D-Tumor-

Sphäroid- und Ring-Bioprinting-Modells durchgeführt. Eine deutliche Hemmung der 

Zellmigration wurde dabei festgestellt. 

Der nächste Schritt bestand in der Untersuchung der verstärkten intrazellulären Akkumulation 

des Tyrosinkinaseinhibitors (Imatinib-Mesylat) nach der Herunterregulierung von P-gp, das 

vornehmlich für die zelluläre Arzneimittelausschleusung verantwortlich ist, und der 

anschließenden Apoptose beim Kolonkarzinom. Der Apoptosetest wurde in 2D- und 3D-

Kulturen unter Verwendung von Durchflusszytometrie bzw. Lebendtotfärbung durchgeführt. 

Die Ergebnisse der 2D-Kultur haben eine Bestätigung der in 3D-Zellkulturen erhaltenen Daten 

erbracht. 

Aus den Befunden knonnte geschlossen werden, dass nach der wirksamen Herunterregulierung 

von P-gp durch Lipodendriplexe die intrazelluläre Akkumulation des Wirkstoffs und 

anschließend die zelluläre Apoptose erhöht wurde. 

Die Zellzyklusanalyse bestätigte auch die durch Imatinib-Mesylat induzierte Apoptose, die 

durch einen Stillstand der Sub-G1-Phase angezeigt wird und eine wirksame 

Herunterregulierung von P-gp durch Lipodendriplexe darstellt. 
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Um die Verwendung von Tieren in vorklinischen Experimenten zu verringern, ist eine 

Alternative, das sogenannte in-ovo chorio allantois Membranmodell verwendet worden, um die 

Exposition von Komplexen in-vivo-ähnlicher Umgebung zu untersuchen. Es wurde beobachtet, 

dass die Lipodendriplexe eine erfolgreiche GFP-Expression auf der CAM-Oberfläche und kein 

toxisches Verhalten in den CAM-Gefäßen aufwiesen. 

Danach konnten die Komplexe nach Festlegung des verbesserten Gentransfektions- und 

Toxizitätsprofils unter in-vitro-Bedingungen, in-vivo-Bioverteilung und Toxizitätsbewertung 

geplant und ausführlich erörtert werden. 

Die in-vivo-Bioverteilung zeigte, dass die Verkapselung von Dendriplexen in Liposomen die 

zelluläre Aufnahme der Komplexe wesentlich erhöht hat, was durch ex-vivo-Bildgebung der 

präparierten Organe bestätigt wurde. Studien zur akuten Toxizität wurden ebenfalls eingehend 

untersucht. Es konnte beobachtet werden, dass die mit Lipodendriplexen behandelte Gruppe 

keine Änderung des Körpergewichts, des Verhältnisses von Organ zu Körper und der 

Histopathologie des Organgewebes hervorrief. Serumbiomarker und hämatologische Studien 

zeigten auch die Biokompatibilität in einer in-vivo-Umgebung. 

Die Ergebnisse zeigen, dass die Entwicklung eines solchen nicht-viralen Genvehikels für eine 

effiziente Gentransfektion mit einem besseren Sicherheitsprofil sowohl in-vitro als auch in-vivo 

verwendbar wird. Weitere in-vivo-Studien mit verschiedenen präklinischen Modellen zur 

gezielten Therapie von verschiedenen Arten von Tumoren und genetischen Störungen könnte 

das therapeutische Potential diesen neuartigen Lipodendriplexen bestätigen. 
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