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PREFACE

This report describes a numerical code for the study of
the spatio-temporal dynamics of a reactor. It is written
for the reactor TESI in particular, which operates in
conditions of prompt criticality. This example was cho-
sen because the classical method of the kinetic eq.

is based on the assumption that the reactor is very near
criticality. The numerical method, based on the direct
solution of the time-dependent diffusion equation, in
condition of prompt criticality, should give more accura-
te results than the classical one.

Although a very special type of reactor is studied here,
this work is meant to be a preliminary work for a more

general code for power reactors.

The code described in this report is only for one space

dimension.

The case of two space dimensions is being studied and will

be the subject of another report.

We are indebted to Mr. Foggi and Mr. Ricchena (T.C.R.) for
many informations on the core of the reactor TESI and on the
point dynamics and for their valuable contribution during
the discussions. We are also grateful to Mrs. Tamagnini
(CETIS) for the calculation made with the Pineto Code

and to Mr. Green and Mr. Caligiuri (CETIS) for the calcu-

lation on the analogue computer.






§ I. The power excursion reactor and its simplified

geometrical configuration

This report contains the description of a numerical code
written for the IBM 7090, and to be employed for the stu-
dy of the spatio-~temporal dynamics of the reactor TESI.

This reactor is meant for studying the destruction of a
fuel element of any other reactor caused by a flash of
high neutron flux. It operates in the following way:

from being critical at a very low power, it is made prompt
critical. The flux rises very rapidly, and, as the reac-
tor is not cooled during the transient, the temperature

in the core rises accordingly. The core has a large nega-
tive temperature coefficient and therefore when a certain
value of the flux is reached, the reactor becomes under-
critical and after a pulse of very short duration the flux
decreases.

It is provided with a cooling system, which can bring the
core to its initial temperature in two or three hours and
prepares the condition for a new pulse. This cooling, how-
ever, has no effect during the transients of a few seconds
which will be studied here. The temperature rises as the
integral of the flux and tends to its final maximum value.

The core of reactor TESI is a vertical cylinder of 145 cm
Height made of a homogeneous mixture of fuel and graphi-
te. There is a radial reflector and also an upper and lower
reflector 60 cm thick. The control rods are of two types.
The first type is placed at the interface between core

and radial reflector. When they are completely introdu-

ced they separate the core from the reflector. The other
type of rods are immersed from the top into the core.

We will consider them as moving all together in the axial
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direction with the same depth of insertion. We shall con-
sider substituting these rods by an equivalent poison
which is homogeneously distributed in the rodded part of

the reactor.

Since we dispose of a programme with one spatial dimeﬁsion
only i.e. the z vertical dimension, we shall consider,
instead of the finite cylindrical core, a horizontal in-
finite slab with a thickness equal to the height of the
core and with upper and lower reflectors. In the cylinder
there is a horizontal neutron leakage, which does not ta-
ke place in the infinite slab; to compensate this the ab-

sorption cross section is increased by the quantity Bi D.

Along the z axis, see Fig. 1, we consider a mesh-points
{z3 (i=1,...L); in the region R 1 (lower reflector) with

a mesh increment Az1; in the region R 2 (core), mesh in-
crement Az2; in the region R 3 (upper reflector) mesh in-
crement Az3. On each interface between core and reflector
is a point of the latticezy, zy, e€ach region must contain
at least one internal point.

The code can operate with a maximum number of 100 points.

Fig. 1.
¢ Rod depth
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§ II The physical equations and their transformation

into a system of linear equations

One of the purposes of this code is to give a description
of the flux distribution in the core and reflectors and of
the deformation of this distribution during the transient,
due to the movement 6£ the control rods, to the temperatu-
re reaction and to the presence of reflectors. Although in
reactor dynamics it is usual to adopt the one group appro-
ximation, two energy groups, fast and thermal, will be con-

sidered here. With one group there is no thermal source in
the reflector, whereas with two groups there is a source
of thermal neutrons also in the reflector due to the slow-
ing down of the fast neutrons; this gives a much better
spatial distribution of fluxes.

There is only one group of delayed neutrons with a decay
constant A equal to the properly weighed average for the

six actual groups. This approximation is good enough
because the reactor operates as prompt critical and the
delayed neutrons have an effect only on the tail of the
transient.

The heat balance equation contains only the term of the
heat accumulation and that of heat production, which must
be equal because, as said before, no heat is removed du-

ring the transient.

The following are the two groups' diffusion equations, the
equation of the balance of precursors of the delayed neu-
trons and the equation of the heat balance.
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(I1-1) D¢ 122 (,E + DfBr)‘l’ + k(1 -B)Za¢+ ZC =< 5%
(11-2) D 333 - (=5 +p B + 3 ) + Ef-! = 4 %ﬁ

t az2 a t™ P ¢ T T vot

aC
(I1-3) 3T = 1<Zaa¢-xc
(II-4) %% = g é Za¢ (see List of Symbols)

The equations (II-1) and (II-2) are written for points in
the core; in the reflectors they have the following form:

(1I-5) DY 2%y _ (35 +Df By = 12%
F o322 Tr £ r ~owe
3 r 629 r r 2 Dfr 1 3¢
(TI-8) B 775 - (22, + D B¢ + Y Tyt

T Term B2D which appears in the diffusion equations in-
creases the cross-sections of a quantity equivalent to the
radial leakage which is not considered in this slab geome-
try. In equations (II-2) and (II-6) the term Zp indicates
the control rod equivalent poison, which is present only
at those points of the lattice (Fig. 1 p.4 ) which are
in the rodded region. Equations (II-3) and (II-4) of the
precursors of delayed neutrons and of heat balance re-
spectively are to be considered only in the core region;
the reflectors are thermically separated from the core

and are always at 20 °C.
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The fluxes ¥ and ¢ are supposed to be zero at the outer

boundary of the reflectors (Points Z, =0, 1z = H)
¥ (0,t) = ¥(H,t) =0

(11-7) (H = height of reactor)
¢(O’t) = ¢ (Hrt) =0

The system of the two diffusion equations is quasi-linear
because the cross section, the neutron velocities and the
quantities =1, k, ¢, which appear in their coefficients,
are temperature-dependent and therefore they are indirect
functionsof the flux ¢.

It is through these variable coefficients that the tempe-
rature feed-back takes place.

The cross sections and the neutron velocities are calcula-
ted according to

\[ 1 T

c c 0 i _ 0
2a (2:1) = Z<':10\/'T('Z',_t7 P 2p (2t) = I\ Tz ey
w(z,t) = W, IL%LEl ; v (z,t) = v, EL%LEL

(o] O

where TO is the uniform temperature of the cold reactor at

the initial state, and Zgo , % W

po ’ o'
corresponding to temperature TO.

VO are values

The quantities k, %, ¢ are obtained in this code by 1li-

near interpolation on tables given as input data.

We consider in a small time interval At the system of the
two quasi-linear parabolic equations (II-1), (II-2) or
(I1-5), (II-6) as linear; in other words we suppose that
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the coefficients remain constant during this interval.
This is possible only when they change very slowly with

time and for small At.

At every time step At, the coefficients are given new
values, which are determined according to the temperatu-
re reaction and the position of the control rods.
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§ IIT - The finite difference equations

The two diffusion equations can be written in the follo-

wing form:

2
(III-1) D% —23 v - A%'W + Bk¢ + ck = lf oY
dz W ot

2
k k 19
(II1I-2) DX 2 ¢ - B¢ +F\Y=—E—-‘2

t 622 v ot

where k(k = 17, 2, 3) is the index of the region:lower
reflector, core and upper reflector respectively. The
meaning of Ak,Bk,CK,EK,Fk is evident.

The height of the reactor has been divided into mesh-points
fzil, (i = 1,2,.......L) with z, = 0 and z; = H=height
of the reactor.

On each interface between core and reflector is a point
of the lattice, and each region contains at least one in-
ternal point; 4. = 2z, -z = AzX is constant in each

1 1 .
) K +1 ) )
region R, and can vary from region to region.

th

Let us consider the i point of the lattice.

Fi%.-z
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The coefficients Df, A, B, C, % and Dt’ E, F, % de-
pend on the temperature, and on the position of the control

rods; therefore they vary from point to point ef the lattice.
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Let us make the integration 1in the space intervals

Z. 1<2Z < 2., and 2. < Z < Z. 4.
1‘-‘: 1 1 l'iu—

In these intervals the coefficients are not supposed to
vary.

For the sake of brevity we will carry out the calculation
only for eq.(III-1); for eq.(II1I-2) we will give the final

expressions.

z Z
)(1. i
13y _ oY _ oY _/ - -
J Voot dz "[Df az]z _ [Df EEJ . (AY - B¢ - C)dz
. 1 3 .——
1—;. 1 1-3 1_}
(I11-3)
Z. 4 z.
1+y i+¢
1 oY oY Y
i i+ i i
(I1I-4)
where

[f(z)] 2, - and [f(z)] 2+

are respectively the left and right limit of £(z) in z = Z; .

As fluxes and neutron currents are continuous throughout
the reactor it is:
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Adding (III-3) and (II1-4) we obtain:

\\~\L
€L4qb
Qla
d16
0,

N
i

e
)

2]

11— 1

7. 4
- lﬁr
2¥ - 2L - - -
faz]z [Dfaz}z Z/' (AY - B¢ - C)dz
i+d -1

. §
a T

The derivatives 0¥

(I11-5)
3z
rences:

are calculated with the central diffe-

The derivatives with respect to the time are approximated
according to:

[g!] ) W(zi,tn) - Y(zi,t
ot -

n n-1
net) Y5 m¥y
t. - ¢t -
i n

)
n-1 t

The integrals are approximated according to the formula:

Z. 4
i+d AL A
/, f£(z)dz = f; . 2—1 + f; —%
2
-7

n- n-1 n n-1 g _yh
1Y Big 1Y ¥ bi L Tie1iT 4
Tlw At : 2 W At T2 v A
2;_ i+ 1
nyn
- A A
D, , =221, lav® _gg® ¢ . 3= +a.¥"-B ¢"C L
1= _ A 2 2
2 1-1 Z;- z
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If Z: is ar interral point of region Rk (X = 1,2,3; ~re-
. _ Lk

flector; core, reflector) then [Dfli_; = [Df]i+§._ Df and

Ai—1 = Ai = azX . The functions A, B, C, w are cortinuous

in z. and equation (III-6) becomes:

k k k

D 2D D
- =g Yh i i L Rl R

Az A® v A Az

el
- Azk.Bk.¢? = azK (Ck + ) (I11-7)
174 i k
L WL At

If z; is a point on the interface between R, , and R, then
eq.(III-6) becomes:

Dk—1 Dk—1 Dk Azk-1

f n f £ 1 k-1

~ == Yot Tttt (et A ) *

Az A Az Wi . At 2

k pK n BK=1 k-1 BK AzK
1 ky 82" |yn f g i n
+ ( T Ai) (¥ - —¢ ¥i+1 - ( + ) ¢
wi.At Az 2 2
n-1 n-1
= |k = A Z (11I-8)
* we LAt 2 Wi . Bt 2

A similar result can be obtained with the integration of

equation (III-2).

The two diffusion equations of the fast and thermal groups
are then transformed into the system of 2 X (L-2) linear

equations:

-r.., . ¥

- - L. o= .
i1 j-17 pi1wi ti1 - ¥4 Si%4 951

(I11-9)

- m. ¥ oo_ -
H 1= Tip%og * Pyp -9 - tio ®i41 %o
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We have supposed that g = ¢ = ¥, =¥ = 0.
The coefficients depend on the temperature, on the position
of the control rods and on the distribution ¢?_1 and Y?—1

calculated at the preceding time interval.

A subroutine calculates the coefficients for every point of

the lattice at every time step.

The solution of this system can be obtained with ah iterati-
ve method using alternatively ¥ as source of ¢ and ¢ as
source of ¥, or with a direct method. Both methods were tho-
roughly described in another report ( EUR - 5%e"Comparison
between the solution by an iterative and a direct method"

by Monterosso and Vincenti).

The distribution ¥ and ¢, are calculated at every time step

by another subroutine.

The coefficients (which must be calculated at every time step
according to the temperature reaction and the position of the
control rods) are presumed to be constant during the interval
A t which must therefore be sufficiently small. The choice

of At is based on a compromise between the precision and

the time of calculation.
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IV The parts of the code and their function

This code consists of two parts:

a)

b)

Initial condition:

this section calculates for the cold reactor:

- the uniformly distributed poison ZP for which the
reactor is overcritical with a required stable period

- a critical uniformly distributed poison Zpo’ or the
critical depth of insertion of the control rods -

- the corresponding distribution ¥(z), ¢(z), C(z)
at the steady state for a required power (this power
must be sufficiently small for the reactor to be con-
sidered as remaining cold)

Dynamic calculation:

this section simulates the movement of the rods and
calculates the evolution of flux and temperature in
space and time during the power excursion.
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§ V - Initial conditions

- Calculation of the uniformly distributed poison Zp

corresponding to a desired stable period T

When the reactor is not critical, after an initial tran-

sient, the flux increases exponentially according to

¢(t) = ¢, e *t (@ = %), until the temperature reaction

takes place.

A poison Zp, as a first approximation, is introducad in
the diffusion equations; after a certain number of time

= %, and corrects the value
of ZP in the sense of reducing the error (o -a), where
o= % . The calculation is repeated until (o -a)<e ,
T
where ¢ 1s an arbitrarily small quantity given as input data.

steps, the code calculates a

To avoid the temperature reaction, which perturbs the sta-

ble period, these calculations start from an initial arbi-
trary flux distribution at a very low power (¢'=1O1O —E————);
cmTsec

and the reactor is considered as remaining cold during the
time of this calculation.

To calculate the first approximation of ZP we use the for-
mula

5k
- eff (V—1)

1
T 1

a =

even though this is valid only near criticality (in our ca-
se the reactor is prompt critical).

It is:

1= ! . ! (v-2)




- 22 -

c
and . Za

oo

Z§+
- (v-3)

(1+B°L?) (1+B%%)

where

> Pt (v-4)

substituting in (V-1) and rearranging:

c
K»Zé 2

= —2 _Bp¢ -3¢ - (V-5)
P (1+B21:) a

< 18

b
t

- Calculation of the critical uniformly distributed poi-

son Zpo

With the same iterative method it is possible to determi-

ne 230 taking E:—éf = 0, starting from:
T

x €
> 2 ° ¢ - 1¢ (V=6)

- —>2a _3g%p
PO (1,B°1) t

It is interesting to remark that, for large values of a,

the ZP’ calculated by the code with the iterative method,
is considerably different from the value obtained with for-
mula (V-5); this is due to the fact that the deduction of

the formulae (V-1) to (V-4) is based on simplifying assump-

tions valid only near criticality. For a = O, however, the
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Zpo calculated with (V-6) is almost the same as the value
calculated by the code with the iterative method. The small
difference is due to the inexactitude of B2 in (V-6). In
fact TESI is a reflected reactor and B2 is the buckling of
an equivalent bare reactor, the dimensions of which are de-
termined by a reflector saving calculation. By substituting
in (V-6) the final value of Zp, it is possible to calcula-

te a more exact value of the equivalent buckling B2.

- Critical depth of insertion of the control rods

If the effect of the control rods is equivalent to a uni-
formly distributed poison ZpB’ then it must be:

;PB + ZP > Z@o

When the control rods are inserted the reactor is undercri-
tical; when they are completely withdrawn the flux evolves
with the stable period T before the temperature reaction
takes place.

At a certain depth of insertion of the bank of control rods,
the reactor is critical. To find it, the code utilizes an i-
terative method (regula falsi): at every successive position
of the rods, a is calculated and the iterations stop when
jaj<e.

- The distribution of fluxes at steady state

After having obtained the critical Zpo' or the critical posi-
tion of the rods, the code repeats the calculation of the
fluxes until the stable critical distribution ¥(z), ¢(z),
C(z) is obtained. These distributions are symmetrical or a-

symmetrical accordingly.
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The code can now reduce the fluxes to values corresponding
to a desired power. This power, of course, must be suffi-
ciently small to have a negligeable heat production.

The iterative calculations will be repeated a number of ti-
mes. At every iteration the thermal flux ¢(z) is multiplied

A //‘ dz

core

/// $(z)dz

core

by the factor

where A 1s the average flux in the core corresponding to
the desired power. At every iteration, the C(z) are cal-
culated according to:

k 82
C(z) = —'—'—x-——-é ¢(z)

After a number of iterations the fast flux V¥(z) also rea-
ches the value of steady state 1in equilibrium with its nor-
malized source [k(1—ﬁ) Za. ¢(z) + xC(z)] (seep. 6 eq.(II-1)).
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§ VI - Dynamic calculation

The programme reads an initial distribution Y(z,to); ¢(z,to);
C(z,tO) and T(z,to) at the time t, and the control rod posi-
tion xz(to). Starting from these values it calculates their
evolution in space and time according to the diffusion equa-
tions and the movement of the control rods.

The calculation can start from a critical distribution obtai-
ned by "Initial Conditions" at the time tO = 0. It is also
possible to reinitiate, from the last distribution at the ti-
me tO = t, an interrupted calculation.

Control rods. The movement of the control rods is simulated
in a special subroutine. They can be withdrawn instantaneous-
ly, or with a finite velocity which can be changed during

the extraction, or reinsertion, according to any given law

of movement.

The coefficients P;s of the thermal group equation are cal-
culated with or without poison for all the points of the lat-
tice. The subroutine decides which points are in the rodded
or in the non rodded region and assigns to P;, the poisoned
or the non poisoned value.

The point Z of the non rodded region, in the vicinity of
the rod, will be partially poisoned and the total absorbtion
cross-section is:

To
E. +8% ) \|———m—ro
ao o
P (T(Zi,t)
where the factor & 1is obtained by interpolation according
to the position of the rods xz(t) between the two points

zj and Zj+1' see Fig. 3.
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w777

non vodded region

F\'%-—3

rodded re_%'\on

Ir this way the total equivalent poison in the reactor is
expressed as a continuous function of the position of the
rod, independently of the subdivision of the space in mesh

pcints.

Temperature reaction. Equation (II-4) of page 6 is trans-

formed into the explicit system of L equations:

T? - :'L_1 F ki n
S S S R (i= 1 2 .....L)
At c; v at 1

The T? are the unknown values of the temperature at each

point Zs of the lattice at the time t,; T?_1 are the
known values calculated at the time (tn - At); Zai’ ks,

Ci are temperature dependent and therefore they have diffe-
rent values from point to point, their values were calcula-
1

at the

is the thermal flux corresponding to

ted according to the temperature distribution T?_
. . ,.n
time (tn - At); ¢

the lost calculation at time tn'

a1 ki’ Ci are therefore delayed with re-

spect to the values of ¢?. The error due to this inconsi-

The values of Z

stency can be reduced by diminishing At. Many tests were ma-—

de using several At. The fluxes and temperatures calculated
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converge to a final value for decreasing At. The expe-
rience has demonstrated that for At ¢ 10-3 sec no prac-—
tical improvement can be obtained (see Report EUR-596 e).

With the temperatures T? the newv =« k. are calcula-

. C.
i’ i* i
ted by interpolation between the tabulated values, and

the new Za ' ;p s W, V are calculated with the for-
mulae:

Yo

o 95

1)

[

oV

O
(8

To .
pi Zpo P Vi =
i
..T;.
To

These values corresponding to the time t, are introduced
in the coefficients of the system (III-9) to calculate
the new distribution of ??+1 ' ¢?+1 ch+1

i ' i
tn+1 = tn + At.

at the time
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§ VII - Comparison between the conventional method of the

kinetic equations and the direct solution of the

diffusion equations

The conventional method for studying the dynamics of a

reactor 1s based on the kinetics equations

k (1-8) -1 2
(VII-1) %.Yti - _eff - + e BT n ¢
k 8
dcC o
(VII-2) T = T n - AC

The following equation gives the law of the temperature va-

riation

X
a1 F fa 5
v

(VII—3) It = C V. .1

ao ° o

These equations contain the space average values of n, ¢
and T and do not consider the geometrical configuration of
the reactor. From now on we will call this the point-me-
thod. The one used in our code will be called the spatial-
method.

The value of keff is determined by the cgntrol rods' posi-
tion and also by the values of k_, «, L7, which are known
functions of the temperature. It is therefore possible to
calculate the function keff(T)' which, introduced irto e-

quation (VII-1) gives the temperature reaction.

This set of equations, together with the function keff(T)
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can be studied with the analogue computer, or with the di-
gital code AIREC or PINETO.

However, this method is based on simplifyirng assumptions,
which will be now explained:

a) The equations (VII-1) and (VII-2) are deduced from the
one-group time-dependent diffusion equation. This deduc-
tion is possible only by supposing that the flux is sepa-
rable relatively to the time and space variables, i.d.
the flux

¢ (r,t) = R(r) . T(t) (VII-4)

actually it should be:

oo

¢ (r,t) = Z, Rn(r).Tn(t) (VII-5)

we consider only the first mode.

This i1s true only at criticality and can be assumed for
states very close to criticality. The reactor TESI, how-
ever, operates in conditions of prompt criticality.

b) The expressions of k pp and 1 appearing in (VII-1)

_ne
k e Ber 1
X - = 1 = —_—E%?7§—
eff T (148219 (1+B°L?)

contain B2 (Buckling) or the first of the proper values
of the solution (VII-5). As the reactor is reflected, B>
can only be obtaired considering an equivalent bare reac-
tor, the dimensions of which are determined by a reflector
saving calculation. As before this calculation has a mea-

ning only at criticality or close to 1it.
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¢) The temperature reaction given by the function keff(T)
can be calculated only using a value of T averaged through-
out the core. The temperature however is different from
point to point and its spatial distribution changes accor-
ding to the production of heat. This deforms the shape of
the flux distribution and influences the reactivity. This
effect can not be taken into account using this method.

d) The keff depends on the position of the control rods xz
and on the temperature T. These two variables in the func-
tion keff(T,xz) are non separable. However the only possible:
way of determining keff with the analogue computer or with
the Airek Code 1is to consider their effect separately.

These simplifying assumptions and their consequent effects
on the precision of the results can be avoided by the method
of the direct solution of the time-dependent-diffusion-e-
quation considered in each point of the reactor core and re-
flectors.

It is interesting to compare the results of both methods for
the same case. The choice of a suitable example for this com-

parison is however rather difficult because the two methods
have a completely different approach to the problem.

In this example, to avoid the deformation of the flux distri-
bution due to the movement of the control rods, these are
withdrawn instantaneously (which corresponds to a step of
reactivity in the point-method). This instantaneous extrac-
ticn of the rod avoid furthermore the difficulties explai-
ned in d) ; 1in fact only the temperature reaction on reac-

tivity takes place during the power excursion.
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The control rods at the interface between core and radial
reflector are kept completely inserted. By this means it
1s possible to calculate exactly the radial buckling

2 (2.§05)2

B =
r

bucklirg determination [b) p. 24 1is limited to the axial

, Where R = radius of core. The error of the

buckling.

Fixed a value of a,the I, can be calculated with the i-
terative method of p.4s . Then using the formulae (IV-1)
to (IV-4) it is possible to calculate the corresponding

Skeff to be used in the kinetic equations.
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§ VIII - Some examples of calculation

The Code Costanza can plot automatically the curves by a
CALCOMP DATA-PLOTTER. See Figures 7 to 11.

a) Control rods extracted with constant velocity

Fig. 7 shows the curves of g(t) and ¢(t) obtained with
an instantaneous expulsion of the control rods, and by
extracting the rods with constant velocity in 0.15 sec.
The poison left in the core is,in this case,Zp:0.00007
cm™ 1. at the time the control rods are completely ex-
tracted, the temperature reaction has not yet reached
its effect, therefore the curves ¥(t) and $(t) are al-
most the same in both cases, they are shifted farwards
for the ramp extraction. In Fig. 8 are the curves of the
average temperature f(t).

Figs. 9 and 10 are the spatial distributions ¥(z) and
#(z), when the control rods are extracted in 0.15 sec,
at the time 0.075 sec when the rods are still in the co-
re, and at the time 0.241 sec when the maximum of ¢(t)
1s reached.

Fig. 11 shows the temperature distribution of 0.501 sec.
Fig. 12 is a page of the listing of the IBM 7090 with
the input data and the tables of k“ , T and specific
heat. In Fig. 13 are the initial distributions and Figs.
4 , 15 , 16 are the prints corresponding to the times
6.1, 0.29 , 0.501 sec.

(For the meaning of the symbols see the WRITE-UP of the
Code Costanza; some remarks and descriptions of symbols
have been written with a type-writer on the listing 1t-
self).

If the rods are extracted with a2 low velocity, the oscil-
lations take place. Fig. 17 reports the function
g(t) corresponding to a rod velocity of 40 cm/sec. In
Fig. 18 the non symmetrical flux and temperature distri-
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bution and the control rods' positions are plotted,
corresponding to the peaks of Fig. 17 at the times
t = 2.63 sec and t = 3.62 sec.

Rod movements for constant power

One of the interesting operational conditions of TESI
consists in reaching in a short time a certain power le-
vel and in maintaining it as lons as possible, according
to the temperature reaction and to the total built-in
reactivity.

The desired power can be reached in the shortest time by
an extremely rapid expulsion of a certain number of con-
trol rods. Once the required power has been reached, the
reactor must again become critical and some rods are shot
into the reactor again. If in the meantime the temperatu-
re has reached a considerable level not all the extracted
rods are reinserted. Some of them remain out to compensa-
te the temperature reaction. After this first phase, the
temperature reaction increases continuously and this will
be compensated by again extracting the control rod at a
reduced velocity. The total expulsion and reinsertion of
the first phase are obtained with pneumatic devices, with
a maximum permissible acceleration of 100 g. The movement
at reduced velocity of the second phase is obtained by
mechanical engines. An additional subroutine of the code
simulates the expulsion and reinsertion of the rods. The
reduced number of rods can easily be simulated by using

a convenient value of ZPB in the rodded region. This sub-
routine determines continuously the position of the con-
trol rods according to the power wanted and the tempera-
ture reaction. The movements are kept within the limits
of the maximum mechanical speed possible. Fig. 19 con-
tains the curves of the rod position as function of ti-
me and of the average temperature 5(t). Fig. 20 con-
tains the ﬁ(t), average neutron density, as function

of time,
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