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Abstract

Traditional oppositions are at least two-dimensional in the sense that
they are built based on a famous bidimensional object called square of
oppositions and on one of its extensions such as Blanché’s hexagon. In-
stead of two-dimensional objects, this article proposes a construction to
deal with oppositions in a one-dimensional line segment.
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Introduction

The basic theory of oppositions has been developed considering a bidimen-
sional structure, i.e., the well known square of oppositions. Later, it has been
generalized to an hexagon of oppositions by Blanché in [4]. Moretti argues in
[5] that there is a ‘geometry’ of oppositions, generalizing squares and hexagons,
basically, to three-dimensional structures such as cubes and tetradecahedrons.
This gives rise to the domain of n-opposition theory. Since works proposed by
Beziau in [1] and Moretti in [5], there are now many researches in the field. The
reader should check [7] for an introduction to the square of oppositions and [6]
to its main recent developments. Beziau and Read stated in [3] that the theory
of oppositions cannot be identified with the diagram representing this theory
(p.315). This means that there are much more on oppositions than what is
represented in the relations between corners of the square or the hexagon. This
article1, in some sense, can be viewed as an attempt to justify the claim that
the theory of oppositions is not only the study of these n-dimensional diagrams
(n ≥ 2).

1A previous version of this paper appeared as a preprint in arXiv (April, 2016). Thanks
to Rodrigo Freire, Edelcio de Souza and Fabien Schang for remarks on the constructions
proposed here.
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Consider a question: is there a way to represent oppositions without two-
dimensional objects such as squares or objects of higher dimensions? The
answer is yes. A construction to formulate this reduction is proposed showing
that there is no need for two-dimensional objects to establish the basic theory
of oppositions. Indeed, one dimension is enough. This means that oppositions
can be defined in a line segment, a piece of one-dimensional space. Moreover,
oppositions require precisely at least one dimension to be defined, and the
traditional case of the bidimensional square can be converted step-by-step to
it. However, applying the same strategy to Blanché’s hexagon does not work.
But the situation changes with some constraints added at the level of the basic
construction. So, it is also possible to convert the standard bidimensional
Blanché’s hexagon to a line segment.

This paper shows that line segments are sufficient to define four basic stan-
dard oppositions in such a way that the square can be derived from this prim-
itive structure. This line segment of oppositions is called here basic construc-
tion. Then, this very same basic construction does not work when applied to
the standard hexagon (i.e. Blanché’s hexagon), but there is a way to generate
a similar strategy mutatis mutandis to it. In what follows these constructions
are explained presenting their range and limits.

1 Defining oppositions in a line segment

1.1 The square

Assume classical logic. Given the framework of first-order logic, the square of
oppositions uses four kinds of categorical propositions (where ϕ is formula):
(A) universal affirmative of the form ∀xϕ, (E) universal negative of the form
∀x¬ϕ, (I) existential affirmative ∃xϕ and (O) existential negative ∃x¬ϕ. Tak-
ing into account that ∀ and ∃ are interdefinable in the presence of negation, it is
a matter of taste to decide which one to use to represent these four propositions.
They can appear as above, mixing both quantifiers, or with only one kind of
quantifier. Thus, for universal quantifier and negation there is the following:
(A) ∀xϕ, (E) ∀x¬ϕ, (I) ¬∀x¬ϕ and (O) ¬∀xϕ. For existential quantification
and negation: (A) ¬∃x¬ϕ, (E) ¬∃xϕ, (I) ∃xϕ and (O) ∃x¬ϕ. In general, in the
literature, there are four traditional oppositions holding between these proposi-
tions: contradiction (d), contrariety (c), subcontrariety (sc) and subalternation
(s), which are defined in the standard way (see [7]).

Further, there are, indeed, other families of concepts satisfying opposi-
tional structures: they could be metaphysical statements such as necessity and
possibility (and their derivatives), or deontic propositions containing notions
of obligation and permission, or even statements containing temporal aspects



Oppositions in a Line Segment 187

such as always, sometimes and never. So, a pure oppositional structure is
not necessarily decorated with categorical statements. Indeed, there are many
possible decorations of the square (see [4, 2, 5]). These concepts fit pretty well
satisfying the structure of the square of oppositions (or its extensions). They
- and similar concepts - are here called categorical-like concepts: these are
notions satisfying the four oppositions and, for this reason, can be arranged
inside the traditional square. A set of categorical-like statements is denoted
by C. Oppositions are usually (and historically) represented bidimensionally
using a two-dimensional object with lenght and width (i.e. a square):
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I argue that the above two-dimensional square can be reduced to a simple
one-dimensional structure, that is, a line segment of integers.2 To show how
to build this reduction is the first construction suggested here.

Assume the set Z of integers and, then, the sets Z+ (positive integers) and
Z− (negative integers). If the set of integers does not have zero, it is denoted by
Z∗, as usual. Take a line segment such that for each j ∈ Z, j 6= 0, there exists
−j, the symmetric of j. In particular, consider a set Z′ = {−r,−q, q, r} ⊆ Z.
Then the procedure is: a categorical-like proposition is assigned to each element
j ∈ Z′ in the following way:

• j ∈ Z∗+ if, and only if, j is associated to a universal statement;

• j ∈ Z∗− if, and only if, j is associated to an existential statement.

There is a division of propositions in the sets of universal and existential
statements. Let C be a set of categorical (or categorical-like) propositions.
The function i which connects elements of C to elements of Z′ is a bijection
such that: i(A) = q; i(E) = r; i(I) = −r and i(O) = −q.

We use α, β for arbitrary propositions ranging on C. Traditional opposi-
tions now have to be reformulated inside this new framework. So, clauses for
oppositions are defined as follows:

1. Propositions α, β are contradictories if, and only if, their assigned num-
bers have sum equals to 0, i.e, i(α) + i(β) = 0;

2. Propositions α, β are contraries if, and only if, i(α), i(β) ∈ Z∗+;

2Simple in the sense that it requires only one dimension.
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3. Propositions α, β are subcontraries if, and only if, i(α), i(β) ∈ Z∗−;

4. β is subaltern of α if, and only if, i(β) 6= −i(α) and i(β) ∈ Z∗−;

This completes the construction. Let’s show with an example how the
square can be defined in this way: consider, for instance, that Z′ = {−2,−1,
1, 2} ⊆ Z. Thus, given that 1, 2 ∈ Z∗+, it follows that these numbers are as-
signed to universal propositions (in which way this association is done is not
important). In the same manner, from the fact that −2,−1 ∈ Z∗−, these num-
bers are connected to existential statements. Without loss generality, consider
that 1 is the number connected to (A), i.e, i(A) = 1 and i(E) = 2. Therefore,
the contradictory of (A) is the proposition (O) because i(O) = −1 satisfying,
therefore, the condition to be a contradiction, i.e., 1 + (−1) = 0. The same for
the relations between (E) and (I). By construction, (A) and (E) are contraries
while (I) and (O) are subcontraries, and these are subalterns of (A) and (E),
respectively. (I) is subaltern of (A) given that (I) has associated to it the inte-
ger −2 which is, in its turn, different of −1 (note that −i(A) = i(O)). As far as
there are only four oppositions, this procedure can always be done, no matter
the family of concepts considered. This is an example provided to show how
a two-dimensional square of oppositions can be reduced to a one-dimensional
line segment of oppositions.

Despite the beauty of oppositions represented in a square, these oppositions
can be converted into a one-dimensional line segment, if the number of oppo-
sitions remain four. This is the main contribution of this paper. Nevertheless,
not all two-dimensional objects can be reduced using this same strategy. It
already fails in the case of the hexagon. So, the basic construction has to be
improved in order to work also for the hexagon. This is of secondary impor-
tance here, given that the hexagon does not have the same historical relevance
of the square.

1.2 The hexagon

Blanché proposed an extension of the square, the hexagon, and this new tool
(still two-dimensional) can be used to model many situations (see [4], but also
[2]). Following Blanché’s construction, in the (incomplete) diagram below, (U)
is defined as the disjunction A ∨ E and (Y) is the conjunction I ∧O.
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How can the reduction strategy, i.e., the basic construction be also ex-
tended to Blanché’s hexagon? The fact that there are propositions of the form
(U) and (Y) require some adaptations in the basic construction. The second
construction consists in executing these adaptations in order to transform also
the hexagon into a one-dimensional structure.

Take a line segment as above and a set Z′′ = {−s,−r,−q, q, r, s} ⊆ Z.
Now, as there are also a disjunction and a conjunction, some changes have to
be made in the way integers are assigned to propositions. To each element
j ∈ Z′′, a proposition is connected as follows:

• j ∈ Z∗+ if, and only if, j is associated to a universal statement or a
disjunction;

• j ∈ Z∗− if, and only if, j is associated to an existential statement or a
conjunction;.

The division of the class of propositions now contains a set of universal and
disjunctive statements, from one side, and a set of existential and conjunctive
statements, from other side. Let the set C′ be an expansion of the set C
defined by categorical-like propositions plus a disjunction and a conjunction,
and let the function i which connects elements of C′ to elements of Z′′ be a
bijection such that: i(U) = s, i(A) = q, i(E) = r, i(I) = −r, i(O) = −q
and i(Y ) = −s. The number assigned to the conjunction of (I) and (O),
that is, (Y), as well to the disjunction of (A) or (E), that is (U), is the sum
of both conjuncts (in the first case) and the sum of both disjuncts (in the
second case). So, define that the integers associated to statements (U) and
(Y) are obtained by the sums of their components: i(U) = i(A) + i(E) and
i(Y ) = i(I) + i(O). These numbers obtained by sums play an important role
and, therefore, they are called distinct objects: the first one is the positive
distinct object and the second is the negative. Consider a similar strategy as
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the basic construction and let’s try to reduce the hexagon to a line segment.
Suppose, for instance, that Z′′ = {−3,−2,−1, 1, 2, 3} ⊆ Z is given and numbers
are associated to propositions: i(A) = 1, i(E) = 2, i(O) = −1 and i(I) = −2.
Thus, distinct objects have the following association: i(U) = 3 and i(Y ) = −3,
if we consider this particular line segment [−3, 3]. Hence, these statements are
obviously in the opposition of contradiction. In this sense, clause (1) above,
i.e., contradiction, holds for (U) and (Y):3
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d

But not all clauses from 1-4 are valid. The reason for this is that Blanché’s
hexagon contains some unexpected connections between propositions (Y)-(A)-
(E) (they are contraries and then clause 2 fails):
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and propositions (U)-(I)-(O) (they are subcontraries and then clause 3
fails):
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In addition, subalternation also fails. Thus, it is not straighforward to
settle Blanché’s hexagon in a line segment of integers.4 So, some adaptations
and repairs in the basic construction should have to be done.

Assume that α, β, γ are letters for arbitrary propositions. The construction
below shows how to reduce Blanché’s hexagon to a line segment. Let i(γ) be

3Moretti (see [6]) remarked that the opposition of contradiction can be characterized, no
matter which dimension is considered, as a certain kind of symmetry. It is a conjecture of this
work that the whole of n-opposition theory can be reduced to variations of the constructions
presented in this paper.

4Note that these last three diagrams are displayed in Blanché’s hexagon (see [4]). When
these relations are added to the diagram, we have the complete hexagon of oppositions.
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a distinct object. For contradictories, condition 1 remains the same as above,
but for other oppositions, clauses are the following (note that they have to be
applied in this order: contradiction, contraries or subcontraries, and, by the
end, subalternation. Then gaps will be gradually filled, as the oppositions are
excludent, i.e, two propositions cannot be related by two different oppositions):

1*. Propositions α, β, γ are contraries if, and only if, (i(α) + i(β)) + i(γ) = 0
and i(γ) ∈ Z∗−;

2*. Propositions α, β, γ are subcontraries if, and only if, (i(α)+i(β))+i(γ) =
0 and i(γ) ∈ Z∗+;

3*. β is subaltern of α if, and only if, i(β) 6= −i(α) and i(β) ∈ Z∗−, or
i(β) 6= −i(α) and a) i(β) > i(α) and i(α), i(β) ∈ Z∗+ or b) i(β) > i(α)
and i(α), i(β) ∈ Z∗− (i(β), in the last condition, is a distinct object);

It is not difficult to provide an example of integers to show that the hexagon
can be reduced to it, as done in the case of the square. Assume first - without
loss of generality - that i(A) = 1. So, i(E) = 2 and, thus, the distinct object
i(U) = i(A)+i(E) = 3. Second, consider that i(O) = −1. It follows that i(I) =
−2 and that the other distinct object i(Y ) = i(O) + i(I) = −3. Consequently,
(U) and (Y) are contradictories. Note that (i(O) + i(I)) + i(U) = 0, so these
are subcontraries, as i(U) ∈ Z∗+, i.e, it is the positive distinct object. Moreover,
(i(A) + i(E)) + i(Y ) = 0, so these are contraries, as i(Y ) ∈ Z∗−, i.e, it is the
negative distinct object. Concerning subalternation, the square is contained
in the hexagon, so (I) is subaltern of (A) and (O) is subaltern of (E), as in
the case of the square. For other relations of subalternation, note that (U)
is subaltern of (A) and (E), because i(U) > i(A) and i(U) > i(E) while
i(U), i(A), i(E) ∈ Z∗+. Differently, (I) and (O) are subalterns of (Y), given that
i(Y ) < i(I) and i(Y ) < i(O), and i(Y ), i(I), i(O) ∈ Z∗−.

This is one way to reduce the hexagon to a one-dimensional object, but it is
not argued that there is no other way. Note also that only Blanché’s hexagon is
taken into consideration, because it is the traditional hexagon, although there
are some other available in the literature.

2 Conclusion

The standard square of opposition is a two-dimensional object used to organize
and manage categorical-like concepts. There are many notions which fit in the
square and its regular extensions such as the two-dimensional hexagon, and its
three-dimensional correlates.
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This paper proposed a construction which shows that there is no need
to develop two-dimensional squares to represent categorical-like statements or
concepts, instead a one-dimensional line segment based on integers is enough.
Although the success in the case of the square, we have showed that the same
technique does not immediately work for Blanché’s hexagon and, therefore, it
does require some adaptations and expansions to transform also the hexagon
into a one-dimensional object. While both squares and hexagons have formu-
lations in line segments of integers, these formulations are not straightforward
and intuitive, and thus it seems these results are not so effective and simple as
the pictorial effect of two-dimensional diagrams. However, from the theoretical
viewpoint, it is important to know that there are simple one-dimensional ob-
jects able to accommodate theory of oppositions, although the fact that maybe,
at this level, they are not so manageable as squares and hexagons. This is a
clue that oppositions do not match with the research on diagrams, and in this
sense, what authors supported in [3] seems to be rather right:

“The diagram has been very important in promoting the theory
but the theory does not reduce to the diagram. The theory started
many centuries before the basic diagram was drawn and developed
beyond this diagram...The strength of this theory is that it is at the
same time fairly simple but quite rich; it can be applied to many
different kinds of proposition, and also to objects and concepts. It
can also be generalized in various manners, in particular, by con-
structing many different geometrical objects.” (pgs. 315-316, in [3])

Oppositions are relations between propositions and cannot be identified,
therefore, with the study of diagrams, though these are useful tools to explain
what oppositions are and, in this way, can be largely applied especially for
learning purposes.

In general, authors working on the square of opposition generally start with
two-dimensional constructions like squares and hexagons, and then they jump
to three-dimensional solids and so on. It seems a novelty the construction pro-
posed in this paper because it shows that one does not need to go n-dimensional
(for n ≥ 2) to develop the theory of oppositions.

There are, notwithstanding, some problems which remain open: the ques-
tion to determine whether the same procedure can also be applied to solids
and higher dimensions, as well as to more than four oppositions, are very com-
plicated and still have to investigated in detail in the domain of line segments
of oppositions.
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