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Background One-nucleon removal reactions at or above the Fermi energy are important tools to explore the single-particle
structure of exotic nuclei. Experimental data must be compared with calculations to extract structure information,
evaluate correlation effects in nuclei or determine reaction rates for nuclear astrophysics. However, there is insufficient
knowledge to calculate accurately the cross sections for these reactions.

Purpose We evaluate the contributions of the final state interaction (FSI) and of the medium modifications of the nucleon-
nucleon interactions and obtain the shapes and magnitudes of momentum distributions. Such effects have been often

neglected in the literature.

Method Calculations for reactions at energies 35 - 1000 MeV /nucleon are reported and compared to published data. For
consistency, the state-of-the-art eikonal method for stripping and diffraction dissociation is used.

Results We find that the two effects are important and their relative contributions vary with the energy and with the atomic

and mass number of the projectile involved.

Conclusions These two often neglected effects modify considerably the one-nucleon removal cross sections. As expected, the
effect are largest at lower energies, around 50 MeV /nucleon and on heavy targets.

PACS numbers: 25.60.Gc,21.65.-,21.10.Jx

I. INTRODUCTION

Nucleon knockout reactions in nuclear collisions at and
above the Fermi energy in nuclei have become an impor-
tant tool to determine the occupancy of single-particle
states and the correlation effects in the nuclear many-
body system (see, e.g. Refs. ﬁHﬂ]) In peripheral,
sudden collisions of fast-moving projectiles with a tar-
get nucleus, a single nucleon is removed from the projec-
tile, producing projectile-like residues in the exit channel,
which are measured. Referred to the center-of-mass sys-
tem of the projectile, the transferred momentum is k..
For the knockout reactions in the sudden approximation,
this must equal the momentum of the struck nucleon be-
fore the collision. The standard reaction models assume
that the ground state of the projectile of spin and parity
J7 can be approximated by a superposition of configu-
rations of the form [I7¢ ® nlj]’" where IT¢ denote the
core states and the nlj are the quantum numbers for the
single particle wave functions in a spherical mean field
potential. The measured partial cross sections to indi-
vidual final levels ¢ of the core allow to extract, by com-
parison with theoretical calculations, the spectroscopic
factors for the individual core-single particle configura-
tions. In complete analogy to the use of angular dis-
tributions in transfer reactions, the orbital angular mo-
mentum [ is revealed by the shape of the momentum
distributions P(k.). It is obvious then that the accuracy
of the extracted spectroscopic factors, a measure of the
occupancy of the single-particle orbitals in nuclei, and
the conclusions that may follow from these spectroscopic
factors about correlations inside nuclei depend in direct
measure on the accuracy of the cross section calculations.
Similarly, the cross sections for one-proton removal reac-

tions X — Y + p are directly related to the non-resonant
part of the astrophysical S-factors for the inverse radia-
tive proton capture Y(p,y)X (see, e.g., Refs. [4, [6-19]).
Again, the results and their reliability depend directly on
the reliability and accuracy of the reaction calculations
(as discussed in [10]).

The one-nucleon removal cross section is calculated in
most reaction models as an incoherent sum of the contri-
butions of all core-single particle configurations making
the ground state of the fast moving projectile:

O—1n = ZS(C§ nlj)asp(nlj), (1)

where S(¢;nlj) and oy, are the spectroscopic factors of
each configuration and the single particle removal cross
section, respectively [4]. A similar relation is valid for
momentum distributions. Systematic studies of projec-
tiles and reactions allow the determination of the order-
ing, spacing and the occupancy of orbitals, essential in
assessing how nuclei evolve in the presence of large neu-
tron or proton excess. Much was done in this respect
in the last decade in various laboratories. This informa-
tion can be compared to many-body nuclear structure
calculations which are now able to reproduce the mea-
sured masses, charge radii and low-lying excited states of
a large number of nuclei. It was found that, e.g., for very
exotic nuclei, the small additional stability that comes
with the filling of a particular orbital can have profound
effects upon their existence as bound systems, their life-
time and structure, and lead to the discovery of magic
numbers that do not manifest along the valley of stabil-
ity.

Extensions of the nucleon knockout formalism includ-
ing the treatment of final-state interactions have been
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discussed in Ref. [11] where it is shown that Coulomb
final-state interactions are of relevance. In the mean-
time, inclusion of higher-order effects ﬂﬁ, ] and a the-
ory for two-nucleon knockout M] have been devel-
oped. Knockout reactions represent a particular case for
which higher projectile energies allow a simpler theoreti-
cal treatment of the reaction mechanism, due to the sim-
plicity of the reaction mechanism and the assumption of
a single-step process.

A microscopic approach to direct reactions uses an ef-
fective nucleon-nucleon (NN) interaction (e.g. those of
Ref. [17]) to start with. This interaction is often used
to construct an optical potential with its imaginary part
assumed to relate to the real part and its strength ad-
justed to reproduce experimental data. The real and
imaginary parts of the potential can also be indepen-
dent as in Refs. ﬂa, B], where the procedure starts from a
NN effective interaction with independent real and imag-
inary parts. For collisions at high energies (E = 100),
it is possible to show that instead of nucleon-nucleon
interactions one can use nucleon-nucleon cross sections
as the microscopic input ﬂﬁ] In this case, an effective
treatment of Pauli-blocking of nucleon-nucleon scatter-
ing is needed, as it manifests through medium modifica-
tion of nucleon-nucleon cross sections. It is well known
that medium modification of the nucleon-nucleon cross
sections is necessary for an adequate numerical model-
ing of heavy-ion collision dynamics in central collisions.
In these collisions, the ultimate purpose is to extract in-
formation about the nuclear equation of state (EOS) by
studying global collective variables describing the colli-
sion process. In direct reactions, such as one-nucleon
removal reactions, medium effects of NN scattering are
smaller because mostly low nuclear densities are probed.
A first study of this effect in knockout reactions was car-
ried out in Ref. HE] Nonetheless, no comparison with
experimental data was provided. In this work we ex-
plore further consequences of medium corrections and fi-
nal state interactions in knockout reactions. We study
medium effects in the NN cross section in knockout re-
actions using the methods reported in Ref. @], namely
with a geometrical treatment of Pauli-blocking and with
the Dirac-Brueckner theory in terms of baryon densities.
We also explore the effect of final state interaction, in
particular the effects of Coulomb distortion in the en-
trance and final reaction channels. This is of relevance
as an increasing number of experiments use heavy targets
with a large nuclear charge. We compare our results of
knockout cross section and momentum distribution cal-
culations to a large number of published experimental
data. The purpose is to improve the accuracy of the ex-
tracted spectroscopic factors that will lead to better un-
derstanding nuclear structure and to check and improve
the reliability of the use of one-nucleon removal reactions
as indirect methods in nuclear astrophysics.

II. MEDIUM AND DISTORTION EFFECTS

The geometrical treatment of Pauli corrections is per-
formed using the isotropic NN scattering approximation
because the numerical calculations can be largely sim-
plified if we assume that the free nucleon-nucleon cross
section is isotropic. In this case, a formula which fits the
numerical integration of the geometrical model reads @]

ree 1
onN(E, pp,pt) = UJ{/N (E) 775
14 1.892 (2”—<) (—"’Pf”“‘)
0 £po
37.02p%/3
1— ij it E > 46.275%°
x . (2)
s 1 E< 46.275%/3
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where E is the laboratory energy in MeV, p = (pp, +
pt)/po, p< = min(pp, pt), pi=p+ is the local density of
nucleus i, and py = 0.17 fm 3. The parameters and mod-
els for the p, and p; densities which have been used to
describe the nuclei in this work are presented in Table[ll

The Brueckner method goes beyond the simple ge-
ometrical treatment of Pauli blocking. Some of the
Brueckner results that we used in this analysis have been
reported in Refs. @, ], where a simple parametriza-
tion was given. It reads (the misprinted factor 0.0256 in
Ref. [21] has been corrected to 0.00256)

[31.5+0.002 20.2 — 505

Onp =
1+ 0.0034E151 p2
1+ 2155p150
op = (2354000256 (18.2 — £9)"]

1+ 0.1667E1-053
1+ 9.704p'2

(3)

The limits of validity of this parametrization are clearly
associated with the limits of validity of the Brueckner cal-
culations, which are valid only below the pion-production
threshold. A modification of this parametrization was in-
troduced in Ref. ﬂﬂ] and consists in combining the free
nucleon-nucleon cross sections parametrized in Ref. ﬂﬁ]
with the results of Brueckner theory reported in Refs.
@, ] Current theoretical models for the calculation
of momentum distributions and cross sections in high-
energy nucleon-removal reactions follow a semiclassical
probabilistic approach, described, e.g., in Refs. ﬂﬂ, ]
The method relies on the use of “survival amplitudes”
(or S-matrices) in the eikonal approximation,

. i [

S;(b) = explix(b)] = exp [—%/ UiT(r)dz] , (4)
where r = Vb2 + 22, and U;r is the particle(i)-target(T')
optical potential. In Ref. HE], a relation has been de-
veloped between the optical potential and the nucleon-
nucleon scattering amplitude. Such a relation is often



Nuclei Model < r2, >*/? <2 >1/2 a @
(fm) (fm) (fm)  (fm)

(Target)

Be HO® 2.50(9)  2.367 1.77(6) 0.631
2¢ HO® - 2.332 1.584 -
(Projectile - Core)

YBe HO* 250(9)  2.372 1.77(6) 0.631
YN HO" 2.540(20) 2.410 1.729(6) 1.291
B LDM® - - - -
2Mg HFBY - 2.92 - -
30 LDMEC - - - -
32Mg HFBY - 3.187 - -

TABLE I: Ground state densities are from Refs. [2d,27,[29-131)
where 7., and 1, are root mean square radii of charge and
nuclear matter densities, respectively. () The nuclear mat-
ter densities are obtained using the Harmonic-oscillator (HO)
charge densities with parameters a and o from Ref. @] and
the method in Ref. @] ()The HO nuclear matter density is
from Ref. [21]. (YLDM is Liquid Drop Model [2d]. (Y Hartree-
Fock-Bogoliubov (HFB) calculations are from Refs. [29-31)].

referred in the literature as the “t-pp approximation”.
The t-pp approximation is the basis of most calculations
of elastic and inelastic scattering involving radioactive
nuclei, as experimentally deduced optical potentials are
not often available. In this approximation, the eikonal
phase becomes

1 o0

x(b) dq q pp (@) pe (@) fan (q) Jo (gb) , (5)

knn Jo

where p;, ; (g) is the Fourier transform of the nuclear den-
sities of the projectile and target, and fyn (¢) is the high-
energy nucleon-nucleon scattering amplitude at forward
angles, which can be parametrized as

fron (@) = X gen (i ) exp (~Bwa?) - (6)

There are many ways of introducing final state inter-
actions in direct nuclear reactions, some of which are dis-
cussed in Refs. [11, 33]. Besides Coulomb repulsion, in-
cluded by modifying the straight-line trajectories accord-
ingly, we have also modified the integral in Eq. (@) by us-
ing the optical potential including the Coulomb potential
that modifies the S-matrices according to S; = SV - S¢.
The Coulomb phase in S¢ is calculated by assuming a
uniform charge distribution with radius R, and is given
by

xo(b) = 277{6(b—R) In(kb)
+ O(R—b) [m(kR) +In(l + /1 - b2/R?)
_m_éa_bz/m)w]} o

where O is the step function. The value R is chosen to be
small enough so that the nuclear S-matrices are basically

zero below b = R because of the strong absorption at
small impact parameters.

III. RESULTS AND DISCUSSION

In this section the results for momentum distributions
and nucleon-removal cross sections are compared to sev-
eral experimental data. The focus is the importance of
medium corrections of nucleon-nucleon cross sections and
of Coulomb distortions. Both effects are expected to de-
crease as the bombarding energy increases. It is impor-
tant to include such effects in order to minimize the un-
certainty in the extraction of spectroscopic factors, espe-
cially at low bombarding energies. To substantiate this
assertion, we analyze low energy data on knockout re-
actions and compare to high energy data. In order to
identify the separate contribution of these two factors,
we do not vary the geometry of the nucleon binding po-
tentials used to calculate the single particle radial wave
functions. That was identified in the literature as an-
other major factor in the calculations, leading to large
variations in the extracted spectroscopic factors.

The relevance of medium corrections are moti-
vated by the effect summarized in Figure I = The
cases are shown in Figure [ are for 2C(17C,'5B) at
35 MeV/u, ?Be(1°0,“N) at 56 MeV /u, 12C(?*Al,22Mg)
at 50 MeV /u and “Be(}!Be,'%Be) at 60 MeV /u. Later we
will discuss more results for each system separately. The
dashed and dotted curves show the ratio between the av-
erage in-medium and the free nucleon-nucleon cross sec-
tion as a function of impact parameter (see top scale).
We define the average nucleon-nucleon cross section at
the distance of closest approach between the projectile
and the target using Eq. (2)) and the definition

o _ fd3rp pp(rp)pi(rp +b) onn(E, py, pi)
own(B:8)) = deTpp(rp)pt(rp +b) (8;

where b is the impact parameter vector, perpendicular
to the beam axis.

In Figure [l the dashed and dotted curves are for
core-target and valence nucleon-target average nucleon-
nucleon cross sections, respectively. Notice that the tar-
get center of mass is located on the right of the top axis
scale. Also shown in the figure are the radial wave func-
tions (solid curves) for the valence nucleon-core system
and for a few representative reactions considered in this
work. For simplicity, in this figure we have used only
one of the main configurations for the projectile ground
state (more detailed and complete calculations are re-
ported later on in this section). The binding energies
“effectively” decrease from the top to low panels. We
mention “effectively” because, although the binding en-
ergy of the valence proton in 22Al is smaller than for the
valence neutron in ''Be, the Coulomb barrier creates an
effectively larger binding in 23Al.

It is clearly noticeable from Figure[llthat the wavefunc-
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FIG. 1: (Color online). Top and right scale: Ratio between
average in-medium and the free nucleon-nucleon cross section
as a function of the impact parameter. Dashed and dotted
curves are for core-target and valence nucleon-target aver-
age nucleon-nucleon cross sections, respectively. Notice that
the target center of mass is located on the right of the top
axis scale. The shaded areas represent the strong absorp-
tion radii where the knockout reactions most likely occur and
rsa = bsa = (1.1 £0.1) (A}D/3 + A;/:i) fm. Bottom and left
scale: Radial wave functions in arbitrary units (solid curves)
for the valence nucleon-core system and for a few representa-
tive reactions considered in this work. We have taken only one
configuration in cases of systems with multiple configurations.

tions of weakly bound systems extend far within the tar-
get where the nucleon-nucleon cross sections are strongly
modified by the medium. We have to emphasize that the
shaded areas in Fig. [[] are relevant to stress the impor-
tance of medium effects at surface region since the reac-
tion is peripheral due to strong absorption at b < bg,.
Momentum distributions and nucleon removal cross sec-
tions in knockout reactions are thus expected to change
appreciably with the inclusion of medium corrections of
nucleon-nucleon cross section. Such corrections are also
expected to play a more significant role for loosely-bound
systems.

In the following, we discuss Coulomb corrections. Here
we consider the simplest and most straightforward cor-
rection one can do, namely the inclusion of a Coulomb
phase, which accounts for the distortion of the elastic
scattering of the core fragment. It has been usually taken
for granted that longitudinal momentum distributions
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FIG. 2: Upper panel: Display of Coulomb scattering ef-

fects in longitudinal momentum distributions for the reaction
T(*C,*B)X at 35 MeV /u as a function of target T. The solid
(dashed) curves are calculations with (without) Coulomb dis-
tortion. Lower panel: Same as above, but for 12C target and
for different beam energies.

are little affected by elastic scattering of the core frag-
ment, the reason being that the longitudinal forces acting
on the core fragment reverse sign as the projectile passes
by the target, leading to a reduced distortion effect @]
Further, as has been shown in Ref. ﬂﬂL the transverse
momentum distributions are strongly affected by both
nuclear and Coulomb elastic scattering. For heavier tar-
gets the distortions are predominantly due to Coulomb
repulsion ﬂﬂ] It is worthwhile mentioning that the im-
plications of the findings on Coulomb distortion effects
presented in Ref. ] have been neglected in the liter-
ature. In order to avoid dealing with the effects of the
Coulomb scattering, experiments are usually performed
with light targets, such as “Be and relatively high ener-
gies, F 2 50 MeV /nucleon. In this work we show that
these argumentations are not always valid and need to
be studied with care.

As discussed in the previous section, in the presence of
the Coulomb field the eikonal S-matrices factorize as the
product of the nuclear and the Coulomb contributions:
S(b) = Sp(b)Sc(b). Although this does not make any dif-
ference for the total stripping cross sections (see Eq. (20)
of Ref. [19]), it has an impact on the diffraction dissocia-
tion cross section (through the second term of Eq. (21) of
Ref. [19]). This means that not only transverse, but also
longitudinal momentum distributions will be affected by
the Coulomb field. This is shown in Figure [ for the
longitudinal momentum distributions of several systems
which we will consider in details later in this section. It
is evident from the upper panels of this figure that lon-
gitudinal momentum distributions in knockout reactions
T(1"C,'B)X (and their total cross sections) are strongly
influenced by the Coulomb field of the target T at bom-
barding energies of 35 MeV /nucleon. The solid (dashed)
curves are calculations with (without) the inclusion of
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FIG. 3: Total nucleon removal cross sections for the reac-
tions '2C(*"C,'B) (solid curve) and *C(**Al,>**Mg) (dashed
curve) at 35 MeV/u. We artificially vary the separation en-
ergy S of the proton in !"C and in 22Al. The dotted curve
shows the calculation for '2C(**Al1,**Mg) at 50 MeV /u.

Coulomb scattering. It is also evident that even for the
case of light targets, such as °Be and "Li, the distribu-
tions change appreciably. The lower panels show calcu-
lations for the same reaction, but for 12C targets and as
a function of the bombarding energy. It is clear that dis-
tortions are important even for usually considered “safe”
energies, such as 100 MeV /nucleon.

We found that the effect of Coulomb scattering is rel-
atively larger for systems with smaller sizes. This is il-
lustrated in Figure [8] where we present our calculations
for the total nucleon removal cross sections for the re-
actions 12C(17C,1B) (solid curve) and '2C(?3Al,22Mg)
(dashed curve) at 35 MeV/u. We artificially vary the
binding energy of the proton in '7C and in 22Al. As the
separation energy increases so does the percent difference
of the cross section, (0 — ono Coul)/0, where oo Coul 1S
the cross section without the Coulomb scattering phases.
With increasing separation energy the relative valence
nucleon-core distance decreases and the nucleon removal
cross section decreases, but the relative importance of
the Coulomb scattering increases. For very small ener-
gies the effects of Coulomb dissociation (not considered
here) should also become relevant and increase the mag-
nitude of the cross sections. The relative importance of
the Coulomb scattering for the removal cross sections de-
creases with the bombarding energy. This is shown in
Figure B with the calculation for 12C(?3Al1,22Mg) at 50
MeV/u (dotted curve).

These preliminary discussions support our conclusion
that both medium effects and Coulomb distortion play
a relevant role in knockout reactions. Next we consider
a series of published data for which neither medium or
Coulomb corrections were included. We thus quantify the
changes in the extracted values of spectroscopic factors in
case these effects were to be included in the experimental
analysis.

A. PC(®AL*Mg)X at 50 MeV /u

Recently, the 12C(?3Al1,%2Mg)X knockout reaction has
been studied at 50 MeV/nucleon to investigate the
ground state properties of 2 Al ﬂg] It was shown that the
ground-state structure of 23Al is a configuration mixing
of a d-orbital valence proton coupled to four core states
of 2Mg - 03, 2{, 4f, 47. The ground state spin and
parity of 2*Al as J™ = 5/2% has been confirmed. This
experiment had the advantage that exclusive measure-
ments were done and momentum distributions were de-
termined for the four major configurations in the ground
state of the projectile (*3Al).
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FIG. 4: (Color online). Comparison of experimental data of
Ref. ﬂQ] and calculations for exclusive longitudinal momen-
tum distributions in the knockout reaction 2C(**Al,**Mg)X
at 50 MeV /nucleon. The solid line has both Coulomb and
medium corrections. The dashed-curve has no medium cor-
rections. The dashed-dotted line includes calculations with-
out Coulomb corrections. The dotted curve neither includes
medium effects nor Coulomb corrections.

In this work, we have analyzed the 12C(?3Al,22Mg)X
system to check the relevance of Coulomb and medium
effects. The 1d5/, wave functions for the valence proton
were generated in a spherical Woods-Saxon (WS) poten-
tial with the parameters given in Table [TI}

In the optical limit of the Glauber theory and the t-
pp approximation (explained in detail in Refs. ﬂﬂ, ]),
the eikonal phase is obtained from the input of the nu-
clear ground state densities and the energy dependent
nucleon-nucleon cross sections. The ground state density
parameters and models used in this work are shown in
Table[ll and our results are presented in Fig. @ and Table
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To understand the effects of medium and Coulomb cor-
rections, we have performed the calculations with differ-
ent inputs. We show in Figure @ the calculations with
both Coulomb and medium corrections (solid curve), cal-
culations without any medium corrections (dashed lines),
calculations that exclude Coulomb distortions but keep
medium corrections (dashed-dotted curve), and calcu-
lations without either Coulomb or medium corrections
(dotted curve).

The numerical results for the single particle cross sec-
tions with different configurations are shown in Table [l

For each of the four configurations - Mg - 07, 2, 47,

43 - the corresponding relative differences between full
calculations and calculations without Coulomb correc-
tions are found to be 15%, 17%, 19% and 20%, respec-
tively, whereas between full calculations and calculations
without medium corrections the corresponding percent-
age differences are found to be 24%, 21%, 16% and 13%,
respectively.

B. “Be('?0,""N)X at 56 MeV/u

One-proton removal reaction from '°O on a Be tar-
get has been measured at 56 MeV /nucleon and the total
knockout cross section is reported as 80420 mb in Ref.
@] The authors were able to explain the orbital occu-
pancy of valence protons with a pure 1p; /5 single particle
state using a Glauber reaction model. Their calculations
imply that the 1p3 /5 state could also have a small contri-
bution because the calculations with only the 1p; /o state
yield a narrower momentum distribution than observed
in the experiment. The physical implication of this is a
possible knockout from more deeply bound protons in the
1p3/2 state. The contributions from each of the p-states
yield spectroscopic factors of 1.27(9) and 0.100(75) for
the 1p;/o and the 1ps/, orbital, respectively (Ref. [34]
and references therein).

We have followed the interpretation of Ref. ﬂ@] and
calculated the one-proton removal cross sections for the
same reaction with the same orbital occupancy assump-
tion. The parameters are shown in Tables [[II] and [Il
Our calculations with both Coulomb and medium cor-
rections by slightly changing the spectroscopic factors as
1.42 and 0.13 are in agreement with the results of Ref.
M] The calculated one-proton removal cross sections
are 78.79 mb, 75.20 mb, 93.98 mb and 90.74 mb with both
Coulomb and medium corrections, no Coulomb correc-
tions, no medium corrections and neither medium effects
nor Coulomb corrections, respectively. The difference be-
tween full calculations, including medium and Coulomb
scattering effects, and calculations without Coulomb cor-
rections is of the order of 5%, and between full calcula-
tions and calculations without medium effects is nearly
19%. This is remarkable even though it fits again within
the error of the total knockout cross section experimen-
tal data. We thus conclude that for this case, medium

350

3001

Counts
N
S
T

50

L & 1 L 1 L 1
-9100 -300  -200 -100 0 100 200 300
P, (MeV/c)

FIG. 5: (Color online) Longitudinal momentum distributions
for the *Be(**0,'*N)X reaction at 56 MeV /u. Solid lines rep-
resent calculations that include both Coulomb and medium
corrections. Dashed lines stem from calculations that do
not include medium corrections. Calculations denoted by
dashed-dotted curves are performed without Coulomb cor-
rections. The dotted curve does not include medium effects
nor Coulomb corrections. The data are taken from Ref. [34].

effects and Coulomb distortion do not have a sizable im-
pact on the extraction of spectroscopic factors. However,
one can easily see from Fig. [l that the data shows an
asymmetry which can only be explained with inclusion
of higher-order effects in the reaction mechanism. Dis-
tortions will be manifest due to continuum-continuum
coupling of states involving the interaction of core with
the valence proton. These mechanisms have not been
considered in the present work.

C. 2c('"C,'®B)X at 35 MeV/u
1. Transverse momentum distributions

One-proton removal reaction from '”C, with a separa-
tion energy of 23 MeV, has been measured in the reac-
tion 12C(Y7C,1°B)X at 35 MeV /nucleon with the goal to
understand the low-lying structure of the unbound 5B
nucleus. Using this reaction, Ref. m] studied the un-
bound '"B4n system with the assumption of a d-wave
neutron decay. Our interest is to compute the transverse
momentum distribution of the 6B fragment following the
same assumptions as in Ref. @] in order to study the
consequences of medium and Coulomb corrections. The
configuration of the proton removed from !7C is assumed
to be

1"7C) = 1 |"B(07) ® wlpsa)
+ 2|"B(31) ® wlps)e) + a3|B(2]) @ wlps)s)
+ ay|"B(25) @ Tlpss2) + a5 °B(17) @ wlps0)
+ ag|'°B(35) @ mlps,2), (9)



Jo osp(nly) [mb]
Configuration [keV]  Full nomedium no Coulomb  Free
Mg (07,) ® T1ds 0 27.1 33.8 23.2 30.1
PMg(2)) © Ta,,, 1247 237 28.7 19.9 25.1
PMg(4)) © gy, 3308 204 23.9 16.7 20.4
2Mg(43) ® ma,,, 5293 184 21.0 14.8 17.6

TABLE II: Single particle cross sections are shown for each case separately.

I Vo ro  ap Voo Tso aso Te  Sepy

(MeV) (fm) (fm) (MeV) (fm) (fm) (fm) (MeV)
|""Be(J™)®v2s12)

07 61.13 121 052 - - - 121 0.504
[N )@mnl)

1, (pl/2) 4836 119 060 - - 119 7.297

15, (1p3/2) 4836 119 0.60 - - - 119 7.297
|16B(JW)®7T11)3/2>

Ong.s) 79.46 1.09 0.50 35.0 1.09 0.50 1.09 23.330

37 80.35 1.09 0.50 35.0 1.09 0.50 1.09 23.979

27 80.75 1.09 0.50 35.0 1.09 0.50 1.09 24.273

25 81.85 1.09 0.50 35.0 1.09 0.50 1.09 25.078

17 82.17 1.09 0.50 35.0 1.09 0.50 1.09 25.318

35 79.93 1.09 0.50 25.0 1.09 0.50 1.09 26.066
[*Mg(JT)@mlds/s)

07 54.60 1.18 0.60 50 1.18 0.60 1.18 0.141

2+ 56.96 1.18 0.60 5.0 1.18 0.60 1.18 1.388

4F 60.67 1.18 0.60 5.0 1.18 0.60 1.18 3.449

4; 64.07 1.18 0.60 5.0 1.18 0.60 1.18 5.434
[ZO(J™) @251 2)

/20 4240 127 0.70 - - - 127 3.610
P Mg ) @ong)

L Od) T

37 (2p3y2) 79.92 1.04 0.70 10.0 1.03 0.70 1.04 5.07

37 (1f7)2) 86.63 1.04 0.70 10.0 1.03 0.70 1.04 5.07

2 (251)2) 51.55 1.04 0.70 10.0 1.03 0.70 1.04 5.22

TABLE III: Bound state potential parameters for the systems studied in the present work. rg, rso and r. are the reduced

radius of the bound state potentials where r; = Ri/A,l,/3 (1 =0,50,¢). Seyy is effective separation energy: Sepr = S; + Eg°"°

where ¢ = proton or neutron and ES°"° is core excitation energy.

where «; is the spectroscopic amplitude for a core-single
particle configuration i = (¢ ® nlj).

Using spectroscopic factors obtained by means of a
shell-model calculation with the WBP interaction @],
Ref. @] obtained a good agreement between data and
calculated transverse momentum distributions. But the
measured total cross section is 6.5(1.5) mb against a the-
oretical result of 24.7 mb. The explanation of this large
difference is proposed in Ref. [37] as a reduction of the
spectroscopic factor by 70% for strongly bound nucleon
systems. After this spectroscopic reduction is accounted
for, the theoretical estimates for the cross section be-
comes 7.5 mb, in reasonable accordance with the data.

In the present work, we do not elaborate on the as-
sumption introduced in Ref. M], and we use the same
configuration and spectroscopic factors as in @] The

proton binding potential parameters are shown in Ta-
ble ] which are adjusted to obtain the effective sep-
aration energies. The ground state densities are also
listed in Table [l Here, as it is shown in Figure B we
find that medium corrections change the total knockout
cross sections by 5%, but the Coulomb corrections have
a very large effect which is almost 60% between calcu-
lations with Coulomb and without Coulomb distortion.
The reason for this difference is that the Coulomb dis-
tortion and repulsion effectively increases the collision
distance at the small impact parameters needed to re-
move a strongly bound nucleon. This was not observed
in the previous case (*Be(*®0,N)X at 56 MeV/u) be-
cause of the small nuclear binding in that case. We have
also observed that this effect sharply reduces the calcu-
lated cross sections and the removal is more effective as
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FIG. 6: (Color online). Transverse momentum distributions
for the *C(*"C,'B)X system at 35 MeV/u. Solid lines rep-
resent calculations including both Coulomb and medium cor-
rections. Dashed lines stem from calculations that do not
include medium corrections. Calculations represented by
dashed-dotted curves are performed without Coulomb cor-
rections. The dotted curve does not include medium effects
nor Coulomb corrections. The data are taken from Ref. ﬂ@]
Top panel: One can see that, when properly scaled, all four
curves from the calculations reproduce the shape of the mo-
mentum distributions. Bottom panel: The relative differences
of our results are illustrated when the full calculation (solid
line) is scaled to the data.

the bombarding energy decreases.

2. Longitudinal momentum distributions

We have made a more systematic analysis to under-
stand the reason of the effect discussed in the previous
subsection. We have observed that the strong depen-
dence on Coulomb distortions are also present in longitu-
dinal momentum distributions. It has long been thought
that longitudinal momentum distributions are free from
uncertainties related to the knowledge of the optical
nucleus-nucleus potentials when compared to the trans-
verse distributions. This was first shown in Ref. [1]. Here
we report calculations for the same [1°B(07) & mw1ps)2)
configuration, with the same parameters and ground
state densities, as discussed in the previous subsection.
We find that although the Coulomb distortions create
a similar effect for this particular knockout reaction on
both transverse and longitudinal momentum distribu-
tions as can be seen in Fig. @ the effect on transverse

momentum distributions is bigger than the corresponding
one for longitudinal momentum distributions by about
5%. This is expected on physics grounds. Nonetheless,
such a large effect on longitudinal momentum distribu-
tions was not initially anticipated. By comparison with
other cases, we found that this large effect is due to the
low bombarding energy in this particular reaction com-
bined with a large binding energy of the projectile. This
interpretation is also as it is validated by inspection of
Figs. Bland

The source of this difference stems from the diffraction
dissociation contribution to the cross sections. To sub-
stantiate our claim, we have looked at the details of the
knockout cross section which has two parts for the pro-
duction of a given final state of the residue. The most
important of the two, commonly referred to as stripping
or inelastic breakup, represents all events in which the
removed nucleon reacts with and excites the target from
its ground state. The second component, called diffrac-
tive or elastic breakup @], represents the dissociation
of the nucleon from the residue through their two-body
interactions with the target, each being elastically scat-
tered. We notice that the total stripping cross section is
given by [11]:

- . . 27T o0 2
o = Sleinli) g zm:/o dby, by {1—|Sn (b))
xt/d%ISJ%ﬂﬂ¢mJﬂV, (10)

whereas the integrated diffraction dissociation cross sec-
tion is given by [33]:

L 27 >
oair = S(¢ nlj)Zl—H E / dby, by
— Jo

X {/d%

>

m’

2
Sy (bn) Se (be) Yim (r)

/wa@wmm&@wmw

2}(11)

One can see from these expressions that the stripping
cross sections are not affected by the Coulomb distortions
because this distortion is manifest through a real phase in
the eikonal S-matrices calculated in the Glauber approxi-
mation. The magnitude of the cross sections are therefore
not changed, as the square of the S-matrices entering Eq.
([@Id) are only changed by the imaginary part of the po-
tential entering Eq. (). On the other hand, the second
term of the diffraction dissociation cross sections in Eq.
(D) is appreciably modified by the Coulomb phase fac-
tor. As seen from Figure[2 the effect gets smaller with
decreasing target atomic number because the Coulomb
phase increases, or when the beam energy increases be-
cause then the Coulomb recoil becomes irrelevant.
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FIG. 7: (Color online). Longitudinal momentum distribu-
tions of for the reaction *Be(*'Be,'°Be) at 60 MeV /nucleon.
Solid lines represent calculations that include both Coulomb
and medium corrections. Dashed lines stem from calculations
that do not include medium corrections. Calculations denoted
by dashed-dotted curves are performed without Coulomb cor-
rections. The dotted curve does not include medium effects
nor Coulomb corrections. The data is taken from Ref. @]
Top panel: One can see that, when properly scaled, all four
curves from the calculations reproduce the shape of the mo-
mentum distributions. Bottom panel: The relative differences
of our results are illustrated when the full calculation (solid
line) is scaled to the data.

D. °Be(''Be,'’Be)X at 60 MeV /u

In order to further understand the dependence of the
Coulomb distortion on the nuclear binding, we consider
the reaction YBe(*!Be,'"Be)X at 60 MeV /u which can be
modeled by a core plus valence system with the assump-
tion °Be,s(07) +n in 2519 orbital for the ground state
of "Beys(1/27) (S, = 0.504 MeV). Here we use the same
Woods-Saxon potential parameters for the bound state
as published in Ref. [25]: (R = 2.70 fm, ag = 0.52 fm).
In Figure [0 and Table [[V] we present our results for the
neutron removal longitudinal momentum distribution of
60 MeV /nucleon ' Be projectiles incident on ?Be targets.

It is evident from Fig. [ that '"C has the smallest
“effective” size and that ''Be has the biggest size among
the low energy systems in this study. The nuclear size
is important for low energy cases because the diffraction
dissociation becomes dominant when the nuclear size is
smaller, but the stripping becomes dominant when the
nuclear size is bigger. The reason for this is that a large
projectile feels the nuclear interaction already at large
impact parameters. A small projectile can come closer

o 120(17071613) gBe(llBe,wBe)
= 04if + 0str-| Full no Coul no med| Full no Coul no med

Strip. [mb] | 7.10  7.10 5.09 |126.5 126.5 169.7
Diff. [mb] [18.63 2.42 19.39 | 52.8  46.7 104.8
Total [mb] [25.74 9.52 24.48 (179.3 173.2 2745

TABLE IV: The cross sections calculated for the systems,
2¢(M"C,'B) at 35 MeV/nucleon and “Be(*'Be,'“Be) at
60 MeV /nucleon.

to the target where the Coulomb interaction is larger.
The evidence of this can be seen in Table [Vl It is thus
clear why medium and Coulomb corrections are more
important in the “Be(!'Be,!Be) and the 2C(}7C,°B)
cases, respectively.

E. "“C(*0,20)X at 920 MeV /u

The momentum distribution of the one-neutron re-
moval residues from the '2C(240,220)X reaction was
measured for the first time at 920 MeV /nucleon and
reported in Ref. @] The data could be explained
with a spectroscopic factor S=1.74(19) of an almost
pure 2s;/, single-particle state for the valence neutron.
This work, together with recent theoretical calculations,
suggests that 20 is a newly discovered doubly magic
nucleus. The one-neutron removal cross section was
found to be 63(7) mb. The calculations in Ref. [4(]
were based on a few-body Glauber formalism ] for
two configurations: (a) #*Ogs(1/2%) + n in 2s;/5 or-
bital and (b) #*Ogs(5/27) + n in 1dso orbital. The
wave functions for the configurations are obtained with
a Woods-Saxon potential by adjusting the depth of the
potential to reproduce the one-neutron separation energy
S, =3.61(27) MeV [29]. Using a pure 251 /o configuration
with S=1 leads to a cross section of 34 mb. The calcula-
tion is in agreement with the data when it is multiplied
by S=1.74(19). This large spectroscopic factor indicates
that the single-particle strength of the valence neutron is
strongly weighted in the 2s; /5 state.

In the present work we have reproduced the data of
Ref. @] also by assuming a 2s;/5 orbital only. The
potential parameters for the bound state wave function
are given in Table [Tl and the ground state density for
the 230,5 core is obtained using liquid droplet model
(LDM) densities [42], as indicated in Table[l To under-
stand the differences between medium effect models, four
different calculations including Coulomb corrections have
been made for this system. The calculated one-neutron
removal cross sections are 58.58 mb, 54.08 mb, 78.74 mb
and 53.25 mb using free [19], Pauli corrected (Eq. 2),
Brueckner (Eq. 3) and phenomenological parameteriza-
tions m] of the nucleon-nucleon cross sections, respec-
tively. Except for the result obtained with the Brueckner
theory, they are all in agreement with the previous work
and with the data. The relative difference between the re-



sults obtained using Brueckner corrections and with free
nucleon-nucleon cross sections is about 34%. However,
we do not consider a real discrepancy, as the Brueck-
ner parametrization have been extrapolated well beyond
their validity. Brueckner calculations are limited by the
pion-production threshold, and should only be valid for
projectile energies below 300 MeV /nucleon.

Thus we verify that the experimental data for the re-
action 12C(240,220)X at 920 MeV /u is well reproduced
with the use of free nucleon-nucleon cross sections. The
changes introduced by Pauli-blocking with the geometric
model are small, and the phenomenological account of
medium effects at this high energy also basically agree
with the results using free cross sections.

F. 2C(®Mg,**Mg)X at 898 MeV/u

° I °
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T
|
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FIG. 8: (Color online). The longitudinal momentum distribu-
tions for *C(**0,?*0)X reaction at 920 MeV /nucleon. The
curves are calculated with the free NN cross sections (solid),
with a geometrical account of Pauli blocking (dashed), a phe-
nomenological fit from Ref. [22] (dotted), and a correction
from Brueckner theory (dashed-dotted). The data has been
taken from Ref. [40].

The ground state structure of **Mg, a nucleus belong-
ing to the N = 20 island of inversion, has been studied
in Ref. @] by means of nucleon-removal reactions on
a carbon target at 898 MeV /nucleon. The longitudinal
momentum distribution of the 3*Mg core was measured
and the one-neutron removal cross section was found to
be 74(4) mb. Most of the contribution to the ground
state structure of %*Mg was shown to arise from the 2p3 /-
orbital.

The longitudinal momentum distribution obtained in
Ref. @] cannot be reproduced with a pure single particle
state. It has been discussed in details in Ref. ] the rea-
son why a configuration mixing of different single-particle
states is needed. Two different configuration mixings for
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the ground state of 33Mg were assumed. The first one is

Mg, (3/2°)) =

a1|**Mg(2]) ® v2p3 /) + a|**Mg(17) ® v2s1/2)
+ a3|**Mg(2]) @ v1f7/2) + au|**Mg(17) @ v1dy)a)
+ a5[**Mg(gs) ® v2ps32) (12)

and the second is

% Mg, (3/21)) = a1 [**Mg(3%) @ v2p3)2)
+ 2|**Mg(2]) @ 1251 2) + a3|**Mg(3") @ v1f7/2)
+ au**Mg(gs) ® vlds ), (13)

where «; are the spectroscopic amplitudes for each single-
particle orbital. The values of the corresponding spec-
troscopic factor S; were found by x? minimization and

their values for the second configuration are S; = 2.2702,

Sy = 01150 85 = 1.170L and Sy = 0.0755 [43).

0.8 ; , ; , ; , ;

dc/dp” [mb/(MeV/c)]

400

FIG. 9: The inclusive longitudinal mo-

(Color online).

mentum distributions for the 2C(**Mg,**Mg)X system at

898 M%nucleon. The data has been taken from R. Kanungo
]

et al. . The curves are calculated with the free NN cross
sections (solid), with a geometrical account of Pauli blocking
(dashed), a phenomenological fit from Ref. [22] (dotted), and
a correction from Brueckner theory (dashed-dotted).

In our calculations we have chosen the second config-
uration set used in Ref. [43], Eq. @3 since the 33Mg
ground state is usually accepted to be J™ = 3/2F. We
apply the same procedure as described before to obtain
bound state wave functions and eikonal phases. The
parameters for the bound state potentials and ground
state densities are shown in Table [II] and Table [ re-
spectively. We have used nearly the same spectroscopic
factors within the error bar range of Ref. to make a
consistent comparison of the medium effects. Our results
yield a small but relevant variation of the one-neutron re-
moval cross sections using the free, Pauli corrected, and
phenomenological NN cross sections, namely 83.70 mb,
77.90 mb, and 77.63 mb, respectively. As observed in
the case of the 12C(?*0,220)X at 920 MeV /u, the use of



20 30 40 50 60 70 80 9 _ 100

FIG. 10: (Color online). The total reaction cross section
of the p 4+ 2C taken from Ref. [44]. The curves are cal-
culated with the free NN cross sections from Ref. [45] (solid),
with a geometrical account of Pauli blocking (dashed), a phe-
nomenological fit from Ref. [2J] (dotted), and a correction
from Brueckner theory (dashed-dotted). The triangle-dotted
curve is calculated with the same free NN cross sections from
Ref. [43], but with an another HFB calculation [46] for the
12C ground state density.

Brueckner corrected NN cross sections yields 112.92 mb,
about 35% relative to the calculations using the free NN
cross sections. For the same reason as with the previ-
ously considered reaction, this discrepancy is meaningless
as one extrapolates the Brueckner results beyond their
regime of validity.

Both reactions considered above are very illustrative
as they show a great consistency between the calcula-
tions performed by different authors, with somewhat dif-
ferent methods. They also show the expected relevance
of medium corrections at intermediate and low energy
collisions.

G. Relevance of medium effects

As we mentioned above, medium effects have been rou-
tinely neglected in the experimental analysis of knockout
reactions. But their relevance has been known for a long
time in the analysis of elastic and inelastic scattering, as
well as of total reaction cross sections ﬂﬂ, ] The ef-
fects are larger at lower bombarding energies, where Pauli
blocking strongly reduces the nucleon-nucleon cross sec-
tions in the medium. A systematic study of these effects
has been presented in Ref. [1g].

To corroborate these statements, in figure [[0] we show
the data on p + '2C reaction cross sections taken from
the Ref. @] in the energy region of our interest, 20-100
MeV /nucleon. The cross sections were calculated from
the relation

- 27T/db AISECTHE (14)
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where S(b) has been calculated using Eqs. {BG) and the
carbon matter density from a Hartree-Fock-Bogoliubov
calculation ] Several distinct calculations are shown.
The solid curve uses Eq. (B) with the free nucleon-
nucleon cross sections and the carbon matter density
from a HFB calculation M], whereas the triangle-dotted
curve (the triangles are not data, but used for better vis-
ibility) uses a different HFB densi‘fENE], consistent with
the calculations presented in Ref. [48]. As expected, that
the agreement between the two calculations is very good.

The other curves in figure show the same calcu-
lation procedure, but including medium corrections for
the nucleon-nucleon cross section. The results are evi-
dently very different than the previous ones. The dot-
ted (dashed-dotted) [dashed] curves use phenomenolog-
ical (Brueckner) [Pauli geometrical] recipes for medium
effects on the cross sections. Based on the large error
bars and spread of the experimental data, it is hard to
judge what model adopted for medium corrections yields
the best agreement with the data. It is clear that the
inclusion of medium effects change the results to yield a
closer reproduction of the data.

These findings are in agreement with our present un-
derstanding of medium modifications of the reaction
cross sections and of several other reaction channels in-
volving heavy ion scattering at intermediate energies
(~ 50 MeV /nucleon).

IV. CONCLUSIONS

Often neglected effects, such as medium modifications
of the nucleon-nucleon cross sections and Coulomb dis-
tortion, modify appreciably the nucleon knockout cross
sections. As we have shown, these effects do not lead
to an appreciable modification of the shapes of momen-
tum distributions. This is explained by the fact that the
momentum distributions are largely the Fourier trans-
forms of the contributing parts of the single-particle
wavefunctions, overwhelmingly their asymptotic regions,
which are the Whittaker functions for protons or the
Hankel functions for neutrons, sensitive only to the or-
bital momentum and the nucleon binding energies. We
have shown these features explicitly by comparing our
results with a large number of available experimental
data. As expected on physics grounds, these correc-
tions are larger for experiments at lower energies, around
50 MeV /nucleon, and for heavy targets.

As more experiments make use of heavier targets, it
is worthwhile to illustrate the relevance of Coulomb cor-
rections. Medium effects in knockout reactions have also
been frequently ignored in the past. We show that they
also have to be included in order to obtain a better ac-
curacy of the extracted spectroscopic factors. Although
these conclusions might not come as a big surprise, they
have not been properly included in many previous exper-
imental analyses.
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