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The WxL domain recently has been identified as a novel cell wall binding domain found in numerous predicted proteins within
multiple Gram-positive bacterial species. However, little is known about the function of proteins containing this novel domain.
Here, we identify and characterize 6 Enterococcus faecium proteins containing the WxL domain which, by reverse transcription-
PCR (RT-PCR) and genomic analyses, are located in three similarly organized operons, deemed WxL loci A, B, and C. Western
blotting, electron microscopy, and enzyme-linked immunosorbent assays (ELISAs) determined that genes of WxL loci A and C
encode antigenic, cell surface proteins exposed at higher levels in clinical isolates than in commensal isolates. Secondary struc-
tural analyses of locus A recombinant WxL domain-containing proteins found they are rich in 3-sheet structure and disordered
segments. Using Biacore analyses, we discovered that recombinant WxL proteins from locus A bind human extracellular matrix
proteins, specifically type I collagen and fibronectin. Proteins encoded by locus A also were found to bind to each other, suggest-
ing a novel cell surface complex. Furthermore, bile salt survival assays and animal models using a mutant from which all three
WxL loci were deleted revealed the involvement of WxL operons in bile salt stress and endocarditis pathogenesis. In summary,
these studies extend our understanding of proteins containing the WxL domain and their potential impact on colonization and
virulence in E. faecium and possibly other Gram-positive bacterial species.

E nterococcus faecium is one of the “no ESKAPE” pathogens re-
sponsible for a considerable percentage of nosocomial infec-
tions; its ability to cause life-threatening infections and resistance
to antibiotics cause considerable difficulties for patients and phy-
sicians (1). To date, many of the potential virulence determinants
that have been described in E. faecium are MSCRAMMSs (micro-
bial surface components recognizing adhesive matrix molecules);
these include adhesins or pili anchored to the cell surface by an
LPxTG-like motif and contain IgG-like folds (2). Our group pre-
viously performed a bioinformatic search for novel surface pro-
teins that might be virulence factors in the E. faecium endocarditis
strain TX16 (also known as DO) (3). During this search, we iden-
tified a locus which included predicted proteins possessing the
previously described WxL domain colocated with a predicted
LPxTG-like protein (Fms6) (3, 4).

The WxL domain is comprised of several conserved residues
along with a highly conserved YXXX(L/I/V)TWXLXXXP motif
and a second WxL proximal motif in the last ~120 to 190 C-ter-
minal residues of a protein (4, 5). Genes encoding proteins with
the WxL domain were first described in Lactobacillus plantarum as
part of a novel gene cluster found in a subset of low-G+ C-content
Gram-positive bacterial species, one of which is E. faecium (6, 7).
Bioinformatics and transcriptome data in L. plantarum predicted
these loci form cell surface protein complexes involved in carbon
source acquisition and stress survival adaptation (7). When study-
ing Enterococcus faecalis, Brinster et al. used fusion constructs to
demonstrate that the WxL domain conferred protein localization
to the cell wall fraction (4). In Lactobacillus coryniformis, a WxL
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protein named Cpf (coaggregation-promoting factor) was shown
to mediate coaggregation with itself and other pathogens (8).
Schachtsiek et al. showed Cpf could be removed from cells by
treatment with 5 M LiCl and subsequently could be reattached to
the cell surface by using spent culture supernatants or recombi-
nant Cpf, which resulted in restoration of the coaggregation.
Therefore, it is highly probable that proteins containing the WxL
domain are noncovalently anchored cell wall-associated proteins.
This work was corroborated by Brinster et al. when E. faecalis WxL
domain recombinant protein fusions were shown to bind other
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FIG 1 WxL operons and domains of E. faecium TX82. (A) A pictorial representation of the three putative operons (loci A, B, and C) containing the 6 genes found
to have the WxL domain found in E. faecium TX82 based on in silico analyses. Each arrow represents a predicted ORF named for the protein it encodes. Small WxL
proteins are in red, DUF916 family proteins are in green, LPxTG-like proteins are in purple, Large WXL proteins are in yellow, transcriptional regulators are in
orange, and genes outside the operon are in gray. Predicted terminators (Ter) and promoters (P->) also are labeled. (B) An alignment of the C terminus of the
6 WXL proteins found in E. faecium TX82. Highly conserved residues are in black, moderately conserved residues are in gray, and the red boxes indicate the
YXXX(L/I/V)TWXLXXXP terminal motif and the second WxL proximal motif.

Gram-positive bacteria, and experiments indicated peptidoglycan
as the bindingligand (4). Moreover, Brinster et al. also deleted one
of the 27 WxL genes in E. faecalis V583 encoding an internalin-like
protein (ElrA), which led to significant attenuation in a mouse
peritonitis model and reduced bacterial dissemination to the
spleen, liver, and host macrophages (9). However, it is unclear if
the involvement of elrA in virulence is associated with WxL pro-
teins in general, or if this observation was specific for the ElrA
protein.

As little data exist regarding the function of these potentially
important novel surface proteins, particularly their role in host-
pathogen interaction, we sought to characterize the E. faecium
proteins containing the WxL domain. Specifically, we aimed to
characterize the genomic arrangement of loci containing WxL
proteins, predict structural elements of proteins within specific
WXL loci, and determine if certain proteins containing the WxL
domain are involved in virulence or colonization-related func-
tions in E. faecium.

MATERIALS AND METHODS

Strains, plasmids, and cultivation of bacteria. All relevant characteristics
of bacterial strains and plasmids used in this study can be found in Table
S1 in the supplemental material. Unless otherwise stated, all Escherichia
coli cells were grown in LB broth/agar, and all E. faecalis or E. faecium cells
were grown in brain heart infusion (BHI) agar and broth at 37°C.
Identification, in silico genomic analysis, and structural analysis of
putative WXL proteins. The closed reference genome TX16 (endocarditis
clade A isolate) was used to search for open reading frames (ORFs) en-
coding proteins with the WxL domain using NCBI BLAST. All ORFs
generated through BLAST were searched for the two C-terminal WxL
motifs (YXXX[L/I/V]TWXLXXXP) (Fig. 1) within the C-terminal 150
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amino acid residues (4, 7, 10). The WxL domain was confirmed using
CLUSTALW alignment with previously predicted WxL proteins (11). The
accession number for TX16 (DO) is CP003583.1. The locus tags for WxL
locus A of TX16 (DO) are HMPREF0351_12112 to HMPREF0351_12116,
where SwpA is HMPREF0351_12116 and LwpA is HMPREF0351_12114.
The locus tags for the WxL locus B of TX16 (DO) are HMPREF0351 10614
to HMPREF0351_10617, where SwpB is HMPREF0351_10617 and LwpB is
HMPREF0351_10614. The locus tags for the WxL locus C of TX16 (DO)
are HMPREF0351_10114 to HMPREF0351_10119, where SwpC is
HMPREF0351_10114 and LwpC is HMPREF0351_10115. NCBI BLAST
then was used to find the WxL loci in TX1330 (a community-associated
[CA] commensal isolate of clade B) and TX82 (a hospital-associated [HA]
clinical isolate of clade A that we have used extensively in experimental
models) using the sequences obtained from TX16 (12—-17). Confirmatory
sequencing of the TX1330 and TX82 WxL loci were performed using the
primers in Table S2 in the supplemental material. The gene organization
surrounding the predicted WXL proteins also was analyzed (7). Inter-
ProScan determined protein family, domains, and functional sites (18).
TMHMM v2.0 and TMpredServer determined possible transmembrane
domains (19). Signal P v3.0 determined the presence of N-terminal signal
sequences (20). SoftBerryBPROM and SoftBerryFindTerm, as well as an
RNA secondary structure predictor (www.genebee.msu.su), were used to
predict promoters and terminators of the loci (21). Secondary and tertiary
structures were predicted using PHYRE2 (22). DisEMBL v1.5 predicted
intrinsic protein disorder (23). Nucleotide sequences of WxL protein-
encoding genes were found using BLAST analyses in 21 E. faecium strains
available from NCBI. Pairwise analysis was performed using Clustal W
alignment of the amino acid sequences. Percent identity matrices were
created using Geneious software, version 6.1 (see Table S3) (24).
Colony hybridizations, RNA extraction, and RT-PCR. Preparation
of colony lysates on nylon membranes and colony hybridization under
high-stringency conditions were performed as described previously (25).
DNA probes for the WxL locus genes and intergenic regions were ob-
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tained with the primers listed in Table S4 and S5 in the supplemental
material, respectively. Total RNA extraction from TX1330 and TX82,
grown to mid-log phase in 10 ml of BHI, and reverse transcription-PCRs
(RT-PCRs) were performed as described previously (3).

Construction of expression plasmids and purification of recom-
binant proteins. Genomic DNA was extracted from TX1330 and TX82
using a DNeasy blood and tissue kit (Qiagen). DNA regions of
SWPATx13300 SWPATxg2s LWPA1x13300 LWPArxsny DufAqygy, SWpCryyssos
SWPCrxgar LWPCrx 330 ad LWpCrq, were amplified using the primers
listed in Table S6 in the supplemental material (all recombinant proteins
lack the signal peptide, LwpA and LwpC lack the WxL domain, and DufA
lacks the transmembrane domains). Fragments were cloned into the ex-
pression vector pQE30 (Qiagen) and transformed into M15 (pREP4) cells
(Qiagen). Recombinant proteins with N-terminal His, tags were ex-
pressed and purified with fast-performance liquid chromatography
(FPLC) using a 5-ml nickel-charged HiTrap chelating column (GE
Healthcare) followed by a 5-ml anion exchange Sepharose column (GE
Healthcare) (26). Fractions obtained from the anion exchange column
were concentrated and dialyzed against phosphate-buffered saline (PBS)
with 10 mM EDTA (at the appropriate pH for the pI of each recombinant
protein). Protein concentrations were determined by absorption spec-
troscopy at 280 nm using calculated molar absorption coefficient values.
Molecular masses were determined with matrix-assisted laser desorption
ionization—time-of-flight mass spectrometry (MALDI-TOF MS). Pre-
dicted molecular weights, theoretical pI, and extinction coefficients were
determined using the ExPASy ProtParam tool (see Table S7 in the supple-
mental material) (27).

Production of polyclonal antibodies and purification of antigen-
specific antibodies. Production of antiserum was performed in Sprague-
Dawley rats against individual WxL recombinant proteins from TX1330
as previously described (28). Antisera were tested for antibody titers by
enzyme-linked immunosorbent assay (ELISA) (29). Antigen-specific an-
tibodies were purified as described previously using the corresponding
antigen coupled to CNBr-activated Sepharose columns (3). The antibod-
ies were concentrated by ultrafiltration, and concentrations were deter-
mined via absorption spectroscopy.

Mutanolysin cell wall extraction and Western blot analysis. Muta-
nolysin extracts of late-exponential-phase cells were prepared as described
previously (29, 30). Protein concentrations were determined via bicin-
choninic acid (BCA) assay according to the manufacturer’s instructions
(Pierce). Equal amounts of mutanolysin cell wall extracts were run on 4 to
15% gradient SDS-PAGE gels under reducing conditions, transferred to
polyvinylidene difluoride (PVDF) membranes, and probed using the spe-
cific antibodies to SwpA, LwpA, SwpC, and LwpC, followed by horserad-
ish peroxidase (HRP)-conjugated anti-rat IgG secondary antibodies. An-
tisera from preimmune rats were used as a control.

Immunogold electron microscopy. Immunogold electron micros-
copy was performed as described previously (31). Briefly, TX82 cells were
grown on BHI agar overnight. The cells were harvested from the plates by
scraping and then washed with 0.1 M NaCl. For immunogold labeling, the
bacterial suspension was spotted and fixed onto carbon grids, washed
three times with 2% bovine serum albumin (BSA) in PBS, and blocked
with 0.1% gelatin for 1 h. The samples then were incubated with the
specific anti-WxL antibody or preimmune serum in a 1:100 or 1:50 dilu-
tion for 1 h, followed by washing and blocking as described above. The
samples then were treated with 12-nm or 18-nm gold-anti-rat IgG (1:20
dilution) in 2% BSA in PBS for 1 h. The samples then were washed with
water and stained with 1% uranyl acetate and viewed using a Jeol 1400
transmission electron microscope.

Whole-cell ELISA. The presence of SwpA, LwpA, SwpC, and LwpC on
the surface of bacterial cells was detected using affinity-purified antigen-
specific antibodies against individual WxL recombinant proteins from
TX1330 in a whole-cell ELISA as previously described (32). Antiserum
against formalin-killed TX16 cells was used as a positive control to verify
equal binding of whole cells to the microtiter plate. Statistical significance
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(P values) of the surface exposure of each WxL protein between clinical
and community strains was calculated using an unpaired ¢ test.

Detection of antibodies to WxL proteins in patient sera. Detection of
antibodies in patient sera was performed as described previously (33).
Briefly, recombinant SwpA, LwpA, SwpC, and LwpC from TX1330 was
run on 12% SDS-PAGE gels and transferred to PVDF membranes. The
membranes were blocked with 2% milk, 0.1% Tween 20 and incubated
with either endocarditis patient serum or healthy volunteer serum (1:
2,000). After washing with PBS-Tween (PBST), antibodies were detected
with goat anti-human IgG (1:5,000) conjugated to HRP. The Western blot
was developed using SuperSignal West Pico chemiluminescent substrate
(Thermo Scientific).

CD spectroscopy. Recombinant proteins DufA, LwpA, and SwpA
were dialyzed in PBS buffer (0.8 mM Na,HPO,, 0.2 mM KH,PO,, 0.3 mM
KCl, 13.7 mM NaCl, pH 7.4). Circular dichroism (CD) measurements in
the far-UV region (190 to 260 nm) were carried out at ambient tempera-
ture on a Jasco J-720 spectropolarimeter (Easton, MD) using a 0.5-mm
cuvette. Ten scans were collected and averaged at a scan speed of 100
nm/min, with a time constant of 2 s and bandwidth of 1 nm. The spectra
were background corrected with the CD signal obtained from the buffer.
Analysis of the spectra was performed on the DichroWeb server (http:
//dichroweb.cryst.bbk.ac.uk). Secondary-structure composition for each
protein is an average of the deconvolution results from SELCON,
CDSSTR, and CONTINLL using reference data set 4.

SPR. Surface plasmon resonance (SPR)-based Biacore binding exper-
iments were performed at 25°C on a Biacore 3000 (GE Healthcare). Using
an amine-coupling procedure as recommended by the manufacturer, 20
pg/ml fibronectin (Fn; Millipore), 20 pg/ml Fn-NTD (Sigma), and 10
pg/ml Fn-Hep2 (Millipore) were immobilized on a CM3 sensor chip. Rat
tail collagen I (20 pg/ml; R&D Systems), collagen IV from human cell
culture (Sigma), laminin (Invitrogen), and fibrinogen (Enzyme Research
laboratory) were immobilized on CM5 sensor chips. DufA (20 pg/ml),
SwpA (5 wg/ml), and LwpA (10 pg/ml) also were immobilized on CM5
sensor chips. The immobilization solution (10 mM sodium acetate, pH
5.5) was used for most of the proteins, except for laminin and collagen IV,
where 50 mM sodium acetate, pH 4.0, was used. A reference surface was
prepared with activation and deactivation treatments but no protein cou-
pled. PBS with 0.005% Tween 20 was used as the running buffer. Soluble
proteins at different concentrations were injected onto the immobilized
ligand surface to obtain SPR response curves (sensorgrams). Baseline-
corrected sensorgrams (with the buffer blank run further subtracted) were
globally fitted to a predefined binding model using BIAevaluation soft-
ware (version 4.1).

Construction of WxL deletion mutants. Mutants were created using
a PheS*-derived system as described previously (34). For deletion of WxL
loci, the deletion construct fragments were amplified using the primers
found in Table S8 in the supplemental material and cloned into pHOU1.
The insert was confirmed by sequencing and the plasmid electroporated
into E. faecalis CK111. Blue colonies were recovered on BHI gentamicin
(125 pg/ml)-5-bromo-4-chloro-3-indolyl-B3-p-galactopyranoside (X-
Gal) (200 pg/ml) plates. Recombinant plasmids then were introduced
into TX82 through filter mating with CK111 as the donor. Single-cross-
over integrants then were selected on BHI gentamicin-vancomycin (50
pg/ml) or BHI gentamicin-erythromycin (200 pg/ml) plates, replica
plated onto BHI gentamicin-ampicillin (125 pg/ml) plates, and con-
firmed by sequencing. Positive colonies then were streaked onto
MMOYEG plates with 10 mM 4-chloro-pr-phenylalanine (p-Chl-Phe)
and incubated at 37°C. Colonies that grew on p-Chl-Phe were replica
plated on BHI gentamicin to confirm the excision of the plasmid. Colo-
nies susceptible to gentamicin were screened by PCR for the deletion and
sequenced, and pulsed-field gel electrophoresis (PFGE) was performed to
confirm the parental background. The AwxIABC triple-locus mutant was
made in the following sequence: WXL locus B, then WxL locus A, and
finally WxL locus C (22).
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Bile salt assay. Resistance to bile salts after 24 h was determined as
described previously (35). E. faecium cells were exposed to BHI with 0.3%
bile salts for 24 h. CFU were determined at t = 0 min and t = 24 h; the
fraction of cells that survived was calculated by dividing the CFU after 24
h by the CFU at time zero (35). An unpaired ¢ test was used to compare the
mean survival values between strains.

Experimental endocarditis. Aortic valve endocarditis was induced in
white Sprague-Dawley rats as previously published (28). Overnight-
grown wild-type (WT; TX82) and AwxIABC mutant cells were harvested,
the concentrations were adjusted using optical density, the cells were sus-
pended together in saline (1:1), and they were intravenously inoculated
via the tail vein 24 h after catheterization. The percentage of each strain
used in the inoculum was verified by plating CFU. TX82 and AwxIABC
cells comprised 44.5% and 55.5% of the mixed inocula, respectively, based
on two independent experiments (mean percent). Animals were eutha-
nized ~48 h after bacterial inoculation, and hearts were aseptically re-
moved. The vegetation was excised, weighed in preweighed sterile tubes,
and homogenized in 1 ml of saline, and dilutions were plated onto En-
terococcosel agar plus 6 pg/ml vancomycin. After ~48 h, all colonies that
grew (up to 47 CFU/rat) were picked into microtiter plate wells contain-
ing brucella broth plus 15% glycerol, grown overnight, and used to pre-
pare DNA lysates on Hybond N+ membranes (GE Healthcare), followed
by high-stringency hybridization (25), using intragenic DNA probes
for ddl (36) and IwpB (wxIB-F, GGTGGATTCGCTCACAATTTCGG;
wxIB-R, GGATGATTCCGCGATTGTTGTCATTGG) in order to gener-
ate the percentages of TX82 and AwxIABC colonies recovered from tissue
homogenate. Data were expressed as percentages of the WT and mutant
per tissue homogenate and analyzed by the paired t test using GraphPad
Prism v4.0. The animal procedures were carried out by following the
animal welfare committee guidelines and approved protocol at the Uni-
versity of Texas Health Science Center at Houston.

RESULTS

Six genes encoding WXL proteins in Enterococcus faecium are
located among three similarly organized operons. In the closed
reference genome of TX16, also known as DO, six genes encoding
proteins with the WxL domain were found. The endocarditis iso-
late, TX82 (clade A), and a community fecal isolate TX1330 (clade
B), strains we have used extensively, also were analyzed for the
presence of the 6 genes encoding WxL proteins, and the same 6
were found (Fig. 1) (13, 37). In silico analysis determined that
these are in three clusters flanked by predicted rho-independent
terminators in each genome, resembling the pattern found in E.
faecalis and L. plantarum clusters (Fig. 1) (7, 9). All three clusters
(named WxL loci A, B, and C) encode proteins which can be
divided into 3 different classes based on size, domains, and motif
characteristics described previously (7): (i) a small WxL protein
(SwpA-C), analogous to CscB in Lactobacillus plantarums; (ii) a
large WxL protein (LwpA-C), analogous to CscC; and (iii) a
DUF916 (domain of unknown function) family protein (DufA-
C), analogous to CscA (7). Only WXL locus A encoded a protein
with an LPxTG-like motif (Fms6), analogous to CscD (7). Locus A
and locus C both are associated with Mga-like transcriptional reg-
ulators, which often are regulators of virulence genes important
for colonization and immune evasion (38). Directly upstream of
locus B is a LytR-family transcriptional regulator which has been
shown to be involved in extracellular polysaccharide biosynthesis,
fimbriation, expression of exoproteins, and cell autolysis (39).
Bioinformatic analyses indicated that each of the three gene
clusters were operons. To validate this prediction, we carried out
RT-PCR of the individual WXL genes (data not shown) and the
intergenic regions using the strains TX1330 (data not shown) and
TX82 (see Tables S4 and S5 and Fig. S1 in the supplemental ma-
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terial). Our results indicate that the 6 genes encoding proteins
with the WxL domain are expressed under standard laboratory
conditions in both hospital-associated (clade A) and community-
associated commensal (clade B) strains and support the operon
structure depicted in Fig. 1.

The WXL genes from all three loci are widespread among E.
faecium isolates; however, the loci differ between HA and CA
clades. As introduced above, we recently reported the existence of
two subpopulations of E. faecium, one containing primarily com-
munity-associated strains (CA clade; also called clade B) and one
containing mostly hospital-associated strains (HA clade; also
called clade A) (12, 15). These two clades differ by ~3.5 to 4.2% of
their nucleotides at the core genome level. The swpC gene (previ-
ously called wlcA, for WXL Locus C protein A) was one of the
alleles used to demonstrate clade separation in our previous report
(40). Thus, we analyzed the distribution and homology of the
genes within the three WxL operons using 21 sequenced E. fae-
cium genomes available from NCBI. All genes within the three loci
have homologs within the 21 genomes. Pairwise analysis using all
three WxL loci and deduced amino acid sequences from these
strains determined that the nucleotide identity of WxL genes
ranges from 85 to 100%, with as much as 16.8% amino acid dif-
ference between the WxL locus proteins (DufC) derived from HA
and CA clade strains (see Table S3 in the supplemental material).

In addition to examining sequenced genomes, colony hybrid-
izations were performed under high-stringency conditions using
probes (see Table S4 in the supplemental material) for each indi-
vidual WXL gene in 54 unspecified clinical infection, 10 commu-
nity fecal, and 20 endocarditis isolates from our collection. While
swpA, IwpA, and swpC were present in all 84 strains tested, lwpB,
swpB, and IwpC were present in most, but not all, strains (90 to
98%) (data not shown). These results indicate that the WxL pro-
teins are found in most E. faecium isolates regardless of origin, a
finding that differs from those for other surface proteins, which
typically are enriched in isolates of clinical origin (41).

WxL locus A and C protein structure predictions. We contin-
ued with the analysis of WXL proteins from loci A and C in the clinical
strain TX82. Locus B was not examined due to difficulties generating
the complete sequence and inconsistencies found between sequenced
strains. Full-length sequences of TX82 SwpA, LwpA, DufA, SwpC,
LwpC, and DufC were analyzed using different protein servers. Anal-
ysis using PHYRE2 could not model SwpA, LwpA, or SwpC to a
template with any reasonable confidence, while analysis using Dis-
EMBL predicted that all three were highly disordered. Of note,
MSCRAMMS also have highly disordered regions, which contributes
to their ability to bind different host ECMs (42, 43). Sections of DufA
and DufC both modeled to the three-dimensional model of the hu-
man transglutaminase 32 enzyme with the highest confidence level
(98.8%), using 59% and 52% of the protein sequence, respectively. It
is thought that bacterial proteins harboring structural domains sim-
ilar to eukaryotic transglutaminases can function as proteases or
cross-linking enzymes, although presently it is unclear if DufA or
DufC has any enzymatic activity (44). A section of LwpA modeled to
a concanavalin A (ConA)-like lectin with 100% confidence for 30%
of the protein. Lectins and glucanases exhibit the common property
of binding to specific complex carbohydrates, and ConA-like do-
mains are found in bacterial proteins involved in cell recognition and
adhesion (45, 46).

Cell surface expression of WxL locus A and C proteins. Cell
wall extracts of TX82 cells generated by mutanolysin digestion
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ELISA of native cells using 6 community-associated (CA) and 6 hospital-associated (HA) clade E. faecium strains was performed, and the surface display of WxL
proteins was detected using specific antibodies to recombinant SwpA, LwpA, SwpC, or LwpC from E. faecium TX1330. Three technical replicates were performed
in two independent experiments. Standard deviations were negligible, so error bars cannot be seen. Unpaired t test was used to compare surface expression levels
between the community- and hospital-associated groups for each WxL protein.

were run on SDS-PAGE gels and probed with specific antibodies
generated against recombinant SwpA, LwpA, SwpC, and LwpC
from TX1330; each protein was found in the cell wall extracts (see
Fig. S2 in the supplemental material). Six clinical and 6 commu-
nity isolates then were tested by whole-cell ELISA to determine if
all isolates had similar cell surface expression of WxL proteins.
Although locus A and C WXL proteins were detected on the cell
surface of all strains tested, HA strains gave statistically higher
optical densities (approximately 2-fold higher) than CA strains for
SwpA, LwpA, and LwpC (Fig. 2), even though the antibodies used
had been generated against recombinant proteins from the com-
munity isolate TX1330. Results for SwpC were not statistically
significant; however, the trend was similar to that for the other 3
WxL proteins. Immunogold electron microscopy (IEM) experi-
ments also indicate that SwpC and LwpC were expressed on the
surface of TX82 cells (see Fig. S3).

Antibodies to WxL locus A and C proteins are present in se-
rum from patients with E. faecium endocarditis. Since WxL pro-
teins are surface expressed in vitro, we sought to determine if pa-

tients with E. faecium infections have antibodies to WxL proteins.
Using Western blot analysis, we determined that all 5 endocarditis
patient sera tested contained antibodies to all four WxL recombi-
nant proteins analyzed (SwpA, LwpA, SwpC, and LwpC from
TX1330) (Fig. 3). This differs from healthy volunteers, whose sera
either lacked antibodies to all four WxL proteins tested (3/7) or
had antibodies to only one of the four (4/7). Interestingly, the
antibodies found in healthy volunteers were always to one of the
large WXL proteins: three healthy volunteers had LwpC antibod-
ies, and one had LwpA antibodies (Fig. 3).

Secondary structural analysis of recombinant WxL proteins
from locus A. We continued our study using WxL locus A from
TX82, as this was the most consistent locus; that is, the genes
located upstream and downstream are the same in all isolates ex-
amined, and this locus has the least diversity at the amino acid
level. Recombinant protein characteristics can be found in Table
S7 in the supplemental material. During the protein purification
process, SWpA was obtained in two independent fractions, repre-
sented by two peaks separated by multiple fractions in both the

12 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
g =2 ¥ 1B 1= =F -1F =
—_ - - - g
374 —— B —— K = - M - -
SDS-PAGE a-His $110 S S112 $122 $125
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FIG 3 Western blot analyses using endocarditis patient sera demonstrate the in vivo immunogenicity of WxL proteins from loci A and C. Recombinant proteins
from E. faecium strain TX1330 (lanes: 1, LwpA; 2, SwpA; 3, SwpC; 4, LwpC) were run on 12% SDS-PAGE gels and transferred to PVDF membranes. Each
membrane was incubated with either endocarditis patient serum (S) or healthy volunteer serum (HV) (1:2,000). This was followed by goat anti-human IgG
conjugated to HRP and developed using SuperSignal West Pico chemiluminescent substrate (Thermo Scientific). The first gel is a Coomassie-stained gel. The
second gel is the Western blot using antibody to the His tag. The numbers underneath each gel represent the patient number arbitrarily assigned.
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FIG 4 Biacore detection of the interactions between soluble WxL and immobilized ECM proteins. SPR responses were generated from (A) binding of each WxL
protein (about 100 wg/ml in PBST) to immobilized collagen I, IV, laminin, and fibrinogen and (B and C) binding of 30 wg/ml of WXL proteins to full-length
fibronectin or its fragments (NTD and Hep2) under different buffer conditions (PBS or 0.5X PBS). All buffers contained 0.005% Tween 20. RU, resonance units.

nickel and Q column, indicating the same protein had two forms
with different folding and charge. We later inferred that these were
amonomer and dimer form of SwpA by comparing the size of the
two independent fractions on native and reducing SDS-PAGE gels
in addition to Western blot analyses. To determine the secondary
structure of WxL locus A proteins from TX82, the recombinant
SwpA (monomer and dimer), DufA, and LwpA were analyzed by
circular dichroism (CD) spectroscopy in the far-UV region and
deconvoluted using the online server Dichroweb (47). Consistent
with in silico prediction described above and as shown in Fig. 54,
all proteins are predominantly disordered (~40%) and contain
only 5 to 12% a-helix. Among these, DufA contains the highest
percentage of a-helical structure, as indicated by two minimum
bands between 205 and 225 nm, and LwpA has the highest B-sheet
content, indicated by a minimum at ~220 nm. Compared to the
SwpA monomer, the dimer contains less disorder and more
a-helix, as shown by a slightly stronger minimum band beyond
210 nm.

Recombinant proteins from the WxL locus A bind human
type I collagen and fibronectin. Surface plasmon resonance
(SPR) was used to detect the binding of recombinant SwpA
(monomer and dimer), LwpA, and DufA from TX82 to multiple
immobilized human extracellular matrix proteins (ECMs) (Fig.
4). In addition to showing that all three recombinant proteins
bound a number of different ECM proteins (including human
collagen type I [CI], collagen type IV [CIV], fibrinogen [Fg], and
fibronectin [Fn]), these preliminary analyses also showed differ-
ences in the activities between the monomer and dimer forms of
SwpA and the importance of salt concentration (PBS versus 0.5X

other cases of ECM binding in proteins of the same or similar
species, such as recombinant Acm of E. faecium, which binds CI
with a K}, of 3.8 wM, recombinant Stb1-4 of Streptococcus pyo-
genes, which binds the NTD region of Fn with K, from 60 nM, and
recombinant Fss1 of E. faecium, which binds Fg with a K, of 0.7
1M (32,48, 49). Interestingly, to date very few fibronectin binding
proteins have been reported in E. faecium, and the binding kinetics
of these proteins have not been determined. The finding that
DufA and SwpA binding to CI and CIV are similar in affinity and
SPR profile suggests that DufA and SwpA recognize a similar tri-
ple-helical collagenous structure in CI and CIV (Table 1; also see
Fig. S5 in the supplemental material). LwpA was not found to
interact with either immobilized CI or Fn; however, when LwpA
was immobilized, it showed binding to soluble Fn (Table 1; also
see Fig. S6). We further found the binding of DufA and SwpA to be
specific for the C-terminal heparin-binding fragment (Hep2-40K)
of Fn, with affinities 0of 0.075 pM and 0.60 wM, respectively. How-
ever, both soluble SwpA and DufA bound immobilized full-length
fibronectin with a greater affinity than immobilized Hep2-40K
fragment (Fig. 4 and Table 1; also see Fig. S5).

DufA shows self-association and association with both SwpA
and LwpA. Because our hypothesis was that proteins from the
same WxL operon assemble into a cell surface complex, Biacore

TABLE 1 Binding interactions (K;,) between E. faecium WxL locus A
recombinant proteins and human ECM as determined by Biacore
analysis

Kp, (uM) between ECM and™:

PBS) for their binding to Fn and its fragment, Hep2-40K (Fig. 4). gcMm DufA LwpA SwpA
Due to these observations, we continued our analyses with only Collagen I 0.63 NEB 0.07

the dimer form of SwpA and used 0.5X PBS (low salt) for Fn Collagen IV 0.41 ND¢ 0.08
interaction analysis. The interactions between TX82 WxLlocus A Fibrinogen 1.34 ND 0.87
recombinant proteins and human extracellular proteins were fur-  Fibronectin 0.005 (1.39)% NB (0.53) 0.20 (1.92)
ther characterized using Biacore analyses, which revealed a range  Fn-Hep2 0.075 (0.69) NB (0.25) 0.60 (0.51)

of K, values of 0.005 pM (Fn) to 1.34 uM (Fg) for DufA and 0.07
M (CI) to 0.87 pM (Fg) for SwpA (dimer) (Table 1; also see Fig.
S5 in the supplemental material). Thus, WxL locus A proteins
exhibit the highest affinity for Fn and CI, while both showed the
weakest affinity (although still detectable) for Fg. These K, values
are comparable to (and, in some cases, stronger than) those for

March 2015 Volume 197 Number 5
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“ The experimental data for the binding affinities (K},) of soluble WxL to immobilized
ECM proteins are shown in Fig. $4 in the supplemental material.

’NB, no binding.

¢ND, K, not determined due to low signal and lack of saturated binding.

9 The K, values listed in parentheses represent the reverse bindings (soluble ECM to
immobilized WxL), which were performed with full-length soluble Fn and the Hep2
fragment (experimental data are shown in Fig. S5).
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FIG 5 Biacore analysis of the interactions among WxL proteins. (A) SPR responses were obtained from a 1-min injection of each WxL protein (about 1 uM in
running buffer) over the immobilized WxL surfaces in PBS or 0.5X PBS (all buffers contained 0.005% Tween 20). (B) SPR sensorgrams were generated from the
injection of soluble DufA (2-fold linear dilution ranging from 1 to 64 nM) for 6 min over different WxL surfaces. Kinetic data were obtained by fitting a 1:1
(Langmuir) binding model (black lines) to the sensorgrams (colored lines, with the lower curves corresponding to lower concentrations of protein injected).

was used to detect binding between the recombinant proteins
from locus A. At first, we did not detect binding in physiological
salt concentrations. Due to our previous observation that Fn bind-
ing was favorable in 0.5X PBS, we performed intrinsic tryptophan
fluorescence spectroscopy, which confirmed that salt concentra-
tions affect WxL protein conformation (see Fig. S7 in the supple-
mental material). Thus, we continued with 0.5X PBS, showing
that only DufA recognized all WxL immobilized protein surfaces,
including itself, with no detectable interaction observed between
SwpA and LwpA (Fig. 5). DufA bound WxL proteins with high
affinity (K, of 26 nM for DufA, 13 nM for LwpA, and 52 nm for
SwpA) but with different kinetic profiles (Fig. 5). DufA binding to
SwpA was faster than that to DufA and LwpA, which is indicated
by a faster on-rate (k, of 9.7 X 10* compared to ~4 X 10* M™'
s~ "), while a more stable complex was seen with LwpA due to its
slow off-rate (k; 0f 5.2 X 10~ *s™").

Deletion of WXL locus genes increases survival in bile salts.
In a previous study, transcriptional analysis of lactobacilli showed
that WxL genes are regulated in response to bile, salt, and lactate
stress (50, 51). To further investigate possible involvement of the
WXL genes in bile salt stress, nonpolar WxL single-locus deletion
mutants and a triple-locus deletion mutant were tested in a bile
salt survival assay and compared to the wild type. It was found that
all WxL mutants survived better in bile salt stress conditions than
the parental strain, with the AwxIABC triple-locus mutant surviv-
ing the best (Fig. 6). The differences between all mutants and the
parental strain TX82 were statistically significant at P < 0.0001.

Deletion of all 3 WxL loci results in a decreased ability to
cause infective endocarditis compared to that of the parental
strain. In order to further support the notion that WxL proteins
are involved in virulence, we compared strain TX82 and its
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AwxIABC isogenic mutant for the ability to infect heart valves in
an experimental rat endocarditis model. Our data showed that the
AwxIABC mutant is outcompeted by the parental strain in rat
endocarditis, as recovered heart vegetation contained significantly
fewer AwxIABC colonies than wild-type TX82 colonies (P =
0.004) (Fig. 7). Although we have been unable to complement the
WXL triple-locus mutant, the likelihood that extraneous muta-
tions caused the attenuation in endocarditis is lessened by the fact
that we did not see attenuation in a mouse peritonitis model or
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FIG 6 WxL mutants survive better that the parental strain after 24 h of bile salt
exposure. E. faecium cells were exposed to BHI with 0.3% bile salts for 24 h.
CFU were determined at + = 0 min and ¢ = 24 h in two separate experiments,
and the fractions of cells that survived after bile salt exposure for each strain
were determined. The results shown represent the minimum, maximum,
means, and standard deviations from 6 biological replicates, with three tech-
nical replicates each. An unpaired ¢ test determined the difference in mean
survival between all mutants and the parental strain to be statistically signifi-
cant at P < 0.0001.
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FIG 7 Parental strain TX82 outcompetes the AwxIABC strain in a mixed
infection assay of rat endocarditis. Percentages of TX82 and AwxIABC strains
present in inocula (left side) and recovered from vegetation 48 h postinfection
(right side) in 16 rats. Horizontal bars represent the means (P = 0.004 by
paired ¢ test) for percentages of total bacteria in the vegetation of TX82 versus
those of the AwxIABC strain.

urinary tract infection model using the AwxI[ABC mutant (data
not shown). In addition, we do not believe that these results are
due to a growth defect, as TX82 and the AwxIABC mutant grow
similarly in vitro. These data indicate the specificity of WxL
operons for involvement in endocarditis pathogenesis, which
we postulate is due to the WxL proteins’ ability to bind host
ECM proteins (Fig. 4 and Table 1; also see Fig. S5 and S6 in the
supplemental material).

DISCUSSION

Proteins containing the WxL domain are a novel class of cell sur-
face proteins that are widespread among low-G+C-content
Gram-positive species. However, studies of WxL proteins have
been published for only three bacterial species (4, 7, 8). These
studies have been limited, focusing mostly on the role of the WxL
domain in surface localization and peptidoglycan binding (4, 7,
8). Thus, further characterization and functional studies on the
role of these novel surface proteins was needed.

Understanding the in vivo function of surface proteins is essen-
tial to explain the success of bacterial pathogens. Here, studies on
the role of WxL surface proteins in adherence to host tissues dis-
covered the ability of recombinant E. faecium WxL locus A pro-
teins to bind human Fn and CI (Fig. 4 and Table 1; also see Fig. S5
and S6 in the supplemental material). Adherence of bacterial cells
to various components of cardiac tissue is an important event in
the pathogenesis of infective endocarditis (52). Fibronectin is an
important component of the extracellular matrix of endothelium
and is exposed when these tissues are injured, whereas valvular
and aortic surfaces are rich in collagen (53, 54). Thus, it is likely
that the ability of WXL locus proteins of E. faecium to bind fi-
bronectin and collagen is important in colonization and infection.
This is reflected in the significantly reduced presence of AwxIABC
mutant versus wild-type TX82 colonies found in the vegetation
collected from the mixed infection model of experimental endo-
carditis (Fig. 7).

Our data also revealed that DufA and SwpA bind a C-terminal
fragment of Fn, that is, the Hep2-40K region (Fig. 4 and Table 1;
also see Fig. S5 and S6 in the supplemental material), which in-
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cludes Fn type Il modules 12 to 14 and a variable region (55). This
differs from most fibronectin-binding MSCRAMMs, such as
FnBPA from Staphylococcus aureus and BBK32 from Borrelia
burgdorferi, which target the N-terminal region, including NTD-
30K, to which SwpA and DufA did not bind (Fig. 4 and Table 1)
(56-58). To our knowledge, out of the many Fn binding proteins that
have been identified, only a few bind the Hep2-40K region (59-62).

Interestingly, another function we determined for the WxL
operons is an involvement in bile salt stress. Previous transcrip-
tional analysis of Lactobacillus plantarum found that WxL genes
from 2 loci were downregulated in response to bile stress (50). Our
data showed that WXL locus mutants in E. faecium actually survive
better than the parental strain TX82 after bile salt stress (Fig. 6).
One possibility is that WxL operons allow some uptake of bile,
which can be toxic in high concentrations. This suggests that dur-
ing passage through the small bowel, where bile is high, these
would be downregulated. In this scenario, when WXL operons are
deleted, bile is no longer taken up; therefore, the mutants survive
better under bile salt stress. Alternatively, perhaps the regulators
associated with the WxL operons have a role in downregulating
transporters that may be involved in pumping bile salt out. Loss of
this repression may allow for greater survival under bile salt stress.
In addition, deletion of the WxL operons might change the cell
wall composition and result in some change in cell wall integrity
that may be beneficial under bile salt stress. In addition to bile salt
stress, we tested the WxL locus mutants’ ability to form biofilms.
However, we did not find any significant differences between the
WxL locus mutant strains and the parental strain in their ability to
form biofilm (data not shown).

Although phylogenetic and sequence analyses demonstrated
genes encoding WxL proteins of E. faecium segregate into the two
clade patterns found previously for this species (see Table S3 in the
supplemental material), there is more variability in WxL alleles
than in other E. faecium genes previously analyzed (12, 40). More-
over, even though the genes are mostly ubiquitous among the
strains studied, there is a difference in surface display of the WxL
proteins depending on the strain origin (Fig. 2). This is possibly a
result of the numerous amino acid differences between the two
types of strains, which may result in altered structures, posttrans-
lational modification, processing at the cell surface, or regulation.
In addition, the greater surface exposure seen in HA clade strains
could reflect an enhanced capacity for virulence (i.e., better able to
bind host ECM versus CA clade strains).

The fact that the genes within WxL loci were cotranscribed
suggests a novel assembly process at the cell surface (see Fig. S1in
the supplemental material). In support of assembly of these pro-
teins, Biacore results showed binding of DufA to itself, SwpA, and
LwpA (Fig. 5). It also was found that mixed proteins formed large
visible aggregates within several hours under low-salt conditions
(data not shown). Interestingly, Biacore data showed that SwpA
and LwpA did not bind to each other (Fig. 5), consistent with the
immunogold micrographs using double labeling, which did not
show colocalization of SwpC and LwpC (data not shown). Seem-
ingly, the assembly of these proteins at the cell surface does not
include a direct interaction between the large and small WxL pro-
teins but may involve interactions with the Duf proteins. Also of
interest is how LPxTG-like proteins, like the fms6 protein or oth-
ers found in other species (CscD-like), play a role in cell wall
surface assembly, as they are not found in all WxL operons (i.e., in
E. faecium, only in WxL locus A).
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Seizen et al. speculated a role for WxL clusters in carbohydrate
metabolism due to the presence of concanavalin A-like lectin do-
mains (for carbohydrate binding/degradation) and CRE (catabo-
lite response elements) binding sites upstream or inside the gene
clusters and showed WXL proteins were regulated by ccpA in lac-
tobacilli (7). Interestingly, although we found concanavalin A-like
lectin domains within LwpA, we did not find previously defined
CRE sites upstream of loci or inside the gene clusters. This suggests
that E. faecium has adapted an alternative role for these operons,
or that CRE binding sequences for E. faecium are different from
those for other species. For example, it is possible that the same
domains within WxL proteins important for recognizing/sensing
the environment in a nonpathogenic species (such as the conca-
navalin A-like lectin domains for carbohydrates) were adapted to
recognize receptor domains in the host with similar structure in
more pathogenic species.

As the WXL domain, which is the means by which the proteins
localize to the cell surface, is the only commonality between these
proteins, they are likely to have different roles. The potential vari-
ability in function is reflected in the huge range in number of WxL
proteins seen between species, such as 1 in Lactobacillus corynifor-
misversus 27 in E. faecalis. Based on this observation, it is unlikely
that, in an organism that has a high number of WxL proteins, all of
them have the same function. At least in E. faecium, these proteins
seem to be important for virulence-associated functions. Whether
or not these attributes are applicable to other species remains to be
determined, but it is probable for other pathogenic species.

In summary, these data report the identification and prelimi-
nary characterization of the 6 WxL proteins found in almost all E.
faecium isolates. Sequence, phylogenetic, and structural predic-
tions provide a foundation for a functional role in virulence as well
as support the differences seen in surface expression of WxL pro-
teins between clinical and community isolates. Further functional
characterization revealed evidence of the WxL proteins’ involve-
ment in binding human extracellular matrix proteins. Moreover,
genetic inactivation of enterococcal WxL proteins resulted in a
decreased in vivo ability to compete in infective endocarditis.
These results suggest that enterococcal proteins with the WxL do-
main are therapeutic targets, and additional study of WxL pro-
teins in enterococci and other Gram-positive pathogens could
elucidate novel aspects of bacterial virulence.
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