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Current approaches for building quantum computing devices focus on two-level quantum systems which
nicely mimic the concept of a classical bit, albeit enhanced with additional quantum properties. However,
rather than artificially limiting the number of states to two, the use of d-level quantum systems (qudits) could
provide advantages for quantum information processing. Among other merits, it has recently been shown that
multi-level quantum systems can offer increased stability to external disturbances — a key problem in current
technologies. In this study we demonstrate that topological quantum memories built from qudits, also known
as abelian quantum double models, exhibit a substantially increased resilience to noise. That is, even when
taking into account the multitude of errors possible for multi-level quantum systems, topological quantum error
correction codes employing qudits can sustain a larger error rate than their two-level counterparts. In particular,
we find strong numerical evidence that the thresholds of these error-correction codes are given by the hashing
bound. Considering the significantly increased error thresholds attained, this might well outweigh the added
complexity of engineering and controlling higher dimensional quantum systems.

I. INTRODUCTION

The prospect of tremendous speedup over classical com-
putation has channeled considerable research effort into the
pursuit of building a universal quantum computer [1, 2]. How-
ever, one of the most significant challenges has been error cor-
rection: Despite numerous attempts to physically realize and
control quantum bits, all share a striking sensitivity to deco-
herence – external disturbance attributed to the unavoidable
interaction with the environment. And while correcting these
errors is in principle possible [3, 4], achieving error resilience
in an efficient and, in particular, scalable way is challenging
and consequently a topic of considerable research interest.

Traditionally, quantum information processing is conceptu-
alized as a quantum adaptation of the binary storage system
found in current computers. However, there are several indi-
cators that “thinking outside the binary box” might be a key
ingredient to further progress towards reliable quantum com-
putation. Recent results suggest hat d-level quantum systems,
so called “qudits,” are potentially more powerful than their
binary counterparts in terms of information processing [5–7].
Furthermore, while single-qubit gates can typically be imple-
mented with relatively high fidelity, two-qubit gates are of-
ten more challenging because they require concurrent control
over several parts of the system. Higher-dimensional quan-
tum systems can allow for information-coding with increased
density, thus potentially reducing the number of error-prone
inter-qudit interactions required to perform specific computa-
tions [8].

Different working quantum computing devices are cur-
rently being scrutinized by a myriad of research teams around
the globe: These range from commercial quantum anneal-
ing devices, such as D-Wave Inc.’s D-Wave Two quantum an-
nealer [9] based on superconducting flux qubits, to proof-of-
principle trapped-ion qubits that recently demonstrated suc-
cessfully fault-tolerant quantum computation based on topo-

logical protection [10]. While the former is built for scala-
bility, it suffers from decoherence effects mostly due to 1/f
noise. The latter, on the other hand, is robust against noise
due to the inherent topological protection, however shows lit-
tle prospect of scalability. Several of the current approaches
to physically represent quantum information can be extended
to more than two levels, including optical system [11, 12], su-
perconductors and flux qubits [9, 13], as well as atomic spins
[14, 15]. Given the theoretical promise that qudit-based sys-
tems have shown [5–7], it is thus of paramount interest to
quantify their resilience to noise.

In terms of achieving error resilience for a given set
of building blocks, topological error-correction codes are
currently among the best candidates for a scalable error-
correction scheme [16, 17]. This approach of using topology
to reliably encode quantum information can also be extended
to multi-level qudit systems, resulting in the so-called abelian
quantum double models [18]. We are interested in estimating
the dependence of the error threshold on the qudit dimension-
ality – that is, the maximum amount of errors a system of d-
level qudits can sustain while still being able to reliably store
the encoded information. In the spirit of the approach used
to estimate the error tolerance of fault-tolerant systems pio-
neered in Refs. [19–21] for qubit systems, we present a map-
ping of this statistical analysis to classical Potts-spin models
that can be seen as the natural extension of Boolean variables
to d states. This allows us to numerically calculate the bit-
flip error threshold for qudit-based quantum memories using
Monte Carlo simulations, a key figure of merit.

The paper is structured as follows. In Sec. II we introduce
abelian quantum double models, followed by both upper and
lower theoretical bounds for the threshold. A mapping onto a
statistical mechanical Potts model is outlined in Sec. III, fol-
lowed by results in Sec. IV and concluding remarks.
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FIG. 1: Numbering and orientation conventions used in the calcula-
tions. The quantum spins of the original model are shown as (blue)
empty circles on the graph’s edges, whereas the sites of the classical
model are shown as (black) solid dots on the vertices. (a) Convention
for determining anyon occupancy of a plaquette� from the quantum
spins on the edges. (b) Convention for assigning classical spins S`1

and S`2 to the vertices and determining the effective κ` for a given
link `.

II. ABELIAN QUANTUM DOUBLE MODELS

The abelian quantum double models are defined on a square
lattice with a d-level quantum spin on each edge `. Let us use
| s`〉 ∈ {| 0〉 , . . . , | d− 1〉} to denote the computational basis
of the spins. We will use these to define a qudit generalization
of the toric code based on the cyclic group Zd, which we call
the D(Zd) code [16].

Like the qubit-based toric code, operators are defined on the
spins around each plaquette and vertex of a square lattice in
order to define occupancies of anyonic quasiparticles. For the
plaquettes, these operators depend on relations between the
states of the spins around the plaquette when expressed in the
computational basis. In the case that all the spins �j around a
plaquette � are in definite computational basis states

∣∣ s�j〉,
the plaquette is said to hold an anyon of type n�, where

n� = (s�1
+ s�2

− s�3
− s�4

) mod d . (1)

The numbering of the spins in Eq. (1) around the plaquette
is depicted in Fig. 1(a). The n = 0 anyon is identified with
the vacuum, while the d− 1 other anyon types are non-trivial.
Note that many different states for the spins around a plaque-
tte lead to the same anyon type contained within. The typical
states of the system with a given anyon configuration will cor-
respond to a superposition of many of these.

The plaquette anyons can be created, moved, and annihi-
lated using the operations

(σx` )
ε =

∑
s`

| s` + ε mod d〉 〈s` | . (2)

There are d distinct operations given by ε ∈ {0, . . . , d − 1}.
All are non-trivial except ε = 0, which yields the identity.

For the vertices of the code anyon occupancies are defined
in a similar manner as for the plaquettes. The basis used is not
the computational basis, but that defined by

∣∣ j̃〉 = 1√
d

d−1∑
k=0

ei2πjk/d | j〉 . (3)

There are also corresponding operations (σz` )
ε that manipu-

late these anyons. These vertex anyons are completely dual
to the plaquette ones, and so can be treated independently and
analogously. We therefore restrict our attention to plaquette
anyons without loss of generality.

Quantum information is stored in the vacuum states of the
anyons, i.e., states where no anyons are present on any pla-
quette or vertex. There are d such states, allowing a logical
qudit to be stored. The action of any errors on the code can be
expressed in terms of the (σx` )

ε and (σz` )
ε operations, and so

correspond to the creation and manipulation of anyons. The
resulting anyon configuration, which serves as the syndrome
of the code, then allows information about the errors to be
determined. The goal of error correction is to use this infor-
mation to remove the effects of the errors.

Error correction will not always succeed. The probability
with which it fails depends on the linear system size of the
code, L, and the strength of the noise, p. If p is below a
threshold value, which we denote pd for a D(Zd) code, the
probability of failure decays exponentially with L. Success
then become certain as L → ∞. For p > pd, however, the
probability of failure is always O(1).

To determine the value of the error threshold pd for aD(Zd)
code, we must consider a specific error model. Here we con-
sider a generalization of the well-known independent bit and
phase flip error model for the Z2 case [19]. This acts indepen-
dently on each spin of the code, applying a randomly chosen
non-trivial operation (σx` )

ε with probability p. The probabil-
ity of each non-trivial operation is therefore p/(d − 1). See
Refs. [22, 23] for the best efforts to perform error correction
for this problem to date.

In Sec. IV, the thresholds are determined numerically for
several different values of d. However it is interesting to con-
sider how pd may behave for d→∞.

For the Z2 code it has been observed in multiple cases that
the threshold follows the Hashing bound [24, 25]. It has been
speculated that this may also hold in the qudit case [22, 23].
For the error model we consider, the Hashing bound probabil-
ity phb is the solution to the equation

phb log(d−1)−phb log phb−(1−phb) log(1−phb) =
log d

2
.

(4)
Note that although this is referred to as a “bound,” it serves
as an upper bound only for non-degenerate codes. Because
the codes we consider are degenerate, they are not necessarily
limited by these values.

A. Upper bound for thresholds

Even though the Hashing bound is not a strict upper bound
for the codes we consider, such a bound can be derived. Sup-
pose all spins of a D(Zd) code are prepared in state | 0〉. If
the anyon configuration is then measured, it will be found that
there is only vacuum on all plaquettes but a random pattern
of anyons on the vertices. When the latter are removed, the
resulting state of the code is that for which the logical qubit
state is | 0〉.
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Now suppose that a unitaryU(θ) is applied to all spins prior
to the measurement, such that

U(θ) | 0〉 = cos θ | 0〉+ sin θ
1√
d− 1

d−1∑
j=1

| j〉 . (5)

This has the same effects on the measurement results as ap-
plying errors of the form (σx)g for 1 ≤ g ≤ d− 1 with equal
probability p/(d − 1), where p = sin2 θ. The threshold pd
in the latter case therefore corresponds to a threshold angle
θd = arcsin

√
p
d

in the former. For θ < θd error correc-
tion will yield the code in logical state | 0〉 with certainty as
L→∞.

A similar argument can be applied using the complemen-
tary basis in which the vertex anyon states are defined. If each
qudit is prepared in state

∣∣ 0̃〉, syndrome measurement and er-
ror correction result in the logical qubit state

∣∣ 0̃〉. Applying
the unitary operator

V (φ)
∣∣ 0̃〉 = cosφ

∣∣ 0̃〉+ sinφ
1√
d− 1

d−1∑
j=1

∣∣ j̃〉 (6)

to each spin before measurement has the same effect as errors
of the form (σz)g for 1 ≤ g ≤ d − 1 with equal probability
p/(d − 1) where p = sin2 φ. There will then be a critical
angle φd = arcsin

√
p
d

below which error correction yields
the code in logical state

∣∣ 0̃〉 with certainty as L→∞.
Note that, for particular values of θ and φ,

U(θ) | 0〉 = V (φ)
∣∣ 0̃〉 =√ d

2(d+
√
d)

(
| 0〉+

∣∣ 0̃〉) . (7)

This corresponds to both of the above cases with the errors
occurring with probability

p =
d− 1

2(d+
√
d)
. (8)

As such, error correction cannot successfully correct both
types of error, because it cannot yield a code whose logical
state is simultaneously | 0〉 and

∣∣ 0̃〉. This error rate must there-
fore be above the threshold, giving us an upper bound

pd <
d− 1

2(d+
√
d)

(9)

for the threshold error rate pd of the D(Zd) code.

B. Lower bound for thresholds

For some values of d it is also possible to construct a lower
bound: Given an integer d = nm where n and m are co-
prime, the fundamental theorem of abelian groups states that
the group Zd is isomorphic to Zn × Zm. As such, the prob-
lem of decoding an error correcting code based on the D(Zd)
quantum double model is the same as that for two separate

codes, one based on D(Zn) and the other on D(Zm). We
may therefore consider the independent decoding of these two
component codes, rather than decoding the full D(Zd) code.

By definition, the optimal decoding of the component codes
cannot do better than optimal decoding for the full D(Zd)
code. In general it will do worse, because the error model
for the full D(Zd) code will translate to one on the compo-
nent codes with strong correlations between the two. Ignoring
these correlations by decoding the component codes indepen-
dently leads to decreased performance.

For the D(Zd) code there are d− 1 non-trivial errors of the
form (σx)g , corresponding to 0 < g ≤ d − 1. The number
of these that act non-trivially on the Zn code is (n − 1)m:
the number of elements of Zn × Zm that do not correspond
to the identity for Zn. These all occur with equal probability
p/(d − 1). Using p(n) to denote the total probability of error
for the Zn code, it follows

p(n)

(n− 1)m
=

p

d− 1
, ∴ p = p(n)

d− 1

d−m
.

When decoding the component codes independently, error
correction fails when either of the component codes experi-
ence an error rate above their threshold. The error rate p at
which this occurs is then a lower bound for pd, i.e.,

pd ≥ min

(
pn

d− 1

d−m
, pm

d− 1

d− n

)
n<m
≥ pn

d− 1

d− n
.

We can also use this as a self-consistency check for any pro-
posed set of thresholds ppropd , such as those provided by the
hashing bound, Eq. (4). The easiest way to do this is to
use prime n, ensuring that m = n + 1 is co-prime. Self-
consistency then requires

ppropn2+n ≥ p
prop
n

(
1 +

1

n
− 1

n2

)
,

which is indeed satisfied by the hashing bound values.

III. MAPPING AND NUMERICAL SIMULATIONS

We first map the problem of computing the error threshold
to a classical statistical-mechanical model with disorder. The
threshold where errors in the quantum setup cannot be cor-
rected any longer will correspond to the loss of a symmetry
broken phase in the classical model.

A. Mapping

For the mapping we consider a square lattice and an initially
anyon-free state, n� = 0 ∀�. Errors (σx` )

ε` are applied inde-
pendently to each quantum spin, where ε` denotes the type of
error applied to the spin on edge `. We initially perform the
mapping with a general error model where each value occurs
with respective probability pε and the error is non-trivial with
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total probability p =
∑
ε 6=0 pε. The probability for a given

error configuration E = {εl} is then

P (E) =
∏
`

∏
ε

p
δε`,ε
ε =

∏
`

exp[−β
∑
ε

Jεδε`,ε] , (10)

where β, Jε and pε satisfy

pε = e−βJε . (11)

Assuming an initially anyon free state, the set of errors E
yields an anyon configuration with the type of the anyon on
plaquette � given by

nE� = ε�1
+ ε�2

− ε�3
− ε�4

mod d .

Let us now consider another set of errors E′ = {ε′`}. This can
be related to E by a third set C = {κ`} according to

ε′` = ε` + κ` mod d .

Note that if E and E′ lead to the same anyon configuration,
nE� = nE

′

� , then the anyon configuration of C is be trivial.
Explicitly, it satisfies

nC� = (κ�1
+ κ�2

− κ�3
− κ�4

) mod d = 0 ∀� . (12)

This follows from the fact that κ` = ε′` − ε`, and hence nC� =

nE
′

� −nE� = 0 (both evaluated mod d). Combining Eqs. (10)
and (12), we find that the ratio of the probabilities for E′ and
E can be written as

P (E′)

P (E)
=
∏
`

exp[−β
∑
ε

Jε(δε`+κ`,ε − δε`,ε)] ,

where the sum ε` + κ` is again evaluated mod d. This ratio
can be interpreted as a Boltzmann weight for a classical model
with the Hamiltonian

H =
∑
`

∑
ε

Jε(δε`+κ`,ε − δε`,ε) . (13)

We interpret the {κ`} as the state of the system and {ε`} as
representing the details of the (quenched) interactions. Be-
cause the partition function sums only over the former, the
second term in the brackets of Eq. (13) is an overall constant
and hence can be ignored.

To ensure that E and E′ belong to the same error class,
we require that a system state {κ`} satisfies the constraint in
Eq. (12). This is achieved by introducing an auxiliary d-level
classical spin Sv ∈ {0, . . . , d − 1} on each vertex v of the
lattice. The κ` can then be defined by κ` = S`2 − S`1 with
the numbering as indicated in Fig. 1(b). All the Sv around a
plaquette � will then appear exactly twice in nC� (and with
opposite sign), thus leaving the required value of zero in all
cases.

In summary, we can sample from the set of errors E′ with
the same anyon configuration as a set E (i.e., from the er-
ror class of E) by sampling from a classical two-dimensional

statistical-mechanical spin model defined on a square lattice
with N = L × L sites and d-level spins on the vertices. The
classical spin model of interest has the Hamiltonian

H(E) =
∑
`

∑
ε

Jεδε`+S`1−S`2 ,ε , (14)

where the errors of E = {ε`} are generated according to the
error model. The inverse temperature β and the interaction
constants Jε need to be scaled accordingly to satisfy Eq. (11).

For the purpose of our numerical simulations, we consider
the special case where all non-trivial errors have equal proba-
bility: pε = p/(d − 1) ∀ε 6= 0. In this case the simplest way
to satisfy Eq. (11) is to sample at inverse temperature

β = − ln
p/(d− 1)

1− p
. (15)

This is the generalization of the Nishimori condition [26],
which, for the symmetrical case, ensures that the Boltzmann
weight of each state corresponds to the a priori probability of
the quantum error configuration it represents. The spin Hamil-
tonian, up to an irrelevant overall energy shift, then takes the
form

H(E) = −
∑
`

δε`+S`q−S`2 ,0 , (16)

which can be interpreted as a disordered d-states Potts model
(see Fig. 2 for a graphical illustration). In the mapping each
quantum error is translated to a non-trivial interaction constant
ε` and the difference, C, is associated with the surface of a
flipped domain of Potts spins. Therefore, if in our sampling
we find the system in an overall ordered state, there is little
uncertainty in the type of error that occurred. If by contrast the
system is disordered, then the domain walls have percolated
the system and we are unable to correctly identify the class of
the actual error.

B. Numerical details: Algorithm & Observables

Algorithm — To calculate the error threshold (i.e., where
ordering disappears), we numerically investigate Eq. (16) via
large-scale (classical) Monte Carlo simulations using the par-
allel tempering technique [27]. Several replicas of the system
are simulated concurrently for the same disorder realization,
but at different temperatures. In addition to local Metropolis
updates [28], one performs global moves in which the tem-
peratures of two neighboring copies are exchanged. It is im-
portant to select the position of the individual temperatures
carefully such that the acceptance probabilities for the global
moves are large enough [29] and each copy performs a ran-
dom walk in temperature space. This, in turn, allows each
copy to efficiently sample the configuration space, therefore
speeding up the simulation several orders of magnitude.

Observables — Detecting the transition temperature
Tc(p) to an ordered (ferromagnetic) phase for different fixed
amounts of disorder p allows us to pinpoint the phase bound-
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FIG. 2: (Color online) Rendering of the classical three-colored Potts
model found in the mapping of an abelian quantum double model
with qutrits (i.e., qubits with d = 3) on each edge. Quantum errors
give rise to disorder in the interactions between neighboring sites,
indicated in the form of twisted links. An ordered state in this model
(i.e., one predominant color in the system) in spite of these faulty
links indicates resilience of the original setup to quantum errors.

ary in the p –T phase diagram. The error threshold pc is
then given by the intersection of the phase boundary with the
Nishimori line, Eq. (15). To detect ordering, we use the sim-
plex representation where the d states of the Potts spins are
mapped to the corners of a hyper-tetrahedron in (d− 1) space
dimensions. This means they are represented as a (d − 1)-
component unit vector Si taking one of d possible values sat-
isfying the condition Sµ · Sν = 1 − δµ,ν [d/(d − 1)] with
{µ, ν} ∈ {1, 2, . . . , d}. Within this mapping, the magnetic
susceptibility of the disordered Potts model in Eq. (16) can be
computed via

χ(k) =
∑
µ

[〈∣∣∑
i S

µ
i e
ik·Ri

∣∣2〉]
av
, (17)

where the sum is over all Potts spins Si, 〈 · · · 〉 denotes a ther-
mal average and [ · · · ]av is an average over disorder realiza-
tions. The presence of a transition is probed by studying the
two-point finite-size correlation length [30],

ξL =
1

2 sin(kmin/2)

√
χ(0)

χ(kmin)
− 1 , (18)

where kmin = (2π/L, 0) is the smallest nonzero wave vector
for the given lattice. Near the transition, ξL is expected to
scale as

ξL/L ∼ X̃[L1/ν(T − Tc)] , (19)

where X̃ is a dimensionless scaling function. Because the ar-
gument of Eq. (19) becomes zero at the transition temperature
(and hence independent of L), we expect lines of different
system sizes to cross at this point. If however the lines do not
meet, we know that no transition occurs in the studied temper-

TABLE I: Simulation parameters: d is the qudit dimensionality, p
is the qudit error rate, L is the linear system size, Nsa is the number
of disorder samples, teq = 2b is the number of equilibration sweeps
(system size times number of single-spin Monte Carlo updates), Tmin

[Tmax] is the lowest [highest] temperature, and NT the number of
temperatures used.

d p L Nsa b Tmin Tmax NT

3, 4 0.00− 0.13 12, 16 10 000 17 0.60 1.40 24
3, 4 0.00− 0.13 24, 32 5 000 20 0.60 1.40 28
3, 4 0.00− 0.13 48, 64 500 21 0.60 1.40 36
3, 4 0.15− 0.19 12, 16 10 000 19 0.35 1.30 24
3, 4 0.15− 0.19 24, 32 5 000 23 0.35 1.30 42
3, 4 0.15− 0.19 48, 64 500 24 0.35 1.30 64
6, 10 0.00− 0.20 12, 16 10 000 17 0.45 1.40 24
6, 10 0.00− 0.20 24, 32 1 000 21 0.45 1.40 42
6, 10 0.21− 0.26 12, 16 10 000 19 0.25 1.30 32
6, 10 0.21− 0.26 24, 32 1 000 24 0.25 1.30 56

ature range. This approach has been successfully used before
for qubit systems, see for example, Ref. [31].

Finite-size scaling — In practice, there are corrections to
scaling to Eq. (19) and the data for different system sizes do
not cross exactly at one temperature Tc as suggested by the
finite-size scaling form, Eq. (19). That is, the actual cross-
ing T ∗c between a pair of system sizes L1 and L2 shifts with
increasing system size L and tends to a constant for L1 and
L2 → ∞. To estimate the proper thermodynamic value we
study T ∗c (L1, L2) as a function of the average inverse system
size, 2/(L1+L2), and fit a linear function to the data. The in-
tercept with the vertical axis is our estimate for the transition
temperature in the thermodynamic limit. The error bars are
determined via a bootstrap analysis using 500 resamplings.

Thermalization — In all simulations, equilibration is
tested using a logarithmic binning of the data. Once the data
for all observables measured agree within error bars for three
logarithmic bins we deem the Monte Carlo simulation for that
system size to be in thermal equilibrium. The detailed simu-
lation parameters are listed in table I.

IV. RESULTS

In the mapping, the special case of d = 2 corresponds to the
glassy Ising spin systems studied in previous studies [19, 32],
albeit with a temperature that differs by a factor of two. In
Fig. 3, we show the detailed results by Thomas et al. [32]
rescaled appropriately for comparison. Note that this setup is
stable up to close to the hashing bound value of phb ≈ 0.11,
i.e., even if approximately 10.9% of the qubits are faulty, er-
rors can still be corrected.

For qutrits (d = 3) without any disorder, the transition oc-
curs at Tc,d=3 ≈ 1.01(4). As the amount of disorder is grad-
ually increased, the transition temperature Tc(d, p) is lowered
until it meets the Nishimori line. Because finite-size effect are
most pronounced close to the critical error threshold, the error
bars calculated by bootstrapping the finite-size scaling analy-
sis are larger. The largest value for which we find a crossing
in the two-point finite-size correlation function is p = 0.158.
This means that even when 15.8% of the qutrits in a topolog-
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FIG. 3: (Color online) Phase boundaries for different d estimated
from Monte Carlo simulations of the respective disordered Potts
models representing quantum error correction for d-level quantum
systems. The solid lines and shaded areas are guides to the eye. The
error threshold pc(d) corresponds to the point where the correspond-
ing Nishimori lines (dashed) intersects the phase boundaries for dif-
ferent d. This is the maximum disorder rate for which error correc-
tion is feasible. Inset: Comparison of the calculated error thresholds
for different values of d to the upper bound given by the hashing
bound (dotted black line). There is excellent agreement.

ical memory are faulty, error correction is still possible and
the encoded information is retained. Note that the limited
temperature ranges studied here do not allow us to detect a
potential reentrance effect as observed in Ref. [32]. Our con-
servative numerical estimate for the error threshold for qutrits,
pc,d=3 = 0.158(2), agrees within error bars with the theoreti-
cal limit given by the hashing bound, Eq. (4).

For higher dimensional qudits (d = 4, 6 and 10), an analo-
gous analysis indicates that the error threshold for these codes
actually tracks the hashing bound to within the precision our
numerical results. This is shown in the inset of Fig. 3, which
relates the numerical estimates for the error thresholds (data
points) to the respective hashing bound value (line). Note
that the precision is limited by the numerical sampling ef-
fort: The required equilibration time for disordered d-level

Potts systems increases dramatically for larger values of d,
because the configuration space grows exponentially and the
transition temperature is lowered at the same time. How-
ever, we do emphasize that the topological stability of qudit-
based codes increases monotonically with d, i.e., implement-
ing higher-level qudits leads to increasingly stable topologi-
cally protected memory.

V. CONCLUSION

We have demonstrated that error correction in topological
memory built from qudits is closely related to the ferromag-
netic ordering in classical disordered d-state Potts systems.
By numerically estimating the phase boundary for the related
classical statistical-mechanical model, we show that error cor-
rection remains feasible up to the hashing bound (within error
bars) for values of d between 2 and 10. Our results are sum-
marized in Fig. 3, which shows the estimated phase diagram
and Nishimori line for all values of d studied. The inset relates
the numerical estimates for the error thresholds to the hashing
bound, Eq. (4). In particular our results demonstrate that, by
moving from qubit to qutrit building blocks, the resilience of a
topological quantum memory can potentially be increased al-
ready by at least 42%. This is especially encouraging because
currently available technology, e.g., based on flux qubits [9]
already allows for the encoding of d-level quantum bits. In
the particular case of the technology used in the D-Wave Two
quantum annealer, theoretically, qudits with d values up to 5
can be implemented.
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