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Abstract

Background

Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-
cancer activities through blocking the transcription factor STAT3 and by inducing reactive
oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation
induced by collagen, but the underlying mechanism is not known.

Objective

We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcrip-
tional activity of STATS3 to specifically reduce the reactivity of human platelets to collagen.

Results

PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p
expression and thrombus formation on collagen with a maximal inhibition at 100 uM. It
reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2
and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in
platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets;
quenching ROS using excessive reducing agents: 20 yM GSH and 0.5 mM L-Cysteine, did
not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect.

Conclusions

PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We
also provide experimental evidence that PL and collagen induce different oxidants that
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have differential effects on platelets. Studying these differential effects may uncover new
mechanisms of regulating platelet functions by oxidants in redox signals.

Introduction

The long pepper (Piper longum) is a member of the Piper genus known to possess anti-aller-
genic, anti-inflammatory, and liver protecting properties [1;2]. The fruit of P. longum has more
than 600 known active compounds; among them is piperlongumine (PL, 5,6-dihydro-1-
[1-0x0-3-(3,4,5-trimethoxyphenyl]-2(1H) pyridinone). PL, related compounds, and chemically
synthesized analogs are reported to have anti-cancer [2;3], gastric protective [4], anti-microbial
[5;6], adipogeneic [7;8], and anti-atherosclerotic activities [9]. PL executes these diverse activi-
ties, in part, by targeting protein synthesis at the transcriptional and post-transcriptional levels
[3;10-12]. Raj L, et al [11] reported that PL selectively induces the death of cancer or trans-
formed cells, while preserving the viability of normal cells in vitro and in vivo. This targeted
activity relies on PL’s ability to increase intracellular reactive oxygen species (ROS), especially
hydrogen peroxide and nitric oxide [11]. PL does so by binding and down-regulating activities
of the enzymes glutathione S-transferase pi 1 (GSTP1) and carbonyl reductase 1 (CBR1)[11],
resulting in a redox potential that is significantly tilted towards oxidation[3;11].

Paradoxically, PL was also reported to inhibit platelet activation, secretion, and aggregation
induced by collagen, arachidonic acid, thromboxane, and platelet activating factor [13-15].
However, the known mechanisms involved in the inhibition of cancer cells do not support PL’s
actions in platelets. First, blocking gene transcription is unlikely to play a significant role in the
anti-platelet activity of PL because platelets are anucleated cells with a limited capacity for pro-
tein synthesis. Furthermore, the inhibitory effect was detected within minutes after PL treat-
ment, insufficient for significant transcription and/or translation activities to occur. Second,
ROS is known to activate platelets and promote thrombosis [16;17]. Cross-linking GP VI by
collagen stimulates platelets to produce ROS [18]. These conflicting data lead to a critical ques-
tion of whether PL induces these diverse phenotypic changes in platelets and cancer cells by
targeting different molecules or by acting on a single molecule that is active both transcription-
ally and non-transcriptionally. A target of PL specifically for collagen-induced platelet activa-
tion and aggregation that emerged from our recent study is the transcription factor STAT3
[19].

STATS3 is a member of a family of seven closely related proteins and serves as a key signaling
protein in the IL-6-induced acute phase reaction pathway [20]. In nucleated cells, IL-6 binds to
the IL-6Ra-gp130 receptor complex, oligomerizing receptors to activate receptor-associated
tyrosine kinases. These activated kinases phosphorylate tyrosine residues to create a docking
site for STAT3 via its Src-homology 2 (SH2) domain [21], leading to the phosphorylation of
STATS3 at residue Y705 and the formation of a tail-to-tail homo-dimer that accumulates in the
nucleus to regulate the transcription of targeted genes. We have recently uncovered a non-tran-
scriptional role of STAT3 in a cross-talk between inflammatory IL-6-STAT3 and hemostatic/
thrombotic collagen-GP VI signals that renders platelets hyper-reactive in conditions of
inflammation through a trans-signaling mechanism [22].

These published reports have led us to hypothesize that PL regulates a non-transcriptional
activity of STAT3 to reduce platelet reactivity to collagen. Here, we present data from in vitro
experiments on human platelets using PL and synthesized derivatives to support this hypothe-
sis. This study was not designed to study the pharmacokinetics of PL, but to identify PL’s
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molecular target(s) in regulating collagen-induced platelet activity and to explore roles of oxi-
dative stress in platelet reactivity.

Materials and Methods
Reagents

Commercial reagents used in the study included: PL (Cayman Chemical Co., Ann Arbor, MI),
the STAT3 inhibitor STA21 (Sigma Aldrich, St. Louis, MO), the JAK2-inhbitor AG490 (Invi-
voGen, San Diego, CA), the Syk inhibitor SykII (Merck Millipore, Billerica, MA), human
recombinant IL-6 (R & D Systems, Minneapolis, MN), the extracellular domain of human IL-6
receptor-o. (R & D Systems), Actinomycin (Sigma Aldrich), apocynin (Abcam Biochemicals.
Cambridge, MA), free glutathione (GSH, Sigma Aldrich), L-cysteine (Sigma Aldrich), N-ethyl-
maleimide (NEM, Sigma Aldrich); dithiothreitol (DTT, Sigma Aldrich), fibrillary type I colla-
gen (Helena laboratories, Beaumont, TX) and FITC-conjugated annexin V (BD Bioscience,
San Jose, CA). Antibodies used in the study were: a FITC-conjugated monoclonal CD62p (BD
Bioscience), a PE-conjugated monoclonal anti-CD42b (BD Bioscience), and antibodies for
total and phosphorylated JAK2, STAT?3, Syk, and PLCyy2 (all from Cell Signaling Technolo-
gies, Danvers, MA).

Methods

Platelet aggregation. Whole blood was collected (anticoagulant: 3.2% sodium citrate)
from healthy donors under protocol #20121746 approved by the Western Institutional Review
Board for Bloodworks Northwest via written informed consent. Platelet-rich plasma (PRP) was
obtained by centrifugation of whole blood at 120 x g for 20 min at 26°C. Platelet counts in PRP
were normalized to 3.0 x 10° platelets/ul with homologous plasma and treated with PL (12.5-
100 uM), its synthetic analogs or other testing agents for 15 min at 37°C. Platelet aggregation
was induced in an optical aggregometer (Helena Laboratories) by fibrillar type I collagen or a
collagen-related peptide (CRP) [22] and monitored for 5 min at 37°C. Collagen was tested pri-
marily at 5 pg/ml in order to test the inhibitory strength of PL activity, which is recommended
by the manufacturer for clinical tests, but also tested at 2 and 10 pg/ml in a subset of experi-
ments in order to detect the effects of PL on different concentrations of collagen. PL was also
tested for platelet aggregation induced by 5 uM of ADP or 50 pM of thrombin receptor activat-
ing peptide (TRAP). To identify the target of PL, the following reagents were tested either
alone or in combination with PL at doses indicated in the result section: STA21, AG490, SyKII,
Actinomycin-D, Apocynin, GSH and L-Cysteine.

Platelet activation. The effect of PL on collagen-induced platelet activation was measured
by monitoring CD62p expression and calcium influx. CD62 expression was determined
through the binding of a FITC-conjugated monoclonal antibody in PRP that was sequentially
treated with PL and fibrillar type I collagen (0.5-10 pg/ml), each for 15 min at 37°C. For colla-
gen-induced platelet calcium mobilization, 20 ul of PRP was mixed with 180 ul of Tyrode's
buffer (138 mM NaCl, 2.9 mM KCl, 1.4 mM MgCl,, 0.8 mM CaCl,, 12 mM NaHCO3, 5.5 mM
glucose, pH 6.5) containing the Calcium Sensor Dye eFluor 514 (5 pM, final concentration,
ebioscience, Inc., San Diego, CA). The mixture was immediately analyzed by flow cytometry
[23]. Single platelets were gated on forward scatter and analyzed for fluorescence intensity over
60 sec to obtain the basal level. They were then stimulated with collagen, and monitored for
changes in fluorescence intensity for additional 5 min at room temperature.

Hopping Probe Ion Conductance Microscopy imaging. The effects of PL on the mor-
phological changes and microvesiculation of platelets adherent to collagen were monitored
using a modified ICnano Hopping Probe Ion Conductance Microscope (HPICM, Ionscope
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Ltd, UK) as previously described [24]. Briefly, PL-treated PRP was incubated on immobilized
collagen (10 pg/ml, 4°C overnight) for 30 min at 37°C. After washing, adherent platelets were
scanned under an ICnano scan head with a nanopipette (d = 60 nm) connected to an external
Axon MultiClamp 700B amplifier (Molecular Devices, USA). This amplifier monitored the
ion-current flowing into the nanopipette tip and supplied a DC voltage of +200 mV between
the nanopipette electrode and bath electrode. All experiments were carried out at 24-28°C.
Raw topography data were continuously acquired and linearly interpolated into images with
ScanIC Image Viewer software version 1.0 (Ionscope Ltd, UK).

Measurement of platelet microparticles. Platelet microvesiculation induced by collagen
in the presence or absence of PL was detected by flow cytometry [24]. The supernatant from
PRP placed on immobilized collagen (30 min at 37°C) was collected and centrifuged at 16,000x
g to remove intact platelets. It was then incubated with a PE-conjugated CD42b antibody and
FITC-conjugated annexin V for 20 min at room temperature; and fixed in a HEPES buffered
saline containing 2.5 mM of CaCl, and 1% paraformaldehyde. MPs were first identified on par-
ticle size gated on forward scatter with a mixture of 0.5, 1.0 and 1.5 pm polystyrene standard
beads (BD Bioscience) and then detected for CD42b expression and annexin V binding.

PL on thrombus formation. Whole blood samples from healthy subjects were incubated
with testing reagents for 20 min at 37°C. They were then perfused over immobilized collagen
(coating density: 100 pug/ml, 4°C, overnight) at a flow rate that generated a shear stress of 60
dynes/cm? for 4 min at room temperature in an 8 channel microfluidic chamber (Cellix Mirus
Nanopump™, Dublin, Ireland). The chamber was then washed with PBS for additional 4 min.
Images of thrombi formed on the collagen matrix were recorded at 400 x magnification under
an Olympus IX-81 inverted stage microscope.

Immunoblots. Washed platelets in Tyrode’s buffer were treated first with a testing agent
and then with collagen or/and a mixture of recombinant human IL-6 and the extracellular
domain of human IL-6 receptor-o (IL-6-sIL-6ct). They were solubilized with a 10X hypotonic
lysis buffer (120 mM Tris, 36 mM EDTA, and 10% Triton X-100, pH 7.5) in the presence of a
cocktail of protease and phosphatase inhibitors (Sigma Aldrich). Platelet lysates were centri-
fuged at 13,000 x g for 15 min at 4°C to obtain the supernatant, which was separated on 4-12%
gradient SDS polyacrylamide gel electrophoresis (PAGE) and probed for phosphorylated and
total JAK2, STATS3, Syk, and PLCy2 with specific antibodies.

Effect of PL on ROS production. Three techniques were used to detect ROS production
and its impact on PL activity in collagen treated platelets. First, intracellular ROS was measured
by flow cytometry using a cell permeable dye DCFH-DA (Sigma Aldrich), which remains non-
fluorescent until the acetate groups are removed by intracellular esterases upon oxidative stress.
The dye probe primarily detects HO', ONOO-, ROO, and H,0, species. PRP (150 pl) was
diluted in 450 pl of Ca2”-free HEPES buffered Tyrode’s (138 mM NaCl, 5.5 mM glucose, 10
mM HEPES, 12 mM NaHCO3, 2.9 mM KCl, 0.4 mM NaH,PO,, 0.4 mM MgCl,, and 0.1%
BSA, pH 7.2) and incubated with 10 uM of DCFH-DA (final concentration) for 30 min at
37°C. The dye-labeled platelets were analyzed after being treated with 100 uM of PL and/or
10 pg/ml of collagen for 20 min at 37°C. For data validation, the ROS probe CellROX (Life
technologies, Grand Island, NY) that detects a similar set of oxidants as DCFH-DA was also
tested.

Second, to measure free GSH in platelets, platelets in PRP were normalized to 250,000/pl
with platelet-poor plasma and divided into 3 groups, each containing 7.5 x 10’ platelets. PRP in
two groups were treated with either 100 uM of PL or 10 pg/ml of collagen (final concentra-
tions) for 10 min without stirring. PRP in the third group was left untreated to set a baseline.
The treated PRP was incubated with 10 mM of freshly prepared NEM for 60 min at 37°C to
block free GSH on and in platelets. The NEM alkylated platelets were quickly frozen at -80°C,
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thawed on ice and sonicated using a Thermo Fisher Scientific Sonic Dismembrator. The
homogenized samples were mixed with isotopically labeled GSH (Sigma Aldrich) internal stan-
dard. Proteins were precipitated with methanol and the supernatant was dried by Speed-Vac.
Disulfide bonded GSH was reduced by 10mM DTT and newly released free GSH further alkyl-
ated by NEM. Total GSH was analyzed using liquid chromatography-tandem mass spectrome-
try with multiple reaction monitoring (LC-MS/MS-MRM) on an AB Sciex QTrap 6500 mass
spectrometer coupled to a Waters Ultra Performance Liquid Chromatographer with Cortex
C18 column. The percent of free GSH was calculated by dividing free GSH with total GSH.

Third, to examine a role of ROS production in PL-mediated inhibition, platelets were prein-
cubated with either 20 uM of cell non-permeable GSH or 0.5 mM of cell permeable L-Cysteine
for 15 min at 37°C to quench the intracellular and extracellular ROS before being sequentially
treated with PL and collagen. The reduced nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase inhibitor Apocynin was also similarly tested.

PL derivatives. All reactions were carried out under a nitrogen atmosphere in flame-dried
glassware except for the hydrogenation reaction. Dichloromethane was purified by passage
through activated alumina (solvent purification system). 1H and 13C NMR spectrum were
recorded on INOVA-500. 1H NMR chemical shifts are reported as 8 values in ppm relative to
CDCIl3 (7.26 ppm), coupling constants (J) are reported in Hertz (Hz), and multiplicity follows
convention. Unless indicated otherwise, deuterochloroform (CDCI3) served as an internal
standard (77.2 ppm) for all 13C spectra. Flash column chromatography was performed using
60A Silica Gel (230-400 mesh) as a stationary phase using a gradient solvent system. Mass
spectra were obtained at the center for Chemical Characterization and Analysis (Texas A&M
University). Thin layer chromatography (TLC) was performed using silica gel 60 F254 coated
glass-back TLC plates.

To generate compound 1 (C1), a mixture of piperlongumine (30 mg, 0.095 mmol) and 10
mg of Pd/C (10 wt.% Pd/C, 0.0094 mmol, 1% equiv) in 10 mL of EtOAc under H2 was stirred
at 20°C for 2 h, then was filtered through to a short celite pad. The pad was washed with 10 ml
of EtOAc. The solution was concentrated and the crude product was purified by a silica gel
flash chromatography (Hexanes:EtOAc = 1:1) to give the desired product as a colorless oil (29
mg, 95%).

Compound 2 (C2) was prepared as a potential probe compound to aid in the identification
of the biological target of PL and to provide structure-activity relationships (SAR). C2 has an
alkyne group (a latent functional group for further derivatization) that can be used to add addi-
tional groups, such as biotin or a fluorophore) that can be used to identify the mode of action
of PL. Selective cleavage of the methyl ether at the 4-position of the aromatic ring of PL was
achieved using aluminum trichloride in dichloromethane at 0°C to give an intermediate com-
pound in a high yield. Alkylation of the phenol with propargyl bromide produced the alkynyl
derivative C2 in 67% yield. Hydrogenation of PL in ethyl acetate gave derivative compound 1
in 95% yield and provided an additional compound for SAR.

Statistical analyses. Categorical (frequency) variables were expressed as percentages and
continuous variables as mean + SEM. All quantitative data were analyzed by pair comparisons,
one way or repeated measure ANOVA. A p value of less than 0.05 was considered to be statisti-
cally significant.

Results
Effect of PL on collagen-induced platelet activation and aggregation

PL dose-dependently blocked collagen-induced platelet aggregation with a maximal inhibition
achieved at 100 uM (Fig 1A). This inhibitory effect was observed at the subthreshold (2 pg/ml)
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Fig 1. PL inhibited collagen-induced platelet reactivity. (A) Platelets were induced to aggregate by 5 ug/ml of collagen in the presence of increasing
concentrations of PL (a representative of 10 separate experiments). (B) PL blocked platelet aggregation induced by low doses, but not a maximal dose of
collagen (n = 10, paired t test). (C) PL blocked the thrombus formation of platelets on the collagen matrix under flow conditions (panels a-e are representative
images [bar = 100 ym] and panel f is a summary of 6 separate experiments, repeated measures ANOVA, * p < 0.01 compared untreated platelets). PL
blocked collagen-induced CD62p expression (D), PAC-1 binding (E), and calcium influx (F). Data presented in panels D-F were obtained from 6—8 donors
and analyzed by ANOVA (panels D-E) and t test (panel F).

doi:10.1371/journal.pone.0143964.9001

and high (5 pg/ml) concentration of collagen, but not at a maximal concentration of 10 pg/ml
(Fig 1B). PL was equally effective in blocking platelet thrombus formation on immobilized col-
lagen under an arterial shear stress of 60 dynes/cm? (Fig 1C). Consistent with its effect on
platelet aggregation and thrombus formation, PL partially blocked the collagen-induced
expression of CD62p (Fig 1D), binding of PAC-1, an antibody that specifically recognizes the
activated form of the integrin oIIbp3 (Fig 1E) and calcium influx (Fig 1F). These inhibitory
activities of PL were not mediated by inducing receptor shedding because surface densities of
GP VI (Fig 2A), which were reduced by collagen stimulation, and the integrin oIIbf3; (Fig 2B)
were not reduced by the PL treatment. As control, collagen induced a significant increase in
the expression of integrin olIbf3;. PL also inhibited platelet aggregation induced by CRP (Fig
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Fig 2. Effects of PL on collagen-induced platelet activation, morphological transition, and microvesiculation. PRP was stimulated with 5 pg/ml of
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bar =10 um). A ratio of HDBS to LDSS platelets was calculated (F, n = 6, paired t test) and CD42b* and annexin V* platelet microparticles were quantified (G,

n =6, paired t test).
doi:10.1371/journal.pone.0143964.g002

2C), which specifically targets GP VI, one of two collagen receptors on platelets. In contrast, PL
had no effect on collagen-induced aggregation of platelets from mice deficient in platelet
STATS3 (S1 Fig). Aggregation of human platelets by ADP (5 uM) and TRAP (50 uM), pre-
treated with PL also induced aggregation at a level comparable to 5 pg/ml of collagen (S2 Fig).

Effect of PL on collagen-induced microparticle production. We previously used a novel
HPICM technology to monitor ADP-induced morphological changes and microvesiculation of
adherent platelets on immobilized fibrinogen [24]. This technology was modified to monitor
real time morphological transformations and microparticle production of platelets on immobi-
lized collagen. As shown in Fig 2D, platelets adherent to collagen presented as predominantly
high density bubble shapes (HDBS), which we previously found to be sensitive to agonist-
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induced microvesiculation [24]. In contrast, many of the PL-treated platelets underwent a
reverse transformation from a high-density bubble shape to a low-density spread shape (LDSS,
Fig 2E), resulting in a significantly reduced ratio of HDBS to LDSS platelets (Fig 2F) and a
reduced production of platelet microparticles (Fig 2G). Together, data presented in Figs 1 and
2 demonstrated an inhibitory activity of PL towards collagen-induced platelet activation and
aggregation.

Effect of PL on collagen-induced STAT3 activation. We have recently shown that PL
potently inhibits STAT3 activation in cancer cells [19] and that STAT3 non-transcriptionally
regulates collagen-induced platelet activation/aggregation by facilitating an interaction
between the kinase Syk and the substrate PLCy2 [22]. These results led us to hypothesize that
PL targets STAT3 to block collagen-induced platelet reactivity. Here, we provide several lines
of experimental evidence to support the hypothesis. First, PL blocked the tyrosine phosphory-
lation of JAK2 (Fig 3A) and STAT3 (Fig 3B) in platelets stimulated with collagen. As a control,
STAT3 phosphorylation induced by a complex of IL-6-sIL-6Ra, which signals through the
JAK2-STAT3 pathway in eliciting an acute phase reaction, was also blocked by PL (Fig 3B).
Second, PL was significantly less effective in platelets pretreated with the STAT3 inhibitor
STA21 (Fig 3C), whereas its effect was additive to that of the transcription inhibitor Actinomy-
cin D (Fig 3D). The latter result suggests that PL acted independent of (mitochondrial) tran-
scription in platelets. Third, the JAK2 inhibitor AG490 dose-dependently blocked collagen-
induced platelet aggregation (Fig 3E) and thrombus formation on a collagen matrix under an
arterial fluid shear stress of 60 dynes/cm? (Fig 3F).

While PL did not inhibit the tyrosine phosphorylation of Syk (Fig 4A), it was effective in
blocking PLCy2 phosphorylation (Fig 4B) in collagen-stimulated platelets. This regulatory pro-
file of PL is identical to that of STAT3 inhibitors on platelets [22], suggesting that PL does not
directly inhibit GP VI-mediated signaling, but disrupts the phosphorylation and subsequent
dimerization of STAT3, which are necessary to accelerate or enhance the activity of Syk kinase
towards the substrate PLCy2. Consistent with this notion, the Syk inhibitor SykII inhibited col-
lagen-induced platelet aggregation in synergy with the inhibitory activity of PL (Fig 4C).

Differential ROS production in platelets treated with PL or collagen. Collagen has been
reported to induce ROS release from platelets [18] and several varieties of ROS are known to
activate platelets [25], suggesting that ROS is stimulatory to platelets. However, PL has been
shown to induce ROS production in cancerous, but not normal cells by binding and down-reg-
ulating the activities of GSTP1 and carbonyl reductase 1 CBRI [11]. These contradictory obser-
vations prompted us to examine whether PL induces ROS in platelets. PL at 100 uM that
maximally blocked collagen-induced platelet activation and aggregation (Fig 1) induced the
release of ROS in platelets as detected by flow cytometry using DCFH-DA and CellRox Red
probes (Fig 5A). GSTP1 and CBR1 were also detected in platelets at levels that were not altered
by collagen-or/and IL-6-sIL-60. stimulations (S3 Fig). Consistent with previous reports [18],
collagen induced platelet production of ROS in a dose dependent manner and its effect was
additive to that of PL (Fig 5B). This potent effect of PL on ROS production was further vali-
dated by a significant reduction of free GSH in platelets treated with PL, but not with collagen
(Fig 5C). However, quenching ROS with 20 uM of cell non-permeable GSH (Fig 5D) or 0.5
mM of cell permeable L-Cysteine (Fig 5E) did not reverse the inhibitory effects of PL on colla-
gen-induced platelet aggregation, even though both anti-oxidants were used at concentrations
significantly higher than their baseline plasma levels [26;27]. GSH also failed to reverse PL-
induced reduction of PAC-1 binding to collagen-stimulated platelets (Fig 5G). Apocynin,
which is an inhibitor of the reduced nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase and reported to block collagen-induced ROS production in platelets [18] did not alter
the effect of PL on collagen-induced platelet aggregation (Fig 5H).
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Fig 3. PL blocked JAK2-STATS3 activation. Lysates of platelets stimulated with collagen in the presence of PL were probed for total and phospho-JAK2 (A)
and STAT3 (B). STAT3 phosphorylation was also probed in platelets treated with a complex of IL-6-sIL-6a either alone or combined with collagen as control
(B). Platelet aggregation was also induced by collagen in the presence of a submaximal 50 pM of PL with and without a maximal inhibitory 50 uM of STA21
(C, a representative of 6 experiments) or actinomycin D (D, a representative of 6 experiments). Platelets treated with an increasing concentration of the JAK2
inhibitor AG490 were induced to aggregate (E) and to form thrombi on immobilized collagen under flow condition (F, bar = 100 ym, the panel e summaries
results from 3 experiments, repeated measure ANOVA, *p <0.01).

doi:10.1371/journal.pone.0143964.9003

Generation and testing of synthetic analogs. The diverse effects of PL on cancer cells and
platelets may result from different structures and chemical moieties. To examine the role of
specific chemical moieties in blocking platelet reactivity to collagen, we synthesized two PL
analogs (Fig 6A) through hydrogeneration [3] and by introducing a terminal alkyne [11] at a
site away from the possible “bioactivity bearing” functional groups (compound 1 & 2). The two
derivatives were found to be active in blocking platelet aggregation induced by 2 pg/ml (Fig 6B
and 6D), but not at 5 pg/ml of collagen (data not shown).

Discussion

PL has been reported to be inhibitory to several major platelet agonists. Here, we have specifi-
cally characterized inhibitory effects of PL on collagen-induced platelet reactivity (Figs 1 and 2)
to explore the influence of PL on the platelet JAK2- STAT3 pathway. Our findings are consis-
tent with previous reports [13;14]. We have also made several new observations that define the
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Fig 4. PL effect on collagen-GP VI signaling. Lysates of platelets treated with collagen in the presence of PL were probed for total and phosphorylated Syk

(A) and PLCy2 (B). (C) Platelets were first incubated with Sykll for 10 min followed by additional 10 min incubation with PL before being stimulated with
collagen (n = 3, repeated measures ANOVA, *p <0.01).

doi:10.1371/journal.pone.0143964.g004

mechanism by which PL inhibits collagen-induced platelet activation and provide new infor-
mation regarding the differential effects of ROS on platelet reactivity to collagen.

First, PL inhibited collagen-induced platelet reactivity primarily by blocking the activation
of JAK2 and STATS3. This conclusion is supported by several lines of experimental evidence
presented in Figs 3 & 4. In nucleated cells, tyrosine phosphorylated STAT3 dimerizes to be
more efficiently translocated into the nucleus to regulate the transcription of multiple genes
associated with the acute phase reaction [28-31]. We have recently shown that a STAT3 dimer
enhances collagen-induced signaling in platelets by serving as a protein scaffold for Syk and
PLCy2 [22] and PL prevents this critical dimerization by preventing JAK2-mediated STAT2
activation [19]. Furthermore, PL did not directly inhibit collagen-induced Syk phosphoryla-
tion, but did block the activation of its substrate PLCy2. This regulatory profile is consistent
with the notion that a phosphorylated STAT3 dimer serving as a protein scaffold linking the
kinase Syk to the substrate PLCy2 in the GP IV signal pathway. Furthermore, the JAK2 inhibi-
tor AG-490 (Tyrphostin B42), which has no effect on the kinases Lyn, Syk and Src involved in
GP VI signaling, also blocked collagen-induced platelet aggregation and thrombus formation
under flow conditions (Fig 3E and 3F). Together, these data suggest that PL directly prevents
STATS3 dimerization and indirectly by blocking JAK2 activation.

Second, both PL and collagen induced ROS production in platelets (Fig 5A-5C), but PL’s
inhibitory activity on collagen-induced platelet activation was not affected by the ROS (Fig
5D-5@G). The results raise two interesting questions. The first regards the previous reports that
PL induces ROS production by inhibiting GSTP1 activity specifically in cancerous, but not nor-
mal cells, leading to ROS-mediated apoptosis [3;11]. Platelets treated with PL did not undergo
apoptosis as they remained aggregatable in response to high doses of collagen (Fig 1B), ADP
(S1 Fig) and TRAP (S1 Fig). They also had a reduced rate of microvesiculation (Fig 2E-2H).
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Fig 5. PL-induced ROS production and activity. Platelets in PRP were labeled with either CelROX Red or DCFH-DA for 30 min at 37°C and treated with
either100 pM of PL or vehicle control (BL) for additional 10 min. ROS production was measured in platelets by flow cytometry (A, n = 10, paired t test). ROS
production was also measured in platelets stimulated with various doses of collagen in the presence and absence of PL (B, n = 6, paired t test). Free GSH
was measured by mass spectrometry in resting platelets and those treated with either PL or collagen for 10 min at 37°C (C, n = 3, one way ANOVA).
Collagen-induced aggregation was recorded in platelets preincubated with either GSH (D) or L-cysteine before treatment with 100 uM PL (E). Platelets
treated with GSH or L-cysteine without PL were tested as controls (panel F summaries data from 3 experiments). Platelets were treated with collagen, PL,
and PL plus GSH for 10 min at 37°C. PAC-1 binding was then detected by flow cytometry (G, a representative of 3 experiments). PRP was incubated with
Apocynin for 10 min at 37°C followed by additional 10 min of incubation with 100 uM of PL. Collagen-induced platelet aggregation was then recorded (H, a
representative of 3 experiments).

doi:10.1371/journal.pone.0143964.9005

The second question regards the impact of ROS on platelet reactivity. The inhibitory effects of
PL on collagen-induced platelet reactivity was not affected by cell permeable and non-perme-
able reducing agents that quench extracellular and intracellular oxidants; and by a NADPH
oxidase inhibitor (Fig 5D-5G), which blocked collagen-and thrombin-induced ROS produc-
tion in platelets [17;18]. The finding strongly suggests that PL and collagen induce the release
of different oxidants that have differential effects on platelets. For example, PL induces cancer
cells to produce nitric oxide [11], which is a well-known platelet inhibitor [32]. Our finding
also differs from the reported effect of the GSH precursor N-acetyl-L-cysteine on eliminating
PL’s effect on cancer cells [11], implying that PL acts differently in cancer cells and in platelets.
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Fig 6. Effects of PL analogs on collagen-induced platelet aggregation. (A) PL and structural derivatives compound 1 (C1) and compound 2 (C2). (B)
PRP was incubated with PL, C1 or C2 for 15 min at 37°C and then induced to aggregate by 2 ug/ml of collagen (a representative of 10 experiments). (C & D)
C1 and C2 were also tested at different doses for their impact on collagen-induced platelet aggregation.

doi:10.1371/journal.pone.0143964.g006

Studying these differential effects on drug-induced oxidative stress may uncover new mecha-
nisms of regulating platelet functions by selective oxidants.

Third, we made and tested two PL analogs with specific structure modifications. These ana-
logs are designed to help differentiate the contributions of specific structures on inhibitory
activity of PL in collagen-induced platelet reactivity. The double bonds C3-C4 and C7-C8 in
PL were reduced in compound 1 to make the analog less reactive. It has also been shown that
the electrophilicity of the C2-C3 olefin is critical for the apoptotic effects of PL on cancer cells,
whereas analogs lacking a reactive C7-C8 olefin induce intracellular ROS, but markedly
reduced cell death [3]. In contrast, compound 2 was designed as a potential probe to identify
biological targets of PL and to provide structure-activity relationships. However, both deriva-
tives are equally active in blocking platelet reactivity to the low dose of collagen (Fig 6).

PLOS ONE | DOI:10.1371/journal.pone.0143964 December 8, 2015 12/15



@’PLOS ‘ ONE

Piperlongumine Inhibits STAT3 and Platelet Reactivity

In summary, we have shown that PL inhibits collagen-induced platelet activation, aggrega-
tion, and thrombus formation by primarily blocking JAK2-STAT3 phosphorylation, reducing
the ability of STAT3 to serve as a protein scaffold for linking Syk to PLCy2. We further show
that, while PL induces ROS in platelets, its inhibitory activity towards collagen-induced platelet
activation was not affected by ROS, suggesting that ROS have differential effects on platelet
reactivity.

Supporting Information

S1 Fig. Citrated PRP from STAT3" and littermate control mice were preincubated with
either PL and the vehicle DMSO for 10 min at 37°C and then stimulated with 0.75 pg/ml of
fibrillary type I collagen. Platelet aggregation was monitored for 10 min at 37°C. We have pre-
viously shown that, at this dose of collagen, the collagen-induced aggregation of platelet from
STAT3" was significantly reduced as compared to control platelets (22). Here, we further
show that PL was not active in blocking collagen-induced aggregation of platelets from the
STAT3”" mice (n = 8 mice/group, paired t test).

(JPG)

S2 Fig. Platelet aggregation induced by 5 uM of ADP (A) or 50 uM of TRAP (B) was not
blocked by PL.
(JPG)

S3 Fig. Expression of GSTP-1 and CBR-1 in platelets detected by immunoblots.
(JPG)
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