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ABSTRACT 9 

Adaptation to stress by eukaryotic pathogens is often accompanied by transition in cellular 10 

morphology. The human fungal pathogen Cryptococcus neoformans is known to switch between 11 

the yeast and the filamentous form in response to amoebic predation or during mating. Like the 12 

classic dimorphic fungal pathogens, morphotype is associated with cryptococcal ability to infect 13 

various hosts. Many cryptococcal factors and environmental stimuli are known to induce the 14 

yeast-to-hypha transition, including pheromones (small peptides) and nutrient limitation. We 15 

recently discovered that secreted matricellular proteins could also act as intercellular signals to 16 

promote the yeast-to-hypha transition. Here we showed that the secreted acyl-CoA binding 17 

protein, Acb1, plays an important role in enhancing this morphotype transition. Acb1 does not 18 

possess a signal peptide. Its extracellular secretion and consequently its function in filamentation 19 

are dependent on the GRASP unconventional secretion pathway. Surprisingly, the recruitment of 20 

Acb1 to the secretory vesicles intracellularly is independent of Grasp. In addition to Acb1, Grasp 21 

possibly controls the secretion of other cargos, because the graspΔ mutant, but not the acb1Δ 22 

mutant, is defective in capsule production and macrophage phagocytosis. Nonetheless, Acb1 is 23 

likely the major or the sole effector of Grasp in terms of filamentation. Furthermore, we found 24 

that Acb1’s key Y80 residue for acyl-binding is critical for its proper subcellular localization, 25 

secretion, and cryptococcal morphogenesis.   26 
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INTRODUCTION  27 

Adaptation to changing environment by eukaryotic microbes is often accompanied by transition 28 

in cellular morphology. The human fungal pathogen, Cryptococcus neoformans, causes 29 

devastating cryptococcal meningitis that claims the lives of hundreds of thousands of people 30 

each year (1). Late diagnosis, limited options of antifungals, and the lack of vaccines to prevent 31 

cryptococcosis all contribute to the high mortality rate of this disease (2). Cryptococcus typically 32 

grows as yeasts, but it can switch from yeasts to filaments (hyphae or pseudohyphae) in response 33 

to predation (e.g. amoeba) or during sexual reproduction (3-7). Like many other fungal 34 

pathogens, cryptococcal morphotype shapes its interaction with various hosts (8). As we 35 

demonstrated recently, the hyphal form is associated with virulence attenuation in mouse models 36 

of cryptococcosis because hyphal morphotype elicits strong and protective host immune-37 

responses (9, 10).  On the other hand, the hyphal morphotype assists the fungus to resist 38 

predation from soil amoeba (8), increases its ability to explore the environment (11), and is 39 

linked to its unisexual and bisexual reproduction (3, 12-14). Thus it is important to understand 40 

the factors that promote cryptococcal hyphal growth. 41 

Many environmental stimuli and few cryptococcal factors have been identified to 42 

promote hyphal growth in Cryptococcus (12, 15-18). Pheromone is the most prominent 43 

cryptococcal molecule that stimulates mating and filamentation. We recently discovered that the 44 

matricellular and hypha-specific protein Cfl1, when released from the cell wall, can also act as 45 

an intercellular communication signal to stimulate yeast-to-hypha transition (19, 20). Here, we 46 

decided to investigate the potential role of the secreted protein Acb1 in filamentation and sexual 47 

reproduction in Cryptococcus.   48 
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The acyl-CoA binding protein, Acbp, was first identified in mammals because its 49 

processed peptide inhibited diazepam binding to the GABA receptor, which gave rise to its name 50 

diazepam binding inhibitor (DBI) (21). DBI’s homolog in Dictyostelium discoideum, called the 51 

peptide signal spore differentiation factor 2 (SDF2), activates sporulation within the fruiting 52 

body (22). Similarly, SDF2 is processed from Dictyostelium AcbA (23, 24). In the absence of 53 

AcbA, D. discoideum fruiting bodies generate about 10% as many viable spores as the wild type. 54 

Interestingly, co-incubation of the acbA∆ mutant with the wild-type cells restored the level of 55 

sporulation to that of the wild type (23). It was proposed that secreted AcbA from wild type was 56 

sufficient to complement the sporulation defect of the acbA∆ mutant in Dictyostelium.  57 

Acbps are later found to be widely distributed in the eukaryotic domain and they play 58 

important roles in a wide range of biological processes (25-27). In higher eukaryotes, there are 59 

multiple copies of Acbp-encoding genes in one genome and these proteins vary in size and in 60 

their subcellular localization (28-34). Nonetheless, all Acbps are conserved in the acyl-CoA-61 

binding domain (34). Not surprisingly, Acb1 in Saccharomyces cerevisiae helps transport newly 62 

synthesized acyl-CoA esters from the fatty acid synthase to acyl-CoA consuming processes (35). 63 

Acb1 plays an important role in fatty acid elongation, membrane assembly, and protein 64 

trafficking in S. cerevisiae (36, 37). 65 

Despite the predicted cytosolic-localization of AcbA due to its absence of a classical 66 

secretion signal or any transmembrane domain (38), AcbA was found to be in puncta or vesicles 67 

in the cortical region in D. discoideum (39). The vast majority of AcbA proteins are intracellular, 68 

with less than 5% being secreted extracellularly (39). However, extracellular secretion and post-69 

secretion processing are critical for its signaling function in Dictyostelium in promoting spore 70 
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generation (23, 39). The extracellular secretion of AcbA requires an unconventional pathway that 71 

is dependent on Golgi-Associated Protein Grasp in D. discoideum (38).  72 

In the present study, we set out to investigate the role of secreted Acb1 in yeast-to-hypha 73 

transition and sporulation in C. neoformans. We found that Acb1 contributes to cryptococcal 74 

yeast-to-hypha transition. Interestingly, the secretion of Acb1 is dependent on its acyl-CoA 75 

binding ability and the Grasp protein in Cryptococcus. Accordingly, the mutation of Acb1’s 76 

acyl-CoA binding domain or the deletion of the GRASP gene impairs cryptococcal hyphal 77 

growth.    78 

 79 

MATERIALS AND METHODS 80 

Media, strains, and in vitro phenotypic assay. The YPD medium (2% Bacto peptone, 1% yeast 81 

extract, and 2% glucose) was used for routine culture. For phenotypic assays, the YNB medium 82 

(6.7 grams/liter of yeast nitrogen base w/o amino acids and ammonium) without glucose was 83 

used as the base medium to test the utilization of a specific nutrient source supplemented to the 84 

final concentration of 2% as indicated in the texts and figures. For the phenotypic assays, wild-85 

type and mutant cells were suspended at the same cell density. Cell suspensions with serial 86 

dilutions were spotted onto the relevant medium and incubated for two to three days before 87 

photographs were taken. For the filamentation assay, we used V8 juice agar (50 ml V8 juice, 0.5 88 

g KH2PO4, in 1 liter, pH 5 or 7 adjusted with KOH), YNB, or YPD medium. V8 juice medium is 89 

a commonly used mating medium in laboratory research (40).YNB is a minimal medium and 90 

YPD is a nutrient-rich medium.  All mutant strains were generated in the reference strain XL280 91 
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(serotype D) and H99 (serotype A) backgrounds. Both XL280 and H99 have publically available 92 

genomes and congenic pairs (41, 42). Strains used in this study are listed in Table S1. 93 

For bisexual mating, parental strains (α and a) with equal number of cells were co-94 

cultured together on the YNB, the V8 juice, or the YPD medium in the dark at 22oC. Mating was 95 

examined microscopically for the formation of mating hyphae and spores. For unisexual mating 96 

(self-filamentation without a partner of an opposite mating type), individual isolates at the same 97 

cell density were dropped onto the YNB or the V8 juice medium alone. Self-filamentation and 98 

sporulation were examined microscopically as described previously (14). XL280 is a hyper-99 

filamentous strain and it filaments robustly on V8 media, which renders the reduction in 100 

filamentation of the acb1Δ mutant less obvious. Reduction in filamentation of the acb1Δ mutant 101 

is much more pronounced on the less optimal YNB media. In comparison, H99 strains filament 102 

poorly during bisexual mating on all these media and the reduction in filamentation of the acb1Δ 103 

mutant is evident irrespective of the medium used.   104 

Confrontation assay. The confrontation assay was used to test whether secreted products 105 

from the wild type could restore the defect in bisexual mating of the acb1Δ mutant. The 106 

procedure was performed as we described previously (19). Briefly, the co-cultured α and a cells 107 

at 1:1 ratio of either the wild type or the mutant strains were spotted onto the relevant medium 108 

(YNB medium or YPD medium) as donor strains. After the donor strains were incubated for 3 109 

days, the recipient α-a co-cultures (wild-type or mutant strains) were spotted onto the medium in 110 

a close proximity to the donor cells (distance <5 mm). After additional 48 hours of incubation, 111 

the colony morphology and the formation of hyphae in the recipients were photographed.  112 

Gene deletion and complement. The knockout and the complementation constructs 113 

were generated as previously described (14, 43). To disrupt the ACB1 or the GRASP gene, we 114 
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amplified the 1 kb 5’ and 3’ flanking sequences of the coding region using the genomic DNA 115 

isolated from the strain XL280α or H99α as template and the NEO or NAT dominant drug 116 

marker amplified from the plasmid pAI1 or pJAF1 respectively. The knockout constructs with 5’ 117 

and 3’ flanking sequences bordering the selective marker gene were generated by overlap PCR 118 

as we described previously (43). The knockout constructs were introduced into strains XL280α, 119 

XL280a, H99α, and KN99a by biolistic transformation as described previously (44). The 120 

resulting transformants were screened for gene replacement via homologous recombination 121 

events by PCR. The genetic linkage between the phenotype and the gene deletion was confirmed 122 

by analyzing the segregation pattern of the meiotic progeny generated from a bisexual cross 123 

between the mutant and a wild-type mating partner (43). For complementation, the wild-type 124 

genes with 1-1.5 kb upstream of their ORF were amplified by PCR, digested with proper 125 

restrictive digestion enzymes, and introduced into the pXL1-mCherry plasmid (9). The resulting 126 

plasmid, pXL1-ACB1-mCherry, was confirmed by enzyme digestion and gel electrophoresis. 127 

The plasmids were then linearized and transformed into the relevant Cryptococcus strains 128 

through biolistic transformation or electroporation as we described previously (43). Primers and 129 

plasmids used for this study are listed in Table S2. 130 

Target site-directed mutagenesis. To mutate the acyl-CoA binding site, the key residue 131 

Y80 of Acb1 was mutated to A (Y80A) using the site directed mutagenesis kit (Quickchange II, 132 

Aglilent Technologies) according to the manufacturer’s instructions. The fragment with the 133 

mutated allele of ACB1 and the 1 kb sequences upstream of the ACB1 ORF was ligated into the 134 

plasmid PXL1-mCherry (9). The resulting plasmid PXL1-Acb1(Y80A)-mCherry was linearized 135 

and transformed into XL280 or H99 as described earlier.  136 
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Microscopic examination. To examine the sub-cellular localization of Acb1::mCherry 137 

or Acb1(Y80A)::mCherry, the relevant strains were cultured on the YPD or the YNB agar 138 

medium at 30oC for 24 hrs. Images were acquired and processed with a Zeiss M2 imaging 139 

system with the AxioCam MRm camera and the software Zen 11 (Carl Zeiss Microscopy). 140 

RNA extraction and qPCR. RNA extraction and qPCR were performed as described 141 

previously (9). Briefly, strains with opposite mating types were co-cultured on the YNB agar 142 

medium for the indicated durations. Cells were harvested, washed with cold water, immediately 143 

frozen in liquid nitrogen, and then lyophilized. Cells were broken into fine powder with glass 144 

beads and total RNA was extracted with the PureLink® RNA Mini Kit (life technology) 145 

according to the manufacture’s instruction. First strand cDNA was synthesized with Superscript 146 

III cDNA synthesis kit (Invitrogen) according to the manufacture’s instruction. The house-147 

keeping gene TEF1 was used as the endogenous control. The relative transcript levels were 148 

determined using the comparative ∆∆Ct method as described previously (9). Three biological 149 

replicates were performed for each sample and their values were used to calculate the mean 150 

value and standard error. 151 

Protein extraction and Western blot. Strains carrying the Acb1-mCherry or the 152 

Acb1(Y80A)-mCherry in the wild-type or the graspΔ mutant background were cultured in YNB 153 

liquid medium with proteinase inhibitors PMSF and TACK (Roche Inc.) for 48 hours. The 154 

culture supernatant was separated from the cell pellet by centrifugation. The supernatant was 155 

concentrated with Amicon Ultra-15 Centrifugal Filter (EMD Millipore) and denatured with the 156 

SDS-containing loading buffer before electrophoresis in a SDS-gel. The cell pellet was washed 157 

twice with cold PBS and then lyophilized. The dried cells were disrupted by cell disruptor (Next 158 

Advance) with glass beads. The total proteins were extracted with the lysis buffer (in mM: 25 159 
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Hepes, pH 7.5, 300 NaCl, 2 EDTA; plus proteinase inhibitor cocktail) and then denatured with 160 

the SDS-containing loading buffer before electrophoresis in a SDS-gel. The Western blotting 161 

process was executed as previously described (19, 45). Briefly, the samples were separated on 162 

SDS/12% PAGE gel and transferred to a PVDF membrane (Millipore) for 1 h at 30 V in TE70 163 

ECL semi-dry transfer unit (GE Healthcare). The blots were incubated with the anti-mCherry 164 

primary antibody (1/2,000 dilution), washed, and then incubated with a rabbit anti-mouse 165 

secondary antibody (1/10,000 dilution) (Clonetech Inc). Signal detection was performed using 166 

the ECL system according to the instruction provided by the manufacture (Pierce). 167 

Phagocytosis assay. Phagocytosis assay was performed as we previously described (8). 168 

Briefly, macrophage cell line J774A.1 (ATCC® TIB-67TM) was cultured in Dulbecco’s Modified 169 

Eagle’s Medium (DMEM, catalog no. 30-2002) with 10% Fetal bovine serum (FBS). Three 170 

hundred microliters of culture with 2.5 x 105 freshly grown J774A.1 cells were seeded into each 171 

well of the 24 well microtiter plate. The macrophage cells were cultured at 37ºC with 5% CO2 172 

overnight and then replaced with fresh medium. Cryptococcus cells were inoculated to each well 173 

to achieve MOI =3. After 30s of rock mixing, the co-cultures were incubated at 37ºC with 5% 174 

CO2 for an additional three hours. The co-cultures were then washed three times with warm 175 

phosphate buffered saline (PBS; 500 μL/well) to remove medium and non-adherent cells. Then 176 

the PBS+0.1% Tween-20 was added to the culture and incubated for 10 min at 37oC to lyse 177 

macrophage cells. The supernatant was then harvested, serially diluted, and spread onto YNB 178 

agar plates. The cryptococcal colony forming units (CFUs) were counted after 2 days of 179 

incubation at 30oC. 180 

 181 

RESULTS 182 
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The deletion of the ACB1 gene reduced hyphal growth. ACB1 is one of the abundantly 183 

expressed genes based on our RNA-seq data (46). As secreted and processed Acb1 is involved in 184 

sexual reproduction as a signal molecule in other species (23, 39), we decided to test whether 185 

Acb1 is also important for Cryptococcus sexual reproduction. We first examined the transcript 186 

level of ACB1 during bisexual mating. We found that the expression of ACB1 was modestly 187 

increased during mating (Fig. 1C), suggesting a possible role of Acb1 in this biological process.   188 

To examine the role of Acb1 in sexual reproduction and hypha formation in 189 

Cryptococcus, the ACB1 gene (CNM01420) was deleted in the hyper-filamentous serotype D 190 

strain XL280α and its congenic strain XL280a (3, 47). No ACB1 transcript could be detected in 191 

the acb1∆ mutants (Fig. 1C), as expected.  Under mating-inducing condition on V8 juice agar 192 

media, the a-α mating pair of the acb1∆ mutant showed dramatically reduced filamentation 193 

relative to the wild type, as reflected in the less white and fluffy mutant colony (Fig. 1A). 194 

Introduction of a wild-type allele of ACB1 ectopically into the acb1∆ mutant restored the defect 195 

(Fig. 1A), supporting the role of Acb1 in filamentation.  Under mating-suppressing condition on 196 

YPD agar medium, the colony derived from the wild-type a-α mating pair was wrinkled with 197 

some degree of filamentation at the colony edge (Fig. S1A). By contrast, the colony derived from 198 

the acb1∆ a-α mating pair was smooth and almost barren at the edge (Fig. S1A). During the 199 

unisexual mating with only α cells, the wild-type XL280α cultured on the YNB medium 200 

produced a wrinkled colony with hyphae at the colony edge (Fig. S1B). The acb1∆ mutant 201 

generated a smooth colony with very few hyphae at the colony edge (Fig. S1B). Introduction of 202 

the wild-type ACB1 gene ectopically into the acb1∆ mutant restored self-filamentation to the 203 

wild-type level. These observations indicate that Acb1 also enhances hyphal growth during self-204 

filamentation.  205 
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To test whether the role of Acb1 in filamentation is conserved in other Cryptococcus sub-206 

species, we deleted the ACB1 gene (CNAG_06140) in the serotype A reference strain H99α and 207 

the mating type a strain KN99a. Similarly, the acb1∆ a-α mating pair in H99 background also 208 

showed drastic reduction in filamentation when cultured on V8 juice agar medium, and robust 209 

filamentation could be restored by the introduction of a wild-type copy of ACB1 (Fig. 1B). 210 

Taken together, the results indicate that Acb1 has a conserved role in enhancing filamentation 211 

during bisexual mating in Cryptococcus. Because sporulation is proceeded by yeast-to-hypha 212 

transition in Cryptococcus (48), and Acb1 in Dictyostelium is known to trigger sporulation 213 

within fruiting bodies (23), we decided to test if Acb1 is required for sporulation in Cryptococcus. 214 

We examined the spore production by the a-α bisexual mating on V8 juice medium of the wild-215 

type XL280 and the corresponding acb1∆ mutants. Although filamentation was reduced in the 216 

acb1∆ mutants, both mating pairs produced 4 chains of basidiospores (Fig. 2A-B) and we did not 217 

observe any apparent defect or drastic reduction in spore production. 218 

The deletion of ACB1 reduced the transcript level of the pheromone gene MFα and 219 

the hypha-specific gene CFL1. Cryptococcus undergoes yeast-to-hypha transition during both 220 

unisexual and bisexual mating. The pheromone signaling pathway initiates the process under 221 

mating-inducing conditions (14) and the activation of the filamentation pathway eventually leads 222 

to hyphal growth (9, 14). To understand how the loss of ACB1 affects filamentation, we decided 223 

to measure the impact of the ACB1 deletion on the transcript level of MFα, CFL1, and PUM1 224 

during bisexual mating. The pheromone MFα is the initial signaling factor initiating mating (49). 225 

The secreted protein Cfl1 is a specific marker for filamentation (19). Pum1 is a genetic linker 226 

between filamentation and sporulation (48). The basal level of all the three transcripts at time 227 

point 0 was similar between the wild type and the acb1∆ mutant (Fig. 1C). The transcript levels 228 
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of MFα and CFL1 were both induced in the wild type as well as in the acb1∆ mutant during 229 

mating (Fig. 1C). However, the degree of induction for both MFα and CFL1 was lower in the 230 

acb1∆ mutant compared to that in the wild type (Fig. 1C). This is consistent with the reduced 231 

filamentation observed in the acb1∆ mutant. Interestingly, the transcript level of PUM1, a gene 232 

that connects filamentation with sporulation in Cryptococcus (48), was comparable between the 233 

wild type and the acb1∆ mutant at all three time points examined (Fig. 1C). Given that the 234 

deletion of PUM1 causes the formation of barren basidial heads without spores (48), the finding 235 

that the PUM1 expression is unaltered in the acb1∆ mutant is consistent with the observation that 236 

the acb1∆ mutant displays no specific defects in sporulation (Fig. 2B). Taken together, the 237 

observations indicate that secreted Acb1 contributes to cryptococcal morphotype transition at 238 

least partly through its effect on the pheromone signaling and the filamentation pathway. 239 

Secreted products from the wild type, but not the acb1∆ mutant, could enhance 240 

hyphal formation in the nearby acb1∆ recipient strain. Extracellular Acb1 secreted from 241 

wild-type cells acts as a signal and can compensate for the loss of ACB1 in the nearby mutant 242 

cells in Dictyostelium in terms of sporulation (23). As Acb1 is important for filamentation in 243 

Cryptococcus and it is highly expressed, we hypothesize that secreted Acb1 from the wild type 244 

may also act as a signal in promoting filamentation in Cryptococcus acb1∆ mutant. To test this 245 

hypothesis, we performed confrontation assays, in which the donor and the recipient were placed 246 

in close proximity but not physically touching each other. The wild-type recipient filamented 247 

well regardless whether the donor was the wild type or the acb1∆ mutant (Fig. 2C-D, Fig. S2). 248 

However, more acb1∆ recipient colonies formed filaments when the donor was the wild type 249 

rather than the acb1∆ mutant. Despite increased frequency of the number of acb1∆ recipient 250 

colonies to form hyphae, the hyphae formed by the mutant were rudimentary at the time point 251 
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examined (Fig. S2). Nonetheless, the evidence suggests that products secreted from the wild-type 252 

donor, but not from the acb1∆ mutant donor, enhanced the frequency of filamentation of the 253 

nearby acb1∆ recipient cells.   254 

Acb1 promotes the utilization of alternative carbon source. As an acyl-CoA binding 255 

protein, Acb1 regulates growth in different media and conditions, as demonstrated in S. 256 

cerevisiae (35-37, 50, 51). To our surprise, we did not observe any apparent growth defect of the 257 

Cryptococcus acb1Δ mutants in either the rich YPD medium or the minimum YNB medium (Fig. 258 

3 and Fig. S3-4). The mutants were also no different from the corresponding wild-type strains in 259 

their tolerance to SDS and antifungal drugs such as capsofungin, polymyxin B, and fluconazole 260 

(not shown). In yeast and mammalian cells, the acb1∆ mutant showed severe defect in long 261 

chain fatty acid metabolism (35, 52). However, in Cryptococcus, the acb1∆ mutant grew well on 262 

lipids as the sole carbon source, just like the wild type (Fig. S5).   263 

More surprisingly, the acb1∆ mutant in either the XL280 or the H99 background grew 264 

equally well as the corresponding wild-type strains on media with different carbon sources 265 

(glucose, galactose, glycerol, NaAc, or ethanol) or different nitrogen sources ((NH4)2SO4, 266 

NaNO3, glycine, aspartic acid, or thiamine) (Fig. 3 and Fig. S3-4). This is again different from 267 

what is observed for the acb1Δ mutant in S. cerevisiae, which showed growth defects in different 268 

carbon sources (35, 37, 50).  269 

The presence of the preferred carbon source (usually glucose) represses the utilization of 270 

other carbon sources (53, 54). This is called catabolite repression. Catabolite repression can be 271 

observed with the addition of glucosamine, a glucose mimic (55, 56). The idea is that the 272 

presence of glucosamine (GlcN) suppresses the catabolism of other carbon sources and thus 273 

inhibits growth even when other carbon sources are available. Indeed, we found that the addition 274 
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of glucosamine inhibited the wild type in utilizing NaAc, glycerol, and ethanol (Fig. 3 and Fig. 275 

S4). The acb1Δ mutant showed more severe growth deficiency than the wild type in using NaAc 276 

or ethanol in the presence of glucosamine (Fig. 3 and Fig. S4). This suggests that Acb1 in the 277 

wild type might be involved in relaxing catabolite repression, which could be useful for an 278 

organism found in soil and decaying vegetation where complex carbon sources other than 279 

glucose are more likely to be present.   280 

The Y80 residue in the acyl-CoA binding domain is critical for Acb1’s function and 281 

its subcellular localization. The acyl-CoA binding domain is highly conserved among Acb 282 

proteins (Fig. 4A), suggesting the importance of this domain to the function of Acb1. In this 283 

region, Y80 is shown to be a conserved and important residue for binding acyl-CoA, as a 284 

mutation of this residue can decrease the proteins’ acyl-binding ability by 1000 fold (28, 57-59).  285 

To examine if the acyl-CoA binding domain is critical for Cryptococcus Acb1’s function 286 

in filamentation, we made Y80A mutated allele of Acb1 through site-directed mutagenesis. The 287 

Acb1 (Y80A) mutated allele, when introduced into the acb1∆ mutant, could not restore the 288 

mutant’s filamentation defect, in contrast to the wild-type allele (Fig. 4B). This result suggests 289 

that the acyl-CoA binding ability is critical for Acb1’s function in filamentation. 290 

Acb1, despite its predicted cytosolic location, is known to be recruited to the secretory 291 

pathway in other organisms (28, 39). Under wide-field epi-fluorescence microscope, the 292 

mCherry-labeled Acb1 in Cryptococcus was located in intracellular puncta (Fig. 4C) that are 293 

consistent with secretory vesicles. In Dictyostelium, Acbp is also localized to intracellular puncta 294 

(39). The Acb1(Y80A)-mCherry, however, showed a diffused cytoplasmic localization (Fig. 4C). 295 

The cytosolic localization of Acb1(Y80A) in Cryptococcus is consistent with previous 296 
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observations in S. cerevisiae and D. discoideum, where decreased or abolished ability of Acbp to 297 

bind to acyl-CoA is associated with increased cytosolic localization (28, 39). Thus previously 298 

published literature and our observation collectively indicate that the recruitment of Acb1 to the 299 

secretory pathway requires its acyl-CoA-binding capability. It is tempting to speculate that its 300 

binding partner might help bring this otherwise cytosolic protein to the secretory pathway. 301 

In Dictyostelium, the minor proportion of AcbA proteins were secreted extracellularly 302 

(39). This is also true in Cryptococcus as we found most of the Acb1 proteins in the total cell 303 

lysate and some in the culture supernatant (Fig. 5B). Because Acb1(Y80A) is localized to the 304 

cytosol, we speculate that extracellular secretion of this mutated protein would be abolished. 305 

Indeed, we could not detected any Acb1(Y80A) in the culture supernatant although we could 306 

easily detected the protein from the cell lysate. This suggests that the Acb1(Y80A) mutated 307 

protein was not released to the environment. Thus, the alteration of this key residue affects 308 

Acb1’s function as well as its subcellular localization (Fig. 5B). 309 

Acb1’s extracellular secretion, but not its recruitment to the secretory pathway, is 310 

dependent on Grasp. As mentioned earlier, Acb1 lacks a signal peptide and is not a typical 311 

secretory protein that uses the conventional or the general secretion pathway. In S. cerevisiae and 312 

D. discoideum, Acb1’s secretion was shown to be dependent on GRASPs (Golgi reassembly 313 

stacking proteins (38, 60-62), which were originally identified as factors required for the 314 

stacking of Golgi cisternae and the tethering of vesicles destined to fuse with Golgi (63, 64). In 315 

addition to Acb1, the secretion of other factors such as integrain and CFTR also depends on the 316 

Grasp-mediated unconventional pathway in other organisms (38, 65-68). The mammalian 317 

genomes encode two orthologues of GRASP genes (66) whereas only one GRASP gene is found 318 

in C. neoformans and yeast previously (61, 69). It is important to note that in both fungal species, 319 
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Grasp was shown to be not involved into Golgi stacking but important for molecular secretion 320 

(61, 69).  321 

To test if Grasp in Cryptococcus is involved in the Acb1’s recruitment to the secretory 322 

pathway and/or its extracellular secretion, we deleted the GRASP gene. We then examined the 323 

localization and extracellular secretion of Acb1-mCherry in the grasp∆ mutant background. 324 

Interestingly, we found that Acb1-mCherry was localized to vesicles in the grasp∆ mutant, as 325 

observed in the wild type (Fig. 5A). This suggests that recruitment of Acb1 to the secretory 326 

pathway is independent of Grasp. 327 

Next, we tested whether the absence of Grasp affects the extracellular secretion of Acb1 328 

in C. neoformans using the PACB1-ACB1-mCherry as the reporter. We detected a strong signal of 329 

Acb1-mCherry from the cell lysate of the grasp∆ mutant (Fig. 5B). This is consistent with our 330 

microscopic observation of Acb1-mCherry in intracellular vesicles in the wild type as well as in 331 

the grasp∆ mutant. However, no Acb1-mCherry was detected in supernatant derived from the 332 

grasp∆ mutant (Fig. 5B), in contrast to the supernatant derived from the wild-type background. 333 

This suggests that extracellular release of Acb1-mCherry is abolished in the grasp∆ mutant.  334 

Taken together, the recruitment of Acb1 to the secretory pathway is independent of Grasp, but its 335 

extracellular secretion requires Grasp. 336 

The grasp∆ mutant recapitulated the acb1∆ mutant phenotype in terms of 337 

filamentation. The evidence presented earlier indicates that Acb1 proteins are predominantly 338 

localized intracellularly, with some being secreted extracellularly. As Acb1 is important for 339 

filamentation and that secreted products from the wild-type donor, but not the acb1Δ mutant 340 

donor, can enhance the filamentation in the nearby acb1Δ cells, we hypothesize that the released 341 

extracellular Acb1 is important for filamentation. As Grasp is required for Acb1’s extracellular 342 
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secretion, but not Acb1’s production or its intracellular localization, we decided to test our 343 

hypothesis using the grasp∆ mutant. The grasp∆ mutant in the H99 background showed reduced 344 

filamentation during bisexual mating on V8 medium, as observed for the acb1Δ mutant (Fig. 6A). 345 

Similarly, the grasp∆ mutant in the XL280 background yielded a colony with smoother colony 346 

morphology and was less robust in hyphal production during bisexual mating on YNB medium, 347 

resembling the acb1Δ mutant (Fig. 6B). Consistently, the grasp∆ a-α mixed culture gave rise to a 348 

smooth colony on YPD medium, in contrast to the wrinkled colony generated by the wild-type a-349 

α mixed culture (Fig. 6C). Thus, the grasp∆ mutant displayed the same phenotypes as the acb1Δ 350 

mutant in terms of colony morphology and filamentation. This suggests that Grasp regulates 351 

cryptococcal morphogenesis mainly through the extracellular secreted Acb1. 352 

The deletion of GRASP, but not ACB1, affects the production of capsule and 353 

phagocytosis by macrophages. We showed in the above paragraph that the grasp∆ mutant 354 

recapitulates the same phenotypes as the acb1∆ mutant in terms of colony morphology and 355 

filamentation. It was shown previously that the grasp∆ mutant in Cryptococcus is defective in 356 

the production of capsule and in macrophage phagocytosis (69). To test if such defect in the 357 

grasp∆ mutant is caused by its defect in Acb1’s extracellular secretion, we first examined the 358 

production of capsule and melanin in the acb1∆ mutant. To our surprise, the deletion of ACB1 359 

had no apparent impact on capsule production and melanization. By contrast, the deletion of 360 

GRASP greatly reduced capsule size (Fig. 7A), consistently with the previous report (69). There 361 

might be a slight reduction in melanization of the graspΔ mutant (Fig. 7B). Next, we tested the 362 

acb1∆ mutant in both XL280 and H99 backgrounds in phagocytosis by murine macrophage 363 

J774A.1 cells. Although there might be a slight reduction in phagocytosis of the acb1Δ mutants 364 

compared to the corresponding wild-type strains (Fig. 7C), the differences were not statistically 365 
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significant. By contrast, phagocytosis of the grasp∆ mutants was significantly lower compared to 366 

the wild-type cells in both XL280 and H99 backgrounds (Fig. 7C), as being demonstrated 367 

previously for the grasp∆ mutant in the H99 background (69). The results indicate that Acb1 is 368 

not the only effector of Grasp in Cryptococcus, but it is likely the major or the sole effector of 369 

Grasp in terms of filamentation.    370 

 371 

DISCUSSION 372 

We previously demonstrated that the secreted matricellular protein Cfl1, a downstream target of 373 

global regulator Znf2 (9, 14), plays important roles in cellular and colony morphogenesis in the 374 

environmental fungal pathogen C. neoformans (19, 70). In this study, we investigated the role of 375 

the secretory protein Acb1 in cryptococcal yeast-to-hypha morphological transition and 376 

sporulation given the importance of its ortholog in sporulation in Dictyostelium and Pichia 377 

pastoris (23, 62). In contrast to Acbp in Dictyostelium (23), we found that Acb1 in Cryptococcus 378 

is not critical for sporulation per se, but secreted Acb1 is important for hyphal growth that 379 

precedes sporulation during both unisexual and bisexual reproduction. The function of Acb1 in 380 

cellular and colony morphology is conserved in both serotype A and serotype D, two subspecies 381 

of the C. neoformans species complex (71). However, in contrast to CFL1, ACB1 is unlikely to 382 

be controlled by Znf2 at the transcript level, despite the modest increase of ACB1 transcripts 383 

during bisexual mating. First, ACB1 is not among the differentially expressed genes in the 384 

ZNF2oe strain or the znf2Δ strain compared to the wild-type control (9, 14). Second, Znf2 385 

controlled genes are typically expressed at low levels during yeast growth and are highly induced 386 

during filamentous growth (9, 19). This is not the case for ACB1. The transcript level of ACB1 387 

gene is high even during yeast growth in YPD. In fact, ACB1 ranks ~ top 5% among all 388 
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cryptococcal expressed genes based on our recent RNA-seq data analyses (46).  However, 389 

whether Znf2 directly or indirectly affects Acb1’s activity at other regulatory levels (e.g. 390 

translation, protein localization, secretion, or modification) is yet to be investigated. 391 

The cryptococcal genome carries two genes that encode proteins with an acyl-CoA 392 

binding domain. One is CNAG_06140 that we named Acb1 in this study, which is predicted to 393 

encode a protein of a little over 100 amino acids (Fig. 4A). The other is CNAG_01191, which is 394 

predicted to encode a long-chain fatty acid transporter of 458 amino-acid long. Given that AcbP 395 

in Dictyostelium and Acb1 in Saccharomyces are composed of 84 and 87 amino acids 396 

respectively (23, 26, 35, 72), we considered CNAG_06140/Acb1 in Cryptococcus a more likely 397 

ortholog of Acb proteins. Furthermore, the transcript level of ACB1 is about 10 folds higher than 398 

that of CNAG_01191 based on our RNA-seq data (46). Thus, we focused on ACB1 in this study. 399 

However, it is likely that the lack of defects of the Cryptococcus acb1Δ mutant in utilizing 400 

various carbon sources could be due to functional redundancy in fatty acid metabolism of Acb1 401 

and the protein encoded by CNAG_01191.  402 

The observation that secreted products from the wild type, but not the acb1Δ mutant, can 403 

partially restore the filamentation defect of the nearby acb1Δ mutant suggests that secreted Acb1 404 

proteins can act intercellularly. Given that filamentation of the acb1Δ mutant is not as robust as 405 

the wild type, even when it is confronted by the wild-type donor, Acb1 likely functions in a 406 

paracrine fashion. We hypothesize that it is the extracellular Acb1 proteins and not the 407 

intracellular Acb1 proteins that are critical for filamentation. This hypothesis is consistent with 408 

its predicted paracrinal signaling function. This hypothesis is also corroborated by the result that 409 

the graspΔ mutant, which is defective in secreting Acb1 to the environment but not defective in 410 

recruiting Acb1 to the secretory pathway, displays a similar drastic reduction in filamentation as 411 
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the acb1Δ mutant.  The hypothesis is further supported by the observation that mis-localization 412 

of Acb1(Y80) to the cytosol and consequently the lack of protein secretion render the protein 413 

non-functional.   414 

One interesting aspect of Acb1 is its unconventional recruitment to the secretory pathway. 415 

Although Grasp is critical for its extracellular secretion, Grasp is not involved in recruiting Acb1 416 

to the secretory vesicles intracellularly. Since Y80 mutation is known to disrupt its acyl-binding 417 

property (58, 59, 73) and Acb1(Y80A) showed diffused localization in the cytosol, it is tempting 418 

to speculate that Acb1’s binding partner, be it a lipid or a protein, might help recruit Acb1 to the 419 

vesicles through the interaction with its acyl-binding domain. How Grasp recognizes Acb1 after 420 

Acb1 is recruited to secretory vesicles and how it assists Acb1 to be secreted extracellularly is 421 

unknown. It is clear that Grasp is involved in the secretion of Acb1 and additional factors in 422 

Cryptococcus based on this and a previous study (69). Consistent with this idea, the secretion of 423 

integrin in Drosophila and CFTR in mammalian cell also depends on the Grasp-mediated 424 

unconventional secretion (67, 68, 74). Given that many proteins that are found to be secreted 425 

extracellularly are atypical proteins that possess no signal peptide in fungi (75-79), it would be 426 

important to continue the investigation into these atypical proteins and the corresponding 427 

unconventional secretory pathways.   428 

Consistent with the idea that Grasp is responsible for the secretion of factors in addition 429 

to Acb1, the graspΔ mutant showed drastically decreased capsule production [here and previous 430 

study (69)], while the acb1Δ mutant showed normal capsule production. Similarly, in contrast to 431 

the severe defect in phagocytosis of the graspΔ mutant, the acb1Δ behaves similarly to the wild 432 

type in the phagocytosis assay. Thus Grasp likely affects the secretion of various molecules (e.g. 433 

capsule and possibly some cell wall proteins) that contribute to the phenotypic defects of the 434 
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graspΔ mutant in various assays. Nonetheless, in terms of Grasp’s effect on hyphal growth, 435 

Acb1 appears to be the major if not the sole factor.  436 
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FIG 1. The deletion of ACB1 impairs filamentation during bisexual mating in Cryptococcus. (A) 685 

The a-α mating pairs of the WT XL280 strains, the acb1Δ mutants, and the ACB1 complement 686 

strains were cultured on YNB medium for 48 hrs. (B) The a-α mating pairs of the WT H99 687 

strains, the acb1Δ mutants, and the ACB1 complement strains were cultured on YNB medium for 688 

9 days. (C) Q-RT PCR measurement of the transcript levels of MFα, CFL1, PUM1, and ACB1. 689 

The transcript level of each gene in the wild type at time point 0 was set as 1 for comparison (0 690 

in the Log2 value). RNA samples were extracted from bisexual matings of the WT XL280 and 691 

the acb1Δ mutants on YNB medium at the time point of 0 hour, 24 hours, and 48 hours. 692 

 693 

FIG 2. Secreted products from the wild type, but not the acb1Δ mutant, enhanced filamentation 694 

in the neighboring cells. (A) Colony images of the a-α bisexual mating of the WT XL280 and the 695 

corresponding acb1∆ mutant on V8 pH7 medium. (B) Images of the colony edge (top panel) and 696 

basidiospores (lower panel) generated by the bisexual mating of WT strains or the acb1∆ 697 

mutants on V8 medium. (C) Confrontation assay using WT and mutant mating pairs as donor or 698 

recipient. (D) Quantification of the frequency of recipient colonies that formed filaments at 48 699 

hrs post the inoculation. 80% of the acb1Δ mutant recipient colonies formed hyphae when the 700 

donor was WT. In contrast, 30% of the acb1Δ mutant recipient colonies formed hyphae when 701 

confronted with the acb1Δ mutant donor. 702 

 703 

FIG 3. Growth of the acb1∆ mutant and the corresponding wild type strain on different carbon 704 

sources in the presence of glucosamine. 705 

 706 
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FIG 4. Mutation of the key residue Y80 affects Acb1’s function and subcellular localization. (A) 707 

Acb1 is a highly conserved protein among different species. Multiple alignment of proteins from 708 

the following species: Hs, Homo sapiens; Mus, Mouse Species; Cn, Cryptococcus neoformans; 709 

Sc, Saccharomyces cerevisiae; Pp, Pichia Pastoris; Dd, Dictyostelium discoideum; Af, 710 

Aspergillus fumigatus; An, Aspergillus nidulans. (B) The mutated Acb1(Y80A) could not restore 711 

the filamentation defect of the acb1∆ mutant. The acb1∆ mutant, the acb1∆ mutant transformed 712 

with the wild type allele [ACB1c], and the acb1∆ mutant transformed with the Y80A allele 713 

[ACB1(Y80A)c] were cultured on YNB medium for 48 hours.  (C) The subcellular localization of 714 

Acb1-mCherry and Acb1(Y80A)-mCherry. The fluorescent image from non-transformed wild 715 

type cells were used as the negative control. 716 

 717 

FIG 5. The subcellular localization of Acb1 is independent of Grasp, but the secretion of Acb1 718 

requires Grasp. (A) Intracellular localization of Acb1-mCherry in the wild-type or the grasp∆ 719 

mutant background. (B) The western blotting analysis of the supernatant from different strains. 720 

(1, Acb1-mCherry in the acb1∆ mutant; 2, Acb1-mCherry in the grasp∆ mutant; 3, Acb1 721 

(Y80A)-mCherry in the acb1∆ mutant; 4, negative control without any mCherry, XL280; 5, 722 

Acb1-mCherry in WT XL280). 723 

 724 

FIG 6. The grasp∆ mutant recapitulates the phenotype of the acb1∆ mutant in terms of colony 725 

morphology and filamentation. (A) The a-α co-culture of the wild type, the acb1∆ mutant, or the 726 

grasp∆ mutant in the H99 background on V8 juice medium (pH5). (B) The a-α co-culture of the 727 

wild type, the acb1∆ mutant, or the grasp∆ mutant in the XL280 background on YNB medium. 728 
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(C) The a-α co-culture of the wild type, the acb1∆ mutant, or the grasp∆ mutant in the XL280 729 

background on YPD medium. 730 

 731 

FIG 7. The grasp∆ mutant showed slightly deficiency in multiple classic cryptococcal virulence 732 

traits. (A) The WT, the grasp∆ mutant, and the acb1∆ mutant after cultured on RPMI medium 733 

for 2 days. The capsule (halo surrounding the yeast cells) was visualized by Indian ink negative 734 

staining. (B) The WT, the grasp∆ mutant, and the acb1∆ mutant were cultured on L-DOPA 735 

medium for 3 days to test melanin formation. The dark brown pigment indicates melanin. (C) 736 

The macrophage cells were inoculated with the WT, the grasp∆ mutant, and the acb1∆ mutant 737 

on RPMI medium and were co-cultured for 3 hours. The number of phagocytosed Cryptococcus 738 

cells were measured by CFU counting and graphed. 739 
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