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Abstract

The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present
time, little is known about the microbial communities associated with these birds. As the first step to create a quail
microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal
microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total
of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as
selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical
identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30
novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was
the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes
(0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and
anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well
as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species
demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide,
quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission,
pathology, and control of antimicrobial resistance in wild quail populations.
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Introduction

The northern bobwhite (Colinus virginianus) is an ecologically and

economically important natural resource in the United States. A

survey conducted by the U.S. Fish and Wildlife Service in 2011

indicates that bobwhite is one of the most preferred small game

species pursued by over 840,000 hunters on over 9 million hunting

days in 2011 [1]. Over the past several decades, bobwhite

populations have been declining across their range. In the state of

Texas alone, bobwhites have been diminishing at an average

annual rate of 5.6% since 1980 which has resulted in a 75%

population decline [2]. Although habitat loss associated with

intensive agricultural practices has been considered as a major

contributor, quail declines have continued even in areas of

apparently suitable habitat during favorable weather conditions

[3]. The involvement of infectious agents has been investigated,

but studies have failed to identify any pathogens with the potential

to kill large numbers of quail [4], [5]. This ongoing decline,

termed ‘‘Idiopathic Quail Decline’’ underscores the need for a

holistic approach to the study of quail health [3], [6].

One important aspect of animal health that is just beginning to

be understood among many vertebrate species is the indigenous

microbial populations or the microbiota. Recent investigations

have shown that the host’s nutritional, physiological, and

immunological processes are profoundly affected by the microbi-

ota [7], [8], [9]. However, the composition of the microbiota is

also influenced by factors such as the host’s genetics, diet,

environment, and infection status [7], [9]. The gut microbiota

contributes to the digestion and fermentation of carbohydrates, the

development of gut-associated lymphoid tissues (GALTs), and the

prevention of colonization by pathogens [10].

Over the past two decades, numerous culture-dependent and

culture-independent microbiome studies have been carried out to

characterize the composition and dynamic changes of intestinal

microbiota of mammals, domestic poultry, and several wild avian

species [11], [12], [13], [14], [15]. However, the microbiota of

northern bobwhite remains largely unexplored. Documenting the

microbiota of this species is important because it may identify

agents that could contribute to the ongoing population declines. In

addition, it is important to document the presence and extent of
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antimicrobial resistance in bobwhite bacterial microbiota because

wild birds could carry drug resistant bacteria potentially patho-

genic to humans and other animal species [16], [17]. Although

wild bobwhite populations do not have contact with antibiotics as

therapeutic agents, exposure via water and food contaminated by

antimicrobial resistant bacteria originating from human waste or

farm-reared quail is likely [18], [19], [20]. Previously, multidrug

resistant Salmonella enterica serovar Typhimurium was isolated from

diseased bobwhites [21]. Resistance to tetracycline was detected in

Edwardsiella hoshinae isolated from healthy northern bobwhite quail

[22]. However, no study has been conducted to determine the

susceptibility or resistance patterns of other bacterial species

commonly found in avian and mammalian gastrointestinal tracts.

If bobwhites do carry drug-resistant organisms as part of their

microbiota, they may serve as a reservoir for antimicrobial

resistant bacteria or resistance genes that can be transmitted to

other wild animals or to humans upon handling and consumption.

To fill the gaps in existing knowledge relating to bobwhite

microbiology, the current investigation characterized cultivable

tracheal and gastrointestinal microbiota of wild northern bobwhite

and determined the antimicrobial susceptibility and resistance

patterns of selected commensal and opportunistic pathogenic

bacterial species.

Materials and Methods

Sample Collection and Processing
Sample collection and processing were completed by the

Central Specimen Receiving, Processing and Distribution Labo-

ratory (CSRPDL) of the Institute of Environmental and Human

Health, Texas Tech University. Animal and tissue uses were

approved by the Institutional Animal Care and Use Committees of

Texas A&M University (IACUC 2011-193) and Texas Tech

University (IACUC 11049-07). A total of 49 live-trapped

bobwhites throughout the Rolling Plains Ecoregion were used in

this study. Due to sample sharing among multiple investigators,

only 49 trachea, 48 crops, 39 ceca, and 38 cloacal swabs were

available for microbiological evaluations. All trapping practices

were conducted under the auspices of a Texas Parks & Wildlife

Department Scientific Collector’s permit. Each bird was labeled

with a unique 6-digit ID number while the sex and age were

determined by trained personnel using plumage characteristics.

The age of three birds was not labeled due to unknown reasons.

Tissue and swab samples in Cary-Blair transport medium (BD,

Franklin Lakes, NJ, USA) were transported from the field on ice to

CSRPDL within 8 hours. All samples were stored at 220uC until

testing (within 2 months). Prior to culture, trachea, crops, and ceca

were thawed and cut open aseptically.

Cultivation of Bacteria
The luminal contents and/or mucosal surfaces of trachea,

crops, and ceca were sampled with sterile polyester swabs (Puritan

Medical, Guilford, Maine, USA). Tracheal samples were inocu-

lated onto the surface of solid media including Tryptic Soy Agar

with 5% Sheep Blood (TSA), Columbia Colistin Nalidixic Acid

agar with 5% Sheep Blood (CNA), Anaerobic Phenylethyl Alcohol

Blood agar (PEA), MacConkey agar (MAC), and Lowenstein-

Jensen Medium Slants (LJ); and into Brain Heart Infusion broth

(BHI) and Mycoplasma broth (Frey). Crop, cecal, and cloacal

samples were inoculated on to TSA, CNA, PEA, MAC, and

Xylose-lysine-tergitol 4 (XLT4) as well in Brain Heart Infusion

broth (BHI) and Buffered Peptone Water (BPW). Aerobic cultures

(TSA, CNA, LJ, BHI, and Frey) were incubated at 37uC in either

5% CO2 or ambient air (MAC, BPW, and XLT4). Anaerobic

cultures (TSA, PEA, and BHI) were incubated at 37uC in

anaerobic jars with disposable gas packs (Remel Inc., Lenexa,

Kansas, USA). Cultures (TSA, CNA, MAC, PEA, XLT4) were

examined daily for growth up to 5 days. Mycoplasma cultures

(Frey) and mycobacteria cultures (LJ) were incubated for 14 days.

BHI and BPW cultures were subcultured after overnight

incubation onto TSA and XLT4, respectively. Morphologically

unique bacterial colonies were subcultured under appropriate

conditions to obtain pure cultures.

Bacterial Identification and Antimicrobial Susceptibility
Testing

Partial characterization of bacterial strains was also performed

by biochemical tests, including Gram staining; production of

oxidase, catalase, urease; motility, and indole test. Selected

biochemical reactions from several bacterial ID kits, including

RapID CB Plus, RapID ANA II, RapID NF Plus, RapID One,

RapID Staph, and RapID STR, were also used to confirm

identity. Pure bacterial cultures were subjected to 16S rRNA gene

sequencing. To prepare DNA template for PCR, isolated colonies

(1 to 2) were resuspended in 100 ml of ddH2O and boiled for

10 min. The bacterial broad-range 16S rDNA primer pairs:

fD1mod (59-AGAGTTTGATCYTGGYYYAG-39, corresponding

to positions 8–27 in the E. coli 16S rRNA gene) and 16S1RR-B

(59-CTTTACGCCCARTRAWTCCG-39, corresponding to posi-

tions of 556–575) [23] were used to amplify the 59 end of the 16S

rRNA gene. The thermal cycling conditions were as follows: an

initial denaturation at 94uC for 3 min; 35 cycles of 94uC for

30 sec, 56uC for 30 sec, and 72uC for 30 sec; and a final extension

step at 72uC for 7 min. A portion of each PCR product was

subjected to electrophoresis on 1.5% agarose gel and visualized

using the AlphaImager Gel Documentation system (ProteinSim-

ple, Santa Clara, CA). The PCR products were purified and

sequenced using the 16S1RR-B primer. The resultant sequences

were subjected to homology search against GenBank database by

using the BLAST search algorithm as well as MicroSeq ID 2.0

500-bp library (Applied Biosystems, Foster, CA). Sequence

identities of $99% and $97% were used as criteria for species

and genus assignments, respectively. The sequences sharing less

than 97% identities with the 16S rRNA sequences in the databases

were considered as potentially new species [24].

Selected bacterial species were subjected to antimicrobial

susceptibility testing using the Sensititer Veterinary Susceptibility

Plates, AVIAN1F, (Trek Diagnostic Systems, Westlake, OH). The

inoculated antimicrobial plates were incubated at 37uC in ambient

air for 24 h. The antimicrobial agents tested included amoxicillin,

ceftiofur, clindamycin, enrofloxacin, erythromycin, florfenicol,

gentamicin, neomycin, novobiocin, oxytetracycline, penicillin,

spectinomycin, streptomycin, sulphadimethoxine, sulphatiazole,

tetracycline, trimethoprim/sulpha, and tylosin. The results were

interpreted by using Clinical Laboratory Standards Institute

(CLSI) guidelines for broth microdilution methods [25]. E. coli

ATTC 25922 and Ps. aeruginosa ATCC 27853 were used as the

quality control strains.

Statistical Analysis
To determine if the number of bacterial species found in each

sample varied with regard to sex, age, tissue type or sex by age

interaction we used a general linear model with a Poisson

distribution. To determine if the distribution of bacterial species

varied with tissue type, sex, age and the sex by age interaction

term we used a binomial logistic regression for all bacterial species

which were detected in 15 or more different tissues. Binomial

logistic regression was used to determine if the distribution of
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bacterial genera varied by tissue type, sex, age and the sex by age

interaction for all genera which were detected in 15 or more tissue

samples analyzed. These analyses included data from 45 healthy

bobwhites for which age class and sex were known. Data from one

Scaled Quail (Callipepla squamata) and one sick Northern Bobwhite

were omitted along with data from two birds for which age class

was unknown and one for which age, sex and species were

unknown. For all analyses we used an a= 0.05.

Nucleotide Sequence Accession Numbers
The sequences of individual bacterial species were deposited in

the Genbank database under accession numbers (KJ023256 to

KJ023442).

Table 1. The composition of quail cultivable bacterial microbiota*.

Phylum Order Family Genus # Species #

Firmicutes (56.32%) Bacillales (34.21%) Bacillaceae (21.58%) 5 41

Paenibacillaceae (10.53%) 2 20

Staphylococcaceae (2.11%) 1 4

Lactobacillales (16.32%) Lactobacillaceae (5.79%) 2 11

Streptococcaceae (5.79%) 3 11

Enterococcaceae (4.21%) 1 8

Leuconostocaceae (0.53%) 1 1

Clostridiales (5.26%) Clostridiaceae (1.58%) 1 3

Eubacteriaceae (1.58%) 1 3

Lachnospiraceae (1.05%) 1 2

Clostridiales Family XI (1.05%) 2 2

Selenomonadales (0.53%) Veillonellaceae (0.53%) 1 1

Actinobacteria (24.21%) Actinomycetales (23.68%) Microbacteriaceae (6.84%) 4 13

Streptomycetaceae (5.26%) 1 10

Micrococcaceae (6.84%) 3 7

Corynebacteriaceae (1.58%) 1 3

Nocardiaceae (1.58%) 1 3

Actinomycetaceae (1.05%) 2 2

Promicromonosporaceae (1.05%) 1 2

Gordoniaceae (0.53%) 1 1

Micromonosporaceae (0.53%) 1 1

Propionibacteriaceae (0.53%) 1 1

Mycobacteriaceae (0.53%) 1 1

Pseudonocardiaceae (0.53%) 1 1

Bifidobacteriales (0.53%) Bifidobacteriaceae (0.53%) 1 1

Proteobacteria (17.89%) Enterobacteriales (10.53%) Enterobacteriaceae (10.53%) 9 20

Pseudomonadales (2.63%) Moraxellaceae (2.11%) 1 4

Pseudomonadaceae (0.53%) 1 1

Burkholderiales (1.58%) Alcaligenaceae (0.53%) 1 1

Burkholderiaceae (0.533%) 1 1

Ralstoniaceae (0.53%) 1 1

Neisseriales (1.58%) Neisseriaceae (1.58%) 1 3

Rhizobiales (1.05%) Brucellaceae (0.53%) 1 1

Rhizobiaceae (0.53%) 1 1

Xanthomonadales (0.53%) Xanthomonadaceae (0.53%) 1 1

Bacteroidetes (0.02%) Bacteroidales (1.05%) Bacteroidaceae (0.53%) 1 1

Porphyromonadaceae (0.53%) 1 1

Flavobacteriales (0.53%) Flavobacteriaceae (0.53%) 1 1

Total 14 38 61 190

*Shown are the numbers (percentages) of order, family, genus, and species. A total of 49 bobwhites were used in this study. Bacteria were isolated from trachea, crops,
ceca, and cloaca. Species or genus-level identifications were achieves using 16S rRNA gene sequencing and biochemistry. Highest Blast hits were from cultured bacteria.
doi:10.1371/journal.pone.0099826.t001
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Results

The Composition of Cultivable Bacterial Microbiota
A total of 828 representative bacterial colonies were collected

from nonselective aerobic and anaerobic cultures, as well as

selective and enrichment cultures for Mycoplasma spp., Mycobacte-

rium spp., and Salmonella enterica serovars. Bacterial colonies were

screened based on their morphological, growth, and biochemical

characteristics. When two or more colonies showed identical

morphology and biochemical characteristics, only one of these

colonies was sequenced. In total, 414 distinct colonies were

subjected to 16S rRNA gene sequencing which revealed 190

nonredundant species-level taxonomic units. One hundred-sixty

(84%) sequences shared 99% to 100% similarities to the 16S

Table 2. Tissue-specific composition of quail microbiota*.

Phylum Family Number of Species

Trachea Crop Ceca Cloaca

Firmicutes (56.32%) Bacillaceae 2 (9.52%) 19 (21.11%) 20 (28.99%) 20 (28.17%)

Clostridiaceae 3 (4.35%) 2 (2.82%)

Enterococcaceae 1 (4.76%) 2 (2.22%) 7 (10.14%) 5 (7.04%)

Eubacteriaceae 3 (4.35%)

Lachnospiraceae 2 (2.90%)

Lactobacillaceae 4 (19.05%) 8 (8.89%) 3 (4.35%) 1 (1.41%)

Leuconostocaceae 1 (1.11%)

Paenibacillaceae 2 (9.52%) 10 (11.11%) 7 (10.14%) 4 (5.63%)

Clostridiales Family XI 2 (2.82%)

Staphylococcaceae 3 (3.33%) 1 (1.45%) 3 (4.23%)

Streptococcaceae 2 (2.22%) 4 (5.80%) 9 (12.68%)

Veillonellaceae 1 (1.41%)

Actinobacteria (24.21%) Actinomycetaceae 1 (1.45%) 1 (1.41%)

Bifidobacteriaceae 1 (1.45%) 1 (1.41%)

Corynebacteriaceae 1 (1.11%) 2 (2.82%)

Gordoniaceae 1 (1.11%)

Microbacteriaceae 3 (14.29%) 6 (6.67%) 1 (1.45%) 6 (8.45%)

Micrococcaceae 2 (2.22%) 2 (2.90%) 5 (7.04%)

Micromonosporaceae 1 (1.11%)

Mycobacteriaceae 1 (4.76%)

Nocardiaceae 3 (3.33%)

Promicromonosporaceae 2 (2.22%)

Propionibacteriaceae 1 (1.41%)

Pseudonocardiaceae 1 (1.41%)

Streptomycetaceae 2 (9.52%) 6 (6.67%) 1 (1.45%) 2 (2.82%)

Proteobacteria (17.89%) Alcaligenaceae 1 (1.11%)

Brucellaceae 1 (1.41%)

Burkholderiaceae 1 (4.76%)

Enterobacteriaceae 2 (9.52%) 16 (17.78%) 5 (7.25%) 1 (1.41%)

Moraxellaceae 1 (4.76%) 4 (4.44%) 2 (2.90%)

Neisseriaceae 1 (1.45%) 3 (4.23%)

Pseudomonadaceae 1 (4.76%) 1 (1.11%) 1 (1.45%)

Ralstoniaceae 1 (4.76%)

Rhizobiaceae 1 (1.45%)

Xanthomonadaceae 1 (1.45%)

Bacteroidetes (0.02%) Bacteroidaceae 1 (1.45%)

Flavobacteriaceae 1 (1.11%)

Porphyromonadaceae 1 (1.45%)

Total 21 (100%) 90 (100%) 69 (100%) 71 (100%)

*Shown are the numbers (percentages) of bacterial species in each family. Bacterial isolates from 49 bobwhites were identified to species or genus level by 16S rRNA
gene sequencing and biochemistry.
doi:10.1371/journal.pone.0099826.t002
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rRNA gene sequences deposited in GenBank, therefore repre-

senting known bacterial species. In addition, 9 (4.74%) sequences

showed 97% to 98% similarities and 21 (11%) sequences had less

than 97% of similarities to previously reported 16S rRNA gene

sequences, suggesting that these were novel species and genera

(Table S1). The sequences of all species level taxa have been

submitted to Genbank.

The quail bacterial species could be classified into 4 phyla, 14

orders, 38 families, 61 genera, and 160 known species and

potentially 30 novel species (Table 1). Firmicutes (56%) was the

largest phylum, followed by Actinobacteria (24%), Proteobacteria (18%)

and Bacteroidetes (0.02%). At family level, the vast majority of

bacterial species belonged to Bacillaceae (22%), Paenibacillaceae

(11%), Enterobacteriaceae (11%), Microbacteriaceae (6.84%), Lactobacil-

laceae (5.79%), and Streptococcaceae (5.79%).

Composition of Tissue-specific Cultivable Bacterial
Microbiota

The tracheal microbiota consisted of 21 species belonging to 12

families with Lactobacillaceae (19%) being the most commonly

encountered bacterial family. The crop microbiota consisted of 90

species in 20 families with Bacillaceae (21%) and Enterobacteriaceae

(18%) being the top 2 families. The cecal microbiota consisted of

69 species from 22 families with Bacillaceae (29%), Enterococcaceae

(10%), and Paenibacillaceae (10%) being the top 3 families. The

cloacal microbiota was composed of 71 species belonging to 19

families with Bacillaceae (28%) and Streptococcaceae (13%) being the

majority (Table 2).

Influence of Age, Sex, and Tissue Type on Quail
Cultivable Bacterial Microbiota

Significant differences in the distribution of bacterial taxa

among age, sex, and tissue groups were detected. At the genus

level, the regression models explained between 16% and 57% of

the variation in the distribution of the eight most common

bacterial genera (Table 3). Of these eight genera, only three

differed significantly between males and females (Binomial Logistic

Regression, Table 3). Enterococcus was more common than

expected in females (p = 0.013) and Rothia and Streptococcus were

more common than expected in males (p = 0.024 and 0.036,

respectively). Only Paenibacillus differed between age classes: it was

more common than expected in juveniles (p = 0.05, Table 3). For

Cronobacter the sex by age interaction term was significant: this

genus was much less common than expected in adult females and

slightly more common than expected in adult males (p = 0.04,

Table 3). At species level, Enterococcus faecium was more common in

females than males (p = 0.043) and Rothia nasimurium was more

common in males than females (p = 0.026).

Most variations in quail microbiota were driven by tissue types

or anatomical locations. Compared to intestinal microbiota,

tracheal microbiota was less diverse, as evidenced by the low

number of taxa found in tracheal samples. All of the 8 most

common bacterial genera differed significantly among tissue types

(P,0.0002 for all). Cronobacter, Rothia, and Streptomyces were most

common in crop while Enterococcus, Lactobacillus and Paenibacillus

were most common in cecum. Streptococcus and Bacillus were fairly

common in all three sections of the GI tract but were very rare or

absent from the trachea.

Bacterial Species Diversity of Quail Cultivable Bacterial
Microbiota

Data for 28 quail for which all four tissue types were available

for culture were analyzed and presented in Fig. 1A. The number

of bacterial taxa found per tissue analyzed did not differ

significantly by sex, age or the interaction between sex and age,

but did differ significantly by the type of tissue analyzed

(GLMPoisson distribution: Overall ChiSquare = 126, DF = 6, P,

0.0001, P values for sex, age and sex*age .0.1, P value for tissue

type ,0.0001). Cultures of most quail yielded 16 to 20 bacterial

species per bird. The cultures of a moribund juvenile bird yielded

26 bacterial species (Fig. 1A). Extensive variation in the

composition of quail microbiota was observed among individual

birds (Fig. 1B). Approximately 48% of bacterial species were

unique to individual birds; 17%, 8%, 5%, and 4% of bacterial

Figure 1. The number of bacterial species and the species diversity of northern bobwhite cultivable bacterial microbiota. 1A. Species
data from 28 individual quail for which all four tissue types are presented. Cultures of most quail yielded 16 to 20 bacterial species while the cultures
of a moribund quail gave rise to 26 bacterial species. 1B. Data presented are percentage of unique bacterial species (total number = 190) found in
individual quail. Vast majority of bacterial species were unique to individual quail.
doi:10.1371/journal.pone.0099826.g001
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species were found in 2, 3, 4, and 5 birds, respectively (Fig. 1B). In

general, less than 3% of bacterial species could be found in more

than 7 quail.

At the tissue level, samples from the cecum had the highest

number of bacterial species (6.2562.89, N = 36 analyzed) followed

by crop (6.462.78, N = 43), cloaca (4.060.2.67, N = 29) and

trachea (1.3660.74, N = 14). Means from all four tissue types

differed significantly (Least Squares Means Student’s t test, p,

0.05). Eighty one percent of tracheal bacterial species were unique

to individual tissue samples; and only 10% and 5% were found in

2 and 3 tissues, respectively (Fig. 2A). About 53% of crop bacterial

species were unique to individual samples and less than 4% of

bacterial species were found in 4 or more samples (Figure 2B).

Compared to crop microbiota, less diversity was associated with

cecal microbiota. About 41% of cecal bacterial species were

unique to individual samples and less than 4% of bacterial species

were found in seven or more samples (Fig. 2C). The cloacal

microbiota also demonstrated extensive diversity among birds with

65% of bacterial species being unique to individual samples and

less than 3% of bacterial species being isolated from 4 or more

samples (Fig. 2D).

Cross-tissue analysis of microbiota showed that 48% of tracheal

species were found in the intestine (Fig. 3). These species included

Acinetobacter baumannii, Bacillus aryabhattai, Bacillus subtilis, Enterococcus

faecium, Klebsiella oxytoca, Lactobacillus agilis, Lactobacillus salivarius,

Lactobacillus gasseri, Microbacterium testaceum, and Pseudomonas aeruginos.

Variation throughout the intestinal tract was detected. Only 8

bacterial species (4.47%) were consistently cultured from crops,

ceca, and cloaca (Figure 3). The common species of intestinal

microbiota included Bacillus cereus, Bacillus megaterium, Bacillus

nealsonii, Bacillus pumilus, Bacillus simplex, Bacillus subtilis, Enterococcus

faecium, and Staphylococcus gallinarum. Bacillus subtilis and Enterococcus

faecium were the common species found in all tissue specific

microbiota.

Pathogenic and Opportunistic Pathogenic Bacterial
Species
Mycobacterium sp., possibly a member of the M. terrae complex,

was isolated from the trachea of one bird. Pseudomonas aeruginosa

was identified from 12 (24%) birds, including 8 tracheae, 2 crops,

and 3 ceca. E. coli was cultured from 16 (32%) quail, including 1

crop and 15 ceca (Table 4). In addition, several species usually

considered as human commensal organisms, including Neisseria

Figure 2. Tissue-specific species diversity of northern bobwhite cultivable bacterial microbiota. Data shown are the percentages of
unique bacterial species (total number= 190) found in individual quail. Vast majority of bacterial species were unique to individual tissue samples.
doi:10.1371/journal.pone.0099826.g002
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flavescens (6%) and Neisseria sicca (6%) were cultured from the ceca

and cloaca of quail (Table 4).
Antimicrobial Resistance of Quail Cultivable Bacterial
Microbiota

Phenotypic analysis of quail bacterial isolates revealed varying

degrees of resistance to multiple classes of antimicrobials (Table 5

Table 5. Antimicrobial susceptibility pattern of Gram negative bacteria isolated from bobwhites*.

Antimicrobial E. coli Enterobacter sp Neisseria sp. Ps. aeruginosa

agents (n =16) (n =13) (n =5) (n=13)

Beta-lactam Amoxicillin 4–8 (100) 2–8 (31), $16 (69) 0.25–0.5 (100) $16 (100)

Ceftiofur 0.25–0.5 (100) 0.25–1 (100) #0.25 (100) $4 (100)

Penicillin $8 (100) $8 (100) 0.06 (17), 0.25–1 (83) $8 (100)

Aminoglycoside Gentamicin 0.5–1 (100) #0.5 (100) #0.5 (100) 1–2 (100)

Neomycin #2 (100) #2 (100) #2 (100) 2–8 (100)

Spectinomycin 16 (100) #8 (33), 16–32 (77) #8 (60), 16 (40) $64 (100)

Streptomycin #8 (100) 8–32 (100) #8 (100) 32 (100)

Tetracycline Oxytetracycline 1–2 (100) 0.25–4 (100) 0.5–1 (100) 4 (56), 8 (54)

Tetracycline 1–2 (100) 0.5–4 (100) 1–2 (100) $8 (100)

Phenicol Florfenicol 4 (75), 8 (25) 1–4 (54) #1 (100) $8 (100)

Macrolide Erythromycin $4 (100) $4 (100) $4 (100) $4 (100)

Tylosin $20 (100) $20 (100) $20 (100) $20 (100)

Lincosamide Clindamycin $4 (100) $4 (100) $4 (100) $4 (100)

Quinolone Enrofloxacin #0.12 (100) #0.12 (100) 0.12 (100) 1 (85), 2 (15)

Novobiocin $4 (100) $4 (100) $4 (100) $4 (100)

Sulpha Sulphadimethoxine $256 (100) #32 (25), $256 (85) #32 (100) $256 (100)

Sulphatiazole 32–64 (25), $256 (75) 32 (25), 256 (85) #32 (100) 64–256 (100)

Trimethoprim/Sulpha #0.5 (100) #0.5 (100) 0.5–1 (100) $2 (100)

*The ranges of MICs (% of isolates) are indicated as follows: regular font, susceptible; bold and italic, intermediate susceptible; and bold and underlined, resistant.
doi:10.1371/journal.pone.0099826.t005

Figure 3. Cross-tissue species diversity of northern bobwhite microbiota. Data shown are the numbers (percentage) of species that are
unique or shared by tissue-specific quail cultivable bacterial microbiota. About 47.62% tracheal bacterial were cultured from gastrointestinal tract,
including Acinetobacter baumannii, Bacillus aryabhattai, Bacillus subtilis, Enterococcus faecium, Klebsiella oxytoca, Lactobacillus agilis, Lactobacillus
salivarius, Lactobacillus gasseri, Microbacterium testaceum, and Pseudomonas aeruginos. Species diversity was detected throughout the
gastrointestinal tract with only 8 (4.47%) common bacterial species including Bacillus cereus, Bacillus megaterium, Bacillus nealsonii, Bacillus pumilus,
Bacillus simplex, Bacillus subtilis, Enterococcus faecium, and Staphylococcus gallinarum.
doi:10.1371/journal.pone.0099826.g003
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and 6). Resistance to penicillin, clindamycin, erythromycin, and

sulphadimethoxine was detected in all E. coli (100%) isolates

(n = 16). Resistance to florfenicol and sulphatiazole were found in

75% and 25% of isolates, respectively (Table 5). Intermediate

susceptibility to spectinomycin, florfenicol and sulphatiazole was

shown by 100%, 75%, and 25% of E. coli isolates, respectively.

Similar resistance patterns were detected in Enterobacter and

Neisseria isolates except that most Enterobacter isolates were also

resistant to amoxicillin and Neisseria isolates were susceptible to

florfenicol. Resistance to 15 of the 18 antimicrobials tested was

detected in vast majority of Ps. aeruginosa isolates (Table 5).

Intermediate susceptibility to Oxytetracycline was found in 54% of

the isolates. Gentamicin and Neomycin were the only 2

antimicrobials effective against all Ps. aeruginosa isolates. Antimi-

crobial resistance was also detected in Gram positive bacteria

(Table 6). Most E. faecalis isolates were resistant to ceftiofur,

streptomycin, clindamycin, sulphadimethoxine, and sulphatiazole.

Intermediate susceptibility to spectinomycin and enrofloxacin was

detected in E. faecalis isolates. B. subtlis and S. gallinarum were less

resistant than E. faecalis to several antimicrobials tested.

Discussion

The present study provides the first inventory of cultivable

bacterial microbiota of northern bobwhite. Using traditional

microbiological cultures, biochemical testing, and 16S rDNA

sequencing, we cultured and identified a large number of quail

bacteria to species level. In total, we obtained 190 bacterial species

with 21, 90, 69, and 71 species from the trachea, crop, ceca, and

cloaca, respectively. The species coverage was greater than what

were achieved in previous studies using culture-independent

technique to characterize the cloacal microbiome of parrot (49

operational taxonomic units, OTU’s) or wild black-legged

kittiwakes (64 OTUs) [15], [26]. However, culture-dependent

approach made it less possible for in-depth quantitative analysis of

species abundance and most likely failed to capture many bacterial

species that cannot be cultured in the lab. Nonetheless, a collection

of diverse live cultures made it possible for phenotypic character-

ization of microbes of interest.

Similar to the microbiota of other wild avian species, the

microbial community of quail consists primarily of 4 phyla,

including Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes

[15], [26], [27], [28]. Although both Firmicutes and Bacteroidetes are

predominant phyla in the microbiome of mammals or domestic

poultry, Bacteroidetes were rarely detected in the current study or

previous studies dealing with certain bird species, such as gull and

parrots [15], [26], [27]. The members of Bacteroidetes are known for

their ability to degrade carbohydrates which are readily available

to granivores, including bobwhites. This could be a result of

technical limitations, such as sample storage, shipment, culture

media not optimized for wild quail specimens, because we did

experience difficulties in maintaining the viability of certain

obligate anaerobic isolates which could affect the final results. In

this study, we detected a relative richness in Actinobacteria and

Bacillus which may be associated with the ground-dwelling life style

of bobwhites that are in close contact with many soil bacteria.

These bacterial species in quail gut may help to digest cellulose in

quail diet, such as greens and fibrous seeds (e.g., Russian thistle,

Salsola kali).

This study also shows that the composition of quail microbiota

was significantly affected by age, sex, and tissue type. More

juvenile than adult birds carried Paenibacillus, a genus of bacteria

widely distributed in rhizosphere, forages, and insect larvae [29],

[30]. The members of this genus are known as plant growth

promoting rhixovbacteria that can act as biofertilizers and

biopesticides of plant pathogens. This genus of bacteria has also

Table 6. Antimicrobial susceptibility pattern of Gram positive bacteria isolated from bobwhites*.

Antimicrobial B. subtilis E. faecalis S. gallinarum

Agents (n=10) (n=10) (n =10)

Beta-lactam Amoxicillin #0.25 (100) 0.25–5 (100) #0.25 (100)

Ceftiofur #0.25 (100) $4 (100) 0.5–1 (100)

Penicillin #0.06 (100) 0.25–2 (100) #0.06 (100)

Aminoglycoside Gentamicin #0.5 (100) 4 (70), $8 (30) #0.5 (100)

Neomycin #2 (100) 8–8 (30), 16–32 (70) #2 (100)

Spectinomycin 8 (80), 16 (20) 32 (100) 16–32 (40), $64 (60)

Streptomycin #8 (100) 16–64 (100) #8 (100)

Tetracycline Oxytetracycline #0.25 (100) 0.25–2 (100) 0.25–0.5 (90), 8 (10)

Tetracycline 0.25–1 (100) 0.25–2 (100) 0.25–8 (10), 8 (10)

Phenicol Florfenicol #1 (100) 1–2 (100) 1–2 (90), 4 (10)

Macrolide Erythromycin #0.12 (100) 0.12–0.5 (100) 0.25 (0), $4 (10)

Tylosin #2.5 (100) #2.5 (100) #2.5 (100)

Lincosamide Clindamycin #0.5 (100) #0.5 (20), 2 (20), $4 (60) #0.5 (90), $4 (10)

Quinolone Enrofloxacin #0.12 (100) 0.25–0.5 (80), 1 (20) 0.15 (100)

Novobiocin #0.5 (100) 0.5–2 (90), $4 (10) $4 (100)

Sulpha Sulphadimethoxine 32 (100) $256 (100) 32 (100)

Sulphatiazole 32 (100) 64 (10), $256 (90) 32 (100)

Trimethoprim/Sulpha #0.5 (100) #0.5 (100) #0.5 (100)

*The ranges of MICs (% of isolates) are indicated as follows: regular font, susceptible; bold and italic, intermediate susceptible; and bold and underlined, resistant.
doi:10.1371/journal.pone.0099826.t006
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been demonstrated to be inhibitors of pathogenic bacteria of

animals, such as Campylobacter jejuni and Clostridium botulinum [31],

[32]. The antimicrobial property of Paenibacillus may be utilized to

promote quail gut health as being done in chickens [31]. In

addition to age, sex was another factor that influenced the

distribution of two closely related genera, namely Enterococcus and

Streptococcus. In addition, we observed that the vast majority of

bacterial species were unique to individual birds and only a small

percentage of bacterial species could be found in multiple birds.

Variation in bacterial species composition was also detected

among tissues with only eight species being conserved throughout

the intestinal tract. In this study, the experimental quail were

collected from multiple ranches across the Rolling Plains ecoregion

which may contribute to this high degree of variation among

individual quail.

We performed several types of selective and enrichment cultures

to capture pathogenic bacteria that have fastidious growth

requirements. However, our results show an extremely low

prevalence of traditionally known respiratory and enteric patho-

gens in bobwhite populations. Except the Mycobacterium species

isolated from one bird, no other obligate and zoonotic agents were

cultured from bobwhite. The low prevalence could be associated

with technical limitations such as media and culture conditions

were not optimized for wild quail specimens. Instead, we isolated

several opportunistic pathogens, such as E. coli, Enterobacter spp,

and Ps. aeruginosa. In general, E. coli is not considered part of the

intestinal flora of granivorous birds and its prevalence is much

higher in farm-reared and restocked birds than wild populations

[33], [34]. Ps. aeruginosa is known as an environmental organism

and airway colonization by Ps. aeruginosa can contribute to local

inflammation and respiratory disorder [35], [36]. Additionally,

bobwhite cloacal microbiota harbored several species that are

usually considered human commensal organisms, including

Neisseria species and Streptococcus mitis. Whether these are indige-

nous quail bacteria or contaminants due to human activities

remains to be determined.

Antimicrobial resistance is an important issue to both wildlife

conservation and public health [37]. The prevalence of antimi-

crobial resistance in wildlife is often unknown or underestimated.

This is because many resistant bacteria are components of

indigenous bacterial flora and routine diagnostic and surveillance

programs do not target these organisms. In the present study, we

detected a strikingly high rate of antimicrobial resistance in quail

microbiota. Nearly all E. coli, Enterobacter, and Neisseria isolates were

resistant to following classes of antibiotics: phenicol, macrolide,

lincosamide, quinolone, and sulphate. Either intermediate suscep-

tibility or resistance to beta-lactams and aminoglycosides were also

found in these Gram negative bacterial isolates. The Gram

positive bacteria, E. faecalis and Staphylococcus isolates, were resistant

to beta-lactam and sulphate antibiotics, in addition to aminogly-

cosides. All Ps. aeruginosa appeared to be more resistant than

environmental isolates as previously reported [37]. Wild bobwhites

are not subjected to the selective pressure associated with the use

of antibiotics. However, habitat pollution and the release of farm-

reared bobwhites could introduce resistant organisms or resistance

genes into wild quail populations. Currently, erythromycin,

neomycin sulfate, penicillin G, chlortetracycline, lincomycin-

spectinomycin are readily available to quail farms for prophylactic

or therapeutic use. Although the exact source of antimicrobial

resistance in wild quail populations remains to be investigated,

human exposure to quail antimicrobial resistant microbiota should

not be neglected.

In conclusion, the present study characterized the cultivable

bacterial microbiota of northern bobwhite. We isolated multiple

Paenibacillus spp. that are known to be inhibitors of pathogenic

bacteria. We also obtained multiple isolates potentially represent-

ing new bacterial taxa whose complete characterization is

currently underway. Overall, the prevalence of pathogenic

bacteria in bobwhite populations is low. However, phenotypic

characterization of selected bacterial species revealed a high

prevalence of resistance to multiple classes of antimicrobial agents

commonly used in avian medicine. The extent of antimicrobial

resistance in quail microbiota warrants further investigation on the

transmission of antibiotic resistance between wild and domestic

quail populations and between bobwhites and humans.
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