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ABSTRACT

Aims. We analyze the spectral redistribution of gyroresonant photons in the course of radiation transfer through magnetized plasma
atmospheres of isolated compact stars.
Methods. We use analytical estimate and Monte Carlo simulations to prove that this redistribution crucially influences the spectral
line formation for atmospheric parameters typical of neutron stars and white dwarfs.
Results. We point out the importance of the frequency redistribution of the gyroresonant photons to the process of radiation transfer
and analyze its main effects in atmospheres of isolated compact stars with strong magnetic fields, where multiple scattering dominates
over the absorption of photons. We estimate analytically and numerically the rate of this redistribution and show that photons’ escape
from the line center, which in this case is one-dimensional (1D) in origin, is a very pronounced effect despite being strongly inhibited
with respect to three-dimensional (3D) photon redistribution, which takes place in the case of atomic or ion spectral lines. The
escape of photons from the cyclotron line greatly affects both the line’s profile and the characteristic optical depth, from where the
outgoing radiation originates. Through this, the spectral redistribution of gyroresonant photons changes the radiation pressure on the
atmospheric plasma, what makes it one of the key phenomena need to be included in studies of cyclotron-driven winds.
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1. Introduction

Interest in gyroresonant radiation transfer arose with the first
observations of cyclotron lines in the spectra of astrophysical
objects, such as neutron stars and white dwarfs. For a firmly
grounded interpretation of these observations, the study of all
physical processes that take part in the cyclotron line formation
is needed. In the present work, we analyze the processes that lead
to the spectral redistribution of gyroresonant photons within and
outside the line core. Owing to the strong magnetic field, this
redistribution is a one-dimensional (1D) process, what makes it
different from the well-known three-dimensional (3D) redistri-
bution in the case of atomic (ion) line formation (see Mihalas
1978, and references therein). The net results, however, are qual-
itatively (but non quantitatively) similar: the redistribution dra-
matically influences the cyclotron line profile and the distribu-
tion of outgoing photons over their optical depth of origin.

Depending on the atmospheric parameters, different effects
can govern the transport of gyroresonant radiation in the strong
magnetic field. For example, the vacuum polarization and lin-
ear mode coupling can change the dispersive characteristics and
propagation of electromagnetic waves in magnetized plasma
(Adler 1971; Pavlov & Shibanov 1979; Zheleznyakov et al.
1983; Kirk & Cramer 1985; Ho & Lai 2001). Another poten-
tially important effect is the redistribution of the gyroresonant
photons over frequencies and their subsequent escape from the
line. This is the effect that we closly examine below for a broad
range of parameters. The comprehensive treatment of radiation

transfer with due account for the photon redistribution is beyond
the scope of this work and will be presented elsewhere.

Since the motion of electrons in the strong magnetic field is
essentially 1D, the spectral redistribution of photons is strongly
suppressed compared to the common case of atomic and ion
lines, where the motion of scatterers is 3D. However, the escape
of radiation from the cyclotron line becomes increasingly impor-
tant as the average number of scatterings that a photon takes to
leave the line (usually a very large number) exceeds the number
of scatterings it takes to get absorbed. This, as we show below,
appears to be a common situation in magnetized atmospheres of
compact stars. The frequency redistribution plays a decisive role
not only for neutron stars, but also (somewhat counterintuitively)
for white dwarfs, where the temperatures are very far from rel-
ativistic values and the magnetic field strength is several orders
of magnitude smaller than the Schwinger limit.

We note that Wasserman & Salpeter (1980) presented an
analysis of cyclotron radiation transfer in the limit of a strong
magnetic field, where the recoil effect is of crucial importance.
Here we focus on other mechanisms of frequency redistribution
that are important in the weaker magnetic fields such as the re-
distribution caused by both the relativistic Doppler effect and the
natural line broadening. We analyze, in terms of Monte-Carlo
simulations, how the frequency redistribution affects the radi-
ation transfer in the magnetized plasma with parameters that
are typical of compact stars atmospheres of B ∼ 108−1014 G,
T ∼ 1−1000 eV.
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One particularly important application of our work is to
cyclotron-driven winds. Mitrofanov & Pavlov (1981, 1982) drew
attention to the radiation pressure force in the atmospheres of
compact stars is becoming amplified because of an electron cy-
clotron resonance in the same way as it becomes amplified in the
presence of ion resonance lines in the atmospheres of early-type
stars. A number of estimates indicated that the critical luminosity
of compact stars with strong magnetic fields can be many orders
of magnitude below the Eddington limit (Braun & Yahel 1984;
Bespalov & Zheleznyakov 1990; Zheleznyakov et al. 1996). The
exact magnitude of the resonant radiation pressure force remains
an open question; apparently one should take into consideration
the spectral redistribution of gyroresonant photons, as well as
some other effects.

2. Model setup

Our numerical models are set up as follows. For the atmosphere,
we take the thin slab geometry, pure hydrogen composition, and
100 percent ionization. The magnetic field B is assumed to be
constant, so the cyclotron frequency does not change during
the transfer. We assume a constant temperature T , which cor-
responds to the Maxwellian distribution of electrons over longi-
tudinal (with respect to the magnetic field) velocities

f (β) = c
√

m/(2πT ) exp
(
−β2/(2β2

T)
)
, (1)

where c is the speed of light, m the electron mass, and β = v/c
the dimensionless longitudinal velocity, βT = (T/(mc2))1/2 the
thermal velocity. The transverse temperature is taken to be zero
(all electrons are at the ground Landau level). In principle, strong
gyroresonant radiation can alter the electron distribution over the
longitudinal velocities and Landau levels; this as well as possible
temperature inhomogeneity will be discussed elsewhere. We use
the optical depth at the cyclotron line center

τc =
(2π)3/2 e2

βTωBmc

∞∫
z

N(z′)dz′, (2)

as a definition of the local optical depth. Here e is the elementary
charge,ωB = eB/(mc) the electron gyrofrequency, N the number
density of electrons and the z-axis is perpendicular to the stellar
surface and directed outwards.

3. Photon redistribution over frequencies

We now consider first the photon redistribution via the relativis-
tic Doppler effect. Here we use the word “relativistic” to stress
the necessity to keep second order terms in the resonance con-
dition, regardless of how small the velocity of a scatterer is. The
non-relativistic resonance condition for 1D electron motion

ω(1 − β cos θ) = ωB, (3)

means that a photon with given frequency ω and propagation
angle θ is scattered resonantly by electrons whose longitudi-
nal velocity is (ω − ωB)/(ω cos θ). When the photon scatters
off such an electron, it acquires different parameters ω′ and θ′,
but these quantities are related by the same resonant condition,
with the same value of resonant velocity. Thus, by an appropriate
choice of variables the equation of radiation transfer reduces to
an equivalent of monochromatic scattering by immovable par-
ticles. This implies that escape of photons from the cyclotron

resonance line due to the Doppler frequency shift is absolutely
forbidden as long as the non-relativistic approximation is used.

From the fully relativistic resonance condition for photon-
electron interaction one can find that for each frequency ω there
are, in general, two groups of resonant electrons. Under the con-
ditions typical for neutron stars and white dwarfs, the thermal
velocity of electrons is much smaller than the speed of light and
the energy of gyroresonant photons is much smaller than the
electron’s rest energy, �ωB � mec2. In this case, it is sufficient
to expand the cyclotron resonance condition into a power-law
series, keeping terms up to the second order in β and up to the
first order in the recoil parameter κ = �ωB/(2mc2):

ω

(
1 − β cos θ +

β2

2

)
= ωB

(
1 − κ sin2 θ

)
. (4)

The velocities of resonant electrons are:

β1,2 = cos θ ±
√

cos2 θ − 2
(
1 − ωB

ω

(
1 − κ sin2 θ

))
. (5)

If | cos θ| ∼ 1, one of the roots becomes unphysical (|β| > 1),
which is of no real importance since the number of electrons in
a Maxwellian distribution at |β| � βT is negligible anyway. In
the case of quasitransverse propagation (|cos θ| <∼ βT), both roots
are of the order of βT and should be taken into account together,
since both groups of resonant electrons are numerous enough.

Resonant interaction with two separate groups of electrons
at once can lead to an efficient escape of radiation from the line
center. We consider, for example, a photon, that resonantly scat-
ters off an electron with velocity β2, and that is also in reso-
nance with electrons whose velocity is β1 (where we assume that
|β2| > |β1| for definiteness). Upon scattering, the photon acquires
frequency ω′ and propagation angle θ′. This photon will be in
resonance with electrons which have either the velocity

β
′
2 = β2 + 2κ(cos θ − cos θ′),

which is nearly the same as the initial one except for the small
(because usually κ � βT) recoil correction, or the velocity
β
′
1 = 2 cos θ′ − β′2, which, in general, differs a lot from the initial

resonance at β1. Furthermore, the relation |β′1| � |β
′
2|, βT holds

for almost all possible scattering directions. In effect, the photon
makes a jump from one group of resonant electrons (those with
β = β1, which are the most abundant resonant electrons before
the scattering) to another (those with β = β

′
2 ≈ β2, which are the

most abundant resonant electrons after the scattering).
A typical outcome of such a scattering is a decrease in the

optical depth because the number of electrons with relatively
high velocities β2 is smaller than that with low velocities β1.
For the Maxwellian distribution, the optical depth τ drops from
τ ∼ τc exp

(
−β2

1/(2β
2
T)

)
to τ ∼ τc exp

(
−β2

2/(2β
2
T)

)
.

The jump mechanism causes photons to escape from the line
mainly in a single scattering. This happens if a photon after the
scattering has both resonant groups far enough from zero veloc-
ity, β = 0, so that the optical depth becomes less than unity. For
the Maxwellian distribution, this condition takes the form

|β| > βesc = βT(2 ln(τc))1/2.

We consider a photon that has a resonance at β1 = 0; its second
resonant group is therefore at β2 = 2 cos θ. If |β2| > βesc, then a
single scattering off an electron with velocity β2 will allow the
photon to escape. The probability of this scattering relative to
the total scattering probability equals

P =
[
1 + exp

(
2 cos2 θ/β2

T

)]−1
(6)
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Fig. 1. The probability of escape via line broadening, Pγ (per scatter-
ing), for a photon with frequency ω = ωB residing at the optical depth τ.
Solid line is for γ/(ωBβT) = 10−3, dashed line is for γ/(ωBβT) = 10−4,
and dot-dashed line is for γ/(ωBβT) = 10−5.

and rapidly drops to zero at | cos θ| � βT. Averaging Eq. (6) over
isotropical propagation directions yields the escape probability

Pjump ≈ βT/
(
τc

√
8 ln τc

)
. (7)

Two other mechanisms of photon escape from the cyclotron line
are the recoil and the off-resonance scattering, which become
possible because of the line broadening. The recoil mechanism
operates only under the condition βT � κ

√
ln τ. In this case,

the recoil velocity is so large that after the scattering the elec-
tron finds itself far in the tail of the Maxwellian distribution and
therefore escapes from the line. In the opposite case, the fre-
quency shift attained due to recoil is compensated at subsequent
scatterings and the photon remains within the line (Wang et al.
1988).

The probability of escape from the line via radiative broad-
ening can be calculated as follows. If after the scattering the opti-
cal depth for the photon becomes less than unity, we assume that
this photon has escaped from the line. We define PΣ(βT, γ, τc) to
be the probability of such an event, where γ = 2e2ω2

B/(3mc3)
is the natural line width. If the natural line width were equal to
zero, then the probability of escape would be equal to the prob-
ability of escape due to relativistic jumps: PΣ = Pjump. If we
neglect relativistic effects, then PΣ = Pγ(γ/(ωBβT), τc) where in
the non-relativistic limit the cyclotron line has a pure Voigt shape
(Wasserman & Salpeter 1980), thus it depends only on the ratio
of the natural line width to the Doppler width. Here Pγ is the
probability of escape due to the finite natural line width. There
is no simple formula for this probability, but it can be calculated
numerically, the result being presented in Fig. 1.

Under the condition that the natural line width is much
smaller than the Doppler width, the overall probability of escape
is PΣ ≈ Pγ + Pjump. This expression is approximate because of
the relativistic corrections to Pγ and finite line-width corrections
to Pjump, whose influence is minor, as confirmed by numerical
simulations. We note that Pγ(τ) is a much slower function of
optical depth τ than Pjump(τ), which means that at sufficiently
high optical depths the probability of escape due to natural line
broadening becomes dominant.
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Fig. 2. The function τ2Pesc(τ) for the semi-infinite atmosphere. Model
atmosphere parameters are ε0 = 10−6, βT = 0.01, and γ/ωB = 10−6.
Solid line represents data with both relativistic Doppler effect and natu-
ral line broadening taken into account, and dashed line that where only
non-relativistic Doppler effect (3) is included in the simulation.

4. Monte Carlo simulations

We consider a semi-infinite atmosphere with an exponential den-
sity profile, where scattering strongly prevails over absorption.
The probability of absorption in a single photon-electron inter-
action grows linearly with the optical depth Pabs = ε0τ, pro-
vided that τ � ε−1

0 . Using a Monte Carlo code based on the
Lucy (1999) algorithm, we calculate the probability of escape
for a photon initially emitted at the optical depth τ. The results
(Fig. 2) show that the probability of escape increases consider-
ably because of redistribution effects, especially at large optical
depths. Therefore, the impact of these deep layers on the emer-
gent spectra can be crucial.

At smaller optical depths, where the probability of absorp-
tion is very low, the escape probability is close to 1. Thus, al-
most all photons have enough time to escape from the atmo-
sphere. Starting from the depth τ1 ≈ (ε0)−1/3, which is equal to
the so-called thermalization depth in the limit of coherent scat-
tering, photons are more readily absorbed than let to leave the
atmosphere via diffusion. Here the photons escape from the at-
mosphere primarily through the wings of the line, as a result of
redistribution. Furthermore, if the optical depth for a photon at
its place of origin were larger than τ2 = 1/ε0, then the mean
free path would be determined not by the scattering, but rather
by the absorption. In this case, the photon has an exponentially
small probability of escaping from the atmosphere. We note that
the majority of emerging radiation is generated at τ < τ2. This
means that, for the comprehensive analysis of cyclotron radia-
tion transfer, one should include frequency redistribution effects
in the simulations and run them for all optical depths up to the
large value τ2.

On the basis of the Monte Carlo calculations, we identify
regions of the magnetic field – temperature plane, where par-
ticular mechanisms of photon escape dominate (Fig. 3). These
results are given for the optical depth where the probability of
photon absorption is equal to the probability of photon escape.
Since a significant part of the emergent radiation originates at
larger depths, the frequency effects can be important under even
less restrictive conditions. Hence, the exact location of the bor-
der lines in Fig. 3 cannot be defined in a model-independent way.
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Fig. 3. Schematic view of the regions of dominance for various mechanisms of photon escape on the magnetic field – temperature plane, I –
diffusion escape, II – relativistic jumps, III – natural line broadening, IV – recoil. The region where cyclotron driven wind is possible is above the
dashed lines. The left figure is for a white dwarf (MWD = 1 M
), and the right figure is for a neutron star (MNS = 1.4 M
, R = 12 km).

Altogether, there are four zones with different cyclotron ra-
diation escape dynamics. In zone I, the spatial diffusion of
photons leads them out of the atmosphere without any signif-
icant changes to their mean free paths. In this case, we can
neglect both relativistic jumps and escape due to the natural
line broadening. In zone II, the majority of the cyclotron radi-
ation leaves the line because of relativistic jumps, whereas in
zone III it leaves the line because of off-resonance scatterings
at the Lorentzian wings of broadened cyclotron line. In zone IV,
the recoil effect becomes important. We note that these zones are
determined according to the main escape mechanism of a pho-
ton, which, generally speaking, differs from the main frequency
redistribution mechanism (cf. Fig. 1 in Garasyov et al. 2008).

The region where a cyclotron driven wind is possible, is
above the dashed lines. The line is drawn assuming a maxi-
mum possible cyclotron radiation pressure, i.e. assuming that the
emerging intensity is equal to the blackbody’s value with tem-
perature T . The wind region in Fig. 3 encompasses the first three
zones. Thus, both a relativistic correction to the resonance con-
dition and natural line broadening should be taken into account,
whereas the recoil effect can be neglected for cyclotron-driven
winds.

5. Conclusions
We have analyze the effects of the frequency redistribution of gy-
roresonant radiation in the atmospheres of magnetized compact
stars, particularly the region of parameters around �ωB ∼ kT ,
where the formation of a cyclotron radiation-driven wind is pos-
sible. At the same time, our study is equally well suited to ob-
taining the cyclotron line profiles in the case of low intensities,
where no wind-like outflow is expected.

The redistribution under such conditions differs essentially
from the well-studied mechanisms that are typical of the atomic
and ion spectral lines, primarily because of the 1D character of
electron motion in a strong magnetic field. The inclusion of so-
phisticated physics and the interplay between various mecha-
nisms of the gyrophoton redistribution over frequencies make
the problems of the gyroresonant radiation transfer and the cy-
clotron radiation-driven wind highly non-trivial. The resolution
of both problems may greatly enrich our understanding of com-
pact star observations.

Our finding is that the main (for typical compact-star param-
eters) cause of the redistribution of gyrophotons over frequen-
cies, is the relativistic Doppler effect. It is responsible for two
roots in the gyroresonance condition, such that a photon can ex-
perience huge changes in opacity by resonantly scattering off
faster electrons whose longitudinal velocity is offset from the
Maxwell distribution core. The finite linewidth and the recoil ef-
fect turn out to be less important when the energy of cyclotron
quanta is of the order of the thermal energy, but can be crucial
if the cyclotron line is located far in the Wien tail of thermal
spectrum or the optical depth is sufficiently large.

Statistically, the redistribution of photons out of the cy-
clotron line results in a boosted probability of their escape from
a large optical depth. As our simulations show, the emerging ra-
diation is gathered over a large interval of optical depths, span-
ning one or two orders of magnitude. Potentially, this causes all
sorts of inhomogeneities to show up in the resulting spectrum in
a more pronounced way, and the radiation transfer equation in
these situations should be solved over a range of optical depths
sufficiently large to capture the origin of the major part of out-
going photons.
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