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We use numerical Monte Carlo simulation to study kinetics of deposition of oriented superdisks,
bounded by the Lame curves of the form |z|*” + |y|?* = 1, on regular planar substrate. It was
recently shown that the maximum packing density, as well as jamming density ps, exhibit discon-
tinuous derivative at p = 0.5, when the shape changes from convex to concave form. By careful
examination of the late-stage approach to the jamming limit, we find that the leading term in tem-
poral development is also nonanalytic at p = 0.5, and offer heuristic excluded-area arguments for

this behavior.

PACS numbers: 02.50.r, 68.43.Mn, 05.10.Ln, 05.70.Ln

Deposition, or adsorption, of extended objects at dif-
ferent surfaces is of considerable interest for a wide
range of applications in biology, nanotechnology, device
physics, physical chemistry, and materials science [1, 2].
Typically, such objects range in size from submicrometer
scale down to nanometers, and, depending on the appli-
cation in question, the objects could be polymers, globu-
lar proteins, nanotubes, DNA segments, or general geo-
metrical shapes such as discs, polygons, etc. Early stud-
ies have focused on deposition of simple regular shapes
(lines, needles) on spatially homogeneous, regular sub-
strates [3] and the main issue was the effect of shape,
size, orientation, and symmetry of the depositing objects
on the late stage kinetics of this process.

Typical physical situation is that the particles (ob-
jects) are randomly deposited on the target surface with
uniform flux and that there are no equilibrium processes
active at the surface. Because of this, the final density of
the deposited objects, after which no additional deposi-
tion is possible, is less than the maximum packing den-
sity. This final, or jamming, density, p; has been recently
studied [4] for objects of different geometrical shapes and
symmetries, and it was shown that p; exhibits singular-
ity when the shape changes from convex to concave. In
a separate study of densest packing of non-overlapping
objects [5], the maximal packing density is found to be
nonanalytic at the point when objects become noncircu-
lar. Additionally, it was found that the change of shape
away from rotational symmetry influences packing char-
acteristics in nontrivial way.

Theoretically, several models have been developed to
capture the basic physics of deposition, and by far the
most studied is that of random sequential adsorption
(RSA)[3]. In this model particles (objects) are sequen-
tially deposited on the randomly chosen site on the sub-
strate. When deposited, such objects are irreversibly and
permanently attached to that site. If the randomly cho-
sen site for deposition is already occupied, or the objects
overlap due to their size or shape, the deposition is re-
jected, the particle is discarded, and the deposition is
next attempted at a different randomly chosen site. Note
that, in this process, object-object and object-substrate
interactions are modeled solely by geometrical and other

features included in the deposition procedure [6-16].

Two main properties are of particular experimental
and theoretical interest in this process: (i) the final jam-
ming density of objects and (ii) the leading temporal ap-
proach to the jammed state. This second property promi-
nently features in experimental situation where it is im-
portant to understand the process of approaching various
specific morphological properties as the deposit is formed,
for example, avoiding contact. Examples include depo-
sitions on prepatterned surfaces [17-19], or nanoparticle
sintering [20] or in inkjet printing technology [21] where
the evolution of surface morphology plays the major role.
While the properties of the final jammed state as a func-
tion of geometry and size of the depositing objects are
reasonably well understood [4], the kinetic properties of
the approach to this state have not been extensively stud-
ied (see, for instance, concluding remarks in [13]). It is
the purpose of present work to address this question.

In this work we consider the kinetics of deposition of
oriented “superdisks” on homogeneous planar substrates.
Such shapes in two dimensions are defined by the expres-
sion |z|?? 4 |y|?’ < 1, where p is deformation parameter
with values p € (0,00). As p varies the shape changes
from “cross” (p = 0), to square (p = 0.5), to circular
(p=1), to “diamond” (p = c0) as illustrated in Fig. 1.

Note that, for p < 0.5, the depositing object are con-
cave, of general astroid shape, and then become convex
for p > 0.5. Clearly, p = 0.5 is the special point in this re-
spect (see below). Also, when p = 1 the shape is a circle.
For all p > 1 we get the family of objects with quadratic
symmetry, while for p < 1 the resulting family of objects
also have quadratic symmetry, but rotated by /4 with
respect to the first group[5]. It is clear, generally, that by
changing the deformation parameter p, one can control
both convexity and the symmetry of the object.

The deposition proceeds via standard RSA algorithm:
the point on the surface is randomly chosen to place the
center of the object. If the object can “fit” at this point
without overlapping with neighboring deposited objects
it is placed there. Otherwise it is discarded, and the next
deposition is attempted at a different randomly chosen
point. In our simulation we only used oriented objects.

At the very early stages of deposition, we expect that
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Figure 1: Superdisk shapes for different values of
deformation parameter p. Note the change of shape
from concave to convex at p = 0.5.

the density of deposited objects will grow linearly with
time, since almost any randomly chosen point for deposi-
tion attempt will be unoccupied. However, as more and
more objects are deposited, it becomes harder to find
the available spot to place an object without overlap,
and the density of deposited objects, p(t), grows much
more slowly, until it reaches jamming density, ps, after
which no more objects can be placed on the substrate.
This final jammed-state configuration is not unique and
objects do not cover the substrate with maximum pack-
ing density[3]. Indeed, the jamming density, or the den-
sity of deposited particles per unit area, is simply related
to the jamming coverage, or the fraction of the covered
area by the simple relation, A(p)ps(p), where A(p) is the
area of the “superdisk” (see bellow), and we have explic-
itly indicated p-dependence of the relevant quantities. Of
course, the details of the approach to the jammed state,
i.e. the late-stage deposition kinetics, as well as the jam-
ming density itself, will depend on the shape of the ob-
jects. Recall that this shape can be continually tuned by
varying the deformation parameter p. As mentioned, in a
recent study Gromenko and Privman [4] have shown that
the jamming density, ps, is nonanalytic at p = 0.5, i.e.
when the object’s shape changes from convex to concave.

Turning back to the approach to the jamming density,
recall that, in RSA, the process is described by the stan-
dard Pomeau [22] and Swendsen [23] conjecture which
gives asymptotic results for oriented simple shapes that
are in agreement with numerical simulations [24]. This
conjecture, however, may not be correct for non-oriented
objects [25, 26]. In the rest of this paper we describe the
numerical procedure used and the results obtained for
the deposition kinetics of oriented superdisks with the
deformation parameter in the range 0 < p < 1.

In our Monte Carlo (MC) procedure, the substrate was

of the size 500D x 500D, where D is the typical “diame-
ter” of the depositing object [5]. In our simulation D = 2.
Once the point for the center of the object is randomly se-
lected on this substrate, we tested if the whole object can
“fit” without overlap with neighboring objects already
deposited. It’s not necessary to check overlapping with
all neighbors but only with nearby points with centers
not closer than D from the new point. Overlap testing is
computationally “expensive” operation, so this approach
makes simulation much faster than checking all previ-
ously deposited points for every new candidate point.
We made two implementations, one in “C” and one in
“Java” programming language. It appears that “Java” is
more reliable as random number generator.

With very simple objects, like line segments and the
like, this test is straightforward , but becomes more in-
volved in the case of superdisks. Namely, each superdisk
of the form |z|?" + |y|?? < 1 has the area

1+ 3;)
Alp) = 4@ (1)

where I' is standard Gamma function. No point encom-
passed by this area can be shared with any other su-
perdisk (non-overlap condition). This means that there
is an exclusion region around the deposited superdisk
within which no center of another superdisk can be
placed. For example, when p = 1, the object is a cir-
cle with unit radius, with area A(1) = 7 , and the corre-
sponding exclusion region is also a circle, but with radius
equal to 2, and area 4 .

In general, the exclusion region for the convex su-
perdisks of the form |x|?P + |y|?? < 1 is another superdisk
of the form |z|?P + |y|?P < 2P and the area of this re-
gion is A., = 4A(p) where A(p) is given by (1), and
the subscript “cx” indicates that p > 0.5, i.e. the ob-
ject is convex. Within this region, no center of another
superdisk can be placed.

For concave superdisks the situation is slightly more
involved. The exclusion region is shown in Fig. 2. Its
boundary consists of the external envelope formed by
four superdisks centered at the corners of the original
superdisk |z|?? + |y|?? < 1.

The exclusion area of this region is easily calculated
and is given by A.. = 4 + 2A(p) where A(p) is given by
Eq (1), and the subscript “cc” indicates that p < 0.5,
i.e. the superdisk is concave. Recall that A(0.5) = 2,
so that Aq,(p = 0.5) = Acc(p = 0.5), and the exclusion
areas are equal, as expected. However, the derivative of
the excluded area has discontinuity at p = 0.5. This is
clearly visible in Fig. 3. Solid lines mark parts of A..
and A., that must be used to determine real exclusion
region. Dashed lines are their nonphysical continuations.

This nonanalyticity of the excluded area is the origin
of the observed singularity in both jammed state [4] and
the maximum packing state [5] of superdisks at p = 0.5.

To investigate the kinetics of RSA deposition of su-
perdisks, we performed 100 MC runs for each value of



Figure 2: Exclusion regions for concave and convex
superdisks (outer envelopes). The example illustrates
cases with (a) p=0.3, and (b) p=0.75.

Figure 3: The area (size) of the exclusion regions is
marked by solid line.

0 < p < 1, with each run typically of several billion steps,
until the jamming limit is reached. We plausibly expect
[12, 27] that the approach of the coverage density to its
value at the jammed state is of the exponential form:

p(t,p) = ps(p) — Q(p)e 7 (2)

where () and o are parameters to be determined, and
their (possible) p-dependence is explicitly indicated. The
normalized jamming limit shows nonanalytic behavior at
p = 0.5, as explained above [4]. The plot of normalized
jamming limit faitfully reproduces the result previously
obtained by Gromenko and Privman illustrated in Fig.
3. of reference [4].

This can be also seen on the plot of the coverage den-
sity, shown below in Fig. 4.

Turning to the time-dependence, we plot In(py — p(t))
vs. time, for several values of parameter p, as shown on
Fig. 5.
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Figure 4: Coverage density as a function of deformation
parameter p.
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Figure 5: Approach to the jamming density with time
for several values of the deformation parameter p. The
linear part can be approximated by the line of the form

—ot +1n(Q(p))

Inspection of this graph shows: (i) that the parameter
o from Eq (2) has no dependence on p, and we get o =
3.5% 1072 | and (ii) that Q(p), the pre-factor in front
of the exponential approach in Eq. (2), depends on the
deformation parameter p in a nontrivial way.

This is not entirely unexpected, as it is known [27]
that, with the RSA deposition of line segments on the
substrate, the corresponding pre-factor is inversely pro-
portional to the length of the segment. In this simple
situation the exclusion area is simply the length of the
segment. In our case, the connection is more compli-
cated. The plot of Q(p) vs. p, shown in Fig. 6.

This term is clearly nonanalytic at p = 0.5 (square
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Figure 6: Plot of the prefactor of the exponential
approach to the jamming limit, Eq. (2), shows
nontrivial dependence on p, and a singularity at p = 0.5.

object). We believe that this reflects non-analyticity of
the exclusion area for this value of p, which is, itself,

consequence of the change in convexity of the deposited
objects.

In conclusion, we have studied time dependence of de-
position of oriented superdisks of various shapes on ho-
mogeneous substrates. Our results indicate that, in addi-
tion to maximum packing density and jamming density,
the leading term in late stage deposition also shows non-
analytic behavior when depositing objects change their
shape from convex to concave. Intuitively, one would ex-
pect that the convexity of the depositing object would
become more important in late stage deposition kinetic,
as they pack closer and closer, and the details of their
shape and the size of the exclusion area begins to play
more prominent role. The study of this effect for non-
oriented superdisks is currently under way.
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