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We measure the current vs voltage (I-V ) characteristics of a diodelike tunnel junction consisting
of a sharp metallic tip placed at a variable distance d from a planar collector and emitting electrons
via electric-field assisted emission. All curves collapse onto one single graph when I is plotted as
a function of the single scaling variable V d−λ, d being varied from a few mm to a few nm, i.e.,
by about six orders of magnitude. We provide an argument that finds the exponent λ within the
singular behavior inherent to the electrostatics of a sharp tip. A simulation of the tunneling barrier
for a realistic tip reproduces both the scaling behavior and the small but significant deviations from
scaling observed experimentally.

PACS numbers: 73.40.Gk,73.63.-b,68.37.Ef,79.70.+q

I. INTRODUCTION

The physical process leading to the emission of
electrons from a sharp metallic tip placed at a well
defined distance d from a planar electrode depends
on d. If d is less than about 1 nm the current is
produced by direct tunneling between emitter tip
and planar collector.1 This type of tunnel junction
is used, e.g., in Scanning Tunneling Microscopy2

(STM). At larger distances, the current is dom-
inated by electric-field assisted tunneling of elec-
trons into the region between emitter and collec-
tor through the classically forbidden zone.1,3,4 This
is the type of junction underlying, e.g., an instru-
ment called the topographiner5,6 – a precursor of
STM technology – and is the elementary build-
ing block of recent and less recent developments
in nanoelectronics.7 The quantitative description of
electric-field assisted tunneling, originating within
the birth of quantum mechanics, is based on the
Fowler-Nordheim equation1,8–11 (FN) (see, e.g., Ref.
12 for a summary of recent developments), although
recent emitters – such as, e.g., carbon nanotubes, sil-
icon nanowires, and metallic nanowires-graphene hy-
brid nanostructures13–15 – as opposed to the “older
ones”16 – are almost atomically sharp and thus differ
essentially in their geometry from the planar elec-
trode geometry underlying the FN equation. For
such field emitters, the potential drop within the
tunneling barrier is non-linear and simulations have
revealed that the FN equation must be modified to
take such non-linearities into account.17,18

In this paper we systematically measure the current–
voltage characteristics of a junction in the electric-
field assisted regime, whereby the distance d between
tip and collector is varied from a few mm to a few
nm. We observe that the family of curves describ-
ing the current I as a function of the two indepen-

dent variables V and d can be “collapsed” onto one
single scaling curve when I is plotted as a function
of the single scaling variable V d−λ. This collapsing
by a power law of d implies that the physical law
governing the flow of current is invariant with re-
spect to changes of the length scale d. We argue that
the exponent λ originates within the solution of the
Laplace equation of electrostatics in the vicinity of a
singular point and undergoes crossovers to different
values depending on whether d is comparable to the
total length L of the tip, d�L, and, finally, whether
d is comparable to the radius of curvature of the tip
(see Fig. 1). Both the scaling behavior and small
but significant deviations from it observed in experi-
ments are reproduced by a model which assumes the
electrostatic potential of a realistic tip within the
classically forbidden region.

II. EXPERIMENTAL METHODS

A schematic view of the experimental setup is
sketched in Figure 1. The tip is biased with a nega-
tive voltage with respect to the anode, so that field
emitted electrons flow from the tip into the anode.
Our tips are fabricated starting with a tungsten wire
with a few mm length and 250 µm diameter. The last
few hundreds of µm close to one end of the wire are
etched electrochemically to assume a cuspidal profile
which, in the final few µm toward the apex, resem-
bles very much a cone with a full angle of aperture
between ≈ 6◦ and ≈ 12◦. A rounding of the cone
tip limits its sharpness to ≈ 5 nm radius of curva-
ture (at best) but it can be as large as ≈ 30 nm,
depending on the details of the tip preparation in
an ultra-high vacuum.6 For the experiments with d
in the subnanometer to ≈ 2000 nm range (d being
the distance between the apex of the tip and the an-
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FIG. 1: Schematic view of the experimental setup.
L ≈ 2 mm is the total length of the field emitter while
t ≈ 250 µm is the length of the tip. The current I, the
voltage V , and the distance d are the tunable experimen-
tal parameters. (r, θ) are the polar coordinates used in
the definition of the electrostatic potential Φ(d, r, cos θ).

ode), the collecting plane is a W(110) or a Si(111)
single-crystal surface, prepared with standard sur-
face techniques in a base pressure of ≈ 10−11 mbar.
The quality of the tip and the surface topography of
the anode are tested by performing standard STM-
imaging.2,19 By mounting the tip onto a piezocrys-
tal, that can move the tip perpendicularly to the
surface, the distance d between tip and planar an-
ode can be varied. The approach of the tip to the
anode to reach STM-imaging distances (sub-nm) is
used to define the origin of the d scale. The STM
image of the W(110) surface consists of a few tens
of nm wide terraces separated by monoatomic steps,
which are known to have a height of 0.2 nm. This
value is used to calibrate d up to d≈2000 nm, which
is the largest displacement we can obtain using our
piezocrystal drive. The piezocrystal derived value
of d was also double-checked by an optical sensor
device, integrated ad hoc into our homemade STM
microscope for the purpose of making sure that the
piezoreading of d is also reliable at distances much
larger that the STM imaging distance. Notice that
experiments involving d ranging from several µm to
mm are performed by moving the tip with a me-
chanically driven positioner. In this case, the origin
of the d scale is established by detecting the Ohmic
contact between the tip and the anode after the data
acquisition.

III. RESULTS

A. Experimental evidence of scaling

Figure 2 shows scaling plots in three different
ranges of values for d. On the left, one finds the fam-
ily of I-V characteristics measured within a given d
range (color coded along the vertical column). On
the right, all I vs V graphs are brought to almost
collapse (within experimental noise) onto one single
I vs V R(d) reference curve. This means that one en-
tire I-V curve at a given distance d is mapped onto a
reference I-V curve (which can be chosen arbitrarily)
by multiplying all voltages by the same number R(d)
(scaling factor), plotted in the inset on the right fig-
ures. The scaling factor R(d) depends on d but not
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FIG. 2: Left: Family of I-V curves in the ranges: (a)
0.84–2.84 mm, (b) 15–1605 µm, and (c) 3–300 nm. Right:
The curves on the left are made to collapse onto the
curve corresponding to d=0.84 mm, 14 µm, and 300 nm,
respectively, by multiplying the voltage with a number
R(d), plotted in the insets on the right. The continuous
red curves through R(d) in the insets are a power law
∝ d−λ with λ = 0.71, 0.27, and 0.22, respectively. The
variable d is color coded along the vertical bar on the
right. The anode used to acquire the data in the top and
middle figure was a stainless steel sphere with about a
1 cm diameter. The alternative horizontal scale in (c)
(right) is explained in the text.
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FIG. 3: Left: family of V -d curves [data taken from
Fig. 2 (c)] in the range 0.2 to 300 nA, respectively, each
curve corresponding to a given current (color coded along
the vertical bar). Right: The family of curves is collapsed
onto one single curve corresponding to I=2.3 nA by mul-
tiplying the voltage with a number R(I), plotted in the
inset.
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on I and behaves approximately as a power law d−λ

[see the red continuous curve through the graphs of
R(d)]: This means that the current flowing obeys a
scaling law of the type I=I(V d−λ), i.e., it is a gen-
eralized homogeneous function of V and d (Ref. 20),
I(x) being the scaling function. The exponent λ de-
pends on the range of d: it crosses over from λ≈0.71
[Fig. 2 (a), d= 850–3000 µm] to ≈ 0.27 [Fig. 2 (b),
d = 15–1600 µm] to about 0.22 [Fig. 2 (c), d = 3–
300 nm].
The same set of experimental data can be repre-
sented in a V -d diagram as, e.g., in Fig. 3 (left). In
a V vs d plot the distance is varied and the voltage
is changed in such a way that the current flowing is
kept constant over the whole V -d curve. The fam-
ily of curves in Fig. 3 (left) can be collapsed onto
one single graph [Fig. 3 (right)] by multiplying the
voltage V by a factor R(I), common to all distances,
plotted in the inset. R(I) can be described by a
power law R(I) ∝ I−µ as well, with µ ≈ 0.03–0.04,
signifying that d depends on one scaling variable,
i.e., d=D(V I−µ), D(y) being the scaling function.

B. The scaling functions

By setting the scaling variable V d−λ = const
(namely, fixing the current) one obtains d ∝ V 1/λ,
i.e., D(y)∝y1/λ or, equivalently, V ∝dλ. One could
proceed similarly to obtain I(x) from V I−µ= const.
However, being aware that, in practice, it is al-
most impossible to distinguish a power law I−µ from
ln(1/I) (Ref. 21), when µ is very small, we prefer to
use V ln(1/I) = const to obtain the scaling function
I(x) ∝ exp(−1/x): This functional dependence is
more established in the literature dealing with quan-
tum tunneling1,8,9 because it is directly related to
the quantum-mechanical transmission coefficient.

C. Experimental determination of the
exponent λ

Collapsing of I-V curves has been occasionally
encountered in experiments [e.g., in the range 0.1–
0.8 mm (Ref. 22)] as well as a power-law dependence
on d with λ=0.19 in the 2–14 µm range.23 However,
the systematic collapsing, accompanied by the emer-
gence of characteristic exponents describing entire
sets of graphs over wide ranges of d, needs justifi-
cation. To avoid the crossover observed when d en-
ters a range comparable to the length L of the emit-
ter, we performed experiments in the range d� L
(remarkably, the same crossover appeared in finite-
elements simulations of a similar junction24). Fig-
ure 4 summarizes experimental V -d curves. In a
typical experiment, the field-emitter current is set
to some prefixed value. The distance d is then var-
ied and the voltage required to keep the current at
the prefixed value is measured. In this way, one pro-
duces a family of V -d curves at selected currents. In
the range d≥ 10 nm, the observed linearity (in the
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FIG. 4: Summary of V -d curves at 0.2 nA in a log10 V
vs log10 d plot, d from ≈3 nm to ≈2000 nm. The curves
have been shifted along the vertical scale relative to each
other for clarity.

log-log plot) is a manifestation of a power-law behav-
ior ∝dλ. Most of our data in this range of d give an
exponent λ≈0.2±0.05, with some exceptions reach-
ing values up to ≈ 0.35 (see the top graph). This
means that the exponent is probably not universal
but concentrates around a value of about 0.2. A sys-
tematic downward bending of the graphs in the range
d<10 nm also emerges from Fig. 4, which indicates
a crossover to a possibly different power-law regime
with a larger exponent. Thus, these experiments can
be summarized as indicating a power-law exponent
λ≈0.2±0.05, in the range 10.d.2000 nm, with a
crossover toward larger values in the range d.10 nm.

D. The origin of the exponent λ

Our working hypothesis for explaining the appear-
ance of λ and the measured value is that keeping a
constant current is equivalent to keeping a constant
electrostatic potential within the classically forbid-
den region.4 This is because the electrostatic po-
tential Φ(x) within the classically forbidden region
determines the transmission probability through
the classically forbidden region via the quantum-
mechanical Gamov exponent, which in its simplest

version can be written as
√
8m
~

∫ x2

x1

√
ϕ− |eΦ(x) |dx

(ϕ is the work function of the tip, x is the spatial
coordinate along the tip axis, and the spatial inte-
gration is performed between the classical turning
points xi). We search for a hypothetical scaling be-
havior of the electrostatic potential for the simple
case of a tip (set for convenience to zero potential)
with conical shape positioned in front of a plane set
at a constant potential V > 0 and at a variable dis-
tance d. Defining as (r, θ) the variables describing
the distance from the tip of the cone and, respec-
tively, the polar angle measured with respect to the
cone axis (see Fig. 1), the potential in the vicinity of
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the tip reads25

Φ(d, r, cos θ) ∼= V Aλ1(d) rλ1 Pλ1(cos θ) . (1)

Rigorously, Eq. (1) gives the first term of an infi-
nite sum. Pλ1(cos θ) is a Legendre function of the
first kind and of order λ1. The exponent λ1 is the
smallest positive real number for which the boundary
condition Pλ1(cosβ) = 0 is fulfilled, β being the po-
lar angle describing the cone surface (π/2<β <π).
The denumerable infinite set of non-leading terms
are labeled by the numbers λi>λ1. The coefficients
Aλi(d) are determined by the boundary condition
Φ(d, r=d/ cos θ, cos θ)=V , with θ ∈ [0, π/2].
Statement. The coefficients Aλi fulfill the scaling
property

Aλi(d) = Aλi(1) d−λi . (2)

Proof. We notice that Φ(1, r/d, cos θ) fulfills the
same Laplace equation and boundary conditions as
Φ(d, r, cos θ). As the solution of the Laplace equa-
tion fulfilling given boundary conditions is unique,
we can set Φ(d, r, cos θ) = Φ(1, r/d, cos θ). The scal-
ing property Eq. (2) follows immediately. �
Equation (2), combined with Eq. (1), states that
varying d does not affect the potential Φ(r, θ, d) close
to the apex of the cone if the applied voltage V is
changed in such a way that V Aλ1

is independent
of d. In virtue of the scaling property Eq. (2),
V Aλ1

= const is equivalent to V ∝dλ1 , with an expo-
nent defined by the electrostatic boundary condition
on the cone surface. Indeed, our field emitters end
with an almost conical profile,6 with a full angle of
aperture of typically 6◦ to 12◦. This leads to λ1 in
the range 0.14–0.17,25 i.e., close to the value λ≈0.2
measured for a large number of field emitters. No-
tice that close to the apex the cone singularity is re-
moved by rounding and/or the formation of a small
sphere, with radius of curvature r0 that can vary
from about 4 to 5 nm at the best to some tens of nm
for the bluntest field emitters.6 The question arises
whether the power-law scaling in Eq. (2) expected
for a cone remains valid for realistic tips and what
values of λ1 should be used. We point out that the
scaling with d of Eqs. (1) and (2) for r0� d�L is
“protected” by Saint-Venant’s principle.26 Applied
to the present problem, that principle states that if
the rounding of the singularity is local enough, the
term in Eq. (1) (containing some cutoff length of the
order of r0) remains the leading one. Only when d
approaches values comparable to the radius of cur-
vature can we expect the remaining terms λi>λ1 to
play a role and to produce a crossover to a different
solution. We verified the robustness of the conical
power-law exponent by explicitly treating the prob-
lem of a tip with various typical geometries. For a
hyperboloid of revolution, we find that when d is suf-
ficiently large, the exponent λ1 is determined by the
angle between the axis of the hyperboloid and the
asymptotes of the hyperboloid—just as in the con-
ical case. When the plane approaches the tip, the
power law with exponent λ1 crosses over to a power
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FIG. 5: Top shows electron microscopy images of the
tips used to obtain the V -d curves at 0.2 nA, the initial
section of which is shown at the bottom.

law with exponent 1 (typical of a planar capacitor),
via a log d behavior close to the confocal plane.27 We
find, extending the work of Miskovsky et al.,28 the
same λ1 and λ1 → 1 crossover for a plane in the
vicinity of a tip with cuspidal shape, which is ulti-
mately the true physical shape of our field emitters
up to a few tens of µm away from the apex. For
a plane in the vicinity of a paraboloid of revolution
we have λ1 = 0 (meaning a log d dependence) and
no crossover. We have also extended the results of
Hall29 and Dyke et al.16 to deal with a conical tip ter-
minated by a small sphere and placed in the vicinity
of a planar anode at variable d: we found the same
λ1 and λ1 → 1 crossover. Finally, we have verified
the λ1 → 1 crossover numerically and analytically
within a simple model mimicking the rounded coni-
cal tip with a sequence of small spheres of increasing
radius.30 We point out that our working hypothesis
for explaining λ1 completely neglects the charge ex-
isting within the region of space between the apex of
the tip and the planar anode—if this charge is large,
one enters the “screening” regime, in opposition to
the electrostatic regime underlying our hypothesis.
The boundary between those regimes is not sharp,
but our data seem to indicate that the electrostatic
regime dominates in the range of currents used in
the present paper. In the screening regime, different
values for the exponent λ1 (Ref. 31) are expected.



5

E. The scaling variable V R(d)

At any distance, the rounding of the tip introduces
a linear component of the potential in the vicinity of
the tip apex, which produces a finite electric field
at the tip apex F

.
= −∂Φ/∂r|r≈r0 pointing along

the tip axis. Remarkably, F transforms as V d−λ1

and can, therefore, be associated with the scaling
variable V R(d) (see the alternative horizontal scale
in Fig. 2 (c)). The scaling of the I-V characteris-
tics to a reference curve is therefore equivalent to
assigning the same field F to junctions with differ-
ent d. For determining F we have performed V -d
experiments using tips with various radii of curva-
ture, Fig. 5, with the aim of detecting the straight,
planar-capacitor-like V -d section in the vicinity of
d=0. For microscopy imaging, the tips were removed
from the ultra-high vacuum environment where V -
d curves were previously taken. The data of Fig. 5
indicate that, when the radius of curvature is small
(typically 5–16 nm, data points +,×,◦,O,�), a strong
curvature persists, even in the close vicinity of d=0.
For such “sharp” field emitters, therefore, we can
only conclude that the electric field at the apex is
F ≥ V/d. However, our simulations30 indicate that,
with a larger radius of curvature, a larger voltage is
required to draw a given current, so that a wider ini-
tial section of the graph might emerge, that can be
considered straight enough to obtain a reliable value
of the electric field from the planar capacitor expres-
sion. We fabricated field emitters with larger radii of
curvature which allowed us to estimate the electric
field F = 4.2±0.5 V(nm)−1 for a current of 0.2 nA
from a linear fit of the section in the range d≤10 nm
of the • curve.

F. The tunneling barrier

Figures 6 (a) to (c) plot experimental I-V curves,
taken in the 3–300 nm range, within a log10(I/F 2)
vs 1/F diagram. These plots reveal that (i) for a
given field the current acquires approximately the
same value, independently of d, reiterating the scal-
ing behavior reported in Fig. 2. The data also reveal
(ii) a small but detectable downward curvature of the
graphs accompanied by (iii) a small but detectable
non-collapsing in the range of small currents. Fig-
ure 6 (d) reports simulations of the tunneling pro-
cess at variable d (Ref. 30). The tip was simulated
with a set of small spheres aligned along the direc-
tion perpendicular to the planar anode and with in-
creasing radius of curvature. The topmost sphere de-
termines the radius of curvature, the following ones
with increasing diameter mimic the angle of aper-
ture of the cone. The plot of Fig. 6 (d) shows the
computed current density J versus electric field in a
log10(J/F 2) vs 1/F diagram, for different distances
d. Evident from Fig. 6 (d) are the three aspects ob-
served experimentally in Figs. 6 (a) to (c), namely,
that (i) the graphs for different d almost coincide
(scaling), (ii) the graphs are slightly curved down-
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FIG. 6: (a)–(c) Experimental log10(I/F 2) vs 1/F dia-
gram for three different tips in the 3–300 nm range. I is
given in nA and F in V (nm)−1. The straight lines are
linear fits to the experimental data. The data of Fig. 4 (a)
are those of Fig. 2 (c). (d) Computed log10(J/F 2) vs 1/F
for a field emitter with a radius of curvature of 4 nm at
different d. The field-emission current density J was com-
puted as described in Ref. 30. The dashed-dotted line is
the standard Fowler-Nordheim plot.10 In the inset, the
potential energy eΦ is plotted as a function of the dis-
tance r from the the tip, showing an “upward” curvature
that effectively increases the width of the tunneling bar-
rier with increasing d [electric field at the apex is set to
4 V (nm)−1].

ward, in agreement with the results of Refs. 17,18 for
tips with similar radii of curvature, and that (iii) the
downward curvature of the graphs toward small elec-
tric fields increases with distance d. The origin of
these three aspects seems to be the behavior of the
electrostatic potential in the vicinity of the tip; see
the inset of Fig. 6 (d). In fact, the inset shows that
for a given electric field F

(i) the spatial dependence of the electrostatic po-
tential is almost independent of d,

(ii) the spatial dependence of the potential has an
upward curvature that effectively widens the
classically forbidden region, as pointed out in
Refs. 17,18 and that

(iii) for increasing r the d-dependence of Φ(r) be-
comes more pronounced.

A quantitative comparison between the experimen-
tal data of Figs. 6 (a) to (c) and the simulation re-
sults of Fig. 6 (d) can be done on the base of the
average slope of the graphs within the range of fields
0.16<1/F <0.3 (1/F in units of nm V−1). We speak
of “average” slope because the graphs in Figs. 6 (a)
to (c) as welle as the simulations in Refs. 17,18
and Fig. 6 (d) have a slight downward curvature
that makes the slope dependent on F . We use, as
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unit for the slope, the original expression by FN for

an exact triangular barrier:9,10 − 4 log10(e)
3

√
2m
e~ ϕ3/2

(ϕ = 4.5 eV in the present paper3). The average
(multiplicative) slope correction factor derived from
Figs. 6 (a) to (c) falls in the range 1.2–1.5, to be
compared with the range 1.15–1.44 for r0 = 8–4 nm
(Ref. 18), 1.43±0.1 for r0 = 4 nm [our simulations,
Fig. 6 (d)], and ≈ 0.95, recommended for the tri-
angular FN tunneling junction with image potential
correction.10,12

IV. SUMMARY

We have provided experimental evidence for the
scale invariance of a tunnel junction with respect to
changes of a characteristic length from nm to mm.
We have also provided an explanation of this phe-
nomenon in terms of electrostatics of sharp bound-
aries. A simple model of electric-field assisted tun-
neling using a “realistic” tip geometry reproduces
the essential features observed experimentally. The

accuracy of the data collapsing is remarkably high,
taking into account that the notion of scale invari-
ance is certainly better known in sciences20 other
than solid-state devices. The (almost) scale invari-
ant electric-field assisted tunneling regime described
in the present paper is essentially different from the
direct-tunneling (STM) regime,2 achieved when d is
in the sub-nm range, marked by the appearance of a
characteristic length1 and by almost linearity of I−V
characteristics.3
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