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Sparse Bayesian factor models are routinely implemented for par-
simonious dependence modeling and dimensionality reduction in high-
dimensional applications. We provide theoretical understanding of
such Bayesian procedures in terms of posterior convergence rates in
inferring high-dimensional covariance matrices where the dimension
can be larger than the sample size. Under relevant sparsity assump-
tions on the true covariance matrix, we show that commonly-used
point mass mixture priors on the factor loadings lead to consistent
estimation in the operator norm even when p≫ n. One of our major
contributions is to develop a new class of continuous shrinkage priors
and provide insights into their concentration around sparse vectors.
Using such priors for the factor loadings, we obtain similar rate of
convergence as obtained with point mass mixture priors. To obtain
the convergence rates, we construct test functions to separate points
in the space of high-dimensional covariance matrices using insights
from random matrix theory; the tools developed may be of inde-
pendent interest. We also derive minimax rates and show that the
Bayesian posterior rates of convergence coincide with the minimax
rates upto a

√
logn term.

1. Introduction. It is now routine to collect data where the dimension
p is much larger than the sample size n, and interest focuses on the co-
variance structure. In this context, even a simple parametric model like the
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Gaussian distribution leads to a high-dimensional model space and it be-
comes necessary to reduce the effective number of parameters via imposing
sparsity or some lower-dimensional structure. Sparse Bayesian factor models
[41] provide one popular choice in applications, but currently lack theoretical
support. In this paper, we close this gap by studying asymptotic properties
for scenarios in which p grows faster than n.

Factor models [5] aim to explain dependence among multivariate obser-
vations through shared dependence on a smaller number of latent factors.
Given n i.i.d. observations yi ∈R

p, a latent factor model is given by

yi =Ληi + εi, εi ∼Np(0,Ω), i= 1, . . . , n,(1.1)

where Λ is a p× k factor loadings matrix with k≪ p, ηi ∼Nk(0, I) are stan-
dard normal latent factors, and εi is a residual having diagonal covariance
Ω = diag(σ21 , . . . , σ

2
p). Marginalizing out the latent factors, yi ∼Np(0,Σ) with

Σ =ΛΛT +Ω,(1.2)

so that the right-hand side has at most p(k + 1) parameters compared to
O(p2) parameters in an unstructured covariance matrix.

A prior distribution on (Λ,Ω) induces a prior distribution on Σ and we are
interested in studying concentration of the corresponding posterior measure
around a “true” covariance matrix in operator norm when the dimension-
ality p = pn can be much larger than the sample size n. This setting has
motivated abundant frequentist work, with rates of convergence of various
regularized covariance estimators derived in [7, 8, 11, 12, 18, 30] among
others. Minimax optimal rates for specific sparsity classes have also been
derived in [13, 14]. There is a relatively smaller but increasing literature on
asymptotic properties of Bayesian procedures in models with growing di-
mension, primarily focused on linear or generalized linear models; refer to
[2, 6, 10, 17, 22, 23] among others. To the best of our knowledge, the present
paper is the first to study the asymptotic properties of Bayesian covariance
estimation via factor models in the pn ≫ n regime.

We now summarize the main results obtained in this paper. Although the
original specification of the factor model reduces the number of parameters
from quadratic to linear in pn, the estimation problem is still challenging
when pn ≫ n. To address this challenge, [41] introduced sparse factor mod-
eling to allow many of the loadings to be exactly equal to zero through a
point mass mixture prior having a probability mass at zero; see also [15, 33]
for modifications and applications in genomics. Recently, [17] studied poste-
rior concentration in estimating a sparse high-dimensional mean using such
point mass mixture priors. However, it is not clear whether the induced prior
on the covariance from such sparsity favoring priors on the factor loadings
would lead to consistent covariance estimation in the pn ≫ n setting. We
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answer the question in the affirmative and derive the rate of convergence of
the posterior in Section 5, explicitly characterizing the dependence on the
dimensionality pn, the true number of factor k0n, the column sparsity sn
in the true loadings and the growth rate of the largest eigenvalue cn of the
true covariance. In particular, the dimensionality enters the rate through a
logarithmic factor, providing justification of usage of such methods in ultra
high-dimensional settings. It may be remarked here that the usual prac-
tice of assuming the eigenvalues of the true covariance to be bounded is
restrictive in our context and we relax that assumption.

Although point mass mixture priors are amenable to incorporate spar-
sity, exploring the model space via MCMC can be daunting and may lead to
slow mixing and convergence of the algorithm [36]. To address such problems
through block updating, while allowing a weaker notion of sparsity in which
elements are close to zero instead of exactly zero, continuous shrinkage priors
can be used. Such priors have become common in regression [2, 16, 28, 35],
with [36] providing a unifying local–global scale mixture representation. Al-
though computationally attractive, the lack of tight concentration bounds
for such priors has limited the study of their asymptotic properties. One
of our main contributions is to develop a novel class of continuous shrink-
age priors and derive nonasymptotic bounds on the concentration and di-
mensionality of such priors. Based on these results, we show that the pro-
posed continuous shrinkage prior leads to the same rate of posterior con-
vergence as the point mass mixture priors in estimating large covariance
matrices.

The Birgé–Le Cam testing theory [9, 32] for the Hellinger metric is com-
monly used in Bayesian asymptotics [24] to separate points in the parameter
space. However, generalization of the testing argument to other norms has
been relatively unexplored. A notable exception is [26] who advocated the
use of concentration inequalities based on empirical process techniques to
derive tests in the Lr metric in a nonparametric function estimation con-
text. See also [37] for an usage of concentration bounds for centered linear
estimators in the context of test construction in Bayesian inverse problems.
In the setting of large covariance estimation in operator norm, we construct
tests inspired by results from the nonasymptotic theory of random matrices,
which might be of independent interest in related settings.

Finally, we use Fano’s lemma to derive the minimax rate of convergence
for the class of covariance matrices considered in this paper and show that
the posterior indeed convergences at the minimax rate up to a

√
logn term.

There is a sizeable literature studying asymptotic properties of various
aspects of factor analysis, including consistent estimation of factor loadings
and latent factors [3] and the number of factors [4, 31]. Fan, Fan and Lv [19]
studied rates of convergence of high-dimensional covariance estimates based
on factor models, with [20] extending their results to approximate factor
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models that allow nondiagonal Ω in (1.2). This work assumes that the factor
scores ηi are known, while we consider the fundamentally different setting
in which the factor scores are unknown while also studying concentration of
a Bayesian posterior instead of convergence of a point estimate.

The rest of the paper is organized as follows. After setting up the basic
notation and definitions in Section 2, we state our assumptions and their
implications in Section 3. In Section 4, we discuss our prior distributions. The
main results of this paper are stated in Section 5. Section 6 contains some
numerical simulations. In Section 7, we prove a number of concentration
bounds for the shrinkage prior introduced in Section 4, while in Section 8,
we elucidate our test construction. These results are used to prove the main
results in Section 9. Proof of some technical lemmas are given in a supporting
document.

2. Preliminaries. Given sequences an, bn, we shall denote an =O(bn) or
an . bn if there exists a global constant C such that an ≤Cbn. Similarly, we
define an & bn and an ≍ bn.

Given a metric space (X,d), let N(ε;X,d) denote its ε-covering number,
that is, the minimum number of balls of radius ε needed to cover X .

For a vector x ∈R
r, ‖x‖2 denotes its Euclidean norm. We will use Sr−1 to

denote the unit Euclidean sphere {x ∈R
r :‖x‖2 = 1} and ∆r−1 to denote the

(r − 1)-dimensional simplex {x = (x1, . . . , xr)
T :xj ≥ 0,

∑r
j=1 xj = 1}. Fur-

ther, let ∆r−1
0 denote {x= (x1, . . . , xr−1)

T :xj ≥ 0,
∑r−1

j=1 xj ≤ 1}.
For a square matrix A, tr(A) and |A|, respectively, denote the trace and

the determinant of A. For a p× r matrix A = (ajj′) with p ≥ r, let s(1) ≥
s(2) ≥ · · · ≥ s(r) ≥ 0 denote the singular values of A (or equivalently the

eigenvalues of
√
ATA) arranged in decreasing order. We shall use smin(A)

and smax(A) to denote the smallest and largest singular values, respectively.
The Frobenius norm (‖ · ‖F ) and the operator norm (‖ · ‖2) are defined

in the usual way, with ‖A‖F :=
√

tr(ATA) and ‖A‖2 := supx∈Sr−1 ‖Ax‖2 =
smax(A). Also ‖A‖1 =

∑p
j=1

∑r
h=1 |Ajh| is the l1 norm of vec(A). We will

derive posterior convergence rates in the operator norm.
For a subset S ⊂ {1, . . . , p}, let |S| denote the cardinality of S and define

θS = (θj : j ∈ S) for a vector θ ∈R
p. Denote supp(θ) to be the support of θ,

that is, the subset S0 ⊂ {1, . . . , p} corresponding to the nonzero entries of
θ. We shall continue to use the same notation for a subset of entries and
support for matrices Λ, where it has to be interpreted that Λ is vector-
ized column-wise. Let l0[s;p] be the space of s-sparse vectors θ ∈ R

p with
| supp(θ)| ≤ s.

Throughout C,C ′ are generically used to denote positive constants whose
values might change from one line to the next but are independent from
everything else.



BAYESIAN COVARIANCE MATRIX ESTIMATION 5

Finally, let Cn denote the cone of covariance matrices of size pn × pn and
let Σ0n ∈ Cn denote a true sequence of covariance matrices.3 We observe

y1, . . . , yn
i.i.d∼ Npn(0,Σ0n)

and set y(n) = (y1, . . . , yn). We model the data as

yi
i.i.d∼ Npn(0,Σn), Σn =ΛnΛ

T
n +Ωn,Ωn = σ2Ipn .(2.1)

We will denote our prior distribution on Cn (constructed in Section 4) by
Πn(·) and the corresponding posterior distribution by Πn(·|y(n)).

3. Assumptions. In this section, we state our assumptions on the true
data generating model and briefly discuss their implications. Let R

p×k de-
note the class of real-valued p × k matrices. We start with the following
assumptions on the true covariance matrix of the observed data y(n).

Assumption 3.1. The true sequence of covariance matrices Σ0n are of
the form

(A0) Σ0n =Λ0nΛ
T
0n +Ω0n, Λ0n ∈R

pn×k0n , k0n ≤ pn,Ω0n = σ20nIpn .

Assumption (3.1) says that the true sequence of covariances Σ0n admit a
factor decomposition as in (1.2) with Ω0n = σ20nIpn . We make the following
assumptions on Λ0n and σ20n.

Assumption 3.2. There exist sequences of positive real numbers cn, sn
with cn . sn, such that:

(A1) limn→∞ cnk
3/2
0n

√

sn log pn
n

√
logn= 0;k

3/2
0n

√

sn log pn
n (logn)3/2 =O(1).

(A2) Each column of Λ0n belongs to l0[sn;pn].
(A3) ‖ 1

cn
ΛT
0nΛ0n − Ik0n‖2 = o(k0n

√

log k0n/n).

(A4) There exists a constant σ
(1)
0 such that σ

(1)
0 ≤ σ20n ≤ cn.

We now discuss implications of each of the above assumptions.

• If k0n =O(1), cn, sn ≍ log pn, the first part of (A1) allows pn to grow faster
than n under the mild assumption of (log pn)

5 logn/n→ 0. In this case,
pn can be of the order of exp(nα) for any α ∈ (0,1/5). The second part
is a very mild requirement given the first part; indeed if pn = exp(nα),
sn = nβ and k0n = nγ for appropriate α,β, γ > 0 such that the first part
of (A1) holds, then the second part follows from the first.

3As a convention, we make the dependence of all quantities on n explicit, and only
omit that in a few places for notational convenience.
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• In gene-expression studies, we expect each factor is related to only a rel-
atively small number of variables, representing a sparse, parsimonious
structure underlying the associations among genes. Following the motiva-
tion in [41], usually a small number of latent factors associate with the
response so that only those genes with nonzero loadings on those fac-
tors are relevant. This is reflected through (A2), requiring the loadings
columns to be sparse with sn ≪ pn many signals per column.

• Conditions similar to (A3) appear in the econometric factor model setting
[19, 20] referred to as “pervasive.” We provide an intuition based on ran-
dom matrix theory which suggests that (A3) is indeed mild and expected
to be satisfied by a large class of loadings. As our emphasis is on sparse
factor models, a realistic generative model for the true loadings would be

λ0jh ∼ (1− πn)δ0 + πnN(0,1),

where λ0jh = [Λ0n]jh, δ0 denotes a point mass at zero and we set πn =
sn/pn to reflect the sparsity assumption in (A2). Using a modification of

Theorem 5.39 of [40], ‖ 1
pn
ΛT
0nΛ0n−πnIk0n‖2 ≤C

√
k0n√
pn

‖πnIk0n‖2, or equiva-
lently, ‖ 1

sn
ΛT
0nΛ0n− Ik0n‖2 ≤C

√
k0n√
pn

, with probability at least 1− e−C
′k0n .

We can thus choose cn = sn and
√

k0n/pn is smaller than k0n
√

log k0n/n
if pn = exp(nα).

• (A4) simply posits an upper and lower bound on the residual variance.
The lower bound is used to avoid Σ0n being ill-conditioned,4 while the
upper bound ensures that the larger contribution to ‖Σ0n‖2 comes from
the loadings Λ0n. In particular, (A3) and (A4) imply ‖Σ0n‖2 ≍ cn, allowing
the largest eigenvalue to grow with increasing dimension.

We denote by C0n the class of covariance matrices satisfying (A0)–(A4)
in Assumptions 3.1 and 3.2. Clearly, any Σ0n ∈ C0n can be parameterized by
(k0n,Λ0n, σ

2
0n), where Λ0n ∈R

pn×k0n .

4. Prior distribution. We consider model (2.1) with Λn ∈ Rpn×k. We
specify priors on the residual variance σ2, the number of factors k and the
factor loadings (conditional on the number of factors) Λn | k below.

For the residual variance σ2, we assign a gamma prior fσ on (0,∞),

σ2 ∼Ga(a, b).(PR)

For the number of factors k, we assume a prior distribution πk which
decays exponentially,

πk(k > j)≤ exp(−Cj),(4.1)

4The constant lower bound on σ2
0n can be relaxed as long as smax(Σ0n)/smin(Σ0n). n.
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for all j ≥ j0 for some j0 ∈N. Additionally, assume

πk(k = k0n)≥ exp(−Csnk0n logn),(4.2)

where sn is the sequence appearing in (A2). For instance, a Poisson distri-
bution on k with rate parameter 1 will satisfy (4.1) and (4.2) if log k0n ≤
sn logn, which is automatically satisfied given (A1).

Conditional on k, we consider two classes of prior distributions on the
factor loadings Λn. We first consider a class of point mass mixture priors on
the loadings similar to that advocated by [41],

λjh | k, π ∼ (1− π)δ0 + πg(·), j = 1, . . . , pn;h= 1, . . . , k,
(PL1)

k ∼ πk, π ∼Beta(1, κk0npn +1), κ > 0,

where δ0 denotes a point mass at zero and g is an absolutely continuous
density on R with exponential tails or heavier.

For linear models, [38] showed that such point mass mixture priors with
a beta hyper-prior on the mixture probability lead to an automatic multi-
plicity correction. [29] proved optimality results in estimating the predictive
distribution under such priors in generalized linear models accommodating
diverging numbers of predictors. Castillo and van der Vaart [17] studied con-
centration properties of a class of prior distributions similar to (PL1) on a
high-dimensional normal mean and showed that they lead to the minimax
optimal rate of convergence.

As mentioned in the Introduction, although point mass mixture priors
are conceptually appealing in allowing exact sparsity and often leading to
appealing theoretical properties, posterior computation under such priors
can be daunting in high-dimensional cases. As an alternative, a rich vari-
ety of continuous shrinkage priors have been developed that admit a scale
mixture representation [36]. A fundamental hurdle in studying theoretical
properties of such priors is the difficulty of obtaining tight bounds on their
concentration and implied dimensionality. With the motivation of develop-
ing a continuous shrinkage prior that can be shown to concentrate near
sparse vectors and approximate point mass mixture priors, we propose a
novel class of priors. We use such priors for the factor loadings, but they
should be broadly applicable in other high-dimensional settings.

Let DE(ψ) denote the Laplace or double-exponential density with scale
parameter ψ with a density given by

f(x) =
1

2ψ
e−|x|/ψ, x ∈R.(4.3)

Draw the elements of a high-dimensional vector θ ∈ R
p through the fol-

lowing hierarchical mechanism:

θj ∼DE(τγj), τ ∼ fτ , γ = (γ1, . . . , γp)
′ ∼ fγ .(PS)
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In (PS), τ > 0 is a global scale parameter and γ ∈ ∆p−1 is a vector of
local scale parameters. We set fτ to be an exp(1/2) density. We draw γ̃ =

(γ1, . . . , γp−1)
T ∈ ∆p−1

0 from a Dir(α/p, . . . , α/p) density and set γp = 1 −
∑p−1

j=1 γj . For a detailed discussion on the properties of the prior (PS), refer
to Section 7.

Given k, we consider the prior (PS) on the vectorized loadings vec(Λn) ∈
R
pnk as an alternative to (PL1); note that the Dirichlet concentration pa-

rameter becomes α/(pnk) in this case.

5. Main results. With the prior specification complete, we now state the
main results of this paper. The proofs are available in Section 9. Theorems
5.1 and 5.2 assume the true number of factors to be bounded, which is gen-
eralized in Theorem 5.3. Recall the class of “true” covariance matrices C0n
from Section 3. We first establish the rate of posterior convergence in opera-
tor norm using the point mass priors (PL1) on the loadings in Theorem 5.1.

Theorem 5.1. Suppose Σ0n ∈ C0n with sn & log pn and k0n =O(1), and
model (2.1) is fitted with a prior distribution on the number of factors sat-
isfying (4.1) and (4.2). Assume independent priors Π(Λ | k) and Π(σ2) on
the loadings and the residual variances as in (PL1) and (PR), respectively.

Then, with εn = cn

√

sn logpn
n

√
logn and for some constant M > 0,

lim
n→∞

EΣ0nΠn(‖Σn −Σ0n‖2 >Mεn | y(n)) = 0,(5.1)

where EΣ0n denotes an expectation with respect to the joint distribution
of y(n).

We next show in Theorem 5.2 that our proposed shrinkage prior on the
loadings achieves the same posterior rate of convergence as for the point
mass mixture priors.

Theorem 5.2. Assume the same setup as in Theorem 5.1, with the
point mass prior (PL1) on the loadings replaced by the shrinkage prior
(PS) on the vectorized loadings given k. Then (5.1) is satisfied with εn =

cn

√

sn log pn
n

√
logn.

We show in Section 5.1 that cn
√

sn log pn/n is the minimax rate of es-
timating Σ0n ∈ C0n in operator norm with k0n = O(1). Thus, the posterior
rate of convergence obtained in both Theorems 5.1 and 5.2 is equal to the
minimax rate up to a

√
logn term. For a general k0n, we establish analogous

versions of Theorems 5.1 and 5.2 below.

Theorem 5.3. If Σ0n ∈ C0n with snk0n & log pn, the convergence rates

in both Theorems 5.1 and 5.2 are modified to cnk
3/2
0n

√

sn log pn
n

√
logn.
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Clearly, Theorem 5.3 permits consistent estimation in operator norm even
if pn = exp(nα), sn = nβ and k0n = nγ for appropriate α,β, γ > 0. At this
point, we do not know whether the rate obtained in Theorem 5.3 is minimax-
optimal and substantial further work seems necessary to prove such a result.

5.1. A lower bound to the minimax rate. Minimax optimal rates in op-
erator norm for high-dimensional covariance matrix estimation have been
established for a class of bandable matrices by [13] and a class of covariance
matrices with sparse columns by [14]. Although C0n has a nonempty inter-
section with the class G0(cn,p) in [14], there exists a large subclass of matrices
which lie in one and not in the other. Moreover, the existing minimax results
on large covariance estimation assume the eigenvalues of the true sequence
of covariance matrices to be bounded. For example, [13] and [14] assume
that yi is sub-Gaussian, that is, for all t > 0 and v ∈ R

p with ‖v‖2 = 1,
P(|vT(y1 − Ey1)|> t)≤ exp(−t2/2τ2). The parameter τ is assumed to be a
constant and its role in the rate is not characterized. For y1 ∼ Np(0,Σ), a
standard tail bound for the normal distribution implies

P(|vTy1|> t)≤ exp

(

− t2

2vTΣv

)

≤ exp

(

− t2

2‖Σ‖2

)

.

For Σ = ΛΛT + σ2Ip ∈ C0n,‖Σ‖2 = ‖Λ‖22 + σ2 ≍ cn by Assumption 3.2, so
that τ ≍√

cn in our case. Hence, the growth rate of ‖Σ‖2 needs to be ac-
counted for in our calculations. With this motivation, we study minimax
lower bounds for C0n in Theorem 5.4 below.

Theorem 5.4. If Σ̂n is a sequence of estimators of Σ0n ∈ C0n with k0n =
O(1), then

inf
Σ̂n

sup
Σ0n∈C0n

‖Σ̂n −Σ0n‖2 ≥ cn

√

sn
log pn
n

.(5.2)

Proof. We will use Fano’s lemma to derive a lower bound for the min-
imax risk. Let F be a parameter space of covariance matrices and we ob-
serve y1, . . . , yn ∼N(0,Σ) with Σ ∈ F . Let Θ = {Σ(1), . . . ,Σ(mn)},mn ≥ 2 be

a finite subset of F and let P
(j) denote the joint distribution of y1, . . . , yn

independently distributed as N(0,Σ(j)), 1≤ j ≤mn. Let Σ̂ be an estimator
for Σ. Suppose for all j 6= j′, we have that

d(Σ(j),Σ(j′))≥ dmn , KL(P(j),P(j′))≤Kmn .

Letting Ej denote the expectation under P
(j), Fano’s lemma (as in [42])

implies

max
1≤j≤mn

Ejd(Σ̂,Σ)≥
dmn

2

(

1− Kmn + log 2

logmn

)

.(5.3)
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We first introduce notation and then proceed to construct our finite param-
eter set Θ. Let qn = pn− 1. Define M := {x ∈R

qn :xj ∈ {0,1} ∀j,‖x‖1 = sn}
to be the collection of all binary vectors of length qn with exactly sn ones.
Let ‖ · ‖H denote the Hamming distance between two binary strings, so
that ‖x− y‖H =

∑qn
j=1 1(xj 6= yj). Let bj = (θj ,0) denote the pn-dimensional

vector obtained by appending zero at the end of θj . With this notation, set

Σ(j) = βIpn + γbjb
T
j + κepne

T
pn , j ∈M,

where ep ∈R
p is the vector with 1 in the pth coordinate and zero elsewhere,

and γ < β < κ are sequences to be chosen below.
We now state Lemmas 5.5 and 5.6; for clarity in notation, we drop the

subscript n in both lemmata. Refer to the Appendix for a proof.

Lemma 5.5. For j 6= j′ and 0≤ r≤ s, if ‖θj − θj′‖H = 2(s− r), then

‖Σ(j) −Σ(j′)‖2 = γ
√

s2 − r2, KL(P(j),P(j′)) =
n

2

t2

ts+ 1
(s2 − r2),

where t= γ/β.

Lemma 5.6. Given s≥ 6, there exists a subset M0 = {θ1, . . . , θm} of M
with m≍ exp(Cs logp) and ‖θj − θj′‖H ≥ s/3 for all 1≤ j 6= j′ ≤m, where
C is a positive constant independent of p.

We set Θ = {Σ(j) : θj ∈ M0}. Since ‖θj − θj′‖H ≥ sn/3 by Lemma 5.6,
the quantity rn = rn(j, j

′) appearing in Lemma 5.5 is bounded above by
5sn/6 for all pairs j 6= j′ ∈ M0. Hence, we can choose dmn = C1γsn and
Kmn = n(tsn)

2 = n(γsn/β)
2 in (5.3). To obtain dmn as a lower bound to

the minimax risk up to a constant, we need to set Kmn/ logmn = C ′ for
some constant C ′ ∈ (0,1). Since logmn ≍Csn log pn, we obtain, by choosing

β = cn, that d
2
mn

=C(γsn)
2 =C c2nsn log pn

n for some absolute constant C. �

6. Simulation studies. In this section, we consider a number of simula-
tion cases to compare our proposed continuous shrinkage prior (PS) with
existing methods including the point mass priors (PL1) on the loadings ma-
trix and the sample covariance matrix S = (n− 1)−1

∑n
i=1(yi − ȳ)(yi − ȳ)T.

For prior (PL1), we use a standard Laplace distribution on the signal coef-
ficients.

We also compare our methods with Principal Orthogonal complement
Thresholding (POET) of [21] which is based on an additive decomposition
of the covariance matrix in terms of a low rank matrix and a sparse residual
covariance matrix. POET estimates the factors and the loadings by thresh-
olding the principal components of the sample covariance matrix. Finally,
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Table 1

Simulation setting 1. Comparative performance in covariance matrix estimation for
(PL1), (PS), POET, AT. The average error in operator norm across simulation

replicates is tabulated

n 50 100

pn 100 200 100 200

k0n 1 logpn 1 logpn 1 logpn 1 logpn

(PL1) 0.98 (0.43)2.84 (1.12)10.06 (5.68) 9.79 (4.90)8.83 (0.12)12.82 (1.42)15.90 (0.26)16.07 (1.77)
(PS) 1.03 (0.38)3.95 (1.69) 5.96 (1.81) 7.01 (2.01)1.74 (0.83) 3.43 (1.10) 3.66 (1.83) 4.21 (1.20)

POET2.89 (0.41)6.98 (1.28) 8.90 (2.11)12.41 (2.69)3.08 (0.64) 5.72 (1.09) 7.32 (1.51) 7.51 (1.44)
AT 1.93 (0.57)4.71 (2.97) 6.92 (5.43) 8.86 (3.79)2.11 (0.71) 3.26 (1.08) 3.80 (2.03) 4.37 (1.34)
SC 2.79 (0.36)7.08 (1.33) 9.01 (2.22)12.73 (2.80)3.06 (0.65) 5.73 (1.14) 7.34 (1.52) 7.52 (1.46)

we provide results for the adaptive thresholding method (AT) of [12] which
thresholds the entries of the sample covariance matrix, with the resulting
thresholded estimator Σ̂ being of the form Σ̂jj′ = Sjj′1(|Sjj′ |> δκjj′), where
δ is a tuning parameter and κjj′ is a threshold specific to the corresponding
entry of S. We chose the tuning parameter δ by 5-fold cross-validation as
suggested by [12]. We also implemented the same procedure with the default
choice of δ = 2; the results were worse in all cases, and hence are not reported.

We describe the two simulation settings below:

1. yi, i= 1, . . . , n are generated from Npn(0,Σ0n), where Σ0n =Λ0nΛ
T
0n +

σ20Ipn and Λ0n is a pn × k0n matrix with sn = log pn nonzero entries per
column and k0n = 1 or log pn. The nonzero entries were drawn uniformly
between 1 and 2. These simulations were designed to mimic assumptions
(A0)–(A4) in Section 3.

2. This setting is designed to illustrate the performance of our method
under model misspecification. We let Σ0n = Λ0nΛ

T
0n + Ω0n, where Λ0n is

as in simulation setting (1), but Ω0n is nondiagonal, corresponding to the
covariance matrix of an autoregressive sequence with pure error variance 0.4
and autoregressive coefficient 0.1.

For each simulation setting, we choose two sample sizes, namely n =
50,100 and for each value of n, we let pn = 100,200. For each (n,pn) pair,
we consider 50 simulation replicates. For the Bayesian methods, the poste-
rior mean is used as a point estimate. Tables 1 and 2 summarize the results
across the simulation replicates for the two simulation settings, respectively,
to compare the operator norm difference between the estimator resulting
from the different methods and the truth. In particular, the average error
across 50 replicates is provided, with standard error in parenthesis.

The results for (PS) and (PL1) were reported based on 10,000 runs of the
Gibbs sampler with 5000 burn-in. From Tables 1 and 2, it becomes evident
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Table 2

Simulation Setting 2. Comparative performance in covariance matrix estimation for
(PL1), (PS), POET, AT. The average error in operator norm across simulation

replicates is tabulated

n 50 100

pn 100 200 100 200

k0n 1 logpn 1 logpn 1 logpn 1 logpn

(PL1) 1.73 (1.26)5.30 (3.92)11.92 (2.82)13.41 (4.03)17.01 (0.22)19.37 (1.74)10.04 (0.08)22.10 (0.52)
(PS) 2.44 (1.40)5.42 (2.67) 4.12 (2.86) 7.98 (3.23) 2.01 (1.44) 4.56 (1.49) 2.04 (1.12) 5.23 (2.10)

POET3.59 (0.84)7.16 (1.84) 7.14 (1.59)12.63 (2.89) 3.93 (1.17) 7.39 (1.69) 3.90 (0.71)10.13 (2.09)
AT 2.32 (1.49)5.50 (3.09) 4.04 (2.99) 8.26 (4.16) 2.12 (1.62) 4.45 (1.63) 1.97 (0.90) 4.96 (2.28)
SC 3.63 (0.88)7.32 (1.95) 7.26 (1.66)12.85 (3.07) 3.95 (1.19) 7.44 (1.75) 3.88 (0.72)10.24 (0.26)

that when the number of model parameters increase, the performance of
(PL1) deteriorates due to possibly slower convergence of the MCMC, while
(PS) has more robust performance. Even in Table 2, where the truth is
misspecified for both (PS) and AT, and in fact designed to favor POET,
(PS) performs at least equally or better than the competitors. For each
MCMC iteration, the runtime for (PS) scaled approximately linearly with
n and p, though we are not aware of sharp theoretical bounds on MCMC
convergence in high dimensions guaranteeing polynomial time convergence
unlike many frequentist estimators.

7. Some properties of shrinkage priors in high-dimensional settings. We
develop a number of properties of the proposed shrinkage prior (PS) in
high-dimensional settings; the results are used to prove the main results on
posterior concentration, but are also of independent interest. Proofs of all
the results are deferred to the Appendix.

Let θ be a p-dimensional vector and θ0 ∈ l0[s;p] be an s-sparse vector with
s≪ p. Depending on the problem, θ might correspond to a high-dimensional
mean vector, a vector of regression coefficients or a column of the factor load-
ings, with θ0 corresponding to a sparse truth.5 A quantity of fundamental
importance in studying the behavior of the posterior distribution in high-
dimensional problems is the prior concentration around an arbitrary sparse
vector θ0, which is defined as the noncentered small ball probability

P(‖θ − θ0‖2 < ε),(7.1)

for ε small. It can be shown that if θj ’s are i.i.d. standard normal,

sup
θ0∈l0[s;p]

P(‖θ− θ0‖2 < ε)≤ e−Cp log(1/ε),

5For us, θ and θ0 correspond to the vectorized loadings Λn and Λ0n, respectively.
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which decays exponentially with p for fixed s limiting the ability of the
posterior to concentrate on sparse θ0. However, with appropriate point mass
mixture priors having a probability mass at zero and ‖θ0‖ bounded, the small
ball probability (7.1) can be improved to e−Cs log(1/ε) [17].

For reasons mentioned in Section 4, there has been a recent thrust on de-
veloping one-group alternatives to the two-group mixture priors using con-
tinuous shrinkage priors, which can be often represented as a global–local
scale mixture [36] of Gaussians. Despite computational advantages with this
family of shrinkage priors, their concentration properties are understudied.
Our proposed prior (PS), which can be expressed as a Gaussian scale mix-
ture, favors a large subset of the θj to be simultaneously close to zero while
inflicting minimal shrinkage on the rest, and thus achieve a concentration
similar to point mass mixture priors. In the following Lemma 7.1, we present
a nonasymptotic bound to the prior concentration for (PS).

Lemma 7.1. Suppose θ ∼ (PS). Let θ0 ∈ l0[s;p],1≤ s≤ p and s/p≤ 1/2.
Then, for any ε ∈ (0,1) small enough,

P(‖θ− θ0‖2 < ε)≥ exp[−Cmax{‖θ0‖22, s log(s/ε), log p}]
for some constant C > 0.

We also state an auxiliary Lemma 7.2 which is used to prove Lemma 7.1;
refer to the supplemental document for a proof.

Lemma 7.2. Let η ∈R
s denote a random vector with independent com-

ponents ηj ∼DE(ψj). If there exist numbers a, b > 0, such that ψj ∈ [a, b] for
all j = 1, . . . , s, then for any δ > 0 and η0 ∈R

s,

P(‖η − η0‖2 < δ)≥ exp

{

−C1

a2

s
∑

j=1

|η0j |2 −C2s− s|log{δ/(b√s)}|
}

for constant C1,C2 > 0.

We next show that the shrinkage prior (PS) does not spread its mass
across too many dimensions. A point mass mixture prior allows a high-
dimensional vector to collapse onto fewer dimensions and the implied di-
mensionality can be naturally studied through appropriate tail bounds for
the induced prior on | supp(θ)|, which is a random variable supported on
{0,1, . . . , p}. Such bounds on the prior dimensionality are useful to control
the posterior model size [17]. However, continuous shrinkage priors do not
allow exact zeroes in θ and clearly P(| supp(θ)|= p) = 1. We instead use a
generalized definition of the support of a vector as the subset of entries which
are larger than a small number δ in magnitude. For any δ > 0, we denote
the corresponding subset to be suppδ(θ), so that suppδ(θ) = {j : |θj|> δ}.
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In the following Lemma 7.3, we provide a nonasymptotic tail bound for
| suppδ(θ)|, the number of entries in θ larger than δ in magnitude.

Lemma 7.3. Let ε ∈ (0,1) and δ = ε/p with ε > 1/pB for some B > 0.
If θ is drawn according to the prior (PS) and s& log p, then there exists a
constant A> 0 such that

P(|suppδ(θ)|>As)≤ e−Cs

for some constant C > 0. Moreover, the constant C appearing in the expo-
nent can be made arbitrarily large by choosing A large enough.

A final important property of (PS) is established through the following
deviation result on the l1 norm of θ.

Lemma 7.4. For t≥ 1, P[‖θ‖1 ≥ t]≤ 2e−C
√
t.

8. Construction of test functions. An important step [24] in Bayesian
asymptotic theory for establishing posterior contraction rates is to develop
a test function for the true parameter versus the complement of a ball of
radius ε > 0 (in an appropriate norm) around the truth with type-I and II
error rates of the order exp(−Cnε2). Under the Hellinger or L1 distance
between densities, existence of such tests is guaranteed by the seminal work
of [9] and [32]; the same is true for norms compatible to the above norms [25].
However, when the object of interest is not the density itself, but rather some
high-dimensional parameter indexing the density with a norm of discrepancy
relevant to the space the parameter lives in, the test arising from Birgé–Le
Cam theory might fail to produce the desired error rates in the norm of
interest.

In the context of nonparametric function estimation in general Lr norms,
[26] advocated using concentration inequalities based on empirical process
techniques as an alternative to the traditional testing framework. Castillo
and Van Der Vaart [17] used deviation bounds for the likelihood ratio test in
estimating a high dimensional mean in Euclidean norm. An important con-
tribution of the present paper is to utilize recently developed concentration
results for random (self-adjoint) matrices [39, 40] to devise a test function.

Using a version of the matrix Bernstein inequality (Theorem 6.2 in [39]),

it can be shown that the sample estimator Σ̂ = n−1
∑n

i=1 yiy
T
i has appro-

priate concentration around EΣ̂ = Σ0 when the “effective rank” re(Σ0) :=
tr(Σ0)/‖Σ0‖2 is modest compared to p [11, 40]. However, for Σ0 = Λ0Λ

T
0 +

σ20Ip ∈ C0n, re(Σ0) can scale in the order of p, prohibiting us from using Σ̂
as an estimator to construct the test. A crucial observation is that even if
Σ0 ∈ C0n does not necessarily have a small effective rank, the larger contri-
bution to the operator norm of Σ0 (‖Σ0‖2 = ‖Λ0‖22+σ20) comes from the low
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rank part by (A3). We exploit this to design a novel projection based test in
Theorem 8.1 below, where the types I and II error rates can be expressed in
terms of deviation bounds of a k0n × k0n sample covariance matrix from its
mean. Dependence of all quantities on n has been made explicit from this
point onwards.

Theorem 8.1. Recall the sequences k0n and cn from Assumptions 3.1
and 3.2, respectively. Let Σ0n ∈ C0n with the corresponding Λ0n ∈ R

pn×k0n .
Let Bj,n = {Σn ∈ Cn : jεn ≤ ‖Σn −Σ0n‖2 < (j + 1)εn} denote an annulus of
inner radius jεn and outer radius (j + 1)εn in operator norm around Σ0n

for some integer j > 1 and sequence εn > 0. Assume εn ≥ cnk0n

√

logk0n
n

and εn log j ≤ cn. Fix Σ1n ∈Bj,n and let Ej,n = {Σn ∈ Bj,n :‖Σn −Σ1n‖2 <
jεn/2} denote an operator norm ball in Bj,n around Σ1n of radius jεn/2.

Based on n i.i.d. samples y1, . . . , yn from Npn(0,Σn), consider testing the
point null vs. composite alternative hypothesis

H0 :Σn =Σ0n versus H1 :Σn ∈Ej,n.(8.1)

Define xi = (1/cn)Λ
T
0nyi and zi =Λ0nxi for i= 1, . . . , n, so that xi ∈R

k0n and

zi ∈ R
pn. Let Σ̂y = n−1

∑n
i=1 yiy

T
i and define Σ̂x = (1/c2n)Λ

T
0nΣ̂yΛ0n, Σ̂z =

Λ0nΣ̂xΛ
T
0n. Let φj,n denote a test function for (8.1) defined as

φj,n = 1{‖Σ̂z−Σ0n‖2≥jεn/4}.(8.2)

Then, the type-I and type-II error rates of φj,n satisfy:

E0φj,n ≤ exp

{

−Cnj
2ε2n

c2nk
2
0n

}

,(8.3)

sup
Σn∈Ej,n

EΣn(1− φj,n)≤ exp

{

−Cn(log j)
2ε2n

c2nk
2
0n

}

(8.4)

for some constant C > 0, where EΣn denotes an expectation under the dis-
tribution of y(n) under N(0,Σn) and E0 is a shorthand for EΣ0n .

Remark. If the condition εn log j ≤ cn is replaced by jδεn ≤ cn for some
0< δ ≤ 1, the type-II error bound in (8.4) becomes exp{−Cnj2δε2n/(c2nk20n)}.

Proof of Theorem 8.1. We shall make use of a matrix concentration
result from [11]. Let u1, . . . , un

i.i.d.∼ Nq(0,Σ) and Σ̂ := n−1
∑n

i=1 uiu
T
i denote

the sample covariance matrix. Proposition A.4 in [11] implies that for any
s > 0 such that s+ log q < n,

P

[

‖Σ̂−Σ‖2 >C tr(Σ)

√

s+ log q

n

]

≤ e−s.(8.5)
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We adapt a fact from Lemma 5.36 of [40]. For a p × k matrix B with
p > k, suppose ‖BTB − Ik‖2 ≤max{δ, δ2} for some δ > 0. Then

1− δ ≤ smin(B)≤ smax(B)≤ 1 + δ.(8.6)

Finally, we index matrices that appear frequently in the sequel. Define

Gn :=
1

cn
ΛT
0nΛ0n − Ik0n , Ψn :=

1

cn
Λ0nΛ

T
0n − Ipn ,

(8.7)

Γn :=

(

1 +
σ20n
cn

)

Ik0n .

Note that Gn is the matrix appearing in (A3). The nonzero eigenvalues of
Gn and Ψn are the same; hence, ‖Gn‖2 = ‖Ψn‖2.

Type-I error : Recall Σ̂z and Σ̂x from the theorem statement. We proceed
to bound E0φj,n = P0[‖Σ̂z −Σ0n‖2 ≥ jεn/4]. By the triangle inequality and
Lemma 1.1 in the supplemental document,

‖Σ̂z −Σ0n‖2

≤
∥

∥

∥

∥

Λ0nΣ̂xΛ
T
0n −Λ0nΛ

T
0n −

σ20n
cn

Λ0nΛ
T
0n

∥

∥

∥

∥

2

+ σ20n‖Ψn‖2(8.8)

≤ ‖Λ0n‖22‖Σ̂x − E0Σ̂x‖2 + ‖Λ0n‖22‖E0Σ̂x − Γn‖2 + σ20n‖Gn‖2.
A simple calculation yields

E0Σ̂x =
1

c2n
ΛT
0n[Λ0nΛ

T
0n + σ20nIpn ]Λ0n

(8.9)

=

(

1

cn
ΛT
0nΛ0n

)2

+
σ20n
cn

1

cn
ΛT
0nΛ0n.

Substituting this in (8.8) and using triangle inequality, the sum of the second
and third term in (8.8) can be bounded above by

‖Λ0n‖22
∥

∥

∥

∥

(

1

cn
ΛT
0nΛ0n

)2

− Ik0n

∥

∥

∥

∥

2

+ σ20n(1/cn +1)‖Gn‖2.

Recall ‖Gn‖2 = o(k0n
√

log k0n/n) by (A3). In addition, ‖Λ0n‖2 ≤ 2
√
cn by

(A3) and σ20n ≤ cn from (A4). Note that ‖A− Ik0n‖2 < δ for A symmetric
and some δ ∈ (0,1) implies that ‖A2 − Ik0n‖2 ≤ 3δ. Using these facts, the
expression in the above display can be bounded above by (13cn +1)‖Gn‖2.
Since we have assumed εn ≥ cnk0n

√

logk0n
n in the condition of the theorem,

(13cn + 1)‖Gn‖2 can be bounded above by jεn/8 for n large enough. Sub-
stituting this bound in (8.8),

P0[‖Σ̂z −Σ0n‖2 ≥ jεn/4]≤ P0[‖Λ0n‖22‖Σ̂x − E0Σ̂x‖2 ≥ jεn/8].



BAYESIAN COVARIANCE MATRIX ESTIMATION 17

Using ‖Λ0n‖22 . cn one more time, we have

E0φj,n ≤ P0[‖Σ̂x − E0Σ̂x‖2 ≥Cjεn/cn].(8.10)

By definition, Σ̂x = n−1
∑n

i=1 xix
T
i is a k0n × k0n sample covariance ma-

trix. We now invoke (8.5) to bound the deviation of Σ̂x from its expecta-
tion under P0 in (8.10). From (8.9) and using tr(A2) = ‖A‖2F for A sym-

metric, tr(E0Σ̂x) = ‖ΛT
0nΛ0n/cn‖2F + (σ20n/cn)‖Λ0n/

√
cn‖2F . Recall σ20n ≤ cn

by (A4). By Lemma 1.1 in the supplemental document, ‖ΛT
0nΛ0n/cn‖F ≤

‖Λ0n/
√
cn‖F ‖Λ0n/

√
cn‖2 ≤ 2‖Λ0n/

√
cn‖F . Hence, tr(E0Σ̂x)≤ 5‖Λ0n/

√
cn‖2F .

Using ‖Λ0n‖F ≤
√
k0n‖Λ0n‖2 ≤ 2

√
cnk0n, tr(E0Σ̂x) can be bounded above

by Ck0n.
Choose s = Cnj2ε2n/(k

2
0nc

2
n). Since εn ≥ cnk0n

√

log k0n/n, we have s &

log k0n and hence C tr(E0Σ̂x)
√

(s+ log k0n)/n.C tr(E0Σ̂x)
√

s/n≤Cjεn/cn.
By (8.5), the expression in the right-hand side of (8.10) is then bounded
above by e−s = exp{−Cnj2ε2n/(k20nc2n)}, proving (8.3).

Type-II error : Fix Σn ∈Ej,n. We proceed to bound EΣn(1−φj,n) = PΣn [‖Σ̂z−
Σ0n‖2 < jεn/4]. By repeatedly using the triangle inequality, we obtain

‖Σ̂z −Σ0n‖2 ≥ ‖Λ0n‖22
∥

∥

∥

∥

Σ̂x − Ik0n − σ20n
cn

Ik0n

∥

∥

∥

∥

2

− σ20n

∥

∥

∥

∥

1

cn
Λ0nΛ

T
0n − Ipn

∥

∥

∥

∥

2

≥ ‖Λ0n‖22{‖EΣnΣ̂x − Γn‖2 −‖Σ̂x −EΣnΣ̂x‖2} − σ20n‖Ψn‖2.
Recall ‖Ψn‖2 = ‖Gn‖2. Therefore, on the set {‖Σ̂z −Σ0n‖2 < jεn/4},

‖Λ0n‖22‖Σ̂x − EΣnΣ̂x‖2 ≥ ‖Λ0n‖22‖EΣnΣ̂x − Γn‖2 − σ20n‖Gn‖2 −
jεn
4

≥ ‖Λ0n‖22‖EΣnΣ̂x − E0Σ̂x‖2(8.11)

− ‖Λ0n‖22‖E0Σ̂x − Γn‖2 − σ20n‖Gn‖2 −
jεn
4
.

Recalling the definition of Σ̂x and invoking Lemma 1.1 in the supplemental
document,

‖Λ0n‖22‖EΣnΣ̂x − E0Σ̂x‖2 =
∥

∥

∥

∥

Λ0n√
cn

∥

∥

∥

∥

2

2

∥

∥

∥

∥

1

cn
ΛT
0n(Σn −Σ0n)Λ0n

∥

∥

∥

∥

2

≥
∥

∥

∥

∥

Λ0n√
cn

∥

∥

∥

∥

2

2

smin

(

ΛT
0nΛ0n

cn

)

‖Σn −Σ0n‖2(8.12)

≥
∥

∥

∥

∥

Λ0n√
cn

∥

∥

∥

∥

2

2

smin

(

ΛT
0nΛ0n

cn

)

jεn
2
.

The last inequality in (8.12) used the triangle inequality to obtain ‖Σn −
Σ0n‖2 ≥ ‖Σ1n − Σ0n‖2 − ‖Σn − Σ1n‖2 ≥ jεn − jεn/2 = jεn/2. By (A3) and
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(8.6), both ‖Λ0n/
√
cn‖2 and smin(Λ

T
0nΛ0n/cn) can be bounded below by

4/5. Hence, ‖Λ0n‖22‖Σ̂x−EΣnΣ̂x‖2 is bounded below by 64jεn/250. Further,
based on the calculations following (8.8),

‖Λ0n‖22‖E0Σ̂x − Γn‖2 + σ20n‖Gn‖2 +
jεn
4

can be bounded above 63jεn/250 for n large enough. Substituting in (8.11),

PΣn [‖Σ̂z −Σ0n‖2 ≤ jεn/2]< PΣn [‖Λ0n‖22‖Σ̂x −EΣnΣ̂x‖2 >Cjεn].

As in case of the type-I error, using ‖Λ0n‖22 . cn, we conclude that

EΣn(1− φj,n)≤ PΣn [‖Σ̂x −EΣnΣ̂x‖2 >Cjεn/cn].(8.13)

We are now in a position to invoke (8.5) to bound the right-hand side of
(8.13). Using triangle inequality and von Neumann’s trace inequality [34],6

tr(EΣnΣ̂x)≤ tr(E0Σ̂x) + |tr(EΣnΣ̂x −E0Σ̂x)|
≤ tr(E0Σ̂x) + k0n‖EΣnΣ̂x −E0Σ̂x‖2.

Since Σn ∈Bj,n, ‖Σn −Σ0n‖2 ≤ (j +1)εn < 2jεn, and hence

‖EΣnΣ̂x −E0Σ̂x‖2 = ‖ΛT
0n(Σn −Σ0n)Λ0n‖2/c2n

≤C‖Σn −Σ0n‖2/cn ≤ 2Cjεn/cn.

Substituting in the previous display and using tr(E0Σ̂x) ≤ Ck0n, one has

tr(EΣnΣ̂x) . k0nmax{1, jεn/cn} ≤ Ck0n(j/ log j), with the last inequality
using εn log j ≤ cn.

Choosing s=Cn(log j)2ε2n/(k
2
0nc

2
n), one has s& log k0n and C tr(EΣnΣ̂x)×

√

(s+ log k0n)/n≤Cjεn/cn. By (8.5), the expression in the right-hand side
of (8.13) is bounded above by e−s = exp{−Cn(log j)2ε2n/(k20nc2n)}. Since the
bound is independent of Σn ∈Ej,n, (8.4) follows. �

9. Proof of the main results. We now proceed to prove the results stated
in Section 5. We prove Theorem 5.3 with the shrinkage prior (PS); the spe-
cial case of k0n = O(1) in Theorem 5.2 follows immediately. For the point
mass prior, we only sketch an argument. We introduce a number of auxil-
iary Lemmata 9.1, 9.2, 9.3 whose proofs can be found in the supplemental
document.

6| tr(A)| ≤ k‖A‖2 for a k× k matrix A.
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9.1. Proof of Theorem 5.3. Set εn = cnk
3/2
0n

√

sn log pn
n

√
logn and define

Un = {Σn :‖Σn − Σ0n‖2 ≤Mεn}. The posterior probability assigned to the
complement of Un is given by

Πn(U
c
n | y(n)) =

∫

Uc
n

∏n
i=1(fΣn(yi)/fΣ0n(yi))dΠn(Σn)

∫
∏n
i=1(fΣn(yi)/fΣ0n(yi))dΠn(Σn)

≡ Nn

Dn
,(9.1)

where fΣn denotes a pn-dimensional N(0,Σn) distribution and Nn and Dn

denote the numerator and denominator of the fraction in (9.1).
Let σ(y1, . . . , yn) denote the σ-field generated by y1, . . . , yn. We first claim

that we can lower-bound Dn on an event An ∈ σ(y1, . . . , yn) with large prob-
ability under fΣ0n in Lemma 9.1.

Lemma 9.1. Let Σ0n ∈ C0n. Let ηn be a sequence satisfying ηn/smin(Σ0n)→
0 and nη2n/smin(Σ0n)

2 → ∞, and define ̺n = 2smax(Σ0n)/smin(Σ0n). Then
there exists An ∈ σ(y1, y2, . . . , yn) with PΣ0n(An)→ 1 such that on An,

Dn ≥ e−Cnη
2
n log(̺n)/smin(Σ0n)2Πn(Σn :‖Σn −Σ0n‖F < ηn).

We shall set ηn =
√

snk0n/n in all future usage of Lemma 9.1. Based
on our prior specification, Σn can be parameterized by (k,Λn, σ

2
n) with k ∈

{1, . . . ,∞},Λn ∈R
pn×k, σ2n ∈ (0,∞), and Σn =ΛnΛ

T
n +σ2nIpn . We use this to

bound Πn(‖Σn −Σ0n‖F ≤ ηn) from below in the following Lemma 9.2.

Lemma 9.2. If Σ0n ∈ C0n, the prior Πn on Σn is as in Theorem 5.2, and
ηn =

√

snk0n/n, then

Πn(‖Σn −Σ0n‖F ≤ ηn)≥ e−Csnk0n logn.

We now introduce some notation. Let

en = snk0n logn, tn =Ce2n, δn = εn/(entn),
(9.2)

δ′n = δn/(pnen).

Recalling that the true loadings has snk0n many nonzero entries, en can be
thought of as an effective sparsity parameter. Also, recall the suppδ notation
from Section 7. Given k, let suppδ′n(Λn) denote the set S ⊂ {1, . . . , pnk}
corresponding to the entries in vec(Λn) larger than δ

′
n in absolute magnitude.

Since PΣ0n(An)→ 1 by Lemma 9.1, it is enough to show

lim
n→∞

E0[Πn(U
c
n | y(n))1An ] = 0
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to prove Theorem 5.2, where E0 is a shorthand for EΣ0n . For some H > 0 to
be chosen later,

E0[Πn(U
c
n | y(n))1An ]≤ E0[Πn(U

∗
n | y(n))1An ]

+E0[Πn(W
c
n ∩ Vn | y(n))1An ](9.3)

+ 2E0[Πn(V
c
n | y(n))1An ],

where U∗
n = U cn ∩Wn ∩ Vn, with

Wn = {|suppδ′n(Λn)| ≤Hen,‖Λn‖1 ≤ tn, σ
2 ≤ tn},

(9.4)
Vn = {k ≤Cen}.

Thus, U∗
n consists of (strictly speaking, can be identified with the class of) co-

variance matrices Σn =ΛnΛ
T
n +σ2nIpn satisfying ‖Σn−Σ0n‖2 >Mεn, where

Λn ∈R
pn×k with k ≤Cen, ‖Λn‖1 ≤ tn, | suppδ′n(Λn)| ≤Hen and σ2n ≤ tn.

We now show in Lemma 9.3 that the expression in (9.3) goes to zero,
so that we can focus on Πn(U

∗
n | y(n)). This will be crucial in reducing the

entropy of the model space.

Lemma 9.3. Recall the sequences and sets in (9.2) and (9.4), respec-
tively. There exist constants H,C > 0 such that

lim
n→∞

E0[Πn(W
c
n ∩ Vn | y(n))1An ] = 0,

lim
n→∞

E0[Πn(V
c
n | y(n))1An ] = 0.

For k ≤Cen, a set S ⊂ {1, . . . , pnk} with |S| ≤Hen, and j ≥M , let Bk,S,j,n
denote the following subset of U∗

n:

Bk,S,j,n = {Σn =ΛnΛ
T
n + σ2nIpn :Λn ∈R

pn×k, k ≤Cen,‖Λn‖1 ≤ tn,
(9.5)

σ2n ≤ tn, suppδ′n(Λn) = S, jεn ≤ ‖Σn −Σ0n‖2 < (j + 1)εn}.
Then, using a standard testing argument (see, e.g., the proof of Proposi-
tion 5.1 in [17]),

E0[P(U
∗
n | y(n))1An ]

≤
∑

k≤Cen

∑

S : |S|≤Hen

∑

j≥M

[

E0Φk,S,j,n(9.6)

+ βk,S,j,n sup
Σn∈Bk,S,j,n

EΣn(1−Φk,S,j,n)
]

,

where Φk,S,j,n is a (point vs. composite) test function for

H0 :Σn =Σ0n versus H1 :Σn ∈Bk,S,j,n(9.7)
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whose construction is provided below and

βk,S,j,n :=
Πn(Bk,S,j,n)

e−nη2n log̺n/smin(Σ0n)2Πn(‖Σn −Σ0n‖F < ηn)
≤ eCen .(9.8)

To obtain the upper bound on βk,S,j,n in the above display, bound Πn(Bk,S,j,n)
above by 1, use the fact that log ̺n . log cn ≤ logn by (A1) and (A4) and
use Lemma 9.2 to conclude that βk,S,j,n ≤ eCen .

To construct the test function Φk,S,j,n in (9.6), we cover Bk,S,j,n with a
union of balls and obtain local tests for Σ0n versus the centers of each of the
balls using Theorem 8.1. Since we are inside Wn ∩ Vn, the number of such
balls can be controlled and Φk,S,j,n is obtained as the maximum of the local
tests.

Let Σn,l
7 for l ∈ Ik,S,j,n be a jεn/2-net of Bk,S,j,n in operator norm and for

each l, define Ek,S,j,n,l= {Σn ∈Bk,S,j,n :‖Σn−Σn,l‖2 ≤ jεn/2}. By definition,

Bk,S,j,n⊂
⋃

l∈Ik,S,j,n
Ek,S,j,n,l.

Clearly, jεn ≤ ‖Σn,l − Σ0n‖2 < (j + 1)εn and εn ≥ cnk0n
√

log k0n/n. For
Σn ∈ U∗

n, ‖Λn‖2 ≤
√
entn and ‖Σn −Σ0n‖2 ≤ ‖Σn‖2 + cn ≤ ent

2
n + tn + cn .

e5n. Hence, Bk,S,j,n ⊂ U∗
n implies j . e5n/εn, and hence log j . logn, so that

εn log j ≤ cn by the second part of (A1). Therefore, the conditions of The-
orem 8.1 for the point versus composite test H0 :Σn =Σ0n versus H1 :Σn ∈
Ek,S,j,n,l are satisfied. Let φk,S,j,n,l denote the corresponding test function

from Theorem 8.1 with type-I error e−Cnj
2ε2n/(c

2
nk

2
0n) = e−Cj

2en log pn and type-
II error e−Cn(log j)

2ε2n/(c
2
nk

2
0n) = e−C(log j)2en log pn . Letting Φk,S,j,n =

maxl∈Ik,S,j,n φk,S,j,n,l, we therefore have

E0(Φk,S,j,n)≤ |Ik,S,j,n|e−Cj
2en log pn ,

sup
Σn∈Bj,S,n

EΣn(1−Φk,S,j,n)≤ e−C(log j)2en log pn .

To estimate |Ik,S,j,n|, that is, the covering number of Bk,S,j,n in operator

norm, we embed Bk,S,j,n inside B̃k,S,j,n, whose covering number is easier to
calculate:

B̃k,S,j,n := {Σn =ΛnΛ
T
n + σ2nIpn :Λn ∈B

(Λ)
k,S,j,n, σ

2
n ≤ tn,

jεn ≤ ‖Σn −Σ0n‖2 < (j + 1)εn},
where B

(Λ)
k,S,j,n = {Λn ∈R

pn×k :k ≤Cen, suppδ′n(Λn) = S,‖Λn‖F ≤ entn}. The
containment Bk,S,j,n ⊂ B̃k,S,j,n follows since ‖Λn‖F ≤

√
k‖Λn‖2 ≤ k‖Λn‖1 ≤

entn.

7We suppress the dependence on k,S and j.
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We now proceed to explicitly construct a jεn/2-net for B̃k,S,j,n. Let ξn =
jεn/(8entn). For notational convenience, we use PS(θ) below to denote θS

defined in Section 2. Let {Λl}Ll=1 be a ξn-net of B
(Λ)
k,S,j,n. Also, let {σ2r}Rr=1 be

a jεn/4-net of [0, tn]. We show below that {ΛlΛT
l + σ2r}l,r form a jεn/2-net

of B̃k,S,j,n in operator norm.

Let Σ̃ = Λ̃Λ̃T+ σ̃2I be in B̃k,S,j,n. Find Λl and σ
2
r from the respective nets

so that ‖Λl − Λ̃‖F ≤ ξn and |σ2r − σ̃2| ≤ jεn/4. Let Σ =ΛlΛ
T
l + σ2r . Then

‖Σ− Σ̃‖2 ≤ jεn/4 + ‖ΛlΛT
l − Λ̃Λ̃T‖ ≤ jεn/4 + [‖Λl‖2 + ‖Λ̃‖2]ξn ≤ jεn/2.

We have thus proved our claim, and hence |Ik,S,j,n| ≤ L×R. Note the use
of the control on ‖Λ‖2 over Bk,S,j,n in the above display.

Clearly, R can be chosen to smaller than tn/(2jεn). With s = |S|, let
{θl}Ll=1 be a ξn/2-net of the Euclidean sphere in R

s of radius entn. By
Lemma 5.2 of [40], the cardinality of such a net L can be chosen to be

smaller than (1 + entn/ξn)
s. We now exhibit a ξn-net {Λl}Ll=1 for B

(Λ)
k,S,j,n

in Frobenius norm as follows. Set PS(Λl) = θl and PSc(Λl) = 0. Let Λ ∈
B

(Λ)
k,S,j,n and θ = PS(Λ). There exists θl such that ‖θ−θl‖2 ≤ ξn/2. Also, since

suppδ′n(Λ) = S, ‖PSc(Λ)‖2 ≤ δn. By choosing j larger than some constant J ,
we can make ξn ≥ 2δn. Hence, ‖Λl−Λ‖F ≤ ξn. Thus, L×R can be bounded
above by eCs log(entn) ≤ eCs logpn , and hence

E0(Φk,S,j,n)≤ eCs logpne−C1j2en log pn ,(9.9)

sup
Σn∈Bk,S,j,n

EΣn(1−Φk,S,j,n)≤ e−C2(log j)2en log pn .(9.10)

Substitute the bounds obtained in (9.8), (9.9) and (9.10) in (9.6). Observ-
ing that all the bounds are free of k, we can bound the expression in (9.6)
by

(Cen)

Hen
∑

s=0

(

pn
s

)[

∑

j≥M
eCs log pne−C1j2en log pn + eCene−C2(log j)2en log pn

]

.(9.11)

The first term in the inner sum over j can be bounded above by eCen log pn ×
e−C3M2en log pn , while the second one by eCene−C4(logM)2en log pn . Noting that
(Cen)× (Hen +1)max{0≤l≤Hen}

(pn
l

)

≤ exp{Cen log pn}, (9.11) goes to 0 as
n→ ∞ for a large enough constant M > 0. This completes the proof of
Theorem 5.3 with the shrinkage prior (PS).

The proof for the point mass priors (PL1) follows similarly. Since the
point mass mixture priors allow exact zeros in the loadings, we can condition
on supp(Λn) = S. By properties of point mass mixture priors shown in [17],
analogues of Lemmata 9.2 and 9.3 can be obtained to complete the theorem.
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APPENDIX

Proof of Lemma 5.5. Observe that if ‖θj − θj′‖H = 2(s − r), then
〈bj , bj′〉 = r. For j 6= j′, Σ(j) − Σ(j′) = γ(bjb

T
j − bj′b

T
j′). The nonzero eigen-

values of the matrix B = (bjb
T
j − bj′b

T
j′) are {

√
s2 − r2,−

√
s2 − r2}, since

rk(B) = 2, tr(B) = 0 and tr(B2) = 2(s2 − r2).
Since θj ∈M for all j, by symmetry, det(Σ(j)) = det(Σ(j′)) for all j 6= j′.

Hence, KL(P(j),P(j′)) = (n/2){tr(Σ−1
(j)Σ(j′))− p}. Write Σ(j) = β(A+ tbjb

T
j ),

where A is a diagonal matrix with the first (p− 1) diagonal entries equaling
one and the pth entry being (1 + κ/β). An application of the Woodbury
matrix inversion formula produces

(A+ tbjb
T
j )

−1 =A−1 − t

1 + ts
bjb

T
j ,

so that

Σ−1
(j)Σ(j′) = Ip −

t

1 + ts
bjb

T
j + tbj′b

T
j′ −

t2r

1 + ts
bjb

T
j′ .

The proof is completed by observing that tr(bjb
T
j ) = s and tr(bjb

T
j′) = r. �

Proof of Lemma 5.6. Let τ ∈M with supp(τ) = S. We show that for
any x∈M, ‖x− τ‖H = 2

∑

j /∈S 1(xj = 1). To that end, we have ‖x− τ‖H =
∑

j∈S 1(xj = 0) +
∑

j /∈S 1(xj = 1) = s + a − b, where a =
∑

j /∈S 1(xj = 1),

b =
∑

j∈S 1(xj = 1). Since x ∈ M, we also have a + b = s, which implies

‖x− τ‖H = 2a.
Let k denote the integer part of s/6. Let M0 be a maximal set of points

in M, with each pair at least 2(k + 1) apart in Hamming distance. Note
here that 2(k + 1)> s/3. Since M0 is maximal and d(x, y) is even for any
x, y ∈ M by the above calculation, it follows that M ⊂ ⋃τ∈M0

B(τ ; 2k),
where

B(τ ; 2k) = {x ∈M :‖x− τ‖H ≤ 2k}.
By symmetry, B(τ ; 2k) is independent of τ , so that |M| ≤ |M0||B(τ ; 2k)|
for any τ ∈M0. It is easy to see that

|B(τ ; 2k)|=
k
∑

j=0

|Aj |=
k
∑

j=0

(

s
j

)(

q− s
j

)

,

where Aj = {x ∈M :‖x− τ‖= 2j},0 ≤ j ≤ k. Since k ≤ s/2, the expression

in the above display can be bounded above by k
(s
k

)(p−1
k

)

. One thus has

|M| =
(

p−1
s

)

≤mk
(

s
k

)(

p−1
k

)

. Using (n/r)r ≤
(

n
r

)

≤ (ne/r)r for 0 ≤ r ≤ n/2,
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we obtain m ≥ exp(Cs logp) for some constant C > 0. Also, clearly m ≤
|M| ≤ exp(C1s log p). �

Proof of Lemma 7.1. Let δ = ε/p. To lower-bound P(‖θ − θ0‖2 < ε),
we first obtain a lower bound conditioned on the hyper parameters τ and γ:

P(‖θ − θ0‖2 < ε | τ, γ)
≥ P(|θj| ≤ δ ∀j ∈ Sc0 | τ, γ)P(‖θS0 − θ0S0‖2 < ε/2 | τ, γ)(A.1)

=

[

∏

j∈Sc
0

(1− e−δ/ψj )

]

× P(‖θS0 − θ0S0‖2 < ε/2 | τ, γ).

Let γ̃ = (γ1, . . . , γp−1)
T and γp = 1−∑p−1

j=1 γj . We now have to integrate

out τ and γ̃ in (A.1). By a relabeling of indices, we can always make sure
that the pth index lies in S0. Let S1 = S0 \ {p} so that Sc0 ∪ S1 = {1, . . . ,
p−1}. Fix numbers a, b ∈ (0,1) with b= 4a. Observe that if τ ∈ [2s,4s], γjτ ≤

δ
log(p/s) ∀j ∈ Sc0 and γjτ ∈ [a, b] ∀j ∈ S1, then for ε < b/2,

p−1
∑

j=1

γj =
∑

j∈Sc
0

γj +
∑

j∈S1

γj ≤ ε+
(s− 1)b

2s
≤ b < 1.(A.2)

Define B ⊂∆p−1
0 ×R

+ such that

B =

{

(γ, τ) : 0≤ γjτ ≤
δ

log(p/s)
∀j ∈ Sc0;γjτ ∈ [a, b] ∀j ∈ S1,

(A.3)

τ ∈ [2s,4s]

}

.

Clearly, B is a measurable subset of ∆p−1
0 ×R

+. For a fixed τ in the interval

[2s,4s], the section Aτ ⊂∆p−1
0 is given by

Aτ =

{

0≤ γj ≤
δ

log(p/s)τ
∀j ∈ Sc0;γj ∈

[

a

τ
,
b

τ

]

∀j ∈ S1
}

.(A.4)

Thus,

P(‖θ − θ0‖2 < ε) =

∫

(τ,γ̃)∈R+×∆p−1
0

P(‖θ− θ0‖2 < ε | τ, γ̃)fγ(dγ̃)fτ (dτ)
(A.5)

≥
∫

(τ,γ)∈B
P(‖θ− θ0‖2 < ε | τ, γ)fγ(dγ̃)fτ (dτ).

We now substitute the lower bound for P(‖θ − θ0‖2 < ε | τ, γ) from (A.1)
in (A.5) and lower-bound the two terms on the right-hand side of (A.1)
individually.
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For the first term, observe that for (τ, γ) ∈ B, ∏j∈Sc
0
(1− e−δ/ψj )≥ (1−

s/p)p−s.
To tackle the second term, we make use of Lemma 7.2. By definition,

ψj ∈ [a, b] for all j ∈ S1 whenever (τ, γ) ∈ B. Further, along the lines of

(A.2),
∑p−1

j=1 γj ∈ [a/8, b], and hence γp ∈ [1− b,1− a/8] on B. Hence, ψp ∈
[2s(1−b),4s(1−a/8)]. Since a, b are constants, by a slight abuse of notation,
we shall assume ψj ∈ [a, b] for all j ∈ S1 and ψp ∈ [2sa,4sb] on B. It thus
follows from Lemma 7.2 that

P(‖ΠS0(θ)−ΠS0(θ0)‖2 < ε/2 | τ, γ)

≥ exp

{

−C1

a2

∑

j∈S0

|θ0j|2 −C2s− s|log{ε/(2b√s)}|
}

.

We conclude that for (τ, γ) ∈ B, the integrand in (A.5) can be bounded below
as follows:

P(‖θ− θ0‖2 < ε | τ, γ)
(A.6)

≥ e−Cs exp

{

−C1

a2

∑

j∈S0

|θ0j |2 −C2s− s|log{ε/(2b√s)}|
}

,

where the last inequality uses (1− x)1/x ≥ 1/(2e) for 0≤ x≤ 1/2 and C =
log(2e). It thus remains to obtain a lower bound to

P(B) =
∫

(τ,γ)∈B
fγ(dγ̃)fτ (dτ) =

∫ 4s

τ=2s
P(Aτ | τ)fτ (dτ).(A.7)

Now, since γ ∼Dir(α/p, . . . , α/p), recalling the definition of Aτ from (A.4)
and using (A.2),

P(Aτ | τ)

=
Γ(α)

Γ(α/p)p

∫

γ̃∈Aτ

[

p−1
∏

j=1

γ
α/p−1
j

](

1−
p−1
∑

j=1

γj

)α/p−1

dγ1 · · ·dγp−1

(A.8)

≥Cp(1− b)α/p−1

∫

γ̃∈Aτ

[

∏

j∈S1

γ
α/p−1
j

]

×
[

∏

j∈Sc
0

γ
α/p−1
j

]

dγ1 · · ·dγp−1

≥Cp(1− b)α/p−1

{

δ

log(p/s)

}α(p−s)/p{( b
τ

)α/p

−
(

a

τ

)α/p}s−1

,

where

Cp =
Γ(α)

Γ(α/p)p

(

p

α

)p−1



26 PATI, BHATTACHARYA, PILLAI AND DUNSON

= exp{logΓ(α) + (p− 1) log(p/α)− p logΓ(α/p)}
(A.9)

≥ exp{logΓ(α)− logΓ(α/p)}
≥ exp{logΓ(α)− log(p/α)}

with the last two inequalities using Γ(x)≤ 1/x for all x ∈ (0,1). Moreover,
since b≥ 4a, we have for τ ∈ [2s,4s],

{(

b

τ

)α/p

−
(

a

τ

)α/p}s−1

≥
{(

b

4s

)α/p

−
(

a

2s

)α/p}s−1

(A.10)

≥
(

b

4s

)(s−1)α/p[

1− exp

{

−α
p
log(2b/a)

}]

.

Equations (A.9) and (A.10), in conjunction with the fact that 1− e−x ≥ x/2
for x ∈ (0,1) implies that the expression in (A.8), and thus P(Aτ | τ) in
(A.7), is bounded below by

P(Aτ | τ)
(A.11)

≥C exp

{

α(p− s)

p
log

δ

log(p/s)
− log

p

α
− 1

log(b/2a)
log

p

α

}

for some constant C > 0. Finally, (A.6) and (A.11) substituted into (A.5)
gives us

P(‖θ− θ0‖2 < ε)≥ P[τ ∈ (2s,4s)]e−Cmax{‖θ0‖22,s log(s/ε),log p}.

The proof of Lemma 7.1 is completed upon observing that P[τ ∈ (2s,4s)]≥
e−Cs. �

Proof of Lemma 7.3. Without loss of generality, we provide the proof
for α= 1. Lemma IV.3 of [43] implies that under (PS),

θj | ψj ind.∼ DE(ψj), ψj
i.i.d.∼ Ga(1/p,1/2).(1.12)

By (1.12), θj ’s are independent and identically distributed, so that
| suppδ(θ)| ∼ Binomial(p, ζ), with ζ := P(|θ1| > δ). We first show that ζ .
log p/p for δ = ε/p. Observe that

P(|θ1|> δ)

=
(1/2)1/p

Γ(1/p)

∫ ∞

0
e−δ/xx1/p−1e−x/2 dx

(1.13)

=
(1/2)1/p

Γ(1/p)

{
∫ 4δ

0
e−δ/xx1/p−1e−x/2 dx+

∫ ∞

4δ
e−δ/xx1/p−1e−x/2 dx

}

≤ (1/2)1/p

Γ(1/p)

{

C +

∫ ∞

4δ

e−x/2

x
dx

}

≤ (1/2)1/p

Γ(1/p)

{

C +

∫ ∞

2δ

e−t

t
dt

}

.
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Using a bound for the incomplete gamma function from Theorem 2 of [1],
∫ ∞

2δ

e−t

t
dt≤− log(1− e−2δ)≤− log(δ),(1.14)

for δ small. Since Γ(1/p) ≥ p/2 for large p, and C + log(1/δ) ≤ 2 log(1/δ)
for p large, we have P(|θ1| > δ) ≤ log(1/δ)/p . log p/p; the last inequality
follows since ε > 1/pB implies δ ≥ 1/pB+1.

A version of Chernoff’s inequality for the binomial distribution [27] states
that for B ∼Binomial(p, ζ) and ζ ≤ a < 1,

P(B > ap)≤
{(

ζ

a

)a

ea−ζ
}p

.(1.15)

In (1.15), set a = As/p. Since s & log p, we can ensure ζ ≤ a by choos-
ing A larger than some constant. Hence, by (1.15), P(| suppδ(θ)| > As) ≤
(eζ/a)As ≤ e−A log(A/eC)s. �

Proof of Lemma 7.4. Recall θj | γ, τ ∼ DE(γjτ) for 1 ≤ j ≤ p. Let
Xj = θj/(γjτ), so that Xj | γ, τ ∼ DE(1) independently. Let ψj = γjτ and
fix t > 1. Using a Bernstein-type tail inequality for subexponential random
variables (Proposition 5.16 of [40]),

P

(

p
∑

j=1

|θj |> t
∣

∣

∣
γ, τ

)

= P

(

p
∑

j=1

|ψjXj |> t
∣

∣

∣
γ, τ

)

≤ exp

{

−Cmin

(

t2

‖ψ‖22
,

t

‖ψ‖∞

)}

≤max{e−Ct2/τ2 , e−Ct/τ}.
The last inequality in the above display uses ‖γ‖22 ≤ ‖γ‖1 = 1 and e−c/x

is increasing in x. Fix t≥ 1. Since τ ∼ Exp(1/2), P(τ >
√
t)≤ e−C

√
t. Also,

max0≤x≤
√
tmax{e−Ct2/x2 , e−Ct/x} ≤ e−C

√
t. The result follows by noting that

P(‖θ‖1 > t)≤
∫

√
t

x=0
max{e−Ct2/x2 , e−Ct/x}fτ (x)dx+ P(τ >

√
t)

≤ 2e−C
√
t. �
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