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ABSTRACT

We study a BPS configuration in which four strings (of different type) meet at a point in

N = 2, D = 8 supergravity, i.e., the low energy effective theory of T 2-compactified type

II string theory. We demonstrate that the charge conservation of the four strings implies

the vanishing of the net force (due to the tensions of various strings) at the junction

and vice versa, using the tension formula for SL(3, Z) strings obtained recently by the

present authors. We then show that a general 4-string junction preserves 1/8 of the

spacetime supersymmetries. Using 4-string junctions as building blocks, we construct a

string network which also preserves 1/8 of the spacetime supersymmetries.

† E-mail address: jxlu@phys.physics.tamu.edu
∗E-mail address: roy@tnp.saha.ernet.in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/231875841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-th/9807139v1
http://arxiv.org/abs/hep-th/9807139


Type IIB string theory admits a stable BPS configuration in which three strings of

different type meet at a point, i.e., a 3-string junction [1,2,3,4]. The existence of such

a 3-string junction is due to the D-string picture [5] and the special properties of elec-

trodynamics in two dimensions as well as the strong-weak U-duality SL(2, Z) symmetry.

D-string picture allows a F-string, i.e., (1,0)-string, ending on a D-string, i.e., (0,1)-string.

The consistent coupling at the endpoint guarantees the charge conservation [6]. The

charge at the endpoint of the F-string appears as a point source to the U(1) field on

the D-string worldsheet. The Gauss law in one spatial dimension implies that the field

strength F01 can be chosen as the constant charge flux on one side of the point charge

along the D-string and zero on the other side [4]. This can also be understood from the

picture that the other end of the F-string may be thought to end on the D-string at in-

finity, implying that the charge flux goes along the D-string only from the positive charge

endpoint to the negative charge endpoint of the F-string at infinity. Due to this, one side

of the original D-string can no longer be a D-string but a (1,1)-string (or (−1,−1)-string

depending on the orientation) and the charge at the endpoint of F-string causes one half

of the D-string to bend rigidly rather than to be spike-like as in the case for D p-brane

for p > 2 [7], therefore giving rise to a stable 3-string junction. The U-duality symmetry

SL(2, Z) guarantees the existence of a general (p, q)-string with coprime integers p and

q. Otherwise, the 3-string junction would not be possible. As an interesting application

the 3-string junction has been used in [8] to construct the 1/4 BPS states in D = 4,

N = 4 supersymmetric Yang-Mills theory. Also, the dynamics of 3-string junction has

been studied in [9,10] and the M-theoretic origin of such junctions has been pointed out

in [1,11,12].

The T 2-compactified Type II string theory admits a general stable BPS (q1, q2, q3)-

string configuration with any two of the three integers q1, q2 and q3 being coprime [13].

All possible (q1, q2, q3) strings fill in the various multiplets of the strong-weak symmetry

SL(3, Z) of the complete U-duality symmetry SL(3, Z) × SL(2, Z) in this theory (the

strings are inert under the T-dual symmetry SL(2, Z)) and each of the strings breaks half

of the spacetime supersymmetries. The three integral charges qi are associated with the

corresponding three 2-form potentials B(i)
µν (i = 1, 2, 3) which form a triplet of the SL(3, Z)

in this theory. We therefore expect that we have three kinds of strings. In particular,

the (1, 0, 0)-string is the T 2-compactified Type IIB F-string and the (0, 1, 0)-string is the

T 2-compactified D-string while the (0, 0, 1)-string is the wrapped D 3-brane. If we draw
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the analogy between what we have here and what has been discussed in the previous

paragraph for the 3-string junction, one natural conclusion is that we should have a 4-

string junction in D = 8. The only thing which we have not explained well is how the

(1, 0, 0) and (0, 1, 0) strings couple consistently with the (0, 0, 1)-string so that one can

have a 4-string junction. This can be explained if we trace the origin of these strings back

to D = 10. In other words, in order to have a stable BPS 4-string junction in D = 8, we

should have a F-string and a D-string ending consistently on a D 3-brane in D = 10. This

possibility certainly exists if one examines the effective D 3-brane worldvolume action

[14,15] in which both the NSNS and RR 2-form potentials couple consistently with the

U(1) gauge field on the worldvolume. Thanks to the recent work [16] where such a

stable BPS configuration has been discovered explicitly and is shown to preserve 1/4 of

the D 3-brane worldvolume supersymmetries. In general, a toroidal compactification on

either supergravity theory or super p-brane action preserves the original supersymmetries.

Loosely speaking, the 4-string junction can be viewed as the T 2-dimensionally reduced

D = 10 BPS configuration of a F-string and a D-string ending on a D 3-brane as we

will discuss in the following. This further convinces us that there should exist a 4-string

junction in D = 8 which preserves 1/8 of the spacetime supersymmetries.

Let us explain further the 4-string junction from D = 10 picture. We start with a

F-string and a D-string ending on a D 3-brane. To be specific, let us assume that the

D 3-brane be along x3, x8 and x9 directions, the F-string be along the x1-direction with

its endpoint on the D 3-brane at x3 = 0, x8 = a, x9 = 0, and the D-string along the

x2-direction with its endpoint on the D 3-brane at x3 = 0, x8 = 0, x9 = b where a and

b are two constants. If such a configuration is a stable BPS one, both the F-string and

D-string are spike-like [16,7]. The charge at the F-string endpoint and the charge at the

D-string endpoint appear to be electric and magnetic, respectively, to the U(1) field on

the D 3-brane worldvolume.

Now let us compactify the coordinates x8 and x9 on a torus and insist that the 3-brane

wrap on the torus. If we shrink the spacetime torus to zero, the 3-brane then becomes

the (0,0,1)-string along x3 in D = 8. At the same time, the F-string and D-string become

(1,0,0)-string and (0,1,0)-string, respectively, in D = 8. Their endpoints must meet at

x3 = 0 ending on the (0,0,1)-string. The D = 10 type IIB NSNS and RR 2-form potentials

are reduced to the D = 8 2-form potentials B
(1)
2 and B

(2)
2 , respectively. The U(1) gauge

field on the D 3-brane worldvolume is reduced to the U(1) gauge field on the (0,0,1)-string
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worldsheet with the only field strength component F03.

On reducing the D 3-brane worldvolume action to give the action describing the (0,0,1)-

string in D = 8, we know that F03 couples to both B
(1)
2 and B

(2)
2 . We also know that

B
(1)
2 and B

(2)
2 determine the charges for (1,0,0)-string and (0,1,0)-string, respectively, in

D = 8. So in D = 8, both the (1,0,0)-string and (0,1,0)-string endpoint charges provide

point sources to the U(1) field strength F03 on the (0,0,1)-string worldsheet (the two

charges are now located at the same point x3 = 0)†.

With a similar discussion as we did above for the 3-string junction, we must conclude

that the (0,0,1)-string cannot remain as it is when a (1,0,0)-string and a (0,1,0)-string end

on the (0,0,1)-string at x3 = 0. The two sides of the (0,0,1)-string around x3 = 0 must

bend rigidly according to the following two cases: 1) The x3 > 0 (or x3 < 0) side becomes

(1,1,1)-string (or (−1,−1,−1)-string depending on the oritentation) while the other side

remains as (0,0,1)-string if the two other ends of the (1,0,0) and (0,1,0) strings meet with

the (0,0,1)-string at infinity on x3 > 0 (or x3 < 0) side. 2) The x3 > 0 (or x3 < 0) side

becomes (1,0,1)-string and the other side becomes (0,1,1)-string if the other end of the

(1,0,0)-string meets with the (0,0,1)-string at infinity on x3 > 0 (or x3 < 0) side while

that of the (0,1,0)-string meets with the (0,0,1)-string at infinity on x3 < 0 (or x3 > 0)

side. In each case, we have a 4-string junction.

The above discussion clearly indicates that there should exist a stable BPS 4-string

junction in D = 8. However, at this point, the only thing that we are certain about is that

the existence of various couplings indeed allows 4 strings in D = 8 to meet at one point.

In other words, the charge conservation is not violated when 4 strings meet. Whether

there actually exists a stable BPS 4-string junction requires us to show that the net-force

due to string tensions at the junction should vanish and the junction should preserve some

unbroken supersymmetries. We will show that the answers for both of these are positive.

If the four strings are of type (q
(i)
1 , q

(i)
2 , q

(i)
3 ) (1 ≤ i ≤ 4), then the charge conservation

[13,6,15,17] implies
4
∑

i=1

q
(i)
1 =

4
∑

i=1

q
(i)
2 =

4
∑

i=1

q
(i)
3 = 0. (1)

We recall from [13] that the tension for a (q1, q2, q3)-string in string metric is

T(q1,q2,q3) =
√

e−φ0+
√
3ϕ0q23 + e−2φ0(q2 − χ10q3)2 + (q1 − χ30q2 − χ20q3)2, (2)

†In two dimensions, we do not have a distinction between electric and magnetic charges. But in the
present case, we can still make a distinction between the two charges since their dependences on the
string coupling are different when they act as sources to F03.
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where φ0, ϕ0, χ10, χ20 and χ30 are the asymptotic values of the scalars parametrizing the

coset SL(3, R)/SO(3) in the D = 8, N = 2 supergravity. In particular, φ and χ3 are

the D = 10 type IIB dilaton and RR scalar, respectively. ϕ is another dilatonic scalar

while χ1 and χ2 are axions, all of which are due to the T 2-compactification of type IIB

supergravity. The above tension can be viewed as the magnitude of the following tension

vector

~T(q1,q2,q3) = (q1 − χ30q2 − χ20q3) ê1 + e−φ0(q2 − χ10q3) ê2 + e−φ0/2+
√
3ϕ0/2q3 ê3, (3)

where êi (i = 1, 2, 3) are the unit vectors along the xi-directions, respectively. This

corresponds to orienting the (q1, q2, q3)-string along the direction of the tension vector.

We use two simple examples to justify the above tension vector. First, the (1,0,0), (0,1,0)

and (0,0,1) strings obtained from a F-string and a D-string ending on a D 3-brane by

shrinking the spacetime torus to zero-size are perpendicular to each other (the axions are

all set to zero). The above tension vector formula indeed shows this feature. Secondly, as

discussed in [13], our tension formula reduces to the one for the type IIB (q1, q2)-string

when ϕ, χ1, χ2 and q3 are all set to zero. In this case, our above tension vector goes over

to the one given by Sen [18] in discussing the 3-string junction network.

With the above tension vector, we have the zero net force automatically at the 4-string

junction
4
∑

i=1

~T
(q

(i)
1 ,q

(i)
2 ,q

(i)
3 )

= 0, (4)

provided the charge conservation (1) is satisfied. The converse is also true, i.e., the zero

net force at the 4-string junction requires the charge conservation of eq.(1). This beautiful

property further convinces us that the tension vector (3) is indeed correct.

We shall now show that a 4-string junction preserves 1/8 of the spacetime supersym-

metries as expected. Before we do so, let us seek first the 1/2-unbroken supersymmetry

condition for a stable BPS (1,0,0)-string configuration of the D = 8, N = 2 supergravity.

This SUSY condition can be obtained from that of the F-string or (1,0)-string configu-

ration in D = 10 type IIB supergravity. Let ǫL and ǫR be the two real Majorana-Weyl

supersymmetry transformation parameters of type IIB string theory, associated with the

left and the right moving sector of the worldsheet of the F-string. Assuming the F-string
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to be along x1, we have the SUSY condition for the (1,0)-string configuration as‡

ǫL + iǫR = Γ2Γ3 · · ·Γ9(ǫL − iǫR), (5)

where ΓM (M = 0, 1, · · ·9) are the ten dimensional gamma matrices. The convenient

representation for these matrices is the Majorana one in which Γ0 is real and antisymmetric

while the rest are real and symmetric. A concrete construction for the ΓM is given in the

appendix. In this representation, the above condition is equivalent to

ǫL = Γ2Γ3 · · ·Γ9ǫL, ǫR = −Γ2Γ3 · · ·Γ9ǫR. (6)

If we are able to express the ǫL and ǫR in terms of the two pseudo Majorana supersymmetry

transformation parameters ǫ(1) and ǫ(2) in D = 8, N = 2 supergravity and express ΓM in

terms of D = 8 gamma matrices γµ, then the above SUSY conditon is reduced to the one

for the (1, 0, 0)-string configuration (this string is also along x1). This has been done in

detail in the appendix and the required SUSY condition is

(

ǫ(1)

ǫ(2)

)

= γ0γ1 ⊗ σ1

(

ǫ(1)

ǫ(2)

)

, (7)

where σ1 is the 2× 2 Pauli matrix.

As is well known in supergravity theories, the spinors are singlet for the non-compact

Cremmer-Julia symmetry G but form certain representation of the local hidden symmetry

H which is isomorphic to the maximal compact subgroup of G linearly realized on the

physical states. In generating a general U-duality p-brane solution from a single charge

solution as we did in [13], all we need to care about is the bosonic fields since the fermionic

fields are always set to zero. Therefore, we do not need to use the “vielbein”-formalism

for the scalar fields. In other words, we need to employ only the non-compact global

Cremmer-Julia symmetry G to find the general U-duality p-brane solution. By this, we

concluded in [13] that the general U-duality p-brane solution should preserve the same

number of unbroken supersymmetries as that for the original single charge solution. Here

the story is different. We no longer consider an isolated p-brane solution but a few strings

meet at a point. Since the strings in a 4-string junction share the same SL(3, R)/SO(3)

moduli but different charges, they are physically inequivalent. Each of these strings can

be obtained through a different global SL(3, R) transformations. If we choose to work

‡Here and in the subsequent discussion, spinors in the corresponding SUSY condition all take their
asymptotic values.
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in the “vielbein”-formalism and in a unitary gauge, then an induced SU(2) (≃ SO(3))

transformation will arise whenever a SL(3, R) transformation is performed [19,20]. This

induced SU(2) transformation will act on the pseudo Majorana spinors ǫ(1) and ǫ(2) which

form a doublet of SU(2). So the SUSY condition for each of the 4 strings in a 4-string

junction will be differnt. We will just make use of such differences to determine if any

supersymmetry is preserved for a 4-string junction.

Since

(

ǫ(1)

ǫ(2)

)

is a doublet of SU(2), the SUSY condition (7) for the (1,0,0)-string

configuration must be a special form of a general SU(2) covariant expression of a general

(q1, q2, q3)-string since they both preserve 1/2 of the spacetime supersymmetries and are

related to each other by an induced SU(2) transformation. Examing the SUSY condition

(7) for the (1,0,0)-string, we note that we already have an appearance of the SU(2)

generator σ1. Our hunch for the covariant SUSY condition for a general (q1, q2, q3)-string

along the x1 axis is§
(

ǫ(1)

ǫ(2)

)

= γ0γ1 ⊗
V

|V |

(

ǫ(1)

ǫ(2)

)

, (8)

where V = Vaσa with Va a SO(3) vector and σa (a = 1, 2, 3) the three Pauli matrices.

|V | denotes the magnitude of V . Note that Va depend only on the asymptotic values of

SL(3, R)/SO(3) moduli and the three charges q1, q2, q3. Whether we succeed in reaching

the above condition depends on if we can find the vector Va.

We recall from [13] that the scalar matrixM3 parametrizing the coset SL(3, R)/SO(3)

is

M3 = e
ϕ√
3





























e−φ + χ2
3e

φ χ3e
φ (χ2 + χ1χ3)e

−
√
3ϕ

+(χ2 + χ1χ3)
2e−

√
3ϕ +χ1(χ2 + χ1χ3)e

−
√
3ϕ

χ3e
φ eφ + χ2

1e
−
√
3ϕ χ1e

−
√
3ϕ

+χ1(χ2 + χ1χ3)e
−
√
3ϕ

(χ2 + χ1χ3)e
−
√
3ϕ χ1e

−
√
3ϕ e−

√
3ϕ





























. (9)

The matrix M3 can be re-expressed in a 3-bein form as M3 = ννT with the 3-bein

νia. Here i = 1, 2, 3 are the SL(3, R) indices while a = 1, 2, 3 are the SO(3) indices. The

§ Similar SUSY condition was also given in a recent paper by Bhattacharya et al [21] in discussing the
non-planar network of 3-string junctions. We, however, differ from theirs in the following ways. They
used the product of gamma matrices in the transverse directions of the string in their SUSY condition
while we have here the product of gamma matrices along the longitudinal directions of the string. The
two are different since in D = 8, the pseudo Majorana spinors cannot be Weyl at the same time. The
subsequent discussions are also differnt. They discussed the nonplanar network of 3-string junctions while
we are here discussing a 4-string junction and its network.
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3-bein ν transforms under the global SL(3, R) and local SO(3) as ν → ΛνR, with Λ a

global SL(3, R) matrix and R a SO(3) rotation matrix. We also know that the charge

triplet

q =







q1
q2
q3





 (10)

transforms only under SL(3, R) as q → Λq. So the SO(3) vector V can be constructed

as Va = (ν−1
0 )aiqi with

ν−1 = e−ϕ/2
√
3







eφ/2 −χ3e
φ/2 −χ2e

φ/2

0 e−φ/2 −χ1e
−φ/2

0 0 e
√
3ϕ/2





 . (11)

The subscirpt ‘0’ always means that the scalars take their asymptotic values. The vector

Va transforms only under SO(3) as Va → RbaVb. The SO(3) action on the vector Va can

also be realized on a SU(2) basis through V = Vaσa as V → U+V U , with

U+σaU = Rabσb, (12)

where U+ = U−1 with U a SU(2) matrix.

Therefore, it can be shown that eq. (8) is indeed covariant under a SU(2) transforma-

tion U if the spinor doublet transforms as
(

ǫ(1)

ǫ(2)

)

→ U−1

(

ǫ(1)

ǫ(2)

)

. (13)

So far in discussing the SUSY condition (8), we always assume that the (q1, q2, q3)-

string be along the direction of x1. We could not have found anything wrong with this

assumption if we had never discussed various string junctions. We recall that the zero net

force at a 4-string junction requires the orientation of the (q1, q2, q3)-string be given by

the tension vector (3). This implies that except for a (q1, 0, 0)-string, a general (q1, q2, q3)-

string cannot be kept along the x1-direction. Therefore, the superscript 1 in the γ1-matrix

in the SUSY condition (8) should be replaced by a label 1′ characterizing the direction of

the tension vector (3). We have

γ1′ = sinα cos β γ1 + sinα sin β γ2 + cosα γ3, (14)

where sinα, cosα, sin β, cosβ can be determined by the tension vector ~T(q1,q2,q3) as

sinα cos β =
q1 − χ30q2 − χ20q3

T(q1,q2,q3)

,
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sinα sin β =
e−φ0 (q2 − χ10q3)

T(q1,q2,q3)

,

cosα =
e−φ0/2+

√
3ϕ0/2 q3

T(q1,q2,q3)

, (15)

where the tension T(q1,q2,q3) is given by eq. (2). The tension vector can now be re-expressed

as

~T(q1,q2,q3) = T(q1,q2,q3)(sinα cos β ê1 + sinα sin β ê2 + cosα ê3). (16)

If we introduce three Cartesian unit vectors ûa for the internal three dimensional

tangent space of the coset SL(3, R)/SO(3) space, then we can express Va in a vector

form as ~V = Vaûa. Now if we employ eq. (11) to express the components Va = (ν−1
0 )aiqi

explicitly, we have, using eq. (15),

~V = |V |(sinα cos β û1 + sinα sin β û2 + cosα û3), (17)

where |V |, the magnitude of ~V or V = Vaσa, is actually the (q1, q2, q3)-string tension

written in Einstein metric [13]. Comparing eq. (16) with the above equation, we can easily

see that the tension vector re-expressed in Einstein metric and the vector ~V behave in

exactly the same way. The only difference is that they are expressed in two different spaces,

namely, the tension vector is in three-dimensional space-time coordinate system whereas,

the vector ~V is in the three-dimensional tangent space of the coset space SL(3, R)/SO(3).

Since both ~T(q1,q2,q3) and
~V are defined for arbitrary asymptotic values of the moduli and

the three charges q1, q2, q3, it would be strange if the two three-dimensional spaces are not

identified given the above behavior even though we do not have to do so for the present

purpose. The identification of these two spaces was also made in [21]. The similar behavior

also occurs for a general type IIB (p, q)-string and the corresponding two 2-dimensional

spaces were identified in the discussion of the planar string network in [18]. There must

exist a deep reason for such an identification of two completely different spaces beyond

what we have explained here. This may be connected to the well-known fact that there is

a relationship between the unbroken SUSY condition and the so-called no-force condition.

Now we finally come to show that a general 4-string junction preserves 1/8 of the

spacetime supersymmetries. Let us show this first for the simplest 4-string junction which

consists of (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1,−1,−1) strings with χ10 = χ20 = χ30 = 0.

The SUSY condition for the (1, 0, 0)-string is, with γ1′ = γ1 and V/|V | = σ1,
(

ǫ(1)

ǫ(2)

)

= γ0γ1 ⊗ σ1

(

ǫ(1)

ǫ(2)

)

, (18)
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which is equivalent to ǫ(1) = γ0γ1ǫ(2). Since (γ0γ1)2 = 1, so one half of the spacetime

supersymmeties is preseved by the (1, 0, 0)-string configuration. For the (0, 1, 0)-string,

we have, γ1′ = γ2 and V/|V | = σ2. So the SUSY condition becomes,

(

ǫ(1)

ǫ(2)

)

= γ0γ2 ⊗ σ2

(

ǫ(1)

ǫ(2)

)

, (19)

which is independent of the SUSY condition for the (1, 0, 0)-string. The above is equivalent

to ǫ(1) = −iγ0γ2ǫ(2). The above two independent SUSY conditions preserve 1/4 of the

spacetime supersymmetries. For the (0, 0, 1)-string, we have, γ1′ = γ3 and V/|V | = σ3.

The SUSY condition in this case has the form,

(

ǫ(1)

ǫ(2)

)

= γ0γ3 ⊗ σ3

(

ǫ(1)

ǫ(2)

)

, (20)

which is equivalent to ǫ(1) = γ0γ3ǫ(1) and ǫ(2) = −γ0γ3ǫ(2). This breaks further 1/2 of

what is left, i.e., preserving 1/8 of the spacetime supersymmetries. Does the (−1,−1,−1)-

string break more supersymmetries? The SUSY condition for this string is automatically

satisfied once we have all the above three conditions. In showing this, we need also the

following deduced relations

γ1 ⊗ σ2

(

ǫ(1)

ǫ(2)

)

= −γ2 ⊗ σ1

(

ǫ(1)

ǫ(2)

)

,

γ1 ⊗ σ3

(

ǫ(1)

ǫ(2)

)

= −γ3 ⊗ σ1

(

ǫ(1)

ǫ(2)

)

,

γ2 ⊗ σ3

(

ǫ(1)

ǫ(2)

)

= −γ3 ⊗ σ2

(

ǫ(1)

ǫ(2)

)

. (21)

In summary, the above 4-string junction indeed preserves 1/8 of the spacetime super-

symmetries. The needed SUSY conditions are summarized here as

(

ǫ(1)

ǫ(2)

)

= γ0γ1 ⊗ σ1

(

ǫ(1)

ǫ(2)

)

= γ0γ2 ⊗ σ2

(

ǫ(1)

ǫ(2)

)

= γ0γ3 ⊗ σ3

(

ǫ(1)

ǫ(2)

)

. (22)

One can show that the SUSY conditions for a general 4-string junction are exactly the

ones given in eq. (22). One way to check this is to note that the three equations in (22)

guarantee the SUSY condition to be satisfed for a general (q1, q2, q3)-string with arbitrary

asymptotic values of the moduli. Therefore, a general 4-string junction satisfying charge

conservation (1) and zero net-force condition (4) always preserves 1/8 of the spacetime

supersymmetries. So a 4-string junction can be a stable BPS configuration.
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Our discussion for 4-string junctions also provides basis for the corresponding network

in the same spirit of the planar string network discussed by Sen [18]. In the 4-string

junction network, each 4-string junction satisfies the charge conservation (1) and zero net

force condition (4), and preserves 1/8 of the spacetime supersymmetries. Since the SUSY

conditions (22) are independent of the composition of the network, the 4-string junction

network preserves also 1/8 of the spacetime supersymmetries. The orientations of links

in the network are completely determined by the corresponding charge triplets associated

with these links. Other topics such as string lattice and the compactification related to

the string network can also be discussed in the similar spirit as in [18].

With this work, we may expect that there exist other kinds of stable BPS string

junctions (with maximum number of strings allowable by the corresponding U-duality

symmetry and charge conservation in each junction) and the corresponding network in

D ≤ 7. However, it appears that such a string junction and the corresponding network

will exist only in D = 7 i.e. T 3-compactified type II string theory and not in D < 7. In

the case of D = 7 we expect that there exists a 6-string junction. Both the 6-string junc-

tions and the corresponding network preserves 1/32 of the spacetime supersymmetries.

However, for D < 7, since the U-duality group becomes larger, the corresponding vector

representation becomes bigger than the spatial dimensions of the theory. It also appears

that no supersymmetries can be preseved for those junctions. Thus in those cases, it is

not possible to form stable string junctions in a consistent fashion.

In conclusion, we have studied in this paper the BPS property of 4-string junction

in N = 2, D = 8 supergravity which is the low energy effective theory of type II string

theory compactified on T 2. The existence of 4-string junction in D = 8 has been argued

to follow from the consistent coupling of F- and D-string to the D 3-brane of type IIB

theory in D = 10. We have shown that the junction is stable since the net force due to the

tensions of various strings at the junction vanishes as a consequence of charge conservation

and vice-versa and the configuration preserves 1/8 of the space-time supersymmetries. We

have also indicated how using the 4-string junction as the building block one can construct

a string network and lattices. String junctions and the corresponding networks are stable

but curious states that exist in string theory in various dimensions; however, their true

utility either in the formulation of non-perturbative string field theory [3] or in the study

of black holes [1,8] remains to be seen.
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Appendix

In this appendix, we will demonstrate how to express the real Majorana-Weyl spinors ǫL

and ǫR in D = 10 in terms of two pseudo Majorana spinors ǫ(1) and ǫ(2) in D = 8 and how

to obtain eq. (7) from eq. (5). The spacetime signature is always chosen as (−,++ · · ·+).

The eight 16× 16 Dirac matrices Σi (i = 1, 2, · · · , 8) associated with SO(8) can all be

chosen as real and symmetric. An explicit representation for these Σi can be found, for

example, on page 288 in [22]. These matrices satisfy the following Clifford algebra

{Σi,Σj} = 2δij. (23)

The corresponding Σ9 can be defined as

Σ9 = Σ1Σ2 · · ·Σ8, (24)

which is real and symmetric and whose square is a unit matrix, i.e., (Σ9)2 = 1.

The SO(1,7) gamma matrices can therefore be defined as

γ0 = iΣ1,

γj−1 = Σj , (j = 2, 3, · · · , 8). (25)

In D = 8, one can show that there exist only either Weyl or pseudo Majorana spinors.

If we choose to work in the above representation for the gamma matrices, a pseudo

Majorana spinor η is defined as

γ0η∗ = η, (26)

where ∗ denotes the complex conjugate. If we write η = λ+ iζ with λ and ζ as two real

spinors, then the above equation says ζ = −iγ0λ, so a general pseudo Majorana spinor in

D = 8 can be written as

η = (1 + γ0)λ, (27)

with λ an arbitrary real spinor in D = 8. Or we can express

λ =
1

2
(1− γ0)η. (28)

As is well-known, a Majorana-Weyl spinor Ψ in D = 10 is real in a Majorana rep-

resentation in which the gamma matrix Γ0 is real and antisymmetric while the rest
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gamma matrices are real and symmetric. We can construct such a representation for

ΓM (M = 0, 1, 2, · · · , 9), which is useful for the purpose of this paper, as

Γ0 = −iΣ1 ⊗ σ2,

Γj−1 = Σj ⊗ I2, (j = 2, · · · , 9),

Γ9 = Σ1 ⊗ σ3, (29)

where Σ9 is defined in eq. (24), I2 is the 2 × 2 unit matrix and σ2 and σ3 are the usual

Pauli matrices whose explicit forms are

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (30)

The corresponding Γ11 in this representation is

Γ11 = Γ0Γ1 · · ·Γ9,

= Σ1 ⊗ σ1,

=

(

0 Σ1

Σ1 0

)

, (31)

which is real and symmetric and Γ2
11 = 1. A Majorana-Weyl spinor Ψ satisfies both

Ψ∗ = Ψ and Γ11Ψ = Ψ where we choose the eigenvalue for Γ11 as 1. Such a spinor can be

expressed in terms of a D = 8 real spinor, for example the λ, as

Ψ =

(

λ
Σ1λ

)

. (32)

We are now ready to derive eq. (7) from eq. (5). If we write

ǫL =

(

λL

Σ1λL

)

, ǫR =

(

λR

Σ1λR

)

, (33)

and notice that

Γ2Γ3 · · ·Γ9 = Σ2 ⊗ σ3,

=

(

Σ2 0
0 −Σ2

)

, (34)

then eq. (5) is equivalent to the following equations

λL = Σ2λL, λR = −Σ2λR. (35)

Note both λL and λR are arbitrary 16-component real spinors. If we express them

in terms of the two D = 8 pseudo Majorana spinors ǫ(1) and ǫ(2), then the above SUSY

12



condition should become the SUSY condition for the (1, 0, 0)-string configuration. Using

eq. (28), we can identify

λL =
1

2
(1− γ0)(ǫ(1) + ǫ(2)),

λR = −
1

2
(1− γ0)(ǫ(1) − ǫ(2)). (36)

Substituting the above to eq. (35), we end up with eq. (7) where we have used γ1 = Σ2.
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