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Abstract

Background: Most dynamical models for genomic networks are built upon two current methodologies, one
process-based and the other based on Boolean-type networks. Both are problematic when it comes to
experimental design purposes in the laboratory. The first approach requires a comprehensive knowledge of the
parameters involved in all biological processes a priori, whereas the results from the second method may not have
a biological correspondence and thus cannot be tested in the laboratory. Moreover, the current methods cannot
readily utilize existing curated knowledge databases and do not consider uncertainty in the knowledge. Therefore,
a new methodology is needed that can generate a dynamical model based on available biological data, assuming
uncertainty, while the results from experimental design can be examined in the laboratory.

Results: We propose a new methodology for dynamical modeling of genomic networks that can utilize the
interaction knowledge provided in public databases. The model assigns discrete states for physical entities, sets
priorities among interactions based on information provided in the database, and updates each interaction based
on associated node states. Whenever uncertainty in dynamics arises, it explores all possible outcomes. By using the
proposed model, biologists can study regulation networks that are too complex for manual analysis.

Conclusions: The proposed approach can be effectively used for constructing dynamical models of interaction-
based genomic networks without requiring a complete knowledge of all parameters affecting the network
dynamics, and thus based on a small set of available data.

Background
Cellular regulatory networks consist of thousands of
molecular processes/reactions collected over years from
many studies. Based on their relationships and functions,
these interactions and their associated molecular entities
have been categorized into various pathways. Biologists
have long used pathway knowledge to help derive the
dynamics of cellular interactions, generate plausible
hypotheses, and design promising experiments; however,
our knowledge of regulatory networks is growing quickly
and manual exploration is becoming increasingly diffi-
cult. The challenge of understanding network dynamics
has become overwhelming in cancer drug development

because multiple pathways are commonly involved and
the direct targets of drug intervention are often multiple
steps away from the key mechanism to be controlled,
which could be in a different compartment and different
pathway. Thus, a salient goal of computational biology is
to simulate the dynamics of genetic/molecular regulatory
networks based on available biological knowledge and in
doing so help biologists generate meaningful hypotheses
and improve experimental design.
A considerable amount of pathway knowledge centered

around biological interactions is currently being curated
into well organized public databases, such as PID [1],
Reactome [2,3], and Pathway Commons [4], where the
interactions and their associated physical entities are
defined and shared via a standard language such as Bio-
PAX [5]. The popular standard, Systems Biology Markup
Language (SBML), has adopted systems of Ordinary
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Differential Equations (ODEs) or Partial Differential
Equations (PDEs) as a natural way to describe the fine-
grained interactions inside the pathways [6]. Along with
the emergence of SBML, there are softwares that can run
ODE and/or PDE-based cell models, e.g. LibSBML [7],
CellDesigner [8], and the Virtual Cell [9]. However, such
an approach demands complete information on the rate
equations and their parameters in all reactions to be
determined before any simulation can be conducted [10].
This requirement is commonly not available in transla-
tional research, for instance, in drug discovery [11].
Taking a coarse perspective, qualitative methods such as

Boolean networks for regulatory networks [12] or Petri net
for metabolic networks [13], focus on the physical entities
rather than interactions. In these methods genes and gene
products are linked by logical or algebraic relationships.
While there are some popular knowledge databases, such
as KEGG [14], where direct relationships are readily avail-
able, these cannot be directly adapted to interaction-cen-
tered databases (KEGG allows both relation and reaction,
although relations are commonly provided.). Although it is
possible to manually convert such databases into a form fit
for Boolean modeling, the translation is not unique and
can be unstable in relation to small interaction alterations.
There are also software tools that can be used to run such
simulations, including CellNetAnalyzer [15], CellNOpt
[16], BooleanNet [17], and CPN tools [18].
Furthermore, all the existing approaches, differential

equations, Boolean, or Petri net, require a complete and
exact knowledge of the network, including the networks
readily available from the public databases, whereas such
knowledge associated with the biological processes is often
incomplete and admits multiple possibilities. Although
biologists routinely take these uncertainties into their own
consideration, current computational approaches do not.
Hence, a huge amount of curated pathway knowledge can-
not be effectively utilized by the computer.
To help remedy this situation, we proposed a general

scheme in which uncertainty is considered as part of
the system and all possible outcomes that are attainable
due to different possible ways in which pathway steps can
be carried out will be considered accordingly. Via this
approach, one can apply knowledge retrieved from inter-
action-centered knowledge databases directly to perform
systematic simulations. Ultimately, with more meaningful
predictions of network dynamics, a better guide to experi-
mentation can be achieved.
This paper is organized as follows. In the Methods sec-

tion, we provide some definitions and introduce an inter-
action-based network model which can be generated
from an input biological database. We discuss about the
dynamic trajectories of a network and the concept of
uncertainty in network dynamics. An abstract form of
the dynamical modeling algorithm for computing

the dynamic trajectories characterizing the dynamical
behavior of a network for a given initial condition is also
provided in this section. A study on the dynamics of a
number of real data networks using our dynamical mod-
eling methodology is given in the Results and discussion
section. We also describe our current research activities.
Finally, we provide our concluding remarks in the
Conclusions section.

Methods
To produce our network model, we employ knowledge
retrieved from public knowledge databases such as PID
and Reactome. To simplify the discussion, we assume that
knowledge is shared via the standard language BioPAX,
specifically, BioPAX3. To facilitate efficient simulation, we
first represent the interactions and associated physical
entities shared in BioPAX using a set of nodes and edges.

An interaction-based network model
The model M, of the biological database under study, is a
2-tuple M = (N, E), where N is the set of network nodes
representing the biological entities in the database,
including genes, proteins, complexes, molecules, tran-
scripts, metabolites and chemicals, interacting with each
other, and E is the set of network hyper-edges (a hyper-
edge is an edge that can have multiple inputs/outputs),
or simply edges, representing the biological interactions
and processes in the database. The set of network nodes
N and network edges E can be automatically generated
from a simple text-based input file describing the biologi-
cal interactions using our developed software package
[19]. A detailed description on preparing the input file
can be found in the Appendix section.
Each node in the network has a value, where the

abstract term “value” is interpreted based on the charac-
teristics of that biological entity. It may represent the con-
centration level of a protein/chemical or the expression
level of a gene, indicating whether the gene is active or
inactive. It does not necessarily indicate the relationship,
such as concentration relationship, between different bio-
logical entities. The concentration of proteins, chemicals,
and so on, in the cell are continuous variables; however,
there are reasons why discrete variables are more suitable.
First, accurate real-time concentration measurements are
almost impossible. Second, a gene/protein typically partici-
pates in a biological process if its concentration is above a
threshold level and such behavior is readily handled using
discrete variables. Finally, from a control system engineer-
ing perspective, it is computationally and practically easier
to deal with discrete-time systems rather than continuous-
time systems. Therefore, we assume that network nodes
take non-negative integer values. The state of a network
with m nodes, namely N = {n1, n2,..., nm}, is a vector
x ∈ Z

m
≥0, Z≥0 being the set of non-negative integers,
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where each element of x is the value of a node n ∈ N. Let
us also denote by y the vector of observable/measurable
states, representing the subset of genes, proteins, tran-
scripts, and so on, whose activities can be observed or
measured and are of our interest. We represent the i-th
node in N by ni. The same notation will be used for net-
work edges, for example, ej refers to the j-th edge in E.
Each network edge represents a corresponding biological

process or interaction in which, generally, the process
reactants (inputs) interact with each other to form pro-
ducts (outputs) under a set of conditions. Thus, in general,
each edge will have input and output nodes. In cases
where a process is controlled, for instance, via activation
or inhibition by a biological entity, a corresponding control
node is associated to that edge. The input, output, and
control nodes of the i-th edge are denoted by ei.I, ei.O and
ei.C, respectively. We assume that an edge (a process) can
dynamically take place if all its input and activator nodes
have nonzero values and its inhibitor nodes have zero
values. We use the following rules to update the node
values when the i-th edge is being dynamically processed:

ei·I|new = ei·I|old − 1

ei·O|new = ei·O|old + 1

ei·C|new = ei·C|old

(1)

Arrows indicate the directions of processes/edges gra-
phically. A dashed arrow is used to show an activation
or inhibition in a network process. As an example, a
process in which protein A converts to protein B if the
activator protein C presents is shown as follows:

C���

A → B

(2)

To generate a network model for the above process,
we define the set of network nodes by N = {n1, n2, n3} =
{A, B, C}, and the set of network edges by E = {e1}:

n3���

n1 → n2

e1

(3)

where n1, n2 and n3 are the input, output and activator
nodes of e1, respectively. Supposing that the initial condition
is given by x0 = [1, 0, 1]T, since the input and activator
nodes have nonzero values, the updated state vector, follow-
ing the rules in (1), becomes x1 = [0, 1, 1]T, and we write:

⎡
⎣1

0
1

⎤
⎦

︸ ︷︷ ︸
x0

e1−→
⎡
⎣0

1
1

⎤
⎦

︸ ︷︷ ︸
x1

(4)

Generally, in conversion processes to which activator enti-
ties are associated, if the activator is removed, the conver-
sion will be halted and even reversed. Also, as can be seen
in real cellular systems, if the activator does not present
then the new input species coming from other processes
will not convert to outputs and will accumulate; thus, the
outputs gradually degrade and will be depleted. Based on
this observation, we make the following assumption.
Assumption 1 If in a conversion process, the activator

entity has zero value and the outputs (right-hand side
entities) have nonzero values, then the process takes
place in the reverse direction.
Considering the statement of Assumption 1 for any

conversion process in the network under study to which
an activator entity is associated, an additional network
edge corresponding to the reverse direction of the origi-
nal process will be automatically added to E. For
instance, for the conversion process in (2), we present
the network model in the following form:

n3���

n1 −−−−−→
e1(rev: e2)

n2

(5)

Now, if x0 = [0, 1, 0]T, then the process takes place in
the reverse direction resulting in x1 = [1, 0, 0]T .
For the set of biological processes in which a tran-

scription takes place we follow the BioPAX format in
which no input is assigned, but only an activator and an
output are defined, these representing whether the tran-
scription has occurred or not. Thus, for this subset of
network edges we use the following logic to update the
output node value:

if ei·Cact > 0 then ei·O|new = 1
else if ei·Cact = 0 then ei·O|new = 0

(6)

where ei.Cact represents the activator node associated
to ei. Once we have updated the output node of a tran-
scription process we will not update that node any
further until the activator node value changes. For
example, suppose that transcription B happens if protein
A presents. We thus define N = {n1, n2} = {A, B} and
E = {e1}:

(7)

Now, for the initial condition x0 = [1, 0]T, the updated
state vector will be x1 = [1, 1]T , implying that the corre-
sponding transcription happens.

Dynamic trajectories and uncertainty in network
dynamics
Once an interaction-based network model M is devel-
oped, a dynamical analysis can be performed. Given a
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network model M = (N, E), an initial condition vector
x0, and defining the parameter time step, the network
state vector x can be updated at each time step based
on our proposed algorithm, presented later in this sec-
tion. The abstract term time step does not necessarily
reflect the real clock time that biological processes
take to complete; the real clock time for one time step
can be substantially different from another time step.
We denote by xk the network state vector at the k-th
time step. Generally, a complete knowledge of all para-
meters affecting the dynamics of a biological process is
not available. Besides, in most practical cases, these
parameters can not be even measured or observed.
Therefore, in general, for a given network initial condi-
tion x0, different sequences of processes can happen,
these being referred to as dynamic trajectories and
denoted by T. Each trajectory t ∈ T, indicates one pos-
sible sequence of processes that can take place. We
describe the trajectory t ∈ T by t = {ei, ej ,...}, for
appropriate values of i, j,..., which means that in the
first time step process i (edge ei) happens, in the sec-
ond time step process j (edge ej) takes place, and so
on. The fact that, for a given x0, multiple dynamic tra-
jectories can be computed reflects uncertainty that we
refer to as dynamics uncertainty. In cases where a pos-
sibly limited knowledge about the biological processes
is available, it can be effectively used to reduce the
dynamics uncertainty of the model. This can be
accomplished by assigning appropriate properties to
the set of network edges, as discussed next. We
emphasize that the dynamic trajectories of a network
depend on the properties assigned to the network
edges as well as the network initial condition.

Network edge properties
To each network edge a set of properties, upon avail-
ability of corresponding information in the biological
database under study, can be associated, these being
critical in characterizing network dynamics. For each
network edge, these properties will be stored in a vec-
tor associated with that specific edge and can be
accessed in the dynamical modeling algorithm, to be
discussed shortly. For instance, to access the property
X of the i-th edge we call ei.X. The dynamical modeling
algorithm consists of conditional statements being
functions of the edge properties; thus, the algorithm
outputs depend on the edge properties. The properties,
speed and priority, are assigned to each edge according
to the nature or earlier measurements of that biological
process.
Speed
The speed label describes the time scale needed for a
process to complete [20,21]. This is critical in

dynamical network modeling because fast processes,
such as complex assembly processes in which a group
of proteins bind together to form a complex, happen
almost instantaneously, while slow processes, such as
transcription and apoptosis (cell death), take much
longer times to complete. If such qualitative knowledge
on the time scale of processes can be obtained from
the biological database, then corresponding speed
labels can be assigned to network edges, thereby redu-
cing uncertainty in the dynamical model; otherwise,
the dynamical model will embrace such uncertainty. In
BioPAX3, processes are categorized into Conversion,
Template Reaction, Control, Molecular Interaction,
and Genetic Interaction. In process-based knowledge
databases, almost all processes belong to the first three
categories and every Control process is essentially
associated with either a Conversion or a Template
Reaction process. By default, to any process labeled as
Conversion in the knowledge database, we assign a
“fast” label; however, for those labeled as Template
Reaction, such as processes that end in a phenotypical
or pathway level event, a “slow” label is assigned,
because the Control and Conversion interactions gen-
erally happen considerably faster than the Template
Reaction processes. If knowledge about the time scale
of a process is not available, then a “fast” label is
assigned to the corresponding edge by default.
To show how the speed property can affect network

dynamics, consider proteins A, B, and C interacting
according to:

A + B → A.B

C + A.B → A + B.C

A.B → Apoptosis

(8)

where the first two processes are of Conversion
(complex assembly) type and the last one, resulting in
apoptosis, is a Template Reaction process. We define
N = {n1, n2, n3, n4, n5, n6} = {A, B, C, A.B, B.C, Apop-
tosis}, and E = {e1, e2, e3}:

n1 + n2
e1−→ n4

n3 + n4
e2−→ n1 + n5

n4
e3−→ n6

(9)

Also, suppose that the initial condition is given as
x0 = [1, 1, 1, 0, 0, 0]T . According to the above descrip-
tion of processes, e1 and e2 happen fast, while e3 takes
more time to complete. If such time-scale knowledge is
not incorporated into the network model in the form of
appropriate edge properties and we, by default, assign a
“fast” label to all the edges, then the network state vec-
tor can be updated in two different ways, as detailed
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below, thereby introducing uncertainty to the dynamical
model:

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x0

e1−→

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

1

e2−→

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

2

(10)

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x0

e1−→

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

1

e3−→

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x2

2

(11)

In the above updates of the network states, xp
k indicates

the p-th possible update of the state vector at the k-th
time step. Now, if one applies the process timescale
knowledge by assigning a “fast” label to the speed of e1
and e2, and a “slow” label to that of e3, then the state vec-
tor will be updated only according to the sequence in (10).
Use of time-scale information reduces uncertainty in the
dynamical model.
Priority
The priority label helps when there exist two or more
processes with nonzero input and activator nodes, and
zero inhibitor nodes, meaning that they have equal prob-
ability to happen; however, a prior knowledge states that
only one or few of them will happen in practice. Priority
is usually not provided in the knowledge database; but in
many cases we can set default priorities based on experi-
ence. For instance, if an entity is an input in process 1
and a control node in process 2, then process 1 has
higher priority than process 2, because in process 1, the
entity will be converted and not be available for control.
For example, PIP3 is needed to phosphorylate AKT, yet
PIP3 can also be converted to PIP2 by PTEN. Hence, if
PTEN exists, PIP3 will be converted and not be able to
phosphorylate AKT. Therefore, upon availability of such
prior knowledge, one can assign priority labels to the net-
work edges and reduce the uncertainty in the dynamical
model; if this is not the case, then no priority labels will
be assigned and the dynamical model will contain all of
the possibilities. Now, consider the following example in
which proteins A, B, C, and D bind together to form
complex assemblies:

A + B → A.B
C + A.B → A + B.C
D + A.B → B + A.D

(12)

We define N = {n1, n2, n3, n4, n5, n6, n7} = {A, B, C, D,
A.B, B.C, A.D} and E = {e1, e2, e3}:

n1 + n2
e1−→ n5

n3 + n5
e2−→ n1 + n6

n4 + n5
e3−→ n2 + n7

(13)

Since all the above processes are of Conversion type,
we assign the “fast” label to the speed property of all the
edges. Assuming that the initial condition is given by
x0 = [1, 1, 1, 1, 0, 0, 0]T , the network state vector can
be updated in two different ways:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x0

e1−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

1

e2−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

2

(14)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x0

e1−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

1

e3−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x2

2

(15)

Now, suppose that a prior knowledge indicates that, in
situations where e2 and e3 can mathematically happen at
the same time owing to nonzero input nodes, e2 has
higher priority than e3 to take place. Accommodating
this priority information into our network model by
assigning the label “eprio

2 > eprio
3 “ to the priority of e2, and

“eprio
3 < eprio

2 “ to that of e3 , the state vector can now be
updated based on the sequence of processes given
in (14).

Dynamical modeling algorithm
An abstract form of the algorithm proposed to perform
the dynamical analysis is provided below. A detailed
algorithm can be found in the Additional file 1 to this
manuscript. The algorithm is based on the breadthfirst
search algorithm [22]. It takes the network model M =
(N, E) and an initial condition x0 as inputs, and return
the resulting dynamic trajectories T, and the corre-
sponding updates of the state vector xk at each time
step k. There are two approaches to update the network
state vector: synchronous and asynchronous [23,17].
With synchronicity, multiple network edges can be
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processed at the same time step; while with asynchronicity,
only one network edge is processed at each time step. Our
software package [19] has the capability to update the net-
work state vector using either approach. Since, in general,
the asynchronous approach yields a larger set of possible
dynamic trajectories compared to the synchronous
method [24], asynchronicity is the default method to
update the network state vector. The abstract algorithm
given below updates the state vector asynchronously.
Algorithm Dynamical Modeling Algorithm
Inputs: (N, E, x0 )
Outputs: (T, x)
1: k ¬ 1, T ¬ ∅, xin ¬ x0, Sin, xk, Sk ¬ ∅
2: run States Update Subroutine (Inputs: (xin, Sin, xk,

Sk, T), Outputs: (xk, Sk, T ))
3: while xk ≠ ∅ do
4: new time step: k ¬ k + 1, xk, Sk ¬ ∅
5: for each updated state vector xi

k−1 in xk - 1 do
6: if corresponding Si

k−1 forms a cycle then
7: if Si

k−1 /∈ T, then add Si
k−1 to T

8: else
9: xin ← xi

k−1, Sin ← Si
k−1

10: run States Update Subroutine (Inputs: (xin,
Sin, xk, Sk, T ), Outputs: (xk, Sk, T ))
11: end if
12: end for
13: end while
States Update Subroutine
Inputs: (xin, Sin, xk, Sk, T)
Outputs: (xk, Sk, T)
1: initialize all nodes by xin
2: Ev ¬ find all edges that have nonzero input nodes,

nonzero activator nodes and zero inhibitor nodes (if
applicable)
3: if Ev ≠ ∅ then
4: remove edges in Ev having relatively slow/low

priority label
5: for each edge in Ev do
6: initialize all nodes by xin
7: xnew

k ¬ update the state vector using the given
rules
8: xk ¬ {xk, xnew

k }
9: Snew

k ¬ the sequence of edges yielded xnew
k

10: Sk ← {
Sk, Snew

k

}
11: end for
12: else
13: if Sin ∉ T, then add Sin to T
14: end if
To illustrate the algorithm, consider the network in Fig-

ure 1, where N = {n1, n2,..., n12} and E = {e1, e2,..., e6}. Sup-
pose that the biological database provides the following
information about the processes in this network: in pro-
cess/edge e1 proteins n1 and n2 bind together to form the
complex n8, if the inhibitor gene n3 does not express; e2 is

a transcription process (the only slow process in this
example) in which n4 is the activator and n9 accounts for
the status of the transcription; in e3 proteins n4 and n5
convert to complex n10 ; in e4 proteins n6 and n10 form
compound n11 and release n4, if the activator n8 presents;
and finally, in e5 proteins n7 and n10 convert to compound
n12, but this process is assumed to have less priority com-
pared to e4 . Based on the above description and according
to the statement of Assumption 1, our method automati-
cally adds edge e6 to the set of network edges to account
for the reverse direction of e4. We incorporate the above
biological information into the network model by assign-
ing appropriate labels to the properties of network edges
(see Table 1). Suppose that the initial condition is:

x0 = [1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0]T

Following the proposed algorithm to calculate the
dynamic trajectories and state vector updates, we get
(the sign ▷ is used for comments, and “SU” indicates
the States Update Subroutine):
- line 1: k ¬ 1, T ¬ ∅, xin ¬ x0, Sin, x1, S1 ¬ ∅
- line 2: run States Update Subroutine

Figure 1 An illustrative network.

Table 1. Edge properties for the illustrative network

label\edge e1 e2 e3 e4 e5 e6

speed fast slow fast fast fast fast

priority eprio
4 > eprio

5 eprio
5 > eprio

4
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- line SU1: initialize all nodes by xin
- line SU2: Eυ= {e1, e2, e3}
- line SU4: Eυ= {e1, e3} ⊳ e2 is removed because it is

slower than other edges
- line SU6: initialize all nodes by xin
- line SU7-8: xnew

1 = x1
1 = [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0]T , x1 ← xnew

1

- line SU9-10: Snew
1 = S1

1 = {e1}, S1 ← Snew
1

- line SU6: initialize all nodes by xin
- line SU7-8: xnew

1 = x2
1 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]T , x1 ← {x1, xnew

1 }
- line SU9-10: Snew

1 = S2
1 = {e3}, S1 ← {S1, Snew

1 }
- line 4: k ¬ 2, x2, S2 ¬ ∅
- line 9: xin ← x1

1, Sin ← S1
1

- line 10: run States Update Subroutine
- line SU1: initialize all nodes by xin
- line SU2: Eυ= {e2, e3}
- line SU4: Eυ= {e3}
- line SU6: initialize all nodes by xin
- line SU7-8: xnew

2 = x1
2 = [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0]T , x2 ← xnew

2

- line SU9-10: Snew
2 = S1

2 = {e1, e3}, S2 ← Snew
2

- line 9: xin ← x2
1, Sin ← S2

1
- line 10: run States Update Subroutine
- line SU1: initialize all nodes by xin
- line SU2: Eυ = {e1, e5} ⊳ since e4, which has higher

priority than e5, is not in Eυ, then e5 will not be removed
once line SU4 is processed.
- line SU6: initialize all nodes by xin
- line SU7-8: xnew

2 = x2
2 = [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0]T , x2 ← {x2, xnew

2 }
- line SU9-10: Snew

2 = S2
2 = {e3, e1}, S2 ← {S2, Snew

2 }
- line SU6: initialize all nodes by xin
- line SU7-8: xnew

2 = x3
2 = [1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]T , x2 ← {x2, xnew

2 }
- line SU9-10: Snew

2 = S3
2 = {e3, e5}, S2 ← {S2, Snew

2 }
- line 4: k ¬ 3, x3, S3 ¬ ∅
- The next time steps can be followed easily.
Finally, the algorithm outputs are:
Dynamic trajectory t1 ∈ T : t1 := S3

3 = {e3, e5, e1}
State updates for t1 ∈ T: x2

1, x3
2, x3

3
Dynamic trajectory t2 ∈ T: t2 := S1

4 = {e1, e3, e4, e2}
State updates for t2 ∈ T: x1

1, x1
2, x1

3, x1
4

Results and discussion
In this section we study the dynamics of 3 networks:
BAK1-MCL1 interaction, the MAP Kinase pathway, and
the ErbB2/ErbB3 pathway. For each network we calculate
the dynamic trajectories for a given initial condition vector.
For illustration, these networks are graphically plotted in
Microsoft Visio software and provided here. The computer
used to perform dynamical analysis and compute dynamic
trajectories is a Sony VAIO laptop with Intel Core 2 Duo
1.67 GHz CPU and 2 GB RAM.

BAK1-MCL1 interaction
Biological database and network model
Consider the network of BAK1-MCL1 interaction shown
in Figure 2. In cells, once synthesized, protein BAK1 is

localized at the mitochondria. Following the apoptotic sti-
mulus, BAK1 will dimerize to form homodimers. These
dimers will further oligomerize and trigger mitochondrial
outer membrane permeabilization (MOMP) and induce
apoptosis [25]. To counter such apoptosis stimulus and
keep the the cell alive, an anti-apoptotic protein like
MCL1 will bind to BAK1 with higher affinity and block
BAK1 from forming homodimers, thereby stopping apop-
tosis [26]. Thus, in cancer cells, especially melanoma,
MCL1 is commonly found to be overexpressed [27].
In this network X.Y indicates a binder complex pro-

duced by X and Y. We define the set of network nodes
and edges by N = {n1, n2,..., n5} = {BAK1, MCL1, BAK1.
BAK1, Apoptosis, MCL1.BAK1} and E = {e1, e2, e3, e4}.
Process e2 is the only slow process in this network
resulting in apoptosis; thus, we assign a “slow” label to
the speed property of e2 and, by default, a “fast” label to
e1, e3, and e4 . Also, as discussed, MCL1 binds to BAK1
with higher affinity than BAK1 binding to itself to form
BAK1.BAK1 [26]; therefore, e3 has higher priority than
e1, and we accordingly assign the priority label
“eprio

1 < eprio
3 “ to e1, and “eprio

3 < eprio
1 “ to e3 . In this net-

work the observable state is y = n4 = Apoptosis, since it
can be checked under a microscope.
Dynamic trajectories
Suppose that the network initial state vector is given by
x0 = [2, 1, 0, 0, 0]T , biologically meaning that the con-
centration of BAK1 is considerably higher than MCL1,
the concentration of MCL1 is enough to participate in
the processes in Figure 2, and other entities do not exist
or have considerably low concentrations. For this initial
condition and the assigned edge properties, our algo-
rithm returns the following possible updates of the net-
work state vector (for notational simplicity we drop the
superscripts used for the updated state vectors):

⎡
⎢⎢⎢⎢⎣

2
1
0
0
0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x0

e3−→

⎡
⎢⎢⎢⎢⎣

1
0
0
0
1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

e1−→

⎡
⎢⎢⎢⎢⎣

0
0
1
0
1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x2

e2−→

⎡
⎢⎢⎢⎢⎣

0
0
0
1
1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x3

(16)

The dynamic trajectory in (16) is

T = {t1} = {e3, e1, e2} (17)

Figure 2 BAK1-MCL1 interaction.
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The dynamic trajectory obtained here yields the final
value of the observable state y, the apoptosis status, to be
1, which biologically means that apoptosis takes place.
This result agrees with our expectation from a biological
point of view because initially there was insufficient
amount of MCL1 to bind to the higher amount of BAK1
to avoid apoptosis. The CPU time to calculate the dynamic
trajectories for this network using the computer specifica-
tions described above was 0.1 sec.

MAP Kinase pathway
Biological database and network model
The dynamical study of pathways containing feedback pro-
cesses has practical importance for experimental design
and therapy. In this example we considered the set of bio-
logical processes shown in Figure 3, which is based on the
well-studied MAK Kinase pathway. Under the stimulus of
a growth factor, GRB2.SOS complex will be recruited to
the cell membrane, which will transform the GDP-bound
RAS into its active form, GTP-bound RAS. The activated
RAS will in turn activate the Raf/MEK/ERK pathway [28].
However, it has been shown that the activation of RAS is
often short and transient, due to a negative feedback loop
through ERK, which dissociates the GRB2.SOS complex,
thereby inducing an oscillatory pattern in ERK activity [29].
The set of network nodes is N = {n1, n2,..., n9} = {RAS.

GDP, RAS.GTP, GRB2.SOS, RAF, pRAF, ERK, pERK,
GRB2, SOS} and the network edges are E = {e1, e2,..., e8}.
The database provides information about the processes
e1, e2, e3, and e4 . Owing to Assumption 1, our algorithm
automatically generates the corresponding edges e5, e6,
e7, and e8 to account for the reversible direction of the
original processes. By default we assign a “fast” label to
all edges. Since the database gives no information about
the priority between the processes, no priority labels are
assigned.
Dynamic trajectories
Given the initial condition x0 = [1, 0, 1, 1, 0, 1, 0, 0, 0]T,
our algorithm yields the following dynamic trajectory:

T = {t1} = {e1, e2, e3, e4, e5, e6, e7, e8, ...} (18)

and this sequence repeats. The effect of the feedback
process can be seen in the dynamic trajectory as the
sequence of edges is repeating over time. The network
state vector evolves as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x0

e1−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x1

e2−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x2

e3−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x3

e4−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
1
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x4

e5−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x5

e6−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x6

e7−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
1
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x7

e8−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x0

e1−→ ..... (19)

The CPU time for this network was 0.3 sec.

ErbB2/ErbB3 pathway
Biological database and network model
In this example (see Figure 4) we studied the dynamics of
the ErbB2/ErbB3 pathway downloaded from the NCI
pathway interaction database (http://pid.nci.nih.gov). The
roles and connections of the ErbB2, ErbB3 and Neuregu-
lin proteins and peptides in supporting both the MEK
and PI3K pathways were first mapped out around the
year 2000 [30], and form the basis for the pathway dis-
played in Figure 4. The dependencies of RAF/MEK path-
ways [31], and PI3K/AKT pathways [32], on the levels of
activated ErbB3 have been thoroughly demonstrated to
show a very high level of reliance. In this network,
the edges e31, e32, e33, e36 are transcription processes and
are the only slow processes in the network; thus, they are
assigned a “slow” label. A “fast” label, by default, is
assigned to all other edges. Since no priority information
is available in the database, no priority labels are
assigned. The vector of observable states for this pathway
is y = [FOS[n], CHRNA1[n], JUN[n], CHRNE[n]]T ,
which are the output nodes of the transcription processes
e31, e32, e33, and e36, respectively, whose activities can be
measured by a microarray.
Dynamic trajectories
Assuming that the initial condition of the nodes marked
with (*) is 1 and the others are 0, our algorithm gives 7
dynamic trajectories:

t1 = {e19, e20, e21, e47} ∈ T

t2 = {e19, e20, e21, e12, e47, e48} ∈ T

t3 = {e19, e20, e21, e12, e13, e47, e48, e49} ∈ T

t4 = {e19, e20, e21, e12, e13, e14, e47, e48, e49, e50} ∈ T

t5 = {e19, e20, e21, e12, e13, e14, e47, e48, e49, e50, e51} ∈ T

t6 = {e19, e24, e25, e26, e27, e28, e29, e30, e31, e32, e33} ∈ T

t7 = {e1, e24, e25, e26, e27, e28, e29, e30, e31, e32, e33, e40, e19} ∈ T

(20)

where the dynamic trajectories t6 and t7 contain tran-
scription processes giving the final value of vector y, as
y = [1, 1, 1, 0]T. The CPU time for computing these tra-
jectories was 25.8 sec.Figure 3 MAP Kinase pathway.
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Drugs such as lapatinib can have a very strong inhibi-
tory effect on levels of ErbB2/ErbB3 activity, though the
drug’s effects are themselves highly dependent on the
presence of only low levels of ErbB2/ErbB3 [33]. The
immunoblot figure in [33] shows that by suppressing
activated ErbB2/ErbB3, both AKT and ERK phosphory-
lation will be turned off. To see how suppressing the
activity of ErbB2/ErbB3 affects the network dynamics
we consider another initial condition vector. Suppose
that the nodes marked with (†) are initially set to 1 and
the others are 0. For this initial condition, our algorithm
yields no dynamic trajectory, T = ∅. This implies that
none of the AKT and ERK phosphorylation processes
occur, as we expected from the results in [33]. A similar
dynamical analysis can be performed for other initial
conditions, thereby giving the set of all possible
outcomes.

Current research
Each network edge in a dynamic trajectory can be math-
ematically expressed by a state transition matrix A. For
instance, the transition from x0 to x1 in (4) can be
described by

x1 = A1x0 (21)

where

A1 =

⎡
⎣ 0 0 0

1/2 0 1/2
1/2 0 1/2

⎤
⎦ (22)

A state transition matrix facilitates writing the net-
work dynamics in terms of state space equations suita-
ble for control system studies.
Given a network model M = (N, E), an initial condi-

tion x0, the calculated dynamic trajectories T, and recal-
ling the notion of observable state vector y, one can
mathematically describe the network dynamics corre-
sponding to trajectory t ∈ T by the following set of state
space equations:

xk+1 =Ak+1xk

yk =C xk
(23)

which is a linear discrete-time time-varying system.
We alternatively refer to yk as the system output at the
k-th time step.
From a biological viewpoint, not all dynamic trajec-

tories are primarily of interest for design purposes, but
those including observable states are important because
the result of changes to network inputs or initial

Figure 4 ErbB2/ErbB3 pathway.
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condition can be measured. Thereafter, a suitable
experimental design can be proposed to attain a desired
performance. We are currently conducting research on
developing a new methodology to find logical relation-
ships between network state variables and a set of desir-
able values for network observable states. This problem,
referred to as a “backward inference problem”, is a key
step toward experimental design because it characterizes
the necessary and sufficient conditions on the network
state variables for which a desirable network perfor-
mance can be obtained.

Conclusions
We have proposed a new dynamical modeling metho-
dology that can handle common biological knowledge
without the need of exact parameters related to process
dynamics. Our proposed approach has similarities in
some aspects to other qualitative methods. The node
update for conversion processes is similar to token pas-
sing in Petri nets, while the update for transcription
processes functions like Boolean logic. These similarities
occur because they are natural ways to describe the
basic processes. However, to properly handle the path-
way knowledge commonly available from a public data-
base as a BioPAX file with minimal extra input, one
needs to apply these canonical approaches in a practical
way, which results in the kind of hybrid approach intro-
duced in this paper. For instance, in the ErbB2/ErbB3
pathway example we were able to use different updating
rules for the conversion and transcription processes that
resulted in a dynamical model which captures the net-
work dynamics more accurately. We would like to con-
clude by pointing out critical differences between our
proposed method and the standard Petri net and Boo-
lean network approaches.
First, for conversion type processes, a Petri net usually

does not consider the role of activator by assuming they
are always present, and the potential reversibility of the
process, so that every physical entity ("place” in Petri
net terminology) is either an input or an output.
Although this can be partially solved by introducing a
reading arc to indicate when a process can take place, it
cannot be incorporated into the incidence matrix, which
is critical for a fast update. As a result, a Petri net loses
one of its most attractive properties. The use of an inci-
dence matrix is further hampered by the synchronous
update, which assumes that equal time elapses for each
process.
For practical applications, a critical shortcoming of the

standard approaches is the manner in which they handle
uncertainty. A standard Petri net handles uncertainty in
a random manner and Boolean networks demand that
all uncertainties be resolved before simulation starts. In
reality, a biological process often takes a deterministic

fashion unknown to the modeler, which demands a
comprehensive exploration of all the possibilities. Our
choice of this hybrid approach is based on the purpose
of utilizing public knowledge databases; however, the
concept of exploiting all possible uncertainties is not
limited to the specific procedure considered here. It can
be applied to other qualitative methods, including both
Boolean networks and Petri nets.
In conclusion, the entire procedure emulates how

biologists actually utilize available pathway information.
Our ultimate aim is to use predicted outcomes to design
the most efficient experiments [34] to reduce uncer-
tainty and find the best perturbation scheme to achieve
desired network performance.

Appendix
The input and output file formats of our software pack-
age are simple-text files. The input file contains the set
of interactions/processes in the network and the initial
condition vector in the following form:

Process (process #)
Input (input nodes)
Output (output nodes)
Activator (activator nodes)
Inhibitor (inhibitor nodes)

For instance, for the following process

C
↓

A + B → D

the input file contains:

Process 1
Input A B
Output D
Activator C

The initial condition vector is added to the input file
(after the list of processes) as follows:

Entity Value
(node) (initial condition)

For the above process, if A, B and C are initially 1 and
D is 0, then it will be added to the input file as:

Entity Value
A 1
B 1
C 1
D 0

The output file summarizes the given initial condition
vector and the calculated dynamic trajectories as well as

Mohsenizadeh et al. BMC Bioinformatics 2015, 16(Suppl 13):S3
http://www.biomedcentral.com/1471-2105/16/S13/S3

Page 10 of 12



the corresponding updates of the state vector in the
following form:
Dynamic Trajectories for Initial Condition: x0 = (given

initial condition vector)
Trajectory t(traj #) = {(edge #’s)}
State Vector Updates for t(traj #):
Time Step 1: (edge #)
x1 = (first update of the state vector)
Time Step 2: (edge #)
x2 = (second update of the state vector)
...and so on for the next time steps and other dynamic

trajectories. The output file for the above process and
initial condition is:
Dynamic Trajectories for Initial Condition: x0 = [1, 1, 1, 0]T

Trajectory t1 = {e1}
State Vector Updates for t1:
Time Step 1: e1
x1 = [0, 0, 1, 1]T.

Availability
A MATLAB software package enabled with Graphical
User Interface (GUI) is programmed based on our pro-
posed approach to perform dynamical modeling of uncer-
tain biological networks. This package along with the real
data examples presented in this manuscript are available
at http://gsp.tamu.edu/Publications/supplementary/
mohsenizadeh15a.

Additional material

Additional file 1: Dynamical Modeling Algorithm. This file contains
the detailed algorithm proposed for dynamical modeling of uncertain
interaction-based biological networks.
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