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If supersymmetry is discovered at the LHC, the next question will be the determination of the
underlying model. While this may be challenging or even intractable, a more optimistic question is
whether we can understand the main contours of any particular paradigm of the mediation of su-
persymmetry breaking. The determination of superpartner masses through endpoint measurements
of kinematic observables arising from cascade decays is a powerful diagnostic tool. In particular,
the determination of the gaugino sector has the potential to discriminate between certain mediation
schemes (not all schemes, and not between different UV realizations of a given scheme). We recon-
struct gaugino masses, choosing a model where anomaly contributions to supersymmetry breaking
are important (KKLT compactification), and find the gaugino unification scale. Moreover, recon-
struction of other superpartner masses allows us to solve for the parameters defining the UV model.
The analysis is performed in the stop and stau coannihilation regions where the lightest neutralinos
are mainly gauginos, to additionally satisfy dark matter constraints. We thus develop observables to
determine stau and stop masses to verify that the coannihilation mechanism is indeed operational,
and solve for the relic density.

I. INTRODUCTION

The Large Hadron Collider (LHC) will soon be test-
ing many ideas for physics beyond the Standard Model
(SM). Of these, low energy supersymmetry [1] is the best
motivated candidate for new TeV scale physics.

If supersymmetric partners are indeed detected at the
LHC, the next step would be understanding the under-
lying scheme by which supersymmetry breaking is medi-
ated to the visible sector. Of course, the full determina-
tion of an exact model of supersymmetry breaking and
mediation may be challenging, but one can hope that the
broad contours of the scheme can be understood.

How soon (if at all) will we be able to distinguish the
underlying mechanism by which supersymmetry break-
ing is mediated to the visible sector?

It is useful to first understand the above question from
the perspective of distinguishability studies undertaken
from a top-down point of view [2]. Broadly, the program
is to fit a set of UV parameters defining a sufficiently
tractable model of supersymmetry breaking and media-
tion with observables measured in the experiment, and
ask questions about distinguishability in the space of UV
model parameters. Some models one can consider in such
distinguishability tests are (i) mSUGRA or CMSSM [3]
(defined at the GUT scale by universal scalar and gaug-
ino masses and trilinear couplings m0,m1/2, and A0, as
well as tanβ and ratio of Higgs vevs), (ii) the minimal
anomaly mediated supersymmetry model [4] (defined by
m0, tanβ, and universal superpartner mass scale maux),
(iii) minimal gauge mediation (defined by the messenger
scale Mmess, supersymmetry breaking scale Λ and tanβ),
as well as some examples inspired by string phenomenol-

ogy: (iv) Large Volume Scenarios [5] (defined by m0 and
tanβ), and (v) mirage mediation models [6] in the context
of KKLT [7].

However, the important point is that a given set of
measured observables will in general not only point back
to different UV models, it may point to different media-
tion schemes. It may be more optimistic to ask whether
we can at least distinguish between more gross proper-
ties, such as mediation schemes.

It is important, then, to first discern whether a partic-
ular scheme of supersymmetry breaking mediation (such
as, say, anomaly contributions) shows up unmistakably
in the low energy spectrum, before locking into a par-
ticular UV model and undertaking a distinguishability
study in the UV model parameter space or attempting
to constrain it.

Which masses should one attempt to solve to this end?

One can look for relatively model-independent soft
mass patterns that hold out clues for mediation schemes.
As emphasised in [8], the gaugino sector offers a particu-
larly promising portal for understanding the underlying
mechanism of mediation. This is mainly because within
the context of the Minimal Supersymmetric extension of
the Standard Model (MSSM), the quantity Ma/g

2
a does

not run at one loop (where a = 3, 2, 1 refers to the SM
gauge groups SU(3) × SU(2) × U(1), while Ma refer
to gaugino masses and ga to gauge couplings). If one
makes two further assumptions: (i) that gaugino masses
are dominated by contributions determined by tree level
gauge kinetic functions and (ii) these tree level contri-
butions are universal, then one obtains the well known
mSUGRA pattern, with gaugino unification at the GUT
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scale

mSUGRA : M1 : M2 : M3 ∼ 1 : 2 : 6 . (1)

This pattern is obtained in a variety of schemes: (i) grav-
ity mediation, with different UV scenarios (ii) gauge me-
diation (iii) gaugino mediation [9]. We will elaborate
further in the next Section.

In a previous study [10], we have described a series
of measurements of superpartner masses at the LHC for
mSUGRA models using end-point techniques [11].

On the other hand, gaugino masses may be domi-
nated entirely by one loop contributions coming from
the SUGRA compensator, determined by the confor-
mal anomaly of the effective theory at TeV scale. At
some level, the flavor problem embedded in dominant
tree level contributions is an indication that tree level is
perhaps not the end of the story. For pure anomaly me-
diation, Ma(Q)/g2

a(Q) is proportional to the respective
beta-function coefficients at the scale Q. Anomaly me-
diation effects are always present and become dominant
over gravity mediation when the supersymmetry break-
ing sector is sequestered from the visible sector; however,
the scheme by itself suffers from tachyonic sleptons.

Mirage mediation is a hybrid of the mSUGRA pattern
and anomaly pattern, in which the tree level contribution
and the one loop contribution are both equally compet-
itive. The quantity Ma/g

2
a then depends both on the

universal mSUGRA contribution, as well as the RG beta
coefficients, with comparative strengths given by a pa-
rameter α:

Ma(Q)

g2
a(Q)

=

(
1 +

ln(Mp/m3/2)

16π2
g2
GUT baα

)
M0

g2
GUT

, (2)

with M0 ∼ 1 TeV a mass scale.
The above facts translate into the following ratio of

low energy gaugino masses

Anomaly : M1 : M2 : M3 ∼ 3.3 : 1 : 9 ,

Mirage : M1 : M2 : M3 ∼
(1 + 0.66α) : (2 + 0.2α) : (6− 1.8α) .(3)

Clearly, a deviation of the measured gaugino spectrum
from the mSUGRA pattern would signal the relative im-
portance of one loop contributions (which, of course,
could have a plethora of model origins).

A. Mass Measurements at the LHC

In this paper, we take the first bottom-up steps toward
the diagnosis of mediation schemes at the LHC, by choos-
ing a representative model and attempting to reconstruct
low energy masses.

Mass reconstruction gives us the following information:
(i) As we have outlined above and spell out in more

detail later, mass measurements can distinguish between
mediation schemes. Of course, the choice of the UV

model must be judicious - for example, reconstructing
just the gaugino sector would still leave one incapable of
distinguishing between the various models and schemes
which give rise to the mSUGRA pattern of masses (this
has also been verified by distinguishability tests [12]). We
thus choose a model (KKLT compactification) where the
imprints of anomaly mediation are unmistakable.

One important point in this paper is that in cer-
tain regions of parameter space, the crucial information
from the gaugino spectrum regarding the scheme may
be gleaned at relatively lower luminosity by a judicious
choice of observables. Meanwhile, the details of a par-
ticular model only become apparent as other masses are
reconstructed.

(ii) The measurement of low energy masses enables
us to make statements about the dark matter relic den-
sity. In models with R−parity invariance, the lightest
superpartner (typically the lightest neutralino χ̃1

0) is a
dark matter candidate, and one would like to compute
the relic density Ωh2 associated with it. The direct mea-
surement of stop (t̃) and stau (τ̃) masses enables us to
verify whether we are in regions of parameter space where
stop-neutralino (t̃ − χ̃1

0) and stau-neutralino (τ̃ − χ̃1
0)

coannihilation effects are important. We note that the in-
vestigation of mediation schemes, the first goal described
above, typically allows one to be in much larger areas of
parameter space, and one need not necessarily work in
coannihilation regions. However, to satisfy relic density
constraints, they are crucial.

Previously, we have undertaken studies of mass mea-
surements in the τ̃ − χ̃1

0 coannihilation region in the
context of the mSUGRA model [10, 13]. The measure-
ment of third generation squark masses presents its own
challenges. Reconstruction of stop and sbotttom (b̃) is
very hard in a cascade decay chain since both stops and
sbottoms decay into b quarks. Further, to make the sit-
uation worse, in the stop coannihilation region the stop
decay produces a lower pT jet due to the proximity of
the lighter stop and the lightest neutralino masses. We
invoke two new observables to measure lighter stop and
sbottom masses in the cascade decays.

Thus, in this paper we fulfil the following objectives:
(i) Constructing observables using different combina-

tions of the jets, τ ’s and W ’s in the final states to
determine the masses of supersymmetric particles in a
model where anomaly contributions are important. We
construct observables in the stop-neutralino and stau-
neutralino coannihilation regions.

(ii) Using the observables, we solve for the masses of
the gluino, the two lighter neutralinos, the squarks (of
the first two generation) and the lightest stau. We also
determine the lighter stop and sbottom masses in the
stop coannihilation region.

(iii) Using the neutralino and gluino masses we deter-
mine the gaugino unification scale, thereby establishing
the imprint of one-loop anomaly contributions competi-
tive with tree level contributions (mirage pattern) from
experimentally measurable observables.
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(iv) Using the masses of the other particles in conjunc-
tion with the gauginos, we (a) determine the parameters
defining a particular UV completion of the mirage pat-
tern (KKLT compactification with visible sector on D7
branes) and (b) test whether we are in a coanihilation
region and dark matter relic density is satisfied.

A caveat is in order. The observables we construct in
the current work enable us to measure the masses of the
gluino and the two lighter neutralinos, which should be
mainly gauginos for us to make statements on mediation
within the structure outlined above. In the coannihila-
tion regions, this is guaranteed, and thus we are able to
simultaneously solve the relic density as well as deter-
mine the mediation scheme. It would be very interest-
ing to probe similar issues in regions of parameter space
where the Higgsino component in the neutralinos is not
insignificant. However, such a study is beyond the scope
of this paper.

Another comment pertains to the fact that we will be
solving the model parameters from the masses. As we
have stressed, our aim in this paper is to show that the
determination of a given set of masses can unmistakably
establish the contours of a mediation scheme (point (iii)
above), while it may point back to different models. In
point (iv) above, we will thus not attempt a distinguisha-
bility test of our particular model (KKLT) - rather, we
will fit our model parameters with the masses we solve
from the observables.

The plan of the paper is as follows. In Section II, we
describe the contributions to gaugino masses, describe
our choice of the UV model in more detail, and fix our
benchmark points. In Section III, we develop the kine-
matic observables to measure sparticle masses in the stop
coannihilation region. Included in this section is the de-
velopment of specific observables required for the recon-
struction of stop and sbottom masses. In Section IV, we
give results for the gaugino mass pattern and unification
scale and solve for the other masses and the full parame-
ter set defining the UV model, along with the relic den-
sity. Moreover, we solve for the stop and sbottom masses.
In Section V, we perform the above analysis in the stau
coannihilation region of parameter space. We end with
our conclusions.

II. MODEL AND BENCHMARK POINTS

As emphasised in Section I, a given pattern of low
energy gaugino masses accommodates diverse mediation
schemes, not to mention multiple models. We mention
below a catalogue of such models and schemes, outlined
in [8], to better situate our particular UV completion.

A. Contributions to Gaugino Masses

The various contributions to Ma/g
2
a in 4D effective su-

pergravity are

Ma

g2
a

= M̃a
(0)

+ M̃a
(1)|anomaly + M̃a

(1)|other , (4)

where M̃a
(0)

= 1/2F I∂If
(0)
a , with F I signifying the non-

zero F−component of a hidden sector field XI breaking
supersymmetry, and fa denoting the visible sector gauge
kinetic functions. The one loop anomaly term receives
contributions from the conformal and Konishi anoma-
lies, with the conformal anomaly contribution given by

M̃a
(1)|conformal = (1/16π2)ba(FC/C), with C denoting

the chiral compensator. We will not deal with the Kon-
ishi anomaly contribution in any detail in this paper.

The other one loop contributions M̃a
(1)|other encapsulate

field theoretic gauge threshold and UV-sensitive contri-
butions like KK thresholds to the gaugino masses. We
will assume that UV-sensitive contributions are subdom-
inant (the assumption is purely because they are more
model-dependent).

The mSUGRA pattern, Eq. 1, arises in situations
where Ma/g

2
a is dominated by universal tree level piece

M̃a
(0)

. This happens in a variety of schemes: (i) gaugino
mediation in higher dimensional brane models (ii) grav-
ity mediation, with different UV scenarios such as dila-
ton/moduli mediation in heterotic string theory or large
volume compactification in type IIB tring theory. Gauge
mediation also gives the mSUGRA pattern of gaugino
masses, since the gaugino masses are dominated by uni-
versal one-loop gauge threshold contributions.

On the other hand, the mirage pattern in which tree
level and loop level contributions are competitive occurs
in gravity mediation in various UV scenarios, for exam-
ple KKLT flux compactification with visible sector on
D7 branes and explicit supersymmetry breaking by anti-
D3 branes or spontaneous breaking by a matter sector.
Mirage patterns are also obtained in deflected anomaly
mediation [14].

However, the important point is that deviations from
the mSUGRA pattern may signal some anomaly contri-
bution at work.

We will take as an example the UV completion of
KKLT with visible sector on D7 branes and explicit su-
persymmetry breaking by an anti-D3 brane.

B. KKLT with D7 branes: The UV Model
Parameters

In this subsection, we sketch the outlines of the UV
model, only with a view to defining the model parameters
we will be working with. For details, we refer to [7].

The basic elements in a KKLT-type model of string
compactification are: (i) background fluxes on a type
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IIB Calabi-Yau three-fold giving a Gukov-Vafa-Witten
superpotential contribution, and (ii) gaugino condensa-
tion on D7-branes or Euclidean D3 instantons giving a
non-perturbative superpotential contribution. These sta-
bilize complex structure moduli and the dilaton, as well
as Kähler moduli, in an AdS vacuum. Supersymmetry
breaking by an anti-D3-brane then lifts the solution to a
de Sitter vacuum. The visible sector is constructed with
D7 branes in the bulk.

The soft masses at the GUT scale are

Ma = M0 +
m3/2

16π2
bag

2
a,

m2
i = m̃2

i −
m3/2

16π2
M0 θi −

(m3/2

16π2

)2

γ̇i (5)

where M0 and m̃i are pure tree level modulus contribu-
tions, given as functions of the Kähler modulus T , while
other terms are one-loop anomaly contributions. m3/2 is
the gravitino mass. In the above,

ba = −3tr
(
T 2
a (Adj)

)
+
∑
i

tr
(
T 2
a (φi)

)
,

γi = 2
∑
a

g2
aC

a
2 (φi)−

1

2

∑
jk

|yijk|2,

γ̇i = 8π2 dγi
d lnQ

,

θi = 4
∑
a

g2
aC

a
2 (φi)−

∑
jk

|yijk|2
Ãijk
M0

, (6)

where the quadratic Casimir Ca2 (φi) = (N2 − 1)/2N
for a fundamental representation φi of the gauge group
SU(N), Ca2 (φi) = q2

i for the U(1) charge qi of φi, and∑
kl yikly

∗
jkl is assumed to be diagonal.

To list the set of parameters that give the low energy
mass spectrum, we define the ratios

α ≡
m3/2

M0 ln(MPl/m3/2)
, 1− ni ≡

m̃2
i

M2
0

, (7)

where α represents the anomaly to modulus mediation
ratio, while ni are modular weights, that parameterize
the pattern of the pure modulus mediated soft masses.

For convenience, we will henceforth choose to rescale
α as follows

αhenceforth =
16π2

ln(Mp/m3/2)

1

α
. (8)

From Eq. 5, then, it is clear that the parameters defin-
ing the low energy soft masses of the model are

m3/2, α, nm, nH , tanβ, (9)

where we choose m3/2 in place of M0, split the matter
modular weights into a universal sfermion weight nm and
a Higgs weight nH . We have also replaced the Higgs mass
parameters µ and B by tanβ and MZ .

C. Benchmark Points

The parameter space of the KKLT model has been
studied in [15], and we choose points that satisfy the
stop-neutralino and stau-neutralino coannihilation con-
straints, which appear in ample parts of model parameter
space. We use darkSUSY [16] to select exact benchmark
points in the above regions.

The benchmark point for the stop coannihilation re-
gion is shown in Tables I, II.

TABLE I: Model parameters chosen at a stop coannihilation
benchmark point. All masses are in GeV.

Parameter Value

α 4.5
m3/2 14000
nm 0.0
nH 0.5

tanβ 30

TABLE II: Spectrum at a stop coannihilation benchmark
point. All masses are in GeV.

Particle Mass Particle Mass Particle Mass

d̃L 653.13 ẽL 436.75 χ̃0
1 286.21

d̃R 635.86 ẽR 411.28 χ̃0
2 338.21

ũL 647.91 τ̃1 315.08 χ̃0
3 477.35

ũR 634.96 τ̃2 417.70 χ̃0
4 502.68

b̃1 520.46 χ̃±
1 337.32

b̃2 596.25 χ̃±
2 500.41

t̃1 338.55 g̃ 649.78
t̃2 616.22

The benchmark point for the stau coannihilation re-
gion is shown in Table III.

TABLE III: Model parameters chosen at a stau coannihilation
benchmark point. All masses are in GeV.

Parameter Value

α 7.5
m3/2 10000
nm 0.5
nH 1.0

tanβ 30

The spectrum at the stau coannihilation benchmark
point is shown in Table IV.

Note that our methods are valid in general, and the
above benchmark points will be explored as an illustra-
tion. In particular, we will also study benchmark points
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TABLE IV: Spectrum at a stau coannihilation benchmark
point. All masses are in GeV.

Particle Mass Particle Mass Particle Mass

d̃L 845.49 ẽL 426.91 χ̃0
1 284.17

d̃R 813.52 ẽR 367.70 χ̃0
2 389.17

ũL 841.39 τ̃1 309.75 χ̃0
3 548.88

ũR 815.27 τ̃2 425.68 χ̃0
4 569.04

b̃1 735.87 χ̃±
1 389.32

b̃2 791.30 χ̃±
2 568.10

t̃1 600.23 g̃ 897.55
t̃2 810.20

with higher gluino mass, preferred by current LHC data,
in Sections IV C and V C, where we will show that we
need larger luminosity to establish the same set of ob-
servables.

Since tanβ is on the large side for the benchmark
points, the lighter stau mass is between the lightest and
next to lightest neutralinos. The lightest neutralino is
mostly Bino and the next to lightest is mostly Wino. The
Higgsino components are negligible since the dark matter
relic density is satisfied by the coannihilation mechanism.

III. KINEMATIC OBSERVABLES IN THE STOP
COANNIHILATION REGION

In this section, we present the measurement of physi-
cal observables that will be used to solve for the gaugino
masses, as well as the masses of the τ̃ and q̃. Moreover,
we construct observables that will be needed to solve for
the t̃ and b̃ masses. In the next section, we will present
the mass and model parameter solutions, and also present
gaugino unification. We will also give results for a bench-
mark point with heavier gluino there.

The mass spectrum of the model is determined using
ISASUGRA [17]. The spectrum is then fed to PYTHIA [18],
which generates the Monte Carlo hard scattering events
and hadron cascade. These events are passed to the de-
tector simulator PGS4 [19].

A. 2 Jets + 2τ + E/T

At the LHC, the main production processes for this
model are g̃g̃, g̃q̃ and q̃q̃.

The relevant decay chains are:

g̃ −→ qLq̃L

and

q̃L −→ χ̃0
2q −→ τ̃±1 τ

∓q −→ χ̃0
1τ
±τ∓q . (10)

There is a high pT jet, missing transverse energy, and a
pair of oppositely charged τ leptons.

The following cuts were set to select events for this
signal:

(i) Missing transverse energy E/T ≥ 180 GeV;
(ii) pT,jet1 + pT,jet2 + E/T > 600 GeV;
(iii) Leading jet cuts: At least two jets should be

present, each with pT ≥ 200 GeV in |η| ≤ 2.5. The
jets are both required to be non b-tagged jets, and the
event is discarded when either of them is tagged as a b
jet;

(iv) Soft jet cuts: Any jet with pT ≥ 30 GeV in |η| ≤
2.5 is accepted in the analysis;

(v) τ cuts [20]: At least two τ leptons, with visible
pT ≥ 15 GeV in |η| ≤ 2.5;

Various kinematic observables can be constructed in
this signal. Of them, we choose four that give the most
precise endpoint measurements with 50 fb−1: M end

jττ ,

M end
ττ , and the pT distributions of the higher and lower

energy τ ′s.
The fifth observable (required to solve the five model

parameters) is the peak of the Meff distribution.

1. Mend
ττ

The main challenge in measuring the invariant di-tau
mass is the background created by uncorrelated τ pairs.
From the decay chain in question, it is clear that sim-
ilarly charged τ ’s are definitely uncorrelated and hence
model this background quite well. Thus, we perform the
opposite-sign (OS) minus like-sign (LS) subtraction on
τ ’s to obtain the signal.

Figure 1 shows the histogram graph we obtained for
the Mττ distribution. The luminosity is 50 fb−1, and we
can see that a clear end-point is obtained.

FIG. 1: Distribution of Mττ at a stop coannihilation bench-
mark point. The pink (grey) histogram is composed of OS
τ pairs. The filled dot-dashed pink (grey) histogram is com-
posed of LS τ pairs and is normalised to the shape of the
long tail of the the pink (grey) OS histogram. The OS−LS
subtraction produces the black subtracted histogram. This
subtracted histogram is then fitted with a straight line to find
the endpoint of the distribution. The result for the endpoint
is 49.71± 0.2(Stat.) GeV. The luminosity is 50 fb−1.
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2. Mend
jττ

The τ leptons from each event are sorted into OS and
LS pairs. Then, each pair is combined with the leading
jets from the same event, and the invariant mass distri-
bution M same

jττ is obtained. At this stage the Bi-Event
Subtraction Technique (BEST) [21] is initiated, by first
combining the τ pair with leading jets from a separate
event (which we also call a bi-event), to form the dis-

tribution Mbi−event
jττ . Since jets from a separate event

are kinematically uncorrelated with the τ pair from the
current event, this bi-event distribution models the jet
background very well.

We note that the greater the number of different-event
jets included in the bi-event distribution, the better the
modelled background becomes. We include sufficient
number of different-event jets to ensure a smooth back-
ground distribution.

After this, two subtractions are performed to obtain
the final signal: (i) The OS−LS subtraction, which gets
rid of uncorrelated τ pairs and (ii) The BEST subtrac-
tion, which gets rid of uncorrelated jets in the back-
ground. In Figure 2, we show the Mjττ distribution
where we find a very clear end point after the BEST
subtraction.

FIG. 2: Distribution of Mjττ at a stop coannihilation bench-
mark point. The green (grey) same-event histogram is con-
structed by combining each OS−LS τ pair with a leading jet
from the same event. The filled dot-dashed green (grey) bi-
event histogram is obtained by combining the OS−LS τ pair
with a leading jet from a different event and is normalised to
the long tail of the same-event histogram. The same-event
minus bi-event subtraction (BEST) produces the black sub-
tracted histogram. The subtracted histogram is fitted with a
straight line to obtain the endpoint. The result for the end-
point is 269.09± 3.18(Stat.) GeV. The luminosity is 50 fb−1.

3. Slope of pT of τ

The mass of the τ̃ lies between the two lightest neu-
tralinos, and its exact location approximately determines

the pT of the τ ’s in the ditau pair. The slope of the visi-
ble pT distribution of the lower energy visible τ from the
di-tau pair (which we will denote by slope(pT )) is gen-
erally a good observable, that carries information about
the masses of τ̃ and χ̃0

1 (in the case that the lower energy
τ is from τ̃ −→ χ̃0

1 + τ). If the stau mass is very close to
the neutralino mass (in the case of stau-neutralino coan-
nihilation) we have a low energy τ and the slope of the
pT distribution is a good observable.

Conversely, if the visible pT of a τ is large, the slope
of the pT distribution is not a good observable. This is
because the slope in the case of a higher energy τ doesn’t
show enough variation. In such cases, we use the kine-
matic information of the high energy τ by combining it
with a leading jet to construct Mjτ . We will use the
endpoint of the Mjτ distribution as an observable in the
stau-neutralino coannihilation case, where one of the τ ’s
has large pT compared to the other.

If the stau is somewhat in between the two neutralinos,
the slopes of the pT distributions of both taus become
good observables (provided, of course, that neither pT is
too large) as happens in this case. In such a scenario, we
get two observables depending on two neutralinos and
the stau mass without involving any jet. It is convenient
to define the new observables pT,AM and pT,diff , which are
the arithmetic mean and difference of the slopes of the
higher and lower pT τ

′s. These variables can typically be
measured down to lower luminosity than Mjτ , since they
do not involve the subtractions required for observables
involving jets, as we describe below.

To obtain the distributions, first the OS−LS subtrac-
tion is performed. Then, we take the logarithm of the
pT,high and pT,low distributions for the higher and lower
energy τ respectively. The histograms are fitted using
a linear function to find the slopes. Finally, the slopes
are combined into the arithmetic mean pT,AM and the
difference pT,diff :

pT,AM =
1

2
(slope(pT,high) + slope(pT,low))

pT,diff =
1

2
(slope(pT,high)− slope(pT,low)) . (11)

Note that these observables, formed by combining the pT
information of the two τ ’s, are particularly necessary in
the case when they are close in mass, since we do not
know if a given τ is originating from the τ̃ decay or the
χ̃0

2 decay.
In Figure 3 and Figure 4, we show the pT distributions

of two τ ’s present in the sample.

B. 4 jets + E/T

The Meff distribution is formed by combining the pT
of the first four leading jets and the missing energy

Meff = pT,jet1 + pT,jet2 + pT,jet3 + pT,jet4 + E/T (12)
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FIG. 3: Distribution of pT,high at a stop coannihilation bench-
mark point. The pink (grey) histogram is composed of OS τ
pairs. The filled dot-dashed pink (grey) histogram is com-
posed of LS τ pairs and is normalised to the shape of the
long tail of the OS histogram. The OS−LS subtraction pro-
duces the black subtracted histogram. This subtracted his-
togram is then fitted with a straight line to find the slope of
the distribution. The value of the slope(pT,high) observable is
−0.0522± 0.0021(Stat.). The luminosity is 50 fb−1.

FIG. 4: Distribution of pT,low at a stop coannihilation bench-
mark point. The pink (grey) histogram is composed of OS
τ pairs. The filled dot-dashed pink (grey) histogram is com-
posed of LS τ pairs and is normalised to the shape of the
tail of the OS histogram. The OS−LS subtraction produces
the black subtracted histogram. This subtracted histogram
is then fitted with a straight line to find the slope of the
distribution. The value of the slope(pT,low) observable is
−0.1178± 0.0040(Stat.). The luminosity is 50 fb−1.

These jets effectively come from the gluino and squark
decays.

The effective mass Meff is constructed from the 4jets
+ E/T sample, with the following cuts

(i) Number of jets: At least four jets in the event;
(ii) Leading jet cuts: The first two leading jets each

have pT ≥ 200 GeV in |η| ≤ 2.5;
(iii) Soft jet cuts: Jets with pT ≥ 30 GeV in |η| ≤ 2.5

are accepted in the analysis;
(iv) The jets are not b tagged;
(v) E/T ≥ 180 GeV;

(vi) pT,jet1 + pT,jet2 + E/T > 600 GeV;
(vii) No e′s and µ′s with pT ≥ 15 GeV;
(viii) Transverse sphericity ST ≤ 0.2 .
In Figure 5, we show the Meff distribution at the

benchmark point. The peak of this distribution shows
a well defined peak for 50 fb−1 luminosity.

FIG. 5: Distribution of Meff at a stop coannihilation bench-
mark point. The distribution is fitted with a Gaussian func-
tion to find the peak. The value of the Mpeak

eff observable is
1073.01± 8.72(Stat.) GeV. The luminosity is 50 fb−1.

In Table V, we show the end points of Mττ and Mjττ

distributions, peak of the Meff distribution, and the
slopes of the pT distributions for the taus for our bench-
mark point. The statistical uncertainties range between
0.4%− 3.8%.

TABLE V: Kinematic observables at 50 fb−1 for a stop coan-
nihilation benchmark point. All masses are in GeV.

Observable Value 50 fb−1 Stat. 100 fb−1 Stat.

Mend
ττ 49.71 ±0.20 ±0.14

Mend
jττ 269.09 ±3.18 ±2.25

slope(pT,high) −0.0522 ±0.0021 ±0.0014
slope(pT,low) −0.1178 ±0.0040 ±0.0028

Mpeak
eff 1073.01 ±8.72 ±6.17

C. Observables for the Determination of Third
Generation Squark Masses: Mend

bW and Mend
jW

To probe the third generation squark masses we need
to involve b quarks. The relevant decay chain associated
with the dominant production process for the reconstruc-
tion of third generation squarks in the stop coannihilation
region is

g̃ −→ b̃+ b −→ t̃+W + b −→ χ̃0
1 + c+ b+W. (13)

These signals are characterized by high pT jets accom-
panied by a W and E/T.
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We will be constructing the distributions MbW and
MjW .

The cuts for the analysis are
(i) E/T ≥ 180 GeV;
(ii) Number of jets: Njet ≥ 4;
(iii) Leading jet cuts: The first two leading jets each

have pT ≥ 200 GeV in |η| ≤ 2.5. They could be gluon,
light-flavor, or b jets;

(iv) Soft jet cuts: Any jets with visible pT ≥ 30 GeV
in |η| ≤ 2.5 are accepted in the analysis. This includes
b-tagged jets;

(v) pT,jet1 + pT,jet2 + E/T > 600 GeV;
(vi) For MbW , at least one tight b jet is required.
The first step in the analysis is the reconstruction of

the W boson. The W appears in the detector as two jets
whose invariant mass falls in the W mass window (65
GeV ≤ Mjj ≤ 90 GeV). We thus choose soft jet pairs
(from the third leading jet and below) which are not b-
tagged, with 0.4 ≤ ∆R ≤ 1.5. The jets are put into two
categories: those which are manifestly in the W window,
and those that fall within the sideband window (40 GeV
≤Mjj ≤ 55 GeV or 100 GeV ≤Mjj ≤ 115 GeV). BEST
is then performed for the two categories, to get rid of
uncorrelated jet background. After this, the sideband
subtraction is performed to obtain the W mass.

Once the W is reconstructed, it is paired up with jets
to form the MbW and MjW distributions.

FIG. 6: Distribution of MjW at a stop coannihilation bench-
mark point. W is first reconstructed with two jets whose
invariant mass falls in the W window. The reconstructed W
is then combined with a non b-tagged soft jet of rank three
or lower from the same event, to produce the same-event blue
(grey) histogram. The W is combined with a soft jet from a
different event to produce the bi-event filled dot-dashed blue
(grey) histogram, which is normalised to the shape of the
long tail of the same-event histogram. The same-event minus
bi-event subtraction (BEST) produces the black subtracted
histogram. The subtracted histogram is fitted with a straight
line to obtain the endpoint. The result for the endpoint is
287.55± 0.74(Stat.) GeV. The luminosity is 50 fb−1.

For the MjW distribution, we pair the W with a non
b-tagged soft jet, whose rank is three or lower. This is be-
cause we are in the stop coannihilation region. In Figure

FIG. 7: Distribution of MbW at a stop coannihilation bench-
mark point. W is first reconstructed with two jets whose in-
variant mass falls in the W window. The reconstructed W is
then combined with a b jet of any rank from the current event,
to produce the same-event pink (grey) histogram. Events with
MbW ≤ 200 GeV are discarded to remove the top peak. The
W is combined with a b jet from a different event to pro-
duce the bi-event filled dot-dashed pink histogram, which is
normalised to the shape of the long tail of the same-event his-
togram. The same-event minus bi-event subtraction (BEST)
produces the black subtracted histogram. The subtracted his-
togram is fitted with a straight line to obtain the endpoint.
The result for the endpoint is 325.67± 4.50(Stat.) GeV. The
luminosity is 50 fb−1.

6, we show the MjW distribution at the benchmark point,
finding a well defined end-point for 50 fb−1 luminosity.

For the MbW distribution, we pair the W with a b jet
of any rank from the current event. Note that the rele-
vant b jet required to construct this observable need not
be a leading jet; in fact, the leading jet will typically be
non b-tagged. After pairing the W with the b jet, we do a
further BEST to get rid of uncorrelated b jets. This gives
the final signal for MbW . However, the b+W signal shows
the presence of the unwanted top peak, which comes from
t −→ b + W . The top window is removed from the fi-
nal signal, by discarding events with MbW ≤ 200 GeV.
In Figure 7, we show the MbW distribution obtained at
the benchmark point, finding the end-point for 50 fb−1

luminosity.
In Table VI, we show the endpoint values obtained

from these distributions. The statistical uncertainties
range between 0.2% − 1.4%. The statistical uncertainty
is larger for MbW due to the b jet.

TABLE VI: Kinematical observables Mend
jW and Mend

bW at 50

fb−1 for a stop coannihilation benchmark point. All masses
are in GeV.

Observable Value 50 fb−1 Stat. 100 fb−1 Stat.

Mend
jW 287.55 0.74 0.52

Mend
bW 325.67 4.50 3.18
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IV. DETERMINATION OF PARTICLE MASSES,
GAUGINO UNIFICATION SCALE, AND UV

MODEL PARAMETERS IN THE STOP
COANNIHILATION REGION

The observables measured in Section III are used to
determine the masses of the gluino, χ̃0

1, χ̃0
2, τ̃ , and q̃,

which lead to the determination of model parameters
(α,m3/2, tanβ, nm, nH). We will also determine the b̃

and t̃ masses later in this section.
Theoretically, the functional dependences of the ob-

servables in Section III are expected to be:

M end
ττ = M end

ττ (mχ̃0
2
,mτ̃ ,mχ̃0

1
)

M end
jττ = M end

jττ (mq̃L ,mχ̃0
2
,mχ̃0

1
)

slope(pT,AM) = pT,AM(mχ̃0
2
,mχ̃0

1
)

slope(pT,diff) = pT,diff(mτ̃ ,mχ̃0
2
,mχ̃0

1
)

Mpeak
eff = Mpeak

eff (mq̃L ,mg̃)

(14)

The masses are varied independently around the
benchmark point, and the full simulation of the collider
experiment and determination of the observables is per-
formed each time. Thus, the functional dependence of
the observables on the masses is determined, along with
their uncertainties.

This set of equations can be used to solve for the
masses. In general, the dependence of the observables on
the masses is expected to be non-linear, corresponding
to multiple solutions of the masses. However, near the
benchmark point, we found that for most masses, linear
functions fitted the dependence quite well. We obtained
two solutions only for the stau mass, and one was quite
far from the benchmark point and thus rejected. We will
have more to say on these issues in Section V A.

In Table VII, we show the solution to the g̃, q̃L, τ̃ , χ̃
0
2,

and χ̃0
1 masses for 50 fb−1 luminosity. We also show the

statistical uncertainties, which range between 1%−6.6%.

TABLE VII: Solution to masses at 50 fb−1 for a stop coanni-
hilation benchmark point. All masses are in GeV.

Particle Mass 50 fb−1 Stat. 100 fb−1 Stat.

g̃ 646 −14,+19 −11,+14
q̃L 638 −34,+42 −23,+39
τ̃ 318 −3,+3 −3,+3
χ̃0

2 333 −7,+11 −6,+8
χ̃0

1 276 −8,+13 −7,+10

A. Determination of UV Model Parameters and
Relic Density

Having determined the masses of g̃, χ̃0
1, χ̃

0
2, τ̃ , and q̃, we

can use these to numerically solve for the parameters of

the full model. As we have stressed in Section I, the point
of this work is to show that the contours of the media-
tion scheme (here, mirage pattern) show up unmistak-
ably from the determination of certain masses. We will
demonstrate this in Section IV C, where we will show the
gaugino unification scale. However, a set of masses may
point back at different models, and in particular, we will
not attempt to perform a distinguishability study of our
particular model. When we solve the model parameters
for our particular example (KKLT), our methods will re-
flect this - we will start from the model parameters, fit
with the spectrum, and zero in on the masses we solved.

We use the Nelder Mead method, a commonly
used nonlinear optimization technique, to do so. An
initial simplex is chosen on the parameter space
{m3/2, α, nm, nH , tanβ, } and ISAJET [17] is used to find
the corresponding mass. The scan over parameter space
proceeds until the masses calculated by ISAJET are close
to the solved values.

Table VIII shows the corresponding model parameters
we determined from mg̃, mq̃L , mχ̃0

2
, mτ̃1 and mχ̃0

1
for 50

fb−1 and 100 fb−1 luminosities. At 50 fb−1, the statistical
uncertainties range between 5.6%− 17%.

TABLE VIII: Solution to model parameters at a stop coan-
nihilation benchmark point at 50 fb−1. Masses are in GeV.

Parameter Value 50 fb−1 Stat. 100 fb−1 Stat.

α 4.58 ±0.21 ±0.14
m3/2 13717 ±688 ±517
nm 0.106 ±0.015 ±0.015
nH 0.578 ±0.095 ±0.091

tanβ 28.76 ±1.65 ±1.36

Using the model parameters from Table VIII, we cal-
culate the relic density and we find:

Ωh2 = 0.096 ± 0.029 . (15)

The relic density is determined to an accuracy of 31%.

B. Determination of b̃ and t̃ Masses

The observables M end
bW and M end

jW are used to deter-
mine the third generation squark masses, once the other
masses have been obtained with the observables previ-
ously determined.

Theoretically, the functional dependences are MbW =
MbW (mb̃,mt̃,mg̃) and MjW = MjW (mb̃,mt̃,mχ̃0

1
). As

before, the masses are varied independently around the
benchmark point, and the collider experiment and deter-
mination of M end

bW and M end
jW is performed each time.

We show the masses of the third generation squarks
with uncertainties in Table IX. The statistical uncertain-
ties range between 2.5%− 11.3%.
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TABLE IX: Solution to stop and sbottom masses at 50 fb−1

for a stop coannihilation benchmark point. All masses are in
GeV.

Particle Mass 50 fb−1 Stat. 100 fb−1 Stat.

b̃ 531 −60, +60 −47, +47
t̃ 326 −5, +8 −4, +7

C. Gaugino Unification

Upto this point, we have displayed our techniques of re-
constructing masses at the benchmark point given in Ta-
ble II. Our techniques work perfectly well at benchmark
points with higher gluino mass, as preferred by current
LHC data. Higher luminosity is of course required to
obtain endpoints. Below, we choose such a benchmark
point with mg̃ ∼ 1.2 TeV, reconstruct gaugino masses,
and show the gaugino unification scale.

TABLE X: Model parameters and spectrum at a new stop
coannihilation benchmark point with heavier gluino. All
masses are in GeV.

Parameter Value Particle Mass

α 3.8 g̃ 1187
m3/2 34800 χ̃0

2 740
nm 0.0 χ̃0

1 666
nH 0.5 τ̃ 721

tanβ 28 q̃ 1189

For this benchmark point, a luminosity of 200 fb−1 is
required to solve for all the masses, following the tech-
niques we have shown in this paper. We show the masses
we obtained for this benchmark point in Table XI. The
statistical uncertainties range between 0.9%− 14.7%.

TABLE XI: Solution to masses at 200 fb−1 for a stop coanni-
hilation benchmark point with heavier gluino. All masses are
in GeV.

Particle Mass Stat.

t̃ 690 ± 6

b̃ 1002 ± 126
τ̃ 717 ± 10
q̃ 1133 −132,+167

The model parameters are solved as before, using the
masses above as well as the gaugino masses solved at 200
fb−1. The solution to the model parameters at 200 fb−1

for the new benchmark point are α = 3.84±0.11,m3/2 =
34463±805 GeV, nm = 0.078±0.007, nH = 0.592±0.036,
and tanβ = 27.2± 1.94. The relic density is found to be
Ωh2 = 0.23± 0.13.

As mentioned in Section I, gaugino masses may be ob-
tained at lower luminosity, as we elaborate below.

The solution of gaugino masses typically requires the

values of four observables (pT,diff , pT,AM,M
peak
eff , and

M end
ττ ), as is clear from the solutions we displayed in Table

VII. One could have used the endpoint of the invariant
mass distribution Mjτ of the leading jet and the more
energetic τ as an observable. Our analysis of this ob-
servable indicates that one requires more luminosity to
find its endpoint, relative to the luminosity required to
determine the observables pT,AM and pT,diff , because of
the associated jet subtractions.

Since for the benchmark point the τ ’s are quite close
in mass, we use pT,AM and pT,diff , obviating the need
to use observables which involve jet information. Then,
χ̃0

1, χ̃
0
2, and τ̃ masses can be obtained from pT,AM, pT,diff ,

and M end
ττ observables. Since these observables do not

involve jet subtractions, they give acceptable endpoints

at lower luminosity. On the other hand, Mpeak
eff roughly

gives the gluino mass.
In Table XII, we show the values of the gaugino masses

at 50 fb−1 for the new benchmark point. The statistical
uncertainties range between 1.2%− 4.2%.

In Figure 8, we show the running of the gauginos and
the gaugino unification for our benchmark point. Clearly,
gaugino unification occurs below the GUT scale, estab-
lishing the footprints of anomaly contributions to super-
symmetry breaking.

TABLE XII: Solution to gaugino masses at 50 fb−1 for the
new stop coannihilation benchmark point with heavier gluino.
All masses are in GeV.

Particle Mass 50fb−1 Stat.

g̃ 1181 ± 50
χ̃0

2 738 ± 15
χ̃0

1 649 ± 20

The theoretically expected gaugino unification scale,
for this benchmark point, is given by

Munif = MGUT

(
m3/2

Mp

)2.47/α

∼ 107 GeV . (16)

Note that the expression differs from the ones in [8] by
the rescaling in Eq. 8.

D. Systematic Errors

We also study an impact due to a ±3% uncertainty
on the energy scale for jets, taus, and missing transverse
energy to estimate the systematic uncertainties indepen-
dently of luminosity.

Table XIII shows the percentage systematic errors in
the determination of the observables and masses. We
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FIG. 8: Running of gaugino masses. The vertical axis is
masses in GeV. The luminosity is 50 fb−1. The shaded lines
from the top down represent, at the left edge of the graph,
the gluino, wino and bino masses respectively.

find that the systematic errors for the observables are be-
tween 1%− 6%, which is larger than the statistical error
0.2%− 3% at 50 fb−1. The systematic errors of masses,
which vary from 2%−19%, are also large compared to the
statistical errors, which range between 1% − 11% at 50
fb−1. Since our assumption of ±3% on the energy scale
could be changed in actual experimental conditions, we
just show the size of errors in Table XIII as a reference
and don’t use them in the analyses performed in the pre-
vious sub-sections.

TABLE XIII: Systematic percentage errors in observables and
masses for a benchmark point in the stop coannihilation re-
gion.

Observable Error (%) Mass Error (%) Parameter Error (%)

Mend
ττ ± 3.0 mg̃ ± 3.9 α ± 5.9

Mend
jττ ± 4.5 mχ̃0

2
−2.4,+4.2 m3/2 ± 5.9

slope(pT,high) ± 5.2 mχ̃0
1

± 4 nm ± 12.5

slope(pT,low) ± 1.0 mτ̃ ± 2.6 nH ± 17

Mpeak
eff ± 1.3 mq̃ −13,+15 tanβ ± 6.1

Mend
jW ± 5.9 mt̃ −2.5,+3.7

Mend
bW ± 3.7 mb̃ ± 19

V. ANALYSIS IN THE STAU
COANNIHILATION REGION

In this Section, we determine masses and model pa-
rameters for a different point in parameter space, where
only stau coannihilation is operational. We first show our
analysis for the benchmark model point shown in Table
III. In Section V C, we will also analyse a benchmark

point with heavier gluino mass preferred by current LHC
data.

The distributions used in the stau coannihilation re-
gion are Mττ , Mjττ , Mjτ , pT,low, and Meff . Note that
we only use the pT,low corresponding to the lower energy
τ from τ̃ −→ χ̃0

1 + τ , since the higher energy τ doesn’t
show enough variation as the masses are varied.

We use Mjτ , which is formed by combining the higher
energy τ with a leading jet from the same event. OS−LS
and BEST are performed as usual. Theoretically, one
expects M end

jτ = M end
jτ (mq̃L ,mχ̃0

2
,mτ̃ ).

In Figures 9, 10, 11, 12, and 13, we present the distri-
butions obtained.

FIG. 9: Distribution of Mττ at a stau coannihilation bench-
mark point. The notation is the same as in Figure 1. The
endpoint obtained is 90.70±0.54(Stat.) GeV. The luminosity
is 100 fb−1.

FIG. 10: Distribution of Mjττ at a stau coannihilation bench-
mark point. The notation is the same as in Figure 2. The
endpoint obtained is 479.53±3.45(Stat.) GeV. The luminosity
is 100 fb−1.

In Table XIV, we present the endpoints obtained from
the Mττ ,Mjττ , and Mjτ distributions, the slope of the
visible pT distribution of the lower energy τ , and the peak
of the Meff distribution, at 100 fb−1 for the stau coanni-
hilation benchmark point. The statistical uncertainties
range between 0.6%− 4.7%.



12

FIG. 11: Distribution of pT,low at a stau coannihilation bench-
mark point. The notation is the same as in Figure 4. The
slope obtained is −0.0849± 0.0041(Stat.). The luminosity is
100 fb−1.

FIG. 12: Distribution of Meff at a stau coannihilation bench-
mark point. The notation is the same as in Figure 5. The
peak obtained is 1257.26± 10.33(Stat.) GeV. The luminosity
is 100 fb−1.

TABLE XIV: Kinematical observables at 100 fb−1 for the
Stau coannihilation benchmark point. All masses in GeV.

Observable Value 100 fb−1 Stat.

Mend
ττ 90.70 ±0.54

Mend
jττ 479.53 ±3.45

slope(pT,τ ) −0.0849 ±0.0041

Mpeak
eff 1257.26 ±10.33

Mend
jτ 448.40 ±16.20

A. Masses and Gaugino Unification

After obtaining the values of the observables at the
benchmark point as quoted above, we varied the masses
around the benchmark point. For each mass selection,
we simulated the experiment and obtained all the ob-
servables. This gave us the observables as a function of
the masses. We then iteratively solved for the masses.

FIG. 13: Distribution of Mjτ in jττ system. The blue (grey)
histogram is obtained by combining the higher energy τ of
the OS−LS τ pair with a leading jet of the same event. The
filled dot-dashed histogram is the bi-event histogram, con-
structed by combining the aforesaid τ with a leading jet from
a different event and is normalised to the long tail of the same-
event histogram. The same-event minus bi-event subtraction
(BEST) produces the black subtracted histogram. The sub-
tracted histogram is fitted with a straight line to obtain the
endpoint. The result for the endpoint is 448.40±16.20(Stat.)
GeV. The luminosity is 100 fb−1.

Obviously, one should expect more than one set of mass
solutions in this method, since the dependence of the
observables on the masses near the benchmark point is
non-linear. In this case, we found two sets of solutions
with quite disparate values of masses.

This is a general problem, and we mention some ar-
guments to reject the ”wrong” solutions. Firstly, one
set of solutions had masses far away from the bench-
mark point, where the expansion was not performed to
begin with. Secondly, this set had a much larger stau-
neutralino mass difference, which did not satisfy the relic
density constraint.

Finally, one can reject masses by appealing to the
UV model and determining more observables, although
this goes somewhat against the bottom-up philosophy we
have pursued in this paper. Thus, we can use this set of
mass solutions and solve for the UV model parameters,
which we can then use to solve the spectrum of the model,
in particular obtaining the b quark mass. Given the spec-
trum, we can obtain the theoretical value of a particular
observable, say MbW , and on the other hand, measure
it using the techniques outlined in the paper. For the
incorrect mass solution set, the values thus obtained will
be very different.

In any case, after rejecting the first set of solutions, the
second set itself had two sets of values of χ̃0

1 and τ̃ masses,
which were close to each other. One set of solutions is
shown in Table XV. The other solutions to the χ̃0

1 and
τ̃ masses are mχ̃0

1
= 294 GeV and mτ̃ = 337 GeV. All

combinations of masses (four in all) are used to solve the
model parameters, as we outline in the next subsection.

We display the solution set in Table XV, obtained at
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luminosity 100 fb−1. The statistical uncertainties are
2.7%− 6.4%.

TABLE XV: Solution to masses at 100 fb−1 for the stau coan-
nihilation benchmark point. All masses are in GeV.

Particle Mass 100 fb−1 Stat.

g̃ 895 −35,+50
q̃L 845 −36,+24
χ̃0

2 388 −9,+25
τ̃ 298 −8,+8
χ̃0

1 274 −10,+10

B. Determination of UV Model Parameters and
Relic Density

Having determined the masses of g̃, χ̃0
1, χ̃

0
2, τ̃ , and q̃, we

can use these to numerically solve for the parameters of
the full model.

We use the Nelder-Mead method to do so. An
initial simplex is chosen on the parameter space
{m3/2, α, nm, nH , tanβ, } and ISAJET is used to find the
corresponding mass. The scan over parameter space pro-
ceeds until the masses calculated by ISAJET are close to
the solved values.

In the previous subsection, we have discussed two solu-
tions each for χ̃0

1 and τ̃ . We solved the model parameters
for each combination of masses (four in all), and took the
average of the values of the model parameters thus ob-
tained. These average values are displayed in Table XVI.
The statistical uncertainties are 9%− 40%.

TABLE XVI: Solution to model parameters at the stau coan-
nihilation benchmark point. For each mass solution, the
model parameters are solved, and the average of all the dif-
ferent sets of solutions is shown in the table. Masses are in
GeV.

Parameter Value Stat.

α 7.42 ± 0.58
m3/2 10171 ± 882
nm 0.52 ± 0.09
nH 1.17 −0.07,+0.22

tanβ 33.1 ± 7.8

Using the model parameters from Table XVI, we cal-
culate the relic density and we find:

Ωh2 = 0.17+0.12
−0.13 . (17)

The relic density is thus determined to an accuracy of
59%.

C. Gaugino Unification

Although upto this point, we have displayed our results
in the stau coannihilation region at the benchmark point
given in Table IV, our methods are applicable at other
benchmark points with higher gluino mass, preferred by
current LHC data. We display such a benchmark point
for stau coannihilation below, and proceed to show gaug-
ino unification.

TABLE XVII: Model parameters and spectrum at a new
stau coannihilation benchmark point with heavier gluino. All
masses are in GeV.

Parameter Value Particle Mass

α 10 g̃ 1183
m3/2 9500 χ̃0

2 499
nm 0.5 χ̃0

1 337
nH 1.0 τ̃ 361

tanβ 37 q̃ 1119

At this benchmark point, we found acceptable end-
points at 250 fb−1, and solved for the observables and
masses. The masses are mτ̃ = 346 ± 12 GeV and
mq̃ = 1138 ± 72 GeV. The masses of the gauginos
can also be determined, although we show their val-
ues at a lower luminosity below. After determining
the masses, the observables can be solved and they
are α = 9.95 ± 0.99, m3/2 = 9636 ± 910 GeV, nm =

0.56± 0.09, nH = 1.14+0.20
−0.08, and tanβ = 40.0± 7.0. The

relic density for the heavy gluino point is found to be
Ωh2 = 0.05+0.21

−0.04.
The gaugino masses can be obtained at lower luminos-

ity, as spelled out in Section I.
In the stau coannihilation region, one can use the prox-

imity of the stau and lightest neutralino masses to solve
gaugino masses using fewer observables, in particular
avoiding the observable M end

jτ , which typically requires
higher luminosity due to jet subtractions. This is remi-
niscent of what we did in the previous sections with stop
coannihilation, although there we used the proximity of
τ pT ’s.

We take approximately

mτ̃ ∼ mχ̃0
1

+ 15 . (18)

Thus, assuming that Mpeak
eff is approximately determined

by mg̃, it is clear from Eq. 14 that one can solve for

mg̃,mχ̃0
2
,mχ̃0

1
from Mpeak

eff , pT,low and Mττ .
These observables have acceptable endpoints and

peaks down to 15 fb−1. The main difference from the
full set of observables is the Mjτ distribution, which re-
quires a higher luminosity to obtain acceptable endpoints
due to jet subtractions.

In Table XVIII, we show the gaugino masses obtained
at 15 fb−1 for the new stau coannihilation benchmark
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TABLE XVIII: Solution to gaugino masses at 15 fb−1 for the
new stau coannihilation benchmark point with heavier gluino.
All masses are in GeV.

Particle Mass 15fb−1 Stat.

g̃ 1186 ± 84
χ̃0

2 527 −30,+60
χ̃0

1 317 ± 33

point with heavier gluino. The statistical uncertainties
are 7%− 11.4%.

In Figure 14, we show gaugino unification for the new
benchmark point at 15 fb−1.

2 4 6 8 10 12 14 16

200

400

600

800

1000

1200

log
Q

GeV

m
as

sHG
eV

L

FIG. 14: Running of gaugino masses. The vertical axis is
masses in GeV. The luminosity is 15 fb−1. The shaded lines
from the top down represent, at the left edge of the graph,
the gluino, wino and bino masses respectively.

VI. CONCLUSIONS

If supersymmetry is discovered at the LHC, the next
step would be to understand as much as possible about
the underlying model of supersymmetry breaking and
mediation. How should one proceed?

One option is to start from specific models defined by
a tractable number of parameters at high energy, and
fit to observables measured in the collider. However, we
have stressed that a given set of measured observables
will generally point back at different UV models, dis-
tinguishing among which may be challenging and even
intractable (depending on the complexity of the model
and the number of reliable observables measured).

We have stressed on a bottom-up approach to this
question: first identify sectors in the low energy spec-
trum which carry the imprints of mediation schemes in
a relatively model-independent manner, next construct

observables which carry information about these masses,
and finally using the observables solve for the masses and
identify a mediation scheme.

The gaugino sector offers a particularly fruitful sector
in this program, since the determination of this sector
can unambiguously show the imprints of anomaly contri-
butions to supersymmetry breaking. We therefore take
an example of a model where anomaly contributions are
significant (supersymmetry breaking in KKLT compact-
ification) and proceed to obtain the gaugino masses, by
constructing suitable observables.

We rely on the construction of kinematic observables
arising from cascade decays using endpoint techniques,
since these are a particularly sharp tool for such diagno-
sis.

While the gauginos are important in the paradigm out-
lined above, they form only a subset of the masses we de-
termined in this paper. Given a neutralino dark matter,
the determination of other masses becomes a necessity
when one wants to establish mechanisms to satisfy the
relic density. This is perfectly amenable to the kind of
bottom-up approach we have taken: in our examples, we
needed to establish that the stop-neutralino and stau-
neutralino coannihilation mechanisms were operational.
To do so demanded the determination of stop and stau
masses, in addition to the neutralino.

We summarize our work below:
(i) We constructed observables using different combi-

nations of the jets, τ ’s and W ’s in the final states. We
constructed these observables in the stop-neutralino and
stau-neutralino coannihilation regions.

In the stop coannihilation region, we constructed two
new observables, M end

jW and M end
bW , to determine the

masses of the t̃ and the b̃. The determination of the t̃
and b̃ masses is especially challenging, since both decay
to b quarks. To make the problem worse, stop decays
to missing energy by emitting a low energy jet in this
coannihilation region. We showed how to reconstruct the
stop mass in order to establish the fact that we are in the
stop-neutralino coannihilation region.

We also constructed two other new observables, pT,AM

and pT,diff which are combinations of the pT of two op-
posite sign τ ’s. These observables are particularly useful
when the sample shows the presence of two opposite sign
τ ’s that are close in mass.

(ii) Using the observables, we solved for the masses of
the gluino, the two lighter neutralinos, squarks (of the
first two generations) and the lightest stau. We also de-
termined the lighter stop and sbottom masses in the stop
coannihilation region.

(iii) We used the neutralino and gluino masses to de-
termine the gaugino unification scale and discern the ef-
fects of anomaly mediation from a bottom-up approach,
as elaborated above.

(iv) Using all the masses, we determined (a) the model
parameters and (b) tested whether we are in a coanihi-
lation region and dark matter relic density is satisfied.
We find that relic density can be determined with an
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accuracy of 31% in the stop and 59% in the stau coanni-
hilation region.

As far as the diagnosis of the supersymmetry break-
ing mediation scheme is concerned, the most important
future direction is obviously to expand our techniques
to parts of the parameter space away from the coanni-
hilation regions. Our observables enabled us to solve for
the lightest neutralinos, and for the statements on medi-
ation scheme that we made above, they were assumed to
be gauginos (this is guaranteed in the coannhilation re-
gions). It would be very interesting to test the paradigm
outlined in this paper at regions where the Higgsino com-
ponent is not insignificant. Also interesting would be to
find bottom-up techniques to further distinguish between
different schemes that correspond to the same gaugino
mass pattern. We leave these questions for future work.

VII. ACKNOWLEDGEMENTS

We would like to thank John Conley and Jamie Tatter-
sall for discussions and Nathan Krislock for introducing
us to the Nelder Mead method. K.W. would like to thank
Lingzhi Wang for help with programming. T.K. would
like to thank D.H. Kim and Y. Oh for their constructive
discussions throughout this work. This work is supported
in part by the DOE grant DE-FG02-95ER40917 and by
the World Class University (WCU) project through the
National Research Foundation (NRF) of Korea funded by
the Ministry of Education, Science & Technology (grant
No. R32-2008-000-20001-0).

[1] S. P. Martin, “A Supersymmetry primer,” In *Kane,
G.L. (ed.): Perspectives on supersymmetry* 1-98. [hep-
ph/9709356]; H. P. Nilles, “Supersymmetry, Supergrav-
ity and Particle Physics,” Phys. Rept. 110, 1-162 (1984).

[2] J. A. Conley, H. K. Dreiner, L. Glaser, M. Kramer
and J. Tattersall, “Using rates to measure mixed
modulus-anomaly mediated supersymmetry breaking at
the LHC,” arXiv:1110.1287 [hep-ph]. H. K. Dreiner,
M. Kramer, J. M. Lindert and B. O’Leary, “SUSY
parameter determination at the LHC using cross sec-
tions and kinematic edges,” JHEP 1004, 109 (2010)
[arXiv:1003.2648 [hep-ph]]. P. Bechtle, K. Desch, M. Uh-
lenbrock and P. Wienemann, “Constraining SUSY mod-
els with Fittino using measurements before, with and
beyond the LHC,” Eur. Phys. J. C 66, 215 (2010)
[arXiv:0907.2589 [hep-ph]]. C. G. Lester, M. A. Parker
and M. J. . White, “Determining SUSY model param-
eters and masses at the LHC using cross-sections, kine-
matic edges and other observables,” JHEP 0601, 080
(2006) [arXiv:hep-ph/0508143].

[3] A. H. Chamseddine, R. L. Arnowitt, P. Nath, Phys. Rev.
Lett. 49, 970 (1982); R. Barbieri, S. Ferrara, C. A. Savoy,
Phys. Lett. B119, 343 (1982); L. J. Hall, J. D. Lykken,
S. Weinberg, Phys. Rev. D27, 2359-2378 (1983); P. Nath,
R. L. Arnowitt, A. H. Chamseddine, Nucl. Phys. B227,
121 (1983); For a review, see H. P. Nilles, Phys. Rept.
110, 1-162 (1984).

[4] G. F. Giudice, R. Rattazzi, “Theories with gauge me-
diated supersymmetry breaking,” Phys. Rept. 322, 419-
499 (1999). [hep-ph/9801271]. L. Randall, R. Sundrum,
“Out of this world supersymmetry breaking,” Nucl.
Phys. B557, 79-118 (1999). [hep-th/9810155]; G. F. Giu-
dice, M. A. Luty, H. Murayama, R. Rattazzi, “Gaugino
mass without singlets,” JHEP 9812, 027 (1998). [hep-
ph/9810442].

[5] J. P. Conlon, F. Quevedo and K. Suruliz, “Large-volume
flux compactifications: Moduli spectrum and D3/D7 soft
supersymmetry breaking,” JHEP 0508, 007 (2005) [hep-
th/0505076].

[6] K. Choi, K. S. Jeong, K. -i. Okumura, “Phenomenol-
ogy of mixed modulus-anomaly mediation in fluxed string
compactifications and brane models,” JHEP 0509, 039

(2005). [hep-ph/0504037].
[7] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, “De

Sitter vacua in string theory,” Phys. Rev. D 68, 046005
(2003) [arXiv:hep-th/0301240].

[8] K. Choi and H. P. Nilles, “The gaugino code,” JHEP
0704, 006 (2007) [arXiv:hep-ph/0702146].

[9] D. E. Kaplan, G. D. Kribs and
M. Schmaltz,“Supersymmetry breaking through trans-
parent extra dimensions,” Phys. Rev. D 62, 035010
(2000) [hep-ph/9911293]. Z. Chacko, M. A. Luty,
A. E. Nelson and E. Ponton, “Gaugino mediated
supersymmetry breaking,” JHEP 0001, 003 (2000)
[hep-ph/9911323]. M. Schmaltz and W. Skiba, “Minimal
gaugino mediation,” Phys. Rev. D 62, 095005 (2000)
[hep-ph/0001172].

[10] R. L. Arnowitt, B. Dutta, A. Gurrola, T. Kamon,
A. Krislock and D. Toback, “Determining the Dark Mat-
ter Relic Density in the mSUGRA Stau-Neutralino Co-
Annhiliation Region at the LHC,” Phys. Rev. Lett. 100,
231802 (2008) [arXiv:0802.2968 [hep-ph]].

[11] I. Hinchliffe, F. E. Paige, M. D. Shapiro, J. Soderqvist
and W. Yao, “Precision SUSY measurements at CERN
LHC,” Phys. Rev. D 55, 5520 (1997) [arXiv:hep-
ph/9610544]. I. Hinchliffe and F. E. Paige, “Measure-
ments in SUGRA models with large tan(beta) at LHC,”
Phys. Rev. D 61, 095011 (2000) [arXiv:hep-ph/9907519].

[12] B. C. Allanach and M. J. Dolan, “Supersymmetry With
Prejudice: Fitting the Wrong Model to LHC Data,”
arXiv:1107.2856 [hep-ph].

[13] B. Dutta, T. Kamon, A. Krislock, N. Kolev and Y. Oh,
“Determination of Non-Universal Supergravity Models at
the Large Hadron Collider,” Phys. Rev. D 82, 115009
(2010) [arXiv:1008.3380 [hep-ph]].

[14] R. Rattazzi, A. Strumia and J. D. Wells, “Phenomenol-
ogy of deflected anomaly mediation,” Nucl. Phys. B 576,
3 (2000) [hep-ph/9912390].

[15] K. Choi, K. Y. Lee, Y. Shimizu, Y. G. Kim, K. -i. Oku-
mura, “Neutralino dark matter in mirage mediation,”
JCAP 0612, 017 (2006). [hep-ph/0609132]. H. Baer, E. -
K. Park, X. Tata, T. T. Wang, “Collider and Dark Mat-
ter Phenomenology of Models with Mirage Unification,”
JHEP 0706, 033 (2007). [hep-ph/0703024].

http://arxiv.org/abs/hep-ph/9709356
http://arxiv.org/abs/hep-ph/9709356
http://arxiv.org/abs/1110.1287
http://arxiv.org/abs/1003.2648
http://arxiv.org/abs/0907.2589
http://arxiv.org/abs/hep-ph/0508143
http://arxiv.org/abs/hep-ph/9801271
http://arxiv.org/abs/hep-th/9810155
http://arxiv.org/abs/hep-ph/9810442
http://arxiv.org/abs/hep-ph/9810442
http://arxiv.org/abs/hep-th/0505076
http://arxiv.org/abs/hep-th/0505076
http://arxiv.org/abs/hep-ph/0504037
http://arxiv.org/abs/hep-th/0301240
http://arxiv.org/abs/hep-ph/0702146
http://arxiv.org/abs/hep-ph/9911293
http://arxiv.org/abs/hep-ph/9911323
http://arxiv.org/abs/hep-ph/0001172
http://arxiv.org/abs/0802.2968
http://arxiv.org/abs/hep-ph/9610544
http://arxiv.org/abs/hep-ph/9610544
http://arxiv.org/abs/hep-ph/9907519
http://arxiv.org/abs/1107.2856
http://arxiv.org/abs/1008.3380
http://arxiv.org/abs/hep-ph/9912390
http://arxiv.org/abs/hep-ph/0609132
http://arxiv.org/abs/hep-ph/0703024


16

[16] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke,
E. A. Baltz, “Darksusy - a numerical package for super-
symmetric dark matter calculations,”
[astro-ph/0211238].

[17] F. E. Paige, S. D. Protopopescu, H. Baer and X. Tata,
“ISAJET 7.69: A Monte Carlo event generator for p p,
anti-p p, and e+ e- reactions,” [hep-ph/0312045]. We use
ISAJETversion 7.74.

[18] T. Sjostrand, S. Mrenna, and P. Skands, ”PYTHIA 6.4
Physics and Manual.” J. High Energy Phys. 05 (2006)
026. We use PYTHIA version 6.411 with TAUOLA.

[19] PGS4 is a parameterized detector simulator. We use
version 4 (http://www.physics.ucdavis.edu/~conway/
research/software/pgs/pgs4-general.htm) in the
CMS detector configuration. We assume the τ iden-

tification efficiency with pvis
T > 15 GeV is 50%, while

the probability for a jet being mis-identified as a τ is
1%. The b-jet tagging efficiency in PGS is ∼42% for
ET > 50 GeV and |η| < 1.0, and degrading between
1.0 < |η| < 1.5. The b-tagging fake rate for c and light
quarks/gluons is ∼ 9% and 2%, respectively.

[20] CMS Collaboration, ”Search for Physics Beyond the
Standard Model in Events with Opposite-sign Tau Pairs
and Missing Energy”, CMS Physics Analysis Summary
CMS-PAS-SUS-11-007 (2011).

[21] B. Dutta, T. Kamon, N. Kolev and A. Krislock, “Bi-
Event Subtraction Technique at Hadron Colliders,” Phys.
Lett. B 703, 475 (2011) [arXiv:1104.2508 [hep-ph]].

http://arxiv.org/abs/astro-ph/0211238
http://arxiv.org/abs/hep-ph/0312045
http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm
http://arxiv.org/abs/1104.2508

	I Introduction
	A Mass Measurements at the LHC

	II Model and Benchmark Points
	A Contributions to Gaugino Masses
	B KKLT with D7 branes: The UV Model Parameters
	C Benchmark Points

	III Kinematic Observables in the Stop Coannihilation Region
	A 2 Jets + 2  + E/T
	1 Mend
	2 Mendj
	3 Slope of pT of 

	B 4 jets + E/T
	C Observables for the Determination of Third Generation Squark Masses: MendbW and MendjW

	IV Determination of Particle Masses, Gaugino Unification Scale, and UV Model Parameters in the Stop Coannihilation Region
	A Determination of UV Model Parameters and Relic Density
	B Determination of  and  Masses
	C Gaugino Unification
	D Systematic Errors

	V Analysis in the Stau Coannihilation Region
	A Masses and Gaugino Unification
	B Determination of UV Model Parameters and Relic Density
	C Gaugino Unification

	VI Conclusions
	VII Acknowledgements
	 References

