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Abstract. The relative yield of highly charged atomic ions produced by a short
(4–6 fs at FWHM) intense (1014–5 × 1018 W cm−2) laser pulse was investigated
by numerical solution of the rate equations. We predict oscillations of the
ion yield as a function of the absolute phase. A distinctive property of this
phase dependence is that it can only be observed when at least two ions have
comparable yields. It is shown that with currently available laser systems the
effect should be experimentally detectable for various rare gas atoms: Xe, Kr, Ar
and Ne.
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1. Introduction

Double and multiple ionization of atoms and molecules is one of the most theoretically
challenging strong-field phenomena. This process has been intensively investigated over the
last two decades, both experimentally and theoretically. As a result of these investigations it
has been found that two different physical scenarios underlie this phenomenon: sequential and
nonsequential double (multiple) ionization (for reviews see [1–4]). In the process of sequential
ionization, electrons are ionized sequentially and independently of one another.

In contrast to this process, electron–electron correlation is a necessary condition for
nonsequential double (or multiple) ionization. The actual mechanism underlying this correlation
has been the subject of extensive investigation and debate for several years. At this point it has
been established that nonsequential double ionization occurs due to inelastic recollision of the
ionized electron with the parent ion [5, 6]. This mechanism can be visualized by the well-known
three-step model. According to this model, (i) one electron tunnels out of the atomic potential
and is driven by the laser field away from the residual atom. When the field changes its direction,
(ii) the electron is driven back, and on recollision with the ion core, (iii) it gives part of its kinetic
energy to a second bound electron, which is then freed. Finally, both are driven by the laser field.
Note that the details of this picture significantly depend on the specific atom (see, e.g., [1, 2]).
Obviously, the rate of the nonsequential process is not the product of single ionization rates. It
was first proposed in [7, 8] that the nonsequential mechanism contributes to double ionization.

In contrast to nonsequential ionization, which can be observed at relatively low laser
intensities, sequential ionization dominates at high intensities. Sequential processes also
dominate in the case of ionization by a circularly polarized laser field. For elliptical polarization
the electron must depart with nonzero initial velocity perpendicular to the main axis of the
polarization ellipse in order to return to its parent ion. However, this initial velocity decreases
the tunneling rate. As a result, the probability of the nonsequential double ionization decreases
quickly with increasing ellipticity and for a circularly polarized field, the nonsequential
mechanism is essentially eliminated. At present, sequential ionization is attracting particular
interest due to the constant increase in the intensity of modern lasers. Moreover, the rapid
progress of the experimental technique (particularly, the advent of the cold-target recoil-ion-
momentum spectroscopy COLTRIMS or REMI) has not only allowed for measurements of the
total ion yield, but also the momentum distributions of the product ions [9–15].
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Strange as it may seem, at present, there is a lack of theoretical studies of sequential
double and multiple ionization. This particularly holds for the ion momentum distributions and
for ionization by short laser pulses. At first glance, there is a considerable body of work on
sequential processes, such as [16–26]. However, the vast majority is concerned with only the
total ion yield. Moreover, emphasis has been put on the description of the well-known ‘knee’ in
the yield, which appears due to the nonsequential channel. Momentum distributions of multiply
charged ions generated by sequential ionization of atoms were studied in the works [24–26],
two of which were experimental and theoretical investigations [24, 25] of the momentum
distributions of multiply charged He, Ne and Ar ions up to the charge of Z = 8 generated by a
long (200 fs at full-width at half-maximum (FWHM)) laser pulse with the maximum intensity of
5–7 × 1015 W cm−2. In the third work [26], the momentum distributions of Xe ions up to Xe24+

were calculated for both relatively long and short laser pulses.
To the best of our knowledge, our previous work [26] is the only theoretical study of

sequential multiple ionization by a short laser pulse, when the carrier–envelope phase (CEP)
effects may be essential (for a review of these effects, see [27] and references therein). In [26],
we predicted a substantial shift in the maximum (centroid) of the ion-momentum distribution
along the laser polarization as a function of the CEP. This effect should be experimentally
detectable with currently available laser systems even for relatively long pulses, i.e. 25–30 fs.

At first glance, it is much easier to measure the variation of ion yield with the absolute
phase than to measure the phase-dependent shift of the momentum distributions. However, CEP
effects are often not apparent in measurements of the total yields, because they can be washed
out by the integration over momentum. Nevertheless, the effect of the absolute phase on the total
yield of highly charged ions has not been studied so far. In this paper, we investigate the CEP
dependence of the ion yield by solving the system of rate equations for different charge states.
We perform a comprehensive analysis of the absolute phase effect for various atomic targets
(Ne, Ar, Kr and Xe) over a wide range of laser intensities and formulate the conditions under
which it can be observed.

2. Phase dependence of the ion yields

2.1. Theoretical approach

In our calculations, we use a short linearly polarized laser pulse with a sinus-square envelope:

F(t) = F0 sin2(π t/τL) cos(ωt + ϕ), (1)

where ω is the carrier frequency, ϕ is the absolute phase and τL = (2π/ω)np is the duration
of the pulse; here, in turn, np is the number of cycles within the pulse. The pulse duration at
FWHM can be estimated as one half of the τL: τFWHM ≈ τL/2. Assuming that ion creation is a
sequential process (i.e. there is no interaction between the electrons), we come to the following
system of rate equations:

dr0

dt
= −w0r0,

dr1

dt
= w0r0 − w1r1,

dr2

dt
= w1r1 − w2r2,

. . . ,
drN

dt
= wNrN−1. (2)

Here rZ ≡ rZ(t, ϕ) is the probability for an ion to have charge Z at time t , N is the maximum
charge state that can be achieved at a given laser intensity and wZ ≡ wZ(F(t, ϕ), IZ) is the
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ionization rate for an ion with the charge Z and ionization potential IZ . The initial conditions
for the system of rate equations, equations (2), are r0(0, ϕ) = 1 and rZ(0, ϕ) = 0 for Z =

1, 2, . . . , N . As the probability of finding a particle with some charge is equal to unity, the
system (2) is constrained to the condition

r0(t, ϕ) + r1(t, ϕ) + · · · + rN (t, ϕ) = 1. (3)

In order to solve system (2), we need to know the ionization probabilities. According to
simple estimates, the ionization of the neutral Xe atoms, as well as that of the Xe1+ and Xe2+

ions, occurs in the barrier-suppression regime, and, strictly speaking, one needs to use ionization
rates suitable for barrier-suppression ionization; see, e.g., [28, 29]. The formula of [28, 29]
reduces to the usual Perelomov–Popov–Terent’ev (PPT) [30] or Ammosov–Delone–Krainov
(ADK) [31] rates in the tunneling limit, when the laser field is relatively weak. The extrapolation
of the tunneling formula into the barrier-suppression regime overestimates the ionization rate as
compared to the barrier-suppression one. However, a substantial difference between these two
formulae (say, at the level of 50%) occurs only when the laser field is at least 7–8 times greater
than the corresponding barrier-suppression value, which is not true in our case. Numerical
simulations show that the ionization of neutral atoms, as well as that of singly and doubly
charged ions, occurs mostly at field strengths no more than 2 times stronger in comparison
with the barrier-suppression fields (see figures 2(a) and (d)). Moreover, ions with Z > 2 are
ionized well before the intensity reaches the corresponding barrier-suppression value. Thus,
barrier-suppression ionization plays a minor role in the production of highly charged ions, both
for long [24] and short [26] laser pulses, and the PPT or ADK formulae for the ionization
probability, wZ(t), are appropriate. Thus, the tunneling rate for a level with ionization potential
Ip and angular and magnetic quantum numbers equal to l and m, respectively, is given by

wZ = (2Ip)(2l + 1)
(l + m)!

2mm! (l − m)!
C2

kl2
2n∗

−m

(
F

Fa

)m+1−2n∗

exp

(
−

2Fa

3F

)
, (4)

where Fa = (2Ip)
3/2 is the atomic field, n∗

= Z/
√

(2Ip) is the effective quantum number and
C2

kl is the asymptotic coefficient of the atomic wave function; see [32]. We neglect the Keldysh
parameter γ = ω

√
2Ip/F in the exponent of equation (4) and omit the pre-exponential factor

√
3π/F , because the latter arises from the averaging over the laser period.

The probabilities rZ(t, ϕ) can be calculated in various ways. In order to solve the system of
the rate equations (2) numerically, it is reasonable to use the Gear method [33] or other methods
adapted to the solution of stiff differential equations instead of the standard Runge–Kutta
method. The fact that the system (2) is stiff becomes evident if we compare the ionization rates
wk−1 and wk entering the same equation for the probability rk (t, ϕ). Usually these rates differ
by one or even more than one order of magnitude. Another technique is based on the simulation
procedure, which was developed in [26] for the derivation of ion momentum distributions.
For high laser intensities, when multiply charged ions are available and, as a consequence,
the system (2) consists of a large number of equations, the latter method is faster than the
former one. We used both approaches in order to check consistency. The results obtained by
both methods coincide with each other.

Bearing in mind potential measurements with widely available Ti:sapphire chirped pulse
amplification (CPA) systems, we perform calculations for the wavelength of 790 nm. When
solving the rate equations (2), we restrict ourselves to a maximal intensity of 5 × 1018 W cm−2.
At this intensity the energy of an ionized electron in the final continuum state is of the order of
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Figure 1. The ion yield as a function of the absolute phase ϕ. The two panels
(a) and (b) correspond to the intensities of 3.0 × 1015 and 5.0 × 1017 W cm−2,
respectively. The pulse duration is 5.3 fs at FWHM. The dashed lines show the
results of the analytic model, discussed in section 3.

its rest energy and the formulae for the relativistic ionization should be used in equations (2)
instead of the rate (4).

2.2. Results

Let RZ (ϕ) ≡ rZ (t = τL, ϕ), Z = 1, 2, . . . , N , be the yield of an ion with a charge Z at the end
of the laser pulse, i.e. at t → ∞. In the following, we consider only these final yields of different
charge states. We investigate how the yields RZ depend on the CEP ϕ. This dependence is shown
in figure 1 for several charge states at two laser intensities. It is seen that the relative yields are
oscillating functions of the absolute phase. The oscillation amplitude is rather complicated,
not a monotonic function of the laser intensity. The minima and maxima of the yield curves
correspond to ϕ = 0, π/2, π , 3π/2 and 2π . Moreover, if the yield of the ion with a certain
charge Z has a maximum, the yield of the ion Z − 1 has its minimum at the same phase, and
vice versa. If only two different charge states can be detected after the end of the pulse, this
feature can be easily explained by equation (3). In the general case, it follows from the analytic
formulae; see section 3.

The oscillations of the ion yield at a given intensity can be characterized by the difference
between the yields at ϕ = 0 and ϕ = π/2:

d = RZ(0) − RZ(π/2), (5)

see figure 1. The quantity d may be negative or positive depending on the intensity and ion
charge. This parameter can be considered as an absolute characteristic of the effect. It is useful
to introduce the relative parameter as well:

α =
RZ(0) − RZ(π/2)

(RZ(0) + RZ(π/2))
≡

d

(RZ(0) + RZ(π/2))
. (6)

The parameters d and α are two independent characteristics. This is evident from the following
example: at the intensity of 3.0 × 1015 W cm−2 (see figure 1(a)), for Xe5+ one has d = 0.04 and
α = 0.03. At the intensity of 5.0 × 1017 W cm−2 the oscillations of the Xe17+ yield are hardly
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Figure 2. Results of numerical solution of the rate equations (2) for Xe ions at
different intensities: (a, d) ion yields RZ(0); (b, e) absolute characteristic of the
phase dependence d; (c, f) relative characteristic α. The panels (a–c) and (d–f)
correspond to the pulse duration of 4.0 and 5.3 fs at FWHM, respectively.

visible from figure 1(b) and d = 0.02, while the relative characteristic α = 0.53 is much greater
than in the previous case due to the smaller yield.

The relative ion yield of different charge states, the difference d and the parameter α are
shown in figure 2 over the range of intensities 1014–5.0 × 1018 W cm−2 for two different pulse
durations. As expected, the shorter the laser pulse, the more pronounced the absolute phase
effect. We first discuss the yields, see figures 2(a) and (d). For any given ion there exists an
intensity region where the yield of this ion differs from zero. The left boundary of this interval
is referred to as threshold intensity (for more details, see, e.g., [17], where the corresponding
field strength for a long pulse was estimated analytically), whereas to the best of our knowledge,
there is no common term for the right boundary. Let us call it the depletion intensity. It is seen
from figures 2(a) and (d) that only two or, at some intensities, three yields differ from zero after
the end of the short laser pulse. This is also true for any given time instant within the pulse,
see [26].

The striking feature of the CEP effect can be revealed if we compare panels (a) and (b)
(or (d) and (e)) of figure 2: the extrema of the differences d correspond to such intensities at
which the ion yields are close to each other. If, on the other hand, the yields of all available
ions are substantially different at a given intensity, the corresponding absolute values of d are
small. In the case when only one charge state exists after the interaction with the laser pulse,
there is no noticeable absolute phase effect. Indeed, long steps in figures 2(a) and (d) for Z = 8
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Figure 3. (a) The yield of Xe5+ ion as a function of the CEP at several laser
intensities. (b) Absolute characteristic of the phase dependence for Xe5+ yield as
a function of intensity. Colored circles show the values of d , which correspond
to the curves of panel (a). The pulse duration is 4.0 fs at FWHM.

and Z = 18 in the intensity ranges of 2–4.5 × 1016 and 6.5–9 × 1017 W cm−2, respectively, give
rise to the zero difference d; see figures 2(b) and (e). Such a situation occurs every time a
subsequent atomic shell is completely ionized (in our case these are 5p65s2 and 4d104p64s2).
Hence, the presence of at least two ions with comparable yield is a necessary condition for
oscillations with the CEP to be detectable. This feature distinguishes the phase effect, which we
predict here for the sequential multiple ionization, from the other CEP effects known from the
ionization by short laser pulses.

Intensity variation has a dramatic effect on the phase dependence of the ion yield: The
maxima and minima change their places. This is clearly seen from figure 3(a), where the
phase dependence of Xe5+ yield is shown for several different intensities. As a consequence,
the difference d changes its sign with increasing intensity; see figures 2(b) and (e). The
evolution of d with intensity for Xe5+ ion is also shown in figure 3(b), which was obtained
by performing a cut of figure 2(b). It is seen that near the threshold intensity, d is positive
and close to zero. It increases up to a maximum with increasing intensity. After the maximum,
the difference decreases, passes through zero and becomes negative. Then d decreases further,
while increasing in absolute value, and has its minimum at a certain intensity. Finally, when the
intensity approaches the depletion value, d is negative and tends to zero. It should be noted that,
according to equation (3), at any intensity the sum of all the values of d is equal to zero; see
figures 2(b) and (e).

It is seen from figures 2(c) and (f) that, in contrast to the absolute characteristic, the relative
quantity α has its maxima close to the threshold and depletion intensities of each charge state.
The reason is that the ion yield varies faster with intensity than the difference d. It is important to
keep in mind that the parameter α can be big when the ion yield is close to zero. For this reason,
in figures 2(c) and (f) we show this parameter only if the corresponding relative ion yield is
more than 0.05. It is seen, however, that even with such a restriction the relative characteristic
can reach a value of 0.8 for shorter pulse at high intensities.

The dependence of the CEP effect on the atomic target is illustrated by figure 4, where
the absolute characteristic d is shown for Ne, Ar and Kr ions; see figure 3(e) for Xe. It is seen
that the heavier the atom, the more pronounced is the phase dependence of the ion yield. This
feature will be explained below; see section 3.
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Figure 4. The absolute characteristic d of the CEP effect for different atomic
targets. The pulse duration is 5.3 fs at FWHM.

Figure 5. (a) The ion yield RZ(0), (b) the absolute characteristic d and (c) the
relative α characteristic of the phase dependence after focal averaging for a pulse
duration of 5.3 fs at FWHM.

2.3. Volume averaging

It is evident from this analysis that the phase dependence of ion yield is very sensitive to small
variations in the laser intensity. This brings up the question: does the effect survive after focal
averaging, which is inevitable in the experiment? In order to clarify whether the CEP effect
can be observed in the worst possible case of 3D configuration, we integrate the yields RZ

over all space. We assume that the laser intensity is a focused beam of Gaussian spatial profile
and evaluate the volume integral by changing the integration variable from volume to intensity,
see [17, 34, 35]. This integrating over isointensity shells greatly simplifies the calculations.

The results of the averaging are shown in figures 5(a)–(c). It it seen that the effect is
quite detectable, especially near the threshold intensities. Moreover, averaging mostly affects
the negative values of d, reducing them approximately by one half, and the range of differences
becomes asymmetric. These results could be expected. Indeed, for any charge state Z there
is a distinct boundary between two intensity ranges, one of which corresponds to the positive
and the other one to the negative values of d; see figures 2(b) and (e). Focal averaging leads
to summation of the contributions from different intensities lower than a given peak value I0.
These contributions begin to compensate each other only if I0 belongs to the second intensity
range; otherwise no compensation occurs due to focal averaging and the CEP effect survives.
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3. Analytic model

Although numerical simulations have given an insight into the phase dependence of ion yield, it
would be highly desirable to have an analytic model of the effect to gain a better understanding
of the underlying physics. Such a model can be developed on the basis of the approximate
solution of the rate equations (2), derived in [17]. This approximate solution, in turn, is based
on the following formal solution of equations (2):

r0(t, ϕ) = exp

{
−

∫ t

−∞

w0(t
′, ϕ) dt ′

}
,

r1(t, ϕ) = exp

{
−

∫ t

−∞

w1(t
′, ϕ) dt ′

} ∫ t

−∞

exp

{∫ s

−∞

w1(t
′, ϕ) dt ′

}
r0(s, ϕ)w0(s) ds,

r2(t, ϕ) = exp

{
−

∫ t

−∞

w2(t
′, ϕ) dt ′

} ∫ t

−∞

exp

{∫ s

−∞

w2(t
′, ϕ) dt ′

}
r1(s, ϕ)w1(s, ϕ) ds,

. . . ,

rN (t, ϕ) =

∫ t

−∞

wN−1(s, ϕ)rN−1(s, ϕ) ds. (7)

Two approximations were performed in [17] to simplify equations (7): firstly, the
probabilities, rk , in the intergands of equation (7) were approximated by their decaying edges:
exp(−

∫ t
0 wk−1(t ′, ϕ) dt ′). This is well justified, if the charge states exist sequentially in time

and the temporal overlap of the different states is low, i.e. the population transfer from Z = N
to Z = N + 1 occurs quickly and all the Z = N population is transferred to Z = N + 1 before
there is a significant Z = N + 2 population; see [26]. Our numerical analysis of the ionization
dynamics for a short laser pulse shows that the aforementioned conditions are fulfilled provided
the intensity is less than ≈ 5–7 × 1017 W cm−2. For example, at an intensity of 4 × 1014 W cm−2,
Xe+ ionizes with 99% probability within 0.8 of the optical cycle. Secondly, the ionization rates
wk(t, ϕ) are assumed to be narrow square functions of time. This is also justified, because in the
case of a short pulse every ionization event occurs on one half or on two adjacent halves of the
laser period, i.e. on a small fraction of the whole pulse duration τL. Thus, the rates wk(t, ϕ) are
really narrow functions of time and, as a consequence, they may be approximated by squares of
different heights.

After these approximations, the probabilities of different charge states after the end of the
pulse read as (see [17])

R0 (ϕ) = exp(−W0(ϕ)),

R1 (ϕ) ≈ W0
exp(−W0(ϕ)) − exp(W1(ϕ))

W1(ϕ) − W0(ϕ)
,

R2(ϕ) ≈ W1
exp(−W1(ϕ)) − exp(W2(ϕ))

W2(ϕ) − W1(ϕ)
,

. . . ,

RN (ϕ) ≈ 1 − exp(−WN−1(ϕ)),

(8)
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where

Wk (ϕ) =

∫
∞

0
wk

(
t ′, ϕ

)
dt ′

is the total ionization probability for an ion with charge Z , i.e. the total area under the rate
curve, which can be calculated numerically. It is seen that the dependence of the yield Rk ,
k = 1, . . . , N − 1, on the absolute phase is governed by the same dependence of the total
rates Wk and Wk−1. This contrasts with the case of momentum distribution, where the strong
dependence on the CEP originates from various ionization pathways, which are realized at
different values of the phase due to different temporal evolutions of the field; see [26].

The CEP dependence of the total ionization rate with high accuracy can be approximated
by the following ansatz:

Wk(ϕ) ≈ W π/2
k + (W 0

k − W π/2
k ) cos2(ϕ) ≡ W 0

k − (W 0
k − W π/2

k ) sin2(ϕ), (9)

where W 0
k = Wk (0) and W π/2

k = Wk (π/2). Note that sine-like ansatz is a natural one for the
absolute phase dependence of the single charged ions. Ion yields calculated from equations (8)
and (9) are shown in figure 1 by dashed lines. It is seen that predictions of the analytic model
are in good quantitative agreement with the numerical results. The only exception is Xe17+ ion
at the intensity of 5 × 1017 W cm−2; see figure 1(b): equations (8) overestimate the ion yield by
a factor of two. This disagreement is caused by the fact that at high laser intensities the charge
states are not separated in time and the approximation of the ion yield by its decaying edge is no
longer valid, see above. However, even in this case, the model qualitatively describes the shape
of the phase dependence.

In the following, let us consider the yield of the ion with the maximal charge Z = N . After
the substitution of equation (9) the last equation of the system (8) reads as

RN (ϕ) ≈ 1 − exp(−W 0
N−1) exp[−(W 0

N−1 − W π/2
N−1) sin2(ϕ)]. (10)

For most intensities and ion charges the difference (W 0
N − W π/2

0 ) is small compared to unity.
This allows us to simplify equation (10) by expanding the exponent in a Taylor series:

RN ≈ 1 − exp(−W 0
N−1) + (W 0

N−1 − W π/2
N−1) exp(−W 0

N−1) sin2(ϕ). (11)

The product (W 0
N−1 − W π/2

N−1) exp(−W 0
N−1) in equation (11) is the oscillation amplitude of the

ion yield with the absolute phase, i.e. one half of the difference d: d/2. We notice that the
value of this amplitude is governed by the interplay of the probability W 0

N−1 and the difference
(W 0

N−1 − W π/2
N−1). If only one charge state N exists after the end of the laser pulse, the ionization

probability W 0
N−1 is much greater than unity, and the oscillation amplitude tends to zero due

to the factor of exp(−W 0
N−1). On the other hand, both the probabilities W 0

N−1 and W π/2
N−1 and

therefore their difference approach zero in the vicinity of the threshold intensity. As a result,
the oscillation amplitude is again negligibly small and no phase dependence can be detected.
Assuming that the difference of the probabilities (W 0

N−1 − W π/2
N−1) is some fraction of W 0

N−1, one
easily finds that the amplitude in equation (11) has its maximum at W 0

N−1 = 1 when RN ≈ 0.63
and therefore the yields of at least two ions substantially differ from zero.

The greater the ionization potential, the sharper the phase dependence of the total ionization
rate, i.e. the more substantial the difference between the total rates W 0

N−1 and W π/2
N−1. For

this reason, the CEP effect in the ion yield is more pronounced for heavier atoms than for
lighter ones. For example, let us consider the ionization of Ne and Xe at the same intensity
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of 2.5 × 1017 W cm−2, when Ne8+ and Xe13+ ions dominate in the corresponding yields. The
ionization potentials of the previous charge states, i.e. Ne7+ and Xe12+, are equal to 239.1 and
294.0 eV, respectively. For the ionization of Ne7+ the difference of the rates is (W 0

7 − W π/2
7 ) ≈

0.03, whereas for Xe12+ this difference is (W 0
12 − W π/2

12 ) ≈ 0.16. As a result, for Xe13+ one
has d = 0.06, which is six times greater than the same characteristic d = 0.01 for Ne7+. Thus
equation (11) explains all the basic features of the numerical results obtained in section 2.

4. Conclusion

In conclusion, on the basis of the rate equations we investigate the relative ion yields of
sequential ionization generated by a short (4–6 fs at FWHM) intense (1014–5 × 1018 W cm−2)
laser pulse. It is shown that the ion yields are oscillating functions of the absolute phase of
the pulse, provided the pulse length is not more than 6 fs at FWHM. In contrast to other well-
known CEP effects, the phase dependence of the yield can be observed only if, at the end
of the laser pulse, the yields of at least two ions are comparable with each other. Despite the
strong intensity dependence, the effect survives focal averaging and should be experimentally
detectable. In addition to the numerical results, we present an analytic model which explains the
basic features of the phase dependence.

Acknowledgments

We are grateful to S P Goreslavski for fruitful discussions. This work was supported by the
Deutsche Forschungsgemeinschaft program SFB/TR18. The work was also partially supported
by the Russian Foundation of Basic Research (Project no. 09-02-00773-a) and by the Federal
Goal Program (Project no. P1546).

References

[1] Dörner R et al 2002 Adv. At. Mol. Opt. Phys. 48 1
[2] Becker A, Dörner R and Moshammer R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S753
[3] Agostini P and DiMauro L M 2008 Contemp. Phys. 49 179
[4] Becker W and Rottke H 2008 Contemp. Phys. 49 199
[5] Kuchiev M Yu 1987 Pis’ma Zh. Eksp. Teor. Fiz 45 319

Kuchiev M Yu 1987 Sov. Phys.—JETP Lett. 45 404 (Engl. Transl.)
[6] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[7] Suran V V and Zapesochny I P 1975 Sov. Tech.—Phys. Lett. 51 420
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