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Abstract

We study M5 branes by considering the selfdual strings parallel to a plane. With
the internal oscillation frozen, each selfdual string gives a 5d SYM field. All selfdual
strings together give a 6d field with 5 scalars, 3 gauge degrees of freedom and 8 fermionic
degrees of freedom in adjoint representation of U(N). Selfdual strings with the same
orientation have the SYM-type interaction. For selfdual strings with the different
orientations, which could also be taken as the unparallel momentum modes of the 6d
field on that plane or the (p, q) (r, s) strings on D3 with (p, q) 6= (r, s), the [i, j] +
[j, k] → [i, k] relation is not valid, so the coupling cannot be written in terms of the
standard N ×N matrix multiplication. 3-string junction, which is the bound state of
the unparallel [i, j] [j, k] selfdual strings, may play a role here.
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1 Introduction

The effective theory on M5 branes is special in that the basic excitations, the selfdual strings,

are 1d objects other than the 0d objects, like those on D branes or M2 branes [1, 2]. If the

selfdual strings can be closed and can shrink to point like the fundamental strings, then

we will still have a theory with the semi-point-like excitations. For selfdual strings without

the charge, this is indeed the case. In abelian theory, the quantization of the point-like

M2 confined to M5 brane gives the (2, 0) tensor multiplet [3, 4, 5]. Moreover, the basic

excitations on (2, 0) little string theory [6] living on N coincident type IIA NS5 branes

are closed fundamental strings, which are also the closed selfdual strings coming from M2

wrapping the M theory circle intersecting NS5 along a closed curve.

There is no evidence showing that for selfdual strings carrying charge, the situation is the

same. Consider D4 branes, which are M5 branes compactified on x5. The [i, j] monopole

string on D4 can carry the D0 charge. The closed [i, j] monopole string with the vanishing

length carrying D0 will appear as the point-like instanton with charge [i, j]. However, the

classical instanton solution with charge [i, j] is associated with the [i, j] monopole string

extending along a straight line, while the point-like1 1/2 BPS instanton solutions are always

chargeless. The closed monopole string with no D0 charge is the selfdual string with the

winding number and the momentum both zero along x5, which will give a 5d massless SYM

field in adjoint representation of U(N), in addition to the original 5d SYM field coming from

the selfdual strings winding x5 once. The SYM field like this is always massless even if the D4

branes are separated from each other, so it will dominate at the Coulomb branch. However,

on D4, no such field exists. We do not get the clue for the existence of the closed charged

selfdual strings. Actually, when the charged selfdual string becomes curved, different parts

of it may exert force to each other, so it cannot vibrate freely and cannot be closed as the

chargeless strings do.

Then we have to incorporate the 1d object in a 6d field theory. In this paper, we will

take the [i, j] tensionless selfdual string extending along, for example, the x5 direction, as the

point-like 6d excitation, which is in the position eigenstate in 1234 space but in the P5 = 0

momentum eigenstate in x5. If so, selfdual strings extending along the same direction cannot

give the complete Hilbert space for the 6d particle. To get the full Hilbert space, we need

to consider selfdual strings with the orientations covering all directions in a plane. The

superposition of the selfdual strings parallel to a plane can give the 6d point-like excitations

localized in 12345 space, but it seems that somehow, the position representation is not the

suitable one, since it is the [i, j] selfdual strings other than the [i, j] point-like excitations

that naturally exist. One plane is already enough to define a 6d field theory, so different

planes may give the U-dual versions of the same 6d theory. This is quite similar with the

N = 4 SYM theory, for which, one (p, q) string defines a 4d field theory, while the rest (p, q)

strings give the S-dual 4d theories.

1By point-like, we mean the instanton solution is localized in R4, centered around a point.
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Theories with the line-like excitations are intrinsically different from those with the point-

like excitations. If the excitations are line-like, a reduction on x5 will give the selfdual strings

extending along x5, while a further reduction on x4 will make P4 = 0. The first reduction

selects a particular selfdual string; the second one is just the ordinary reduction in local field

theories. With 4 and 5 switched, we will get the selfdual strings extending along x4 with

P5 = 0, which is S-dual to the selfdual strings extending along x5 with P4 = 0. On the other

hand, if the excitations are point-like, both sequences will give the point-like selfdual strings

with P4 = P5 = 0. In [7, 8], Witten has shown that due to the conformal symmetry, the 45

and 54 reductions of the 6d (2, 0) theory will give two S-dual 4d SYM theories other than one

4d theory, which strongly indicates that the basic excitations on M5 cannot be point-like.

Recall that in [9], the equations of motion for the 3-algebra valued (2, 0) tensor multiplet

contain a constant vector field Cµ. A given Cµ will reduce the dynamics from 6d to 5d.

However, if Cµ covers all directions in a plane, we will get a set of θ-parameterized 5d SYM

theories2, which is equivalent to a 6d theory with 5 scalars, 3 gauge degrees of freedom and

8 fermionic degrees of freedom. Each 5d SYM theory has the 5d vector multiplet in adjoint

representation of U(N), arising from the quantization of the open [i, j] M2 intersecting M5

along the Cµ(θ) direction. The oscillation along Cµ(θ) is frozen, so the spectrum is the same

as that from the quantization of the open string. For the given 6d (2, 0) tensor multiplet

field configuration, each 5d SYM field comes from the reduction of the 6d field along Cµ(θ).

This is actually a special kind of KK compactification, using the polar coordinate other than

the rectangular coordinate.

Suppose the selfdual string orientations are restricted in 45 plane, then the common

eigenstates of [X̂1, X̂2, X̂3, P̂4, P̂5] could be selected as the bases to generate the Hilbert space.

In this respect, it is convenient to consider the KK mode of the 6d (2, 0) theory with x4 and

x5 compactified to circles with the radii R4 and R5. M5 branes with the longitudinal x4 and

x5 compactified is dual to the D3 branes with the transverse x′45 compactified. The vacuum

expectation values of the 2-form field on x4 × x5 is converted to the transverse positions

of the D3 branes on x′45. The duality differs from the T-duality in that two longitudinal

dimensions are converted to one transverse dimension so the total dimensions are reduced

from 11 to 10. The (n/R4,m/R5) momentum mode of the 6d theory is dual to the (p, q)

string winding x′45 k times, with n = kp, m = −kq, p and q co-prime. The [i, j] (p, q) strings

form the adjoint representation of U(N). Correspondingly, the momentum modes as well as

the original 6d field are also in the U(N) adjoint representation.

The (n/R4,m/R5) momentum modes are in 4d vector multiplet V4, which, when combine

together, give the 6d tensor multiplet T6 in U(N) adjoint representation. Although the 6d

tensor multiplet is in the adjoint representation, the coupling involving more than two fields

cannot be realized as the standard matrix multiplication. SYM coupling is obtained by

2A single 5d SYM theory already contains the complete KK modes of the 6d theory [10, 11]. The KK
modes are realized as the field configurations in R4 carrying the nonzero Pontryagin number. Here, the
θ-parameterized SYM field must have the zero Pontryagin number, because it is the zero mode of the 6d
field along the Cµ(θ) direction.
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studying the scattering amplitude of the open strings ending on D branes. [i, j] + [j, k] →
[i, k], so the LijM

j
kN

k
i type coupling is possible. On the other hand, for M5, we need to

consider the scattering of the selfdual strings parallel to a given plane. Selfdual strings with

the same orientation still have the SYM-coupling, while for selfdual strings with different

orientations, the [i, j] + [j, k] → [i, k] relation is not valid, so the [i, j] (n/R4,m/R5) mode,

the [j, k] (k/R4, l/R5) mode, and the [k, i] (−(n+ k)/R4,−(m+ l)/R5) mode of the 6d field

cannot couple unless nl = mk, in which case all of them belong to the same 5d SYM theory

with tan θ = − nR5

mR4
. The difference between the SYM theory and the effective theory on

M5’s is rooted in the fact that the boundary of the open string is the point, while the

boundary of the open M2 is the line.

The (n/R4,m/R5) momentum mode of the 6d SYM theory on D5 is dual to the open

F1 ending on D3 with the winding number (n,m) around x′4 × x′5. From the scattering

amplitude of the massive winding open strings and the massless open strings on D3, one

can reconstruct the original 6d SYM theory. Similarly, for M5, we need to consider the

interaction of the open (p, q) strings ending on D3 winding x′45 k times for all co-prime (p, q)

and all nonnegative k, or in other words, the interaction for all of the monopoles and dyons in

N = 4 SYM theory. When the scalar fields on M5 branes get the vacuum expectation value,

D3 branes will be separated in the rest 5d transverse space, while the 3-string junctions

[12, 13], which are also the bound states of the [i, j] [j, k] selfdual strings each carrying the

transverse momentum in 45 plane, can be formed. The 3-string junction is characterized by

three vectors (r4, r5), (s4, s5) and (t4, t5) in 45 plane, which may couple with the (n/R4,m/R5)

momentum modes as long as (n,m) ∝ (r4,−r5), or (n,m) ∝ (s4,−s5) or (n,m) ∝ (t4,−t5).

The quantization of the 3-string junction with the lowest spin content gives the 1/4 BPS

multiplet V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]) with 26 states [14], which, when lifted to 6d, becomes the

(2, 1) multiplet with 27 states, among which, half are tri-fundamental and half are tri-anti-

fundamental representation of U(N). [i, l] + [l, j, k] → [i, j, k], [j,m] + [i,m, k] → [i, j, k],

[k, n] + [i, j, n]→ [i, j, k], so we may have couplings like V i
l TijkT

ljk or V i
l TijkT

ljnV k
n . 3

However, with the given scalar vacuum expectation value ~vi on M5, the bound states

of the [i, j] ~vij (n/R4,m/R5) momentum mode and the [j, k] ~vjk (k/R4, l/R5) momentum

mode exist only under the certain condition h(~vij, ~vjk, n/R4,m/R5, k/R4, l/R5) > 0 with

h = 0 specifying the marginal stability curve [16]. Especially, when ~vij = 0, ∀ i, j, except for

n = m = 0 or k = l = 0, which is at the curve of the marginal stability, the rest bound states

do not exist. The bound state of the [i, j] (0, 0) momentum mode and the [j, k] (n/R4,m/R5)

momentum mode could be taken as the tensionless selfdual string carrying the longitudinal

momentum. It is unclear whether it is the bound state or just two separate states.

When compactified on x5, the [i, j] selfdual string extending along x5 becomes the [i, j]

F1 localized in 1234 space. For the rest selfdual strings, to get the definite P5 momentum,

3In [15], the scattering amplitude involving two charged 5d KK modes and one 5d zero mode for M5
branes compactified on S1 is discussed. The charged KK mode is the 1/4 BPS dyonic instanton in 5d
massive (2, 1) multiplet, while the zero mode is in 5d massless vector multiplet. The incorporation of the
spin-3/2 particles of the (2, 1) multiplet into the theory requires a novel fermionic symmetry.
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they must carry the definite transverse momentum thus are projected into the bound states

of the [i, j] F1 and the [i, j] monopole string, each carrying the suitable P4 and P5 transverse

momentum, localized in 123 space. The 1/2 BPS solutions for the BPS equations in 5d SYM

theory match well with the above states, except for instantons, which is also localized in

1234 space. Similarly, the 3-string junctions in 6d, when projected to 5d, become the bound

states of the [i, j] F1 and the [j, k] monopole string with P4 and P5 transverse momentum,

localized in 123 space. Except for the dyonic instantons, the generic 1/4 BPS solutions in

5d SYM theory involving no more than three D4’s have a one-to-one correspondence with

these states.

The rest of this paper is organised as follows: In section 2, we discuss the longitudinal mo-

mentum mode on branes with special emphasis on the point-like charged 1/2 BPS instantons

on D4 branes. In section 3, we consider the selfdual strings on M5 branes parallel to the 45

plane, or equivalently, the KK momentum mode of the 6d theory upon the compactification

on x4 × x5. In section 4, we study the interaction of the 6d (2, 0) theory by considering its

KK mode on x4×x5. In section 5, we consider various momentum-carrying BPS states in 5d

SYM theory, especially, the monopole string carrying the longitudinal momentum and the

string carrying D0 charge. In section 6, we discuss the states living at the triple intersection

of M5 branes. The discussion is in section 7.

2 The point-like charged P5 momentum mode on D4

and the nonabelian 5d massive (2, 0) tensor multiplet

In this section, we discuss the longitudinal momentum mode on M5 branes, which is carried

by selfdual strings. We will argue that there is no closed charged selfdual strings and so no

classical point-like charged momentum mode on M5 branes. Nevertheless, on N coincident

D4 branes, the localized [i, j] P5 mode (D0 brane) could be realized as the quantum super-

position of the [i, j] P5 mode in momentum eigenstate of, for example, P4, which is the [i, j]

tensionless monopole string wrapping x4, carrying the D0 charge as well as the P4 longitu-

dinal momentum, or equivalently, the [i, j] (n, 1) string on D3 if x4 is compactified. The 5d

massive nonabelian (2, 0) tensor multiplet with mass P5 = 1/R5 could then be decomposed

into a tower of 4d massive U(N) vector multiplet arising from the quantization of the (n, 1)

open strings for all n ∈ Z.

2.1 The longitudinal momentum mode on branes

Let us first see the transverse momentum of the branes. For a Dp brane with the transverse

dimension xp+1 compactified to a circle S1, the brane may locate at a particular point in

S1 or have the definite momentum along S1. In the former situation, after the T-duality

transformation along xp+1, Dp becomes D(p + 1) with the gauge field Ap+1 getting the

vacuum expectation value. In the latter case, the T-duality transformation converts Dp
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into D(p+ 1) with the definite electric flux F0(p+1). D(p+ 1) cannot have the definite Ap+1

and F0(p+1) simultaneously, just as Dp cannot have the definite Xp+1 and Pp+1 at the same

time. In M theory, if x5 is compactified to S1, M2 transverse to x5 may either locate at a

particular point in S1 or have the definite P5 momentum. M2 with zero P5 momentum is D2

in type IIA string theory. M2 with nonzero P5 momentum is the D2-D0 bound state. The

transverse velocity should be the same everywhere on D2, so the D0 charges are uniformly

distributed over D2. If the masses of the D2 and D0 are m2 and m0 respectively, the energy

of the D2-D0 bound state is
√
m2

2 +m2
0, in contrast to the energy of the D4-D0 bound state,

which is m4 +m0.

As for the longitudinal momentum mode on branes, consider Dp brane with the longitu-

dinal dimension xp compactified to a circle S1, Dp may carry momentum along xp. Under

the T-duality transformation in p direction, we get the Dp−1-F1 bound state with F1 ending

on Dp−1 winding the transverse circle x′p. If the ith and the jth Dp−1 branes are separated

along another transverse dimension x′p+1, the closed F1 becomes open, which, under the

T-duality transformation along x′p, gives the open [i, j] string ending on Dp branes carrying

the Pp momentum. So, more precisely, the Pp longitudinal momentum of the Dp brane is

the Pp transverse momentum of the open strings living on them. Consider the ith and the

jth Dp branes with the [i, j] string orthogonally connecting them carrying momentum Pp,

the total energy is mp +
√
T 2
F1|~vi − ~vj|2 + P 2

p , where mp and TF1|~vi − ~vj| are masses of Dp

and [i, j] string respectively. When ~vi = ~vj, the energy reduces to mp + |Pp|, corresponding

to the Dp branes carrying the [i, j] Pp longitudinal momentum. The low energy effective

action on N coincident Dp branes is the U(N) SYM theory. When compactified on xp, one

may get an infinite tower of KK modes still in the adjoint representation of U(N). We have

seen that the Pp momentum carries charge, thus is indeed in the adjoint representation.

For M2 branes, two M2 branes orthogonally intersecting at a point may form the thresh-

old bound state, so the transverse momentum of one M2 gives the longitudinal momentum

of the other, as long as the two can keep intersecting at one point. Similarly, it is natu-

ral to expect that for M5 branes, the Pk longitudinal momentum may actually be the Pk
transverse momentum of the selfdual strings living in them. Especially, for 5d SYM theory,

the P5 momentum may just come from the monopole strings living in D4. However, P5 like

this is distributed in a straight line other than localized at a point. Localized instantons do

exist, which are D0 branes resolved in D4. The line-like P5 momentum carried by selfdual

strings has the [i, j] charge, while the point-like P5 momentum corresponding to D0 branes

is chargeless. It is necessary to construct the point-like 1/2 BPS momentum mode carrying

charge.

One may want to consider the closed selfdual strings, which, with the length shrinking

to zero, may carry the point-like momentum. However, the selfdual strings carrying charge

must extend along a straight line. We cannot get the closed charged selfdual strings unless

the worldvolume of the M5 branes has the nontrivial 1-cycle. Consider the [i, j] selfdual

string segment extending along ABC, where A B C are three points in M5. Suppose
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AB⊥BC, then the AB, BC strings are actually the same as the [i, j] F1 and the [i, j] D1.

The configuration like this is not BPS, so F1 and D1 may exert force to each other. The [i, j]

F1-D1 bound state is not at the threshold and has the mass |~vij|
√
|AB|2 + |BC|2 due to the

binding energy. We are actually talking about the [i, j] selfdual string segment extending

along AC. The [i, j] selfdual string cannot vibrate freely, because different parts may exert

force to each other.

On the other hand, the chargeless selfdual strings do not have this problem. They can

be closed and may carry the point-like momentum. One such example is the [i, i] selfdual

string. On the ith M5 brane, we have the zero length [i, i] closed selfdual string, or in other

words, the collapsed M2 brane, the quantization of which gives the expected U(1) (2, 0)

tensor multiplet [3, 4, 5]. When compactified on x5, the point-like D2 with P5 momentum

becomes the D0 confined to the ith D4. Another example is the little string theory [6, 17, 18].

Consider N coincident type IIA NS5 branes with the longitudinal dimension x5 compactified

to a circle with the radius R5. The 11th dimension is x10 which is compactified with the radius

R10. There are closed fundamental strings with tension 2πR10TM2 living in NS5, which are

closed M2’s wrapping x10 intersecting M5 along a closed curve. After a series of duality

transformations, the momentum mode (carried by the type IIA string) along x5 is converted

to the D0 branes living in D4 branes with the compactified transverse dimension x′5. If the

original type IIA closed string has the finite length, we will get a closed D2 wrapping x′5
intersecting D4 along a closed curve carrying the uniformly distributed D0 charge. The D0

branes are obtained when the size of the D2 brane carrying them shrinks to zero. Actually,

the type IIA NS5 brane picture and the D4 brane picture are S-dual to each other with 5

and 10 switched. On type IIA NS5 branes, the P5 momentum is carried by the closed string.

When the string shrinks to a point, we simply take it as a momentum mode without the

string involved. Similarly, on D4 branes, we may have closed D2 carrying P5 momentum.

With the closed D2 shrinking to a point, we are left with the D0 brane/P5 momentum.

On a single NS5 brane, purely P5 momentum is carried by strings that do not wind x5, or

alternatively, M2’s that do not wrap x5. Correspondingly, on a single D4 brane, the purely

P5 momentum mode should be carried by the closed D2 branes other than strings. The

complete KK modes on NS5 branes upon the compactification on x5 are characterized by

(m,n), where m and n are the winding number and the momentum mode of the string along

x5 respectively. The (m,n) mode has the mass 2πmTF1R5 +n/R5. (m, 0) mode, (0, n) mode

and (m,n) mode are in the 5d (1, 1), (2, 0) and (2, 1) multiplets preserving 1/2, 1/2, and

1/4 supersymmetries respectively [19]. For the dyonic strings in [11], with x6 compactified

to a circle, the bound state of the [1, 2] and [2, 1] dyonic strings carrying n instanton number

is just be the (1, n) mode here. The generic (m,n) mode is obtained by the quantization

of the type IIA strings. Especially, with NL = 0, the level-matching condition requires

NR = mn, so the oscillation mode along the string must be turned on [19, 20]. This is

easy to understand. For type IIA string wrapping x5, P5 can only come from the internal

oscillation since there is no transverse momentum along x5. On the other hand, if the [i, j]
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selfdual strings wrapping x5 cannot oscillate, the P5 momentum carried by it can only come

from selfdual strings extending in 1234 space. The (m,n) mode in this case is actually the

threshold bound state of the (m, 0) mode and the (0, n) mode. The former is associated with

the selfdual string extending along x5, while the latter is given by the tensionless selfdual

strings extending along 1234 space carrying the P5 momentum. It is possible for the [i, j]

(m, 0) mode and the [j, k] (0, n) mode to form the threshold bound state with ijk indices,

which we will discuss later.

2.2 The point-like charged P5 momentum mode

Now, let us consider the relation between the point-like charged P5 momentum mode and

the line-like charged P5 momentum mode. For N coincident D4 branes with the longitudinal

dimension x4 compactified, the T-duality transformation along x4 converts the D4-D0 bound

state into the D3-D1 bound state with D1 winding x′4. More precisely, D1 carrying the

definite electric flux, or equivalently, D1-F1 bound state, corresponds to D0 in P4 momentum

eigenstate, while D1 with the definite A4 field corresponds to D0 in X4 position eigenstate.

We may take the (n, 1) strings in D3 as the bases, the superposition of which gives D1 with

the definite A4, which is also the D0 located at a definite point in D4. Moreover, since

D1 ending on D3’s can also carry charge, the [i, j] D1 wrapping x′4 is dual to the [i, j] D2

wrapping x4 with the D0 charge spreading over ~vij × x4. When ~vij = 0, we are left with the

tensionless [i, j] monopole string winding x4 carrying the uniformly distributed D0 charge,

which could also be taken as the [i, j] D0 in P4 momentum eigenstate with the eigenvalue 0.

Similarly, the [i, j] (n, 1) string is dual to the combination of the tensionless [i, j] monopole

string winding x4 carrying the uniformly distributed D0 charge and the massless [i, j] string

carrying P4 momentum, which could be simply taken as the [i, j] D0 with the nonzero P4

eigenvalue. Still, the superposition of the [i, j] (n, 1) strings for all n gives the [i, j] D0 in

X4 position eigenstate. The instanton solutions describing the [i, j] D0 with the definite

P4 momentum have the translation invariance along x4, involving both magnetic and the

electric fields. These states compose the complete spectrum for the charged D0 living in D4,

while the localized charged D0 is the superposition of them.

The above conclusion can be stated in the language of M5 branes, since the bound state

of the tensionless [i, j] monopole string wrapping x4 carrying D0 charge and the massless

[i, j] string carrying the P4 momentum is just the tensionless selfdual string living in x4×x5

carrying the transverse (P4, P5) momentum. Consider M5 branes with x4 and x5 compacti-

fied with the radii R4 and R5, B45 = 1
2πR4R5

. Tensionless selfdual string winding x4 and x5 m

and n times may carry the transverse momentum (−n/R4,m/R5), thus could be described

by the wave function

1

4π2R4R5

exp
{
i(−nx4

R4

+
mx5

R5

)
}
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3). (1)
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The P5 momentum localized in x4 has the wave function

1

2πR5

exp
{
imx5

R5

}
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3)δ(x4 −X4), (2)

which is the superposition of (1) with all n ∈ Z. In this respect, at least for M5 with at least

two dimensions compactified, the longitudinal momentum is still given by the basic excita-

tions, which are the selfdual strings here. The only difference is that the selfdual string is

the one dimensional object, so the transverse momentum carried by it will appear as the two

dimensional wave other than the one dimensional wave like the momentum carried by parti-

cles. To get the complete spectrum, we need the particles with the location covering x4, or

the selfdual strings with the orientation covering the 45 plane. {δ(x4 −X4)|X4 ∈ [0, 2πR4)}
and

{
1

2πR4
e
inx4
R4 |n ∈ Z

}
are different bases for the same Hilbert space.

On D4 branes, the [i, j] P5 momentum can only be carried by the [i, j] selfdual strings.

There is no classical solution for the point-like instanton with the charge [i, j]. However,

we do have the solution for the chargeless point-like instantons, which may consist of N

instanton partons with charge [1, 2], · · ·, [N − 1, N ], [N, 1], while the size ρ is the parameter

characterizing the distance between the instanton partons [21, 22]. Similarly, for type IIA

NS5 branes with x5 compactified, the P5 momentum is carried by the point-like closed

strings, which are also composed by the [1, 2], · · ·, [N − 1, N ], [N, 1] closed selfdual strings

from M theory’s point of view. It is difficult to get a single closed selfdual string with

charge [i, j]. However, if one longitudinal dimension of D4 is compactified, an instanton

on D4 branes will be dual to a D-string on D3 branes winding the transverse circle one

time. A closed D-string is composed by the [1, 2], · · ·, [N − 1, N ], [N, 1] D-string segments

[21, 22]. The [i, j] D-string segment can exist independently, because it is the [i, j] monopole

string extending along the compactified longitudinal dimension carrying the transverse P5

momentum. Similarly, for the P4 longitudinal momentum mode on D4 branes, we have the

[i, j] P4 mode carried by the [i, j] open string, which is the [i, j] selfdual string winding x5

one time, carrying the transverse P4 momentum thus could also exist separately. The [1, 2],

· · ·, [N − 1, N ], [N, 1] P4 modes can combine together to give a chargeless P4 mode as well,

but it is not necessary anymore.

2.3 The 5d U(N) massive (2, 0) tensor multiplet

For N coincident M5 branes with the compactified x5, the 6d (2, 0) tensor multiplet could

be decomposed into the zero mode and the KK modes. The zero mode is in 5d U(N) vector

multiplet, while the KK modes are in 5d massive (2, 0) tensor multiplets. The point-like [i, j]

P5 mode (the [i, j] D0 brane) is the the superposition of the tensionless [i, j] selfdual strings

extending in, for example, the 45 plane, carrying the transverse momentum (P4, P5) with

the same P5 but all P4. Corresponding, the 5d (2, 0) tensor multiplet is then decomposed

into the sum of the 4d KK modes in U(N) vector multiplet, arising from the quantization

of the above selfdual string states.
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Consider Bµν in 5d U(1) massive (2, 0) multiplet with mass 1/R5. Bµν satisfies the

selfduality condition

Bµν = −iR5

2
εµνλρσ∂

λBρσ (3)

and the equation of motion

∂λ∂λBµν +
1

R2
5

Bµν = 0, (4)

where µ, ν, λ, ρ, σ = 0, 1, 2, 3, 4 [11]. Do a further compactification on x4,

Bµν =
∑
k

eikx4/R4B(k)
µν . (5)

Due to (3), for i, j = 0, 1, 2, 3 and k ∈ Z, B
(k)
ij could be expressed in terms of B

(k)
i4 thus could

be dropped. We are left with a tower of the 4d massive vector field A
(k)
i = B

(k)
i4 satisfying

the constraint

∂iA
(k)
i = 0 (6)

as well as the equation of motion

∂j∂
jA

(k)
i + (

1

R2
5

+
k

2

R2
4

)A
(k)
i = 0. (7)

Each A
(k)
i carries 3 degrees of freedom, the same as B

(k)
ij . In 45 plane, the (n, 1) string carries

the momentum (n/R4, 1/R5) thus gives the 4d vector multiplet A
(n)
i . All of the A

(n)
i are on

the equal footing, which is consistent with the S-duality. To account for the P5 momentum

m/R5 with m > 1, we need (n,m) strings, so altogether, all (n,m) strings should be included

to give the complete 6d dynamics. Under the compactification on x4 and x5, the 6d field

Bαβ with α, β = 0, · · · , 5 is decomposed into the 4d KK modes (n/R4,m/R5) corresponding

to the (n,m) string. Each KK mode gives a 4d massive vector field A
(n,m)
i , for which, the

constraint and the equation of motion could be obtained by replacing R5 and k in (7) by

R5/m and n.

Extending the discussion to the nonabelian case is a little difficult, since we don’t know

the equations for the nonabelian tensor field. However, we do know that the (n/R4, 0) mode,

which is the KK mode of the 5d massless SYM field, is in 4d adjoint massive vector multiplet.

The rest (n/R4,m/R5) modes are related with (n/R4, 0) via the S-duality, so they should

also form the 4d adjoint massive vector multiplet. The whole KK tower of the 4d vector

multiplet together may give the 6d (2, 0) tensor multiplet in adjoint representation of U(N).

3 Selfdual strings with the orientation covering a plane

and the M5-D3 duality

In this section, we will directly discuss the M5 branes and show that selfdual strings parallel

to a given plane could offer the complete degrees of freedom on M5. The proposal is also

9



supported by the M5-D3 duality, in which, the KK mode of M5 on x4 × x5 is dual to the

(p, q) open strings ending on D3 winding the transverse x′45. When M5 branes are separated

in 5d transverse space, on D3, 3-string junctions may form, which, in M5 picture, is the

bound state of the unparallel selfdual strings.

3.1 Selfdual strings parallel to the 45 plane and the momentum
mode of M5 on x4 × x5

In previous discussion, we have seen that selfdual strings extending along all possible di-

rections in 45 plane may give the complete spectrum for a single 6d particle. The common

eigenstates of X̂1 X̂2 X̂3 P̂4 P̂5,

Λ =
{
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3)eiP4x4eiP5x5|∀X1, X2, X3, P4, P5

}
(8)

may be the suitable bases, the superposition of which can give a 6d particle localized in

(X1, X2, X3, X4, X5). Although the position eigenstates can also be obtained, the basic

excitations are [i, j] selfdual strings other than the [i, j] particles. Since it is (8) other than

the position eigenstates that is naturally realized, the KK modes in this theory may tell us

more than the KK modes in theories with point-like excitations.

Until now, our discussion is only restricted to coincident M5 branes. When ~vij 6= 0, the

selfdual string carrying (P4, P5) momentum are massive. Consider the [i, j] selfdual strings

with the length and the orientation characterized by the vector (qR4, pR5) in 45 plane. p

and q are co-prime, so the selfdual string only winds x4 × x5 once. In 123 space, the string

is localized at a point. The Wilson surface in x4 × x5 is trivial. Nevertheless, each [i, j]

string can still effectively pick up the background 2-form field B45 = k/(2πR4R5), ∀ k ∈ N.

∀ m,n ∈ Z, ∃ k, p, q, m = kq, n = kp. In 45 plane, the [i, j] string will get the definite

transverse momentum (n/R4,−m/R5), thus could be taken as the plane wave e
i(
nx4
R4
−mx5

R5
)
.

If the momentum in 123 space is (P1, P2, P3), the energy will be

E =

√
P 2

1 + P 2
2 + P 2

3 +
n2

R2
4

+
m2

R2
5

+ 4π2|~vij|2(q2R2
4 + p2R2

5), (9)

since the [i, j] selfdual string has the rest mass 2π|~vij|
√
q2R2

4 + p2R2
5.

Notice that there is an ambiguity for the mass of the zero mode in 4d. With k = 0, any

(qR4, pR5) string can be the 4d zero mode with mass 2π|~vij|
√
q2R2

4 + p2R2
5. However, the

zero mode is unique. In the dual D3 picture, there are unwrapped [i, j] (p, q) strings with the

length |~vij|. One may choose one possible (qR4, pR5)/(p, q) as the zero mode. A particular

S-frame is selected in this way, while in other S-frames, all (qR4, pR5) can get the chance to

act as the zero mode. For the point-like excitations, the 5d momentum can uniquely fix the

state; however, for the line-like excitations, with the given 5d momentum, the selfdual string

orientations can still vary in a 4d space orthogonal to the momentum. If the selfdual string

orientations are restricted to a plane, a one-to-one correspondence between the momentum

10



and state may be realized except for the momentums orthogonal to that plane. So, the

fixing of the S-frame is necessary. As is shown in later discussions, the M5-D3 duality also

intrinsically involves the selection of the S-frame.

ForM5 compactified on x5, the P5 zero mode should be the state with the zero momentum

along x5, localized in 1234 space. Selfdual string extending along x5 is the only one meeting

the requirement, and so, in Coulomb branch, the mass of the W-bosons is 2π|~vij|R5 without

the ambiguity. Notice that there is a distinction between the little string theory and the

theory on M5 branes. For little string theory with x5 compactified, there are momentum

mode and the winding mode. The momentum mode is carried by the closed string. Although

the string has the finite tension, the mass of the momentum mode is still m/R5, because the

string without winding x5 can shrink to point thus has the zero mass and has no contribution

to the energy. On the other hand, for 6d (2, 0) theory with x5 compactified, the zero mode

is the 5d SYM field. In Coulomb branch, the mass of the [i, j] zero mode is 2π|~vij|R5 other

than 0, since the zero mode is actually the selfdual string winding x5 once. There is no way

to get rid of the lowest winding mode, because we do not have the closed charged selfdual

string, while the straight selfdual string localized in 1234 space must extend along x5.

The direct study of the 6d (2, 0) theory is difficult. The x5 compactification will give the

5d massive tensor multiplet, which is also not quite accessible. The 4d KK modes upon the

compactification on x4 × x5 are relatively easy to study. Moreover, the previous discussion

indicates that (8) might be the suitable bases to consider the 6d theory, so in the following,

we will focus on the 4d KK modes arising from the 6d theory.

3.2 The M5-D3 duality

Actually, M5 with x4 and x5 compactified in 11d spacetime is dual to D3 with one transverse

dimension x′45 compactified in 10d spacetime. Just as M5 with x5 compactified in M theory

is dual to D4 in type IIA string theory with x5 being the M theory circle, M5 with x4 and

x5 compactified in M theory is dual to D3 in type IIB string theory with x′45 compactified.

If the radii of x4 and x5 are R4 and R5, the radius of x′45 will be R′45 = 1/(2πR4TF1) =

1/(2πR5TD1). The five transverse dimensions of M5, xI , are dual to the rest five transverse

dimensions of D3, x′I . I = 6 · · · 10. If the scalar fields on M5 branes get the vacuum

expectation value ΦI
i with i = 1 · · ·N , D3 branes will be separated along x′I with the

transverse positions

X ′Ii = 2πR5ΦI
i /TF1 = 2πR4ΦI

i /TD1. (10)

x4× x5 is dual to x′45. If the B45 on M5 branes gets the vacuum expectation value B45i, D3

branes will be separated along x′45 with the transverse positions

X ′45
i = 2πR5B45i/TF1 = 2πR4B45i/TD1. (11)

If the Bµ5 for µ = 1, 2, 3 on M5 branes gets the vacuum expectation value Bµ5i, the gauge

field Aµi on D3 branes will get the vacuum expectation value

Aµi = 2πR5Bµ5i. (12)

11



(12) indicates that the (0, 0) mode of M5 is dual to the (1, 0) string on D3 with the winding

number 0. A particular S-frame is selected.

For T-duality, Dp with the longitudinal xp compactified is dual to Dp−1 with the trans-

verse x′p compactified, with Ap converted to Xp, the momentum mode along xp transformed

to the winding mode along x′p. For M5, we have Bµν instead of Aµ, so two longitudinal

dimensions x4 x5 are transformed to one transverse dimension x′45, while the (P4, P5) mo-

mentum modes become the winding modes of the (p, q) strings along x′45 for all co-prime p

q.

The M5-D3 duality requires that the both sides have the same degrees of freedom.

Especially, the three vector fields and one scalar field on D3 are dual to the four 2-form

fields Bµ5 on M5. The rest 2-form fields on M5 have no counterpart thus could be neglected.

This is consistent with the self-duality condition on M5. Especially, for M5 compactified on

x4 × x5,

Bµν(x4, x5, ~x) =
1

2π
√
R4R5

∑
n,m

ei(nx4/R4+mx5/R5)B(n,m)
µν (~x). (13)

The zero mode has no winding number around x′45. B
(0,0)
45 (~x) → X45(0,0)(~x), B

(0,0)
i5 (~x) →

A
(0,0)
i (~x), where i = 1, 2, 3. The rest B(0,0)

µν could be neglected. The bosonic degrees of

freedom are 6 + 2 = 8. The higher mode has the nonzero x′45 winding number, so there is

no X45(n,m) for m,n 6= 0. B
(n,m)
i5 (~x) → A

(n,m)
i (~x), where i = 1, 2, 3. B

(n,m)
45 (~x) together with

A
(n,m)
i (~x) gives 4− 1 = 3 gauge degrees of freedom, so the total bosonic degrees of freedom

are still 5 + 3 = 8.

The [i, j] (qR4, pR5) selfdual string on M5 is dual to the [i, j] (p, q) string on D3. If x4 and

x5 are compact, x′45 will also be compact, so even if B45 = 0, the covering space of x′45 will

still have N coincident D3 branes distributed with the period 2πR′45. ∀ i, j, we have the [i, j]

(p, q) string connecting the ith and the jth D3 branes with the length 2πkR′45, corresponding

to the [i, j] (qR4, pR5) selfdual string coupling with the 2-form field B45 = k/(2πR4R5),

getting the momentum (kp/R4,−kq/R5). If the other transverse fields on D3 also get the

vacuum expectation value, the mass of the [i, j] (p, q) string will be

M = 2π
√
q2R2

4 + p2R2
5

√
(

k

2πR4R5

)2 + |~Φij|2, (14)

which is the same as the energy of the [i, j] (qR4, pR5) selfdual string.

The (kp/R4,−kq/R5) momentum mode is dual to the [i, j] (p, q) string winding x′45 k

times. The (p, q) string with all possible winding numbers gives a 5d SYM theory whose

basic excitations are (p, q) strings. In this way, the 4d KK modes are equivalent to a series of

5d SYM fields labeled by (p, q) with p and q co-prime. The (p, q) 5d SYM fields, when lifted

to 6d, are translation invariant along the (qR4, pR5) direction. They are the fields related

with the (qR4, pR5) selfdual strings. With all (p, q) included, the selfdual string orientation

then covers the whole 45 space.
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3.3 The 3-string junctions on D3 and M5

When ~vi = 0, all D3 branes are separated along a straight line, so the possible BPS states

are still the original 1/2 BPS states. To get the new states, the vacuum expectation values

of the five scalar fields on M5 branes must be turned on. In D3 brane picture, D3’s then

appear as N arbitrary points in the 5d transverse space orthogonal to x′45. The only possible

new BPS states are 1/4 BPS 3-string junctions, which are also the bound states of the [i, j]

(p, q) string and the [j, k] (r, s) string. On M5 side, the 3-string junction is the bound state

of the [i, j] [j, k] selfdual strings each carrying the transverse momentum (kp/R4,−kq/R5)

and (hr/R4,−hs/R5)4.

We are interested with the N coincident M5 branes, since in that case, the states can

be massless in six dimensional sense thus will contribute to the entropy. We have seen that

the bound states of the KK mode cannot give the new degrees of freedom, but we haven’t

considered the bound states of the KK mode and the zero mode, which, for example, can be

taken as the tensionless [i, j] (0, R5) string. In D3 brane picture, that is the massless [i, j]

(1, 0) string, which may form the 1/4 BPS threshold bound state with any [j, k] (p, q) strings

with the length 2πkR′45. In 6d, they are the [i, j] (0, R5) and the [j, k] (qR4, pR5) tensionless

selfdual strings located at the same point in 123 space. The former has the zero momentum

in 45 plane, while the later carries the transverse momentum (kp/R4,−kq/R5). A potential

problem is that the threshold bound state may decay. If they do decay, then there will be

no three indexed BPS states on M5.

4 The interaction of the 6d (2, 0) theory seen from its

KK modes on x4 × x5

We now turn to the 6d (2, 0) theory on M5 branes. The 3-algebra valued (2, 0) tensor

multiplet with the constant vector Cµ proposed in [9] is the natural framework to describe

the selfdual strings. Selfdual strings parallel to the 45 plane give the fields f(θ)(xµ) with

Cµ(θ)∂µf(θ)(xµ) = 0 for Cµ(θ) = cos θδ4
µ + sin θδ5

µ, which altogether are equivalent to the 6d

field. f(θ)(xµ) is in the adjoint representation of U(N). Couplings like Tr[f(θ1) · · · f(θn)] do not

exist unless θ1 = · · · = θn, because the bound state of two unparallel selfdual strings is the

string junction other than another selfdual string. The quantization of the 3-string junction

gives the (2, 1) multiplet g(θ1,θ2,θ3)(xµ) in N×N×N and N̄× N̄× N̄ representation of U(N),

which may couple with the vector multiplet f(θ)(xµ) as long as θ = θ1, θ2, θ3. On coincident

M5 branes, g(θ1,θ2,θ3)(xµ) reduces to g(θ)(xµ) subject to the constraint Cµ(θ)∂µg(θ)(xµ) = 0,

giving a 6d field.

4See [23] for another discussion of the string junctions on M5 and D4.
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4.1 6d field decomposed into the θ-parameterized 5d fields

Recall that in [9], the equations of motion for the 3-algebra valued (2, 0) tensor multiplet

involve a constant vector field Cµ, where µ = 0 · · · 5, giving a direction along which all of

the fields are required to be translation invariant. The theory with the fixed Cµ describes

the selfdual string extending along it. The selfdual string has the zero momentum along Cµ
but may get the arbitrary momentum along the four transverse dimensions, so the theory

describing it is just the 5d U(N) SYM theory, which is the reduction of the 6d (2, 0) theory

along Cµ. Moreover, as the zero mode along Cµ, the field configurations of the 5d SYM theory

on R4 should carry the zero instanton number (Pontryagin number) thus are topologically

trivial on the equivalent S4. To recover the full 6d theory, we need the selfdual strings with

the orientations covering all directions in a plane, which, for definiteness, is taken as the 45

plane. Correspondingly, Cµ is replaced by Cµ(θ) = cos θδ4
µ + sin θδ5

µ, while the original fields

f(xµ) now become f(θ, xµ) still with the constraint Cµ(θ)∂µf(θ, xµ) = 0, giving rise to a 6d

field.

Suppose the U(N) 6d (2, 0) tensor multiplet field configuration is given. For simplicity,

consider the scalar fields XI(xm, x4, x5), where m = 0, 1, 2, 3, I = 6, 7, 8, 9, 10.∫
dxθ X

I(xm, cos θxθ + sin θyθ,− sin θxθ + cos θyθ) = ΦI(xm, θ, yθ) (15)

is the scalar field in the 5d SYM theory related with θ. XI and ΦI have the scaling dimensions

2 and 1 respectively. ΦI is the zero mode of XI along Cµ(θ). Also, notice that∫
dxθdyθ X

I(xm, cos θxθ + sin θyθ,− sin θxθ + cos θyθ) = φI(xm) (16)

is independent of θ. φI is the zero mode of ΦI(xm, θ, yθ) in the 4d spacetime. All of the 5d

SYM theories share the same zero mode in 4d, because the 6d theory has the unique zero

mode in 4d. The vector field A and the spinor field η with the scaling dimensions 1 and 3/2

in 5d SYM theory could be constructed in the similar way from the 6d 2-form field B and

the spinor field Ψ with the scaling dimensions 2 and 5/2. Since the integration is carried

out along a particular direction, more precisely, the original scalar fields, 2-form field, and

the spinor field are converted into the vector fields, vector field, and the spinor-vector field

respectively.

One may also want to reconstruct XI from ΦI .

XI(xm, x4, x5) =
∫
dp4dp5 e

i(p4x4+p5x5)φI(p4,p5)(xm). (17)

If x4 and x5 are compact, p4 = kp̄4/R4, p5 = −kp̄5/R5, (p̄4, p̄5) is the co-prime pair,

XI(xm, x4, x5) =
∑

(p̄4,p̄5)

∑
k

e
ik(

p̄4x4
R4
− p̄5x5

R5
)
φI(p̄4,p̄5;k)(xm) =

∑
(p̄4,p̄5)

ΦI(xm, p̄4R5x4− p̄5R4x5). (18)

ΦI(xm, p̄4R5x4 − p̄5R4x5) is the discrete version of ΦI . In continuous limit,

XI(xm, x4, x5) =
∫
dθdpθpθ e

ipθ(− sin θx4+cos θx5)φI(θ;pθ)(xm) =
∫
dθ Φ̃I(xm,− sin θx4 + cos θx5).

(19)
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However, Φ̃I is not the ΦI in (15). The latter is

ΦI(xm,− sin θx4 + cos θx5) =
∫
dpθ e

ipθ(− sin θx4+cos θx5)φI(θ;pθ)(xm) (20)

with pθ left out in the integral. XI is only the direct superposition of Φ̃I(θ), which is not the

zero mode in Cµ(θ) direction. Nevertheless,
{

Φ̃I(θ) | ∀θ ∈ [0, π)
}

and
{

ΦI(θ) | ∀θ ∈ [0, π)
}

are equivalent bases, so it is indeed possible to reconstruct XI from ΦI .

4.2 The coupling of the selfdual strings and the 3-string junctions

We now have a series of θ-parameterized 5d U(N) SYM theories, which is effectively a 6d

theory with 5 scalars, 3 gauge degrees of freedom and 8 fermionic degrees of freedom. It

may at least exhaust the 1/2 BPS field content of the 6d (2, 0) theory. The next problem is

the interaction. Fields belong to the same 5d SYM theory have the standard SYM coupling

among themselves. It is also necessary to consider the couplings involving fields in different

5d SYM theories. Actually, the 6d SYM theory could also be decomposed in this way, while

the local interactions in the original 6d theory induce the couplings among the 5d theories

labeled by different θ.

To see this coupling more explicitly, we’d better decompose the 6d fields into the 4d KK

modes. For scalars, the decomposition is as that in (17). Similarly, for the 6d SYM fields

such as the scalars Y L(xm, x4, x5), L = 6, 7, 8, 9, there is also

Y L(xm, x4, x5) =
∫
dp4dp5 e

i(p4x4+p5x5)ϕL(p4,p5)(xm). (21)

The two-field coupling Y LY L′
gives∫

dx4dx5 Y
L
ij Y

L′

ji =
∫
dp4dp5 ϕ

L
(p4,p5)ij(xm)ϕL

′

(−p4,−p5)ji(xm), (22)

the three-field coupling Y LY L′
Y L′′

gives∫
dx4dx5 Y

L
ij Y

L′

jk Y
L′′

ki =
∫
dp4dp5dq4dq5 ϕ

L
(p4,p5)ij(xm)ϕL

′

(q4,q5)jk(xm)ϕL
′′

(−p4−q4,−p5−q5)ki(xm),

(23)

and similarly for the n-field coupling. In the dual D3 brane picture, ϕL(p4,p5)ij(xm) corresponds

to the F-string connecting the ith and the jth D3 branes represented by the vector (p4, p5) in

transverse space. The above coupling is possible because the bound state of the [i, j] (p4, p5)

F-string and the [j, k] (q4, q5) F-string is the [i, k] (p4 + q4, p5 + q5) F-string. The conclusion

also holds in Coulomb branch. ϕL(p4,p5)ij(xm) then corresponds to the F-string represented by

the vector (p4, p5, ~vij) in transverse space.

(p4, p5, ~vij) + (q4, q5, ~vjk) = (p4 + q4, p5 + q5, ~vik). (24)

On the other hand, for fields in tensor multiplet, such as XI , the two-field coupling XIXI′

is indeed ∫
dx4dx5 X

I
ijX

I′

ji =
∫
dp4dp5 φ

I
(p4,p5)ij(xm)φI

′

(−p4,−p5)ji(xm), (25)

15



but the three-field coupling and the n-field coupling cannot take the similar form as (23). On

D3 branes, φI(p4,p5)ij(xm) corresponds to the [i, j] (p4, p5) string5. When (p4, p5) ∝ (q4, q5),

the bound state of the [i, j] (p4, p5) string and the [j, k] (q4, q5) string is still the [i, k] (p4 +

q4, p5 +q5) string, so, the coupling like (23) is possible. φI(p4,p5)ij(xm) and φI
′

(q4,q5)jk(xm) belong

to the same 5d SYM theory with θ = − arctan(p4/p5). However, for unparallel (p4, p5) and

(q4, q5), the bound state will be the 3-string junction other than the single string6. The

similar problem also exists for the 5d massive tensor multiplet. The KK modes in 4d could

be represented by the [i, j] (p4, p5) strings with the fixed p5 but all possible p4. (p4, p5) and

(p′4, p5) are not parallel unless p4 = p′4. So, if we concentrate on a single kind of the selfdual

strings, the theory will be the 5d SYM theory; if we consider the selfdual strings with the

different orientations, the theory will involve the tensor multiplet, for which, the interaction

is not the standard SYM type.

Then the problem reduces to the coupling between φ(p4,p5)ij(xm) and φ′(q4,q5)jk(xm) for

the unparallel (p4, p5) and (q4, q5). The bound state of the [i, j] (p4, p5) string and the [j, k]

(q4, q5) string is the 3-string junction other than the traditional [i, k] (P4, P5) string. Unlike

the 6d SYM theory, we now get more states and should also quantize them. A given 3-string

junction is characterized by the charge vector ve = (r4, s4, t4) and vm = (r5, s5, t5), for which,

no common divisor exists. r s t are related with the i j k branes, while the rest N−3 branes

are neglected.

r4 + s4 + t4 = r5 + s5 + t5 = 0. (26)

In x45, v45
ij = 2πkR′45, v45

jk = 2πhR′45. In transverse space, we may also have ~vij and ~vjk,

which will make the string junction massive. The total momentum of the 3-string junction

is

(P4, P5) = (
kr4 − ht4

R4

,
−kr5 + ht5

R5

) = (p4 + q4, p5 + q5). (27)

where (p4, p5) = (kr4/R4,−kr5/R5) = (kp̄4/R4,−kp̄5/R5), (q4, q5) = (−ht4/R4, ht5/R5) =

(hq̄4/R4,−hq̄5/R5). p̄4 and p̄5, q̄4 and q̄5 are not necessarily co-prime now. For (p̄4, p̄5) ∝
(q̄4, q̄5), (P4, P5) ∝ (q̄4, q̄5) ∝ (p̄4, p̄5), while for the unparallel (p̄4, p̄5) and (q̄4, q̄5), k and h

may generate two dimensional momentum. Especially, if the SL(2,Z) invariant intersection

number [16] I = t5r4 − t4r5 = ±1, (P4, P5) can cover all of (n/R4,m/R5); otherwise, it can

only cover (nI/R4,mI/R5). We will use (p̄4, p̄5), (q̄4, q̄5) and (P4, P5) to denote the 3-string

junction. When R4, R5 → ∞, R4/R5 is indefinite, so the 3-string junction is denoted by

(θ1, θ2, θ3). For the given ~vij and ~vjk, the 3-string junction exists only when (P4, P5) satisfies

some particular condition

h(p̄4,p̄5,q̄4,q̄5,~vij ,~vjk)(P4, P5) > 0, (28)

so the 3-string junction cannot have the arbitrary momentum in 45 plane. The selfdual

string in 45 plane can only carry the 1d transverse momentum. Here, the bound state of two

5More accurately, it is the [i, j] (p̄4, p̄5) string winding x′45 k times. p4 = kp̄4/R4, p5 = −kp̄5/R5, p̄4 and
p̄5 are co-prime. For simplicity, we just denote it by (p4, p5).

6The bound state exists only when the [i, j] [j, k] strings have the suitable mass. Here, we just assume so.
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unparallel selfdual strings can carry the 2d momentum, but this momentum cannot cover

the 2d space.

Fields arising from the quantization of the 3-string junctions can then be denoted by

φ(~r,~s,~t;P4,P5)ijk(xm) or φ(θ1,θ2,θ3;P4,P5)ijk(xm) in decompactification limit. ~r + ~s + ~t = 0. The

corresponding 6d field is

X(~r,~s,~t)ijk(xm, x4, x5) =
∑
P4,P5

ei(P4x4+P5x5)φ(~r,~s,~t;P4,P5)ijk(xm), (29)

or

X(θ1,θ2,θ3)ijk(xm, x4, x5) =
∫
dP4dP5 e

i(P4x4+P5x5)φ(θ1,θ2,θ3;P4,P5)ijk(xm). (30)

In polar coordinate, (30) could also be written as

X(θ1,θ2,θ3)ijk(xm, θ, ρ)

= sin(θ2 − θ1)
∫
dpθ1dpθ2 e

iρ[sin(θ−θ1)pθ1−sin(θ−θ2)pθ2 ]φ(θ1,θ2,θ3;pθ1 ,pθ2 )ijk(xm). (31)

In terms of k and h, (29) becomes

X(~r,~s,~t)ijk(xm, x4, x5) =
∑
k,h

e
i[k(

r4x4
R4
− r5x5

R5
)−h(

t4x4
R4
− t5x5

R5
)]
φ(~r,~s,~t;k,h)ijk(xm). (32)

In (29)-(32), (P4, P5) is in the range specified by (28).

With the fields related with strings as well as the string junctions, we can consider the

possible couplings among them. First, the bound state of the [i, j] (r4, r5) string and the [j, k]

(−t4,−t5) string, or the [j, k] (s4, s5) string and the [k, i] (−r4,−r5) string, or the [k, i] (t4, t5)

string and the [i, j] (−s4,−s5) string is the [i, j, k] 3-string junction with ve = (r4, s4, t4) and

vm = (r5, s5, t5). The momentum of the 3-string junction is the sum of the two individual

strings. 2 + 2→ 3.

φ(r4,r5;k)ij(xm)φ′(−t4,−t5;h)jk(xm) ∼ φ′′(~r,~s,~t;k,h)ijk(xm), (33)

φ(s4,s5;h)jk(xm)φ′(−r4,−r5;−k−h)ki(xm) ∼ φ′′(~r,~s,~t;k,h)ijk(xm), (34)

φ(t4,t5;−k−h)ki(xm)φ′(−s4,−s5;k)ij(xm) ∼ φ′′(~r,~s,~t;k,h)ijk(xm), (35)

which could be derived from the coupling∫
dx4dx5 X(r4,r5)ij(xm, x4, x5)X ′(−t4,−t5)jk(xm, x4, x5)X ′′(~r,~s,~t)ijk(xm, x4, x5), (36)

with

X(r4,r5)ij(xm, x4, x5) =
∑
k

e
ik(

r4x4
R4
− r5x5

R5
)
φ(r4,r5;k)ij(xm), (37)

X ′(−t4,−t5)jk(xm, x4, x5) =
∑
h

e
−ih(

t4x4
R4
− t5x5

R5
)
φ(−t4,−t5;h)jk(xm). (38)
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Next, consider the bound state of φ(u4,u5;g)li(xm) or φ(u4,u5;−g)il(xm) and φ′
(~r,~s,~t;k,h)ijk

(xm). If

(u4, u5) = (r4, r5) or (u4, u5) = (−r4,−r5), the bound state will still be the 3-string junction

φ′′
(~r,~s,~t;k+g,h)ljk

(xm), 2 + 3 → 3; otherwise, it is a 4-string junction, 2 + 3 → 4. The situation

is similar if i is replaced by j or k. The 2 + 3→ 3 type relation may give the couplings like

XliX
′
ijkX

′′
ljk, XilX

′
ijkX

′′
ljk, XliX

′
ijkX

′′
knX

′′′
ljn (39)

and so on.

The 2 + 2 → 2, 2 + 3 → 3 couplings could be realized as the matrix multiplication.

Moreover, they can also be visualized as the junction of two 2-boundary-M2’s and the

junction of one 2-boundary-M2 and one 3-boundary-M2 respectively. Therefore, they are

more reasonable than the couplings like 2 + 2→ 3 and 2 + 3→ 4.

4.3 The multiplet structure of the 3-string junctions

We now have two sets of fields f(r4,r5)ij(xm, x4, x5) and g(~r,~s,~t)ijk(xm, x4, x5), or alternatively,

f(θ)ij(xm, α, ρ) and g(θ1,θ2,θ3)ijk(xm, α, ρ). f(r4,r5)ij(xm, x4, x5) is translation invariant along

the (r5R4, r4R5) direction. It is the previously discussed field satisfying the constraint

Cµ(θ)∂µf(θ)ij(xm, α, ρ) = 0. On the other hand, g(θ1,θ2,θ3)ijk(xm, α, ρ) is a 6d field without the

constraint7. f(θ1), f(θ2) and f(θ3) may couple with each other through g(θ1,θ2,θ3).

f(θ)ij is a vector multiplet composed by the scalars ΦI
(θ), the vector A(θ)µ and the spinor

η(θ) with the scaling dimensions 1, 1 and 3/2 respectively, coming from the Cµ(θ) direction

integration of the scalars XI , the 2-form Bµν and the spinor Ψ with the scaling dimensions

2, 2 and 5/2. As a 6d vector, Cµ(θ)A(θ)µ = 0.

The field content of g(θ1,θ2,θ3)ijk can be reconstructed from the 4d KK mode. The KK

compactification of g(θ1,θ2,θ3)ijk on x4 × x5 gives the 4d field φ(~r,~s,~t;P4,P5)ijk, which, in 4d SYM

theory, is related to the 3-string junction with the charge vector ve = (r4, s4, t4) and vm =

(r5, s5, t5), having the total mass P5 and the total electric charge P4. The multiplet structure

of φ(~r,~s,~t;P4,P5)ijk is V4 ⊗ Vin, where V4 is the vector supermultiplet coming from the free

center-of-mass part, Vin is the internal part determined by ve and vm. For ve = (r4, s4, t4),

vm = (1, 0,−1), Vin = [|s4|/2]⊕ [|s4|/2− 1/2]⊕ [|s4|/2− 1/2]⊕ [|s4|/2− 1], giving a total of

4|s4| states [14]. As the string web, it has Eext = 3 external points and Fint = |s4| internal

points [16]. If φ(~r,~s,~t;P4,P5)ijk is lifted into the 6d field g(~r,~s,~t)ijk, V4 ⊗ Vin will become T6 ⊗ Vin,

with T6 the tensor supermultiplet from the center-of-mass part. So, g(~r,~s,~t)ijk at least contains

a tensor multiplet factor.

It is difficult to determine Vin in decompactification limit. The simplest situation is

|s4| = 1 with one internal point, and then Vin = [1/2] ⊕ [0] ⊕ [0]. Recall that for 1/2 BPS

states with the degeneracy of 24, we have the 6d (2, 0) tensor multiplet T6, whose KK modes

along x5 are the 5d massless vector multiplet V5 and the 5d massive (2, 0) tensor multiplets

T5. The KK modes of V5 and T5 on x4 are the 4d vector multiplets V4. The massless limit

7(28) gives a restriction on the range of k and h in (32). Especially, if k = 0 or h = 0, g(θ1,θ2,θ3)ijk is also
translation invariant along one direction, as we will see later.
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of the 5d massive tensor multiplet is the 5d massless vector multiplet. For 1/4 BPS states,

in 4d, we get V4 ⊗ ([1/2]⊕ [0]⊕ [0]). The V4 ⊗ [1/2] part gives

j 3/2 1 1/2 0 -1/2 -1 -3/2
Degeneracy 1 4 7 8 7 4 1

which, when combines with the rest two V4, could be organized into 1 spin-3/2 fermion, 6

vectors, 14 spin-1/2 fermions and 14 scalars, forming the massive representation of the 4d

N = 4 superalgebra with 26 states. In massless limit, the bosonic part of V4⊗([1/2]⊕[0]⊕[0])

is composed by 6 vectors and 20 scalars, with each vector containing two degrees of freedom.

V4, when lifted to 5d with P5 = 0 or P5 6= 0, becomes V5 or T5. The lifted V4⊗([1/2]⊕[0]⊕[0])

could be naively denoted by V5 ⊗ ([1/2]⊕ [0]⊕ [0]) and T5 ⊗ ([1/2]⊕ [0]⊕ [0]), which are all

complex now. Actually, one V4 ⊗ ([1/2]⊕ [0]⊕ [0]) only gives the 3-string junction with one

possible orientation; if the other orientation is taken into account, we will also get 26×2 = 27

states. The field content of V5⊗ ([1/2]⊕ [0]⊕ [0]) could be organized into 1 spin-3/2 fermion,

6 vectors, 13 spin-1/2 fermions and 14 scalars, while the field content of T5⊗([1/2]⊕ [0]⊕ [0])

could be organized into 2 selfdual tensors, 1 spin-3/2 fermion, 4 vectors, 13 spin-1/2 fermions

and 10 scalars. T6⊗ ([1/2]⊕ [0]⊕ [0]) and T5⊗ ([1/2]⊕ [0]⊕ [0]) have the same field content,

forming the 6d massless (2, 1) multiplet and the 5d massive (2, 1) multiplet respectively.

The 5d massive selfdual tensors and the 5d massive vectors, containing 3 and 4 degrees of

freedom, become the 6d massless selfdual tensors and the 6d massless vectors, still with 3

and 4 degrees of freedom.

T6⊗([1/2]⊕[0]⊕[0]) compactified on x5 gives V5⊗([1/2]⊕[0]⊕[0]) and T5⊗([1/2]⊕[0]⊕[0]),

which, when further compactified on x4, becomes V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]). Just as V5 is the

massless limit of T5, V5 ⊗ ([1/2] ⊕ [0] ⊕ [0]) could also be taken as the massless limit of

T5⊗ ([1/2]⊕ [0]⊕ [0]). The 2 massive 5d selfdual tensors become 2 massless 5d vectors, while

the 4 massive 5d vectors become 4 massless 5d vectors plus 4 scalars. T6⊗ ([1/2]⊕ [0]⊕ [0]),

T5⊗ ([1/2]⊕ [0]⊕ [0]) and V5⊗ ([1/2]⊕ [0]⊕ [0]) are all complex, so the total states for each

are 27 other than 26. Each multiplet will form the N ×N ×N or N̄ × N̄ × N̄ representation

of U(N), so they cannot be real, as the fields in adjoint representation do.

4.4 The coupling among the vector multiplet and the (2, 1) multi-
plet

g(θ1,θ2,θ3)ijk is the (2, 1) multiplet composed by the scalars X(θ1,θ2,θ3), the vectors V(θ1,θ2,θ3),

the 2-forms B(θ1,θ2,θ3), the spin-1/2 fermions Ψ(θ1,θ2,θ3) and the spin-3/2 fermions η(θ1,θ2,θ3).

In principle, the 6d (2, 0) theory can only contain the (2, 0) tensor multiplet, but now, the

(2, 1) multiplet is also added. There will be the couplings between the (2, 1) multiplet and

the vector multiplet arising from the reduction of the tensor multiplet along a particular

direction. The incorporation of the (2, 1) multiplet into the scattering amplitude is also

discussed in [15] for M5 compactified on S1. It was shown that the BB′A coupling is one
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of the possibilities. B and B′ are the 2-forms in 5d massive (2, 1) multiplet, while A is the

zero mode vector in 5d. In the following, we will only discuss X, B and Ψ with the scaling

dimensions 2, 2, 5/2 respectively, neglecting V and η. The transverse indices of X, B and

Ψ are dropped for simplicity, although X, B and Ψ are not the R-symmetry singlet.

Let us consider the possible dimension six couplings for these fields. For two-field cou-

plings, there are

∂X∂X, ∂X(θ1,θ2,θ3)∂X
∗
(θ1,θ2,θ3), Ψ̄∂Ψ, Ψ̄(θ1,θ2,θ3)∂Ψ(θ1,θ2,θ3), ∂B∂B, ∂B(θ1,θ2,θ3)∂B

∗
(θ1,θ2,θ3).

(40)

X Ψ B compose a 6d (2, 0) tensor multiplet in adjoint representation of U(N), which is

equivalent to Φ(θ) A(θ) η(θ) with all θ included. We do not have terms like XijX
′
jkX

′′
ki, but

the two-field couplings like XijX
′
ji are allowed. The tensor multiplet representation works

well in free theory. The possible three-field couplings are

AθaX(θ1,θ2,θ3)∂X
∗
(θ1,θ2,θ3), AθaΨ̄(θ1,θ2,θ3)Ψ(θ1,θ2,θ3), ΦθaΨ̄(θ1,θ2,θ3)Ψ(θ1,θ2,θ3), AθaB(θ1,θ2,θ3)∂B

∗
(θ1,θ2,θ3),

(41)

where a = 1, 2, 3. The possible four-field couplings are

AθaX(θ1,θ2,θ3)AθbX
∗
(θ1,θ2,θ3), ΦθaX(θ1,θ2,θ3)ΦθbX

∗
(θ1,θ2,θ3),

AθaB(θ1,θ2,θ3)AθbB
∗
(θ1,θ2,θ3), ΦθaB(θ1,θ2,θ3)ΦθbB

∗
(θ1,θ2,θ3), (42)

with a, b = 1, 2, 3. Based on the above couplings, the nonabelian generalization of Hµνλ can

then be defined as

Hijk = dBijk + Ali ∧Bljk + Amj ∧Bimk + Ank ∧Bijn, (43)

with H ∼ H(θ1,θ2,θ3)µνλ, A
l
i ∼ Al(θ1)µi, A

m
j ∼ Am(θ2)µj, A

n
k ∼ An(θ3)µk, B ∼ B(θ1,θ2,θ3)µν .

Fermions may get mass through the Yukawa coupling ΦθaΨ̄(θ1,θ2,θ3)Ψ(θ1,θ2,θ3). In order

to compare with the 3-string junctions in 4d SYM theory, we will use (~r, ~s,~t) instead of

(θ1, θ2, θ3). Consider Ψ(~r,~s,~t)ijk and ΦI
(~u;lm)µ. The vacuum expectation value of XI is X̄I

lm =

vImδlm, then the induced vacuum expectation value for ΦI
µ is Φ̄I

(~u;lm)µ = ũµv
I
mδlm. Similar

with the equation for fermions in [9],

ΓµDµΨA +XI
CC

ν
BΓνΓ

IΨDf
CDB

A = 0, (44)

we may have

iΓ0ΓµΓI [Φ̄
I
(~r;il)µΨ(~r,~s,~t)ljk + Φ̄I

(~s;jl)µΨ(~r,~s,~t)ilk + Φ̄I
(~t;kl)µΨ(~r,~s,~t)ijl]

= iΓ0ΓµΓI [r̃µv
I
i δilΨ(~r,~s,~t)ljk + s̃µv

I
j δjlΨ(~r,~s,~t)ilk + t̃µv

I
kδklΨ(~r,~s,~t)ijl]

= iΓ0ΓµΓI(r̃µv
I
i + s̃µv

I
j + t̃µv

I
k)Ψ(~r,~s,~t)ijk = MΨ(~r,~s,~t)ijk, (45)

where in the last step, we assume Ψlmn = 0 for l,m, n 6= i, j, k so that Ψ is a generator with

the index [i, j, k].

M = iΓ0ΓµΓI(r̃µv
I
ij − t̃µvIjk) = iΓ0ΓµΓI(s̃µv

I
jk − r̃µvIki) = iΓ0ΓµΓI(t̃µv

I
ki − s̃µvIij). (46)
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The [i, j, k] (~r, ~s,~t) string is the bound state of the [i, j] (~r) and [j, k] (−~t) strings or the

[j, k] (~s) and [k, i] (−~r) strings or the [k, i] (~t) and [i, j] (−~s) strings. In (46), the mass of

the bound state is expressed in terms of the component strings. r̃4 = 2πr5R4, r̃5 = 2πr4R5,

r̃µ = 0, for µ = 0, 1, 2, 3, so

iΓ0ΓµΓI r̃µv
I
i = iΓ0Γ4ΓI2πr5R4v

I
i + iΓ0Γ5ΓI2πr4R5v

I
i , (47)

and similarly for s̃µ and t̃µ. As a result,

M = iΓ0Γ4ΓI(r̃4v
I
i + s̃4v

I
j + t̃4v

I
k) + iΓ0Γ5ΓI(r̃5v

I
i + s̃5v

I
j + t̃5v

I
k) = iΓ0Γ4ΓIQ

I
M + iΓ0Γ5ΓIQ

I
E.

(48)

where QI
E and QI

M are the electric and the magnetic charge vectors in 4d SYM theory.

M2 = | ~QE|2 + | ~QM |2 + ΓIΓJΓ4Γ5(QI
MQ

J
E −QJ

MQ
I
E). (49)

The third term is a matrix, nevertheless,√
[ΓIΓJΓ4Γ5(QI

MQ
J
E −QJ

MQ
I
E)]2 = 2| ~QE × ~QM | (50)

The above result can be compared with the mass of the 3-string junctions in 4d SYM theory,

which is

Z2
+ = | ~QE|2 + | ~QM |2 + 2| ~QE × ~QM |. (51)

The mass term together with iΨ+Γµ∂
µΨ gives the energy

E = Γ0Γµp
µ + iΓ0Γ4ΓIQ

I
M + iΓ0Γ5ΓIQ

I
E, (52)

where µ = 1, 2, 3, 4, 5, Γ+
µ = −Γµ.

E2 = |~p|2 + | ~QE|2 + | ~QM |2 + ΓIΓJΓ4Γ5(QI
MQ

J
E −QJ

MQ
I
E) + 2iΓI(Q

I
Mp

4 +QI
Ep

5). (53)

(53) can be rewritten as

E2 = papa + (Q45
EQ

45
E +Q45

MQ
45
M) + (QI

EQ
I
E +QI

MQ
I
M)

+ ΓIΓJΓ4Γ5(QI
MQ

J
E −QJ

MQ
I
E) + 2iΓI(Q

45
EQ

I
M −QI

EQ
45
M), (54)

where a = 1, 2, 3. Q45
E = p4, Q45

M = −p5. p4 and p5 enter the energy formula as another

charge vector Q45
E and Q45

M . p1, p2 and p3 appear as the normal transverse momentum. In

4d SYM theory, with v45
i and vIi turned on, the energy of the 3-string junction carrying the

transverse momentum (p1, p2, p3) is consistent with (54). The above result can be compared

with the 6d SYM theory, for which,

E = Γ0Γµp
µ + Γ0ΓIv

I
ij, (55)

so

E2 = pµpµ + vIijv
I
ij, (56)
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which is the energy of a particle with the rest mass
√
vIijv

I
ij carrying the 5d momentum pµ.

Now, we have different Dirac operator, giving rise to a dispersion relation different from the

standard
√
m2 + p2 type.

√
m2 + p2 is the dispersion relation for a Lorentz invariant theory.

The 3-string junctions breaks the SO(5, 1) symmetry into SO(3, 1).

AN−1 6d (2, 0) theory compactified on a Riemann surface Σg with the genus g > 1 could

be decomposed into the TN part and the IN part. Each TN part has the SU(N)3 symmetry,

while each IN part gives a SU(N) gauge group [24, 25]. Still, there are two sets of fields

with the index [i, j, k] and [i, j] which may couple with each other, quite like what we have

discussed above. This is not accidental. The 3-string junction on D3, when lifted to M

theory, corresponds to M2 with three boundaries, which may be denoted by M2(C1, C2, C3),

with C1 ∼ ~r, C2 ∼ ~s, C3 ∼ ~t [26]. M2 with two boundaries is M2(C). M2(C1, C2, C3)

and M2(C) may couple at the boundary as long as C = C1, or C = C2, or C = C3,

while the product is still M2(C1, C2, C3). Likewise, the TN part of the Riemann surface

offers the nontrivial 1-cycles [C1], [C2], [C3] for M2 to end. [C1] + [C2] + [C3] = 0. Each

M2([C1], [C2], [C3]) can only couple with the adjacent M2([C1]), M2([C2]), and M2([C3]).

The Σg theory has 3(g − 1) SU(N) gauge groups associated with the 3(g − 1) 1-cycles.

Similarly, the 6d (2, 0) theory may contain a series of SU(N) groups associated with the

selfdual strings labeled by θ. A different way to decompose Σg will give a different set of

3(g − 1) 1-cycles, for which, the corresponding 4d theory is S-dual to the previous one.

Likewise, selfdual strings parallel to a different plane may give a different 6d theory which

is U-dual to the original one. The situation is different for the 6d SYM theory, in which,

there is only one gauge group. Even if the 6d SYM theory is compactified on a Riemann

surface with g > 1, there is still only one gauge group, while the resulting 4d theory is unique

without the dual version. The reason is that the basic excitations on M5 is line-like, while

the basic excitations on D5 is point-like. M5 compactified on Σg has the richer structure

than D5.

4.5 The situation on coincident M5 branes

In above discussion, we didn’t pay too much attention to the condition (28). For the given

vIi and (~r, ~s,~t), the allowed (P4, P5) are not arbitrary. Especially, when vIij = 0, ∀ i, j, no

(P4, P5) can satisfy (28). Nevertheless, when P4 = 0 or P5 = 0, the equality can be saturated,

while the bound states are at the threshold or just decay. If they do not decay, then (31)

and (32) should be replace by

X(θ1,θ2,θ3)ijk(xm, sin(θ − θ1)ρ) = sin(θ2 − θ1)
∫
dpθ1 e

ipθ1ρ sin(θ−θ1)φ(θ1,θ2,θ3;pθ1 ,0)ijk(xm) (57)

and

X(~r,~s,~t)ijk(xm, r4x4R5 − r5x5R4) =
∑
k

e
ik(

r4x4
R4
− r5x5

R5
)
φ(~r,~s,~t;k,0)ijk(xm). (58)

(57) and (58) are translation invariant along the θ1 direction and the (r5R4, r4R5) direction

respectively. They are the zero mode of the original 6d field (31) and (32) along the θ1 and
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the (r5R4, r4R5) directions. φ(~r,~s,~t;k,0)ijk(xm) is the 4d 1/4 BPS field in V4 ⊗ Vin multiplet.

Summing over all possible k will give a 5d field in V5 ⊗ Vin multiplet. (57) and (58) are in

the V5 ⊗ Vin multiplet. They are actually the bound state of the [i, j] (r4, r5) string with

momentum (kr4/R4,−kr5/R5) and the [j, k] (−t4,−t5) string with momentum (0, 0). As is

mentioned before, the 4d (0, 0) mode of the 6d field is unique, so (−t4,−t5) should be fixed,

while the field in (57) and (58) could simply be denoted by X(θ1)ijk(xm, sin(θ − θ1)ρ) and

X(~r)ijk(xm, r4x4R5 − r5x5R4). Although X(θ1)ijk or X(~r)ijk is a 5d field, with all θ1 or (r4, r5)

included, the 6d field can be recovered again.

φ(~r;k)ijk(xm)φ′(~r;g)li(xm) ∼ φ′′(~r;k+g)ljk(xm). (59)

X(~r)ijk or X(θ1)ijk can only couple with X(~r)li or X(θ1)li. Both of them are translation in-

variant along the same direction, so the coupling is still 5 dimensional. Now, we have

fij(θ, xµ) together with gijk(θ, xµ) subject to the constraints Cµ(θ)∂µfij(θ, xµ) = 0 and

Cµ(θ)∂µgijk(θ, xµ) = 0, giving rise to the 6d fields. Fields related with different θ cannot

couple with each other. It must be admitted that such scenario is not quite interesting.

5 The momentum-carrying BPS states in 5d SYM the-

ory

Until now, all of the discussions are carried out in 6d theory’s framework, in which the KK

modes are fields. The 6d tensor multiplet field compactified on x5 gives the 5d massless

vector multiplet field and a tower of 5d massive tensor multiplet fields. As the zero mode,

the 5d SYM field must have the vanishing Pontryagin number. However, the generic configu-

rations of the 5d SYM theory on R4 can carry the arbitrary Pontryagin number k, while the

quantization of the configurations with the nonzero k gives the 5d massive tensor multiplets.

So the full 5d SYM theory contains the complete KK modes and may give another definition

of the 6d (2, 0) theory [10, 11]8.

The field configurations in SYM theories are classified by the the boundary topology.

For 5d SYM theory, the boundary configurations are characterized by Π3(SU(N)) ∼= Z with

k ∈ Z the winding number. Configurations with the same k could be continuously deformed

into each other. Especially, when k = 0, fields could be continuously deformed to zero. The

sector with the given k corresponds to the KK mode with P5 = k/R5. The energy is bounded

by

E ≥ |k|/R5. (60)

The equality holds for configurations representing the localized k/R5 mode which have the

zero average momentum in 1234 space. The path integral covers all configurations, so the

complete 5d SYM theory is intrinsically a 6d theory. Since the configuration only carries the

chargeless P5 momentum, there might be some kind of confinement happen.

8See [27] for a further evidence on the finiteness of the 5d SYM theory.
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In this section, we will discuss the generic BPS states in 5d SYM theory, which are in one-

to-one correspondence with the previous mentioned selfdual strings and the string junctions.

We will also show that the selfdual strings carrying the longitudinal momentum have the N3

scaling.

5.1 BPS states in 5d SYM theory

The field content of the 5d N = 2 U(N) SYM theory consists of a vector Aµ with µ =

0, 1, 2, 3, 4, five scalars XI with I = 6, 7, 8, 9, 10 and fermions Ψ. x5 is the extra dimension

associated with M-theory. The action is

S = − 1

g2
YM

∫
d5x tr

(1

4
FµνF

µν +
1

2
DµX

IDµXI − i

2
Ψ̄ΓµDµΨ

+
1

2
Ψ̄Γ5ΓI [XI ,Ψ]− 1

4

∑
I,J

[XI , XJ ]2
)
, (61)

where DµX
I = ∂µX

I − i[Aµ, X
I ], Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. For time-independent

bosonic solutions with a single non-vanishing scalar field X6, the associated energy is

E =
1

g2
YM

∫
d4x tr

[1
4
FijFij +

1

2
F0iF0i +

1

2
DiX

6DiX
6
]
, (62)

where i = 1, 2, 3, 4. For an arbitrary vector Ci with |C| = 1, E could be rewritten as

E =
1

g2
YM

∫
d4x tr

[1
2

(F0i − sin θCkFik + cos θDiX
6)2

+
1

2
(
1

2
CkεilmkFlm ± cos θCkFik ± sin θDiX

6)2

+ sin θ (F0iCkFik ∓
1

2
CkεilmkFlmDiX

6)

+ cos θ (∓1

8
εiklmFikFlm − F0iDiX

6)
]
. (63)

Note that

Pk = − 1

g2
YM

∫
d4x tr(F0iFik), QMk = Z6

k = − 1

2g2
YM

∫
d4x tr(εiklmFlmDiX

6),

P5 = − 1

8g2
YM

∫
d4x tr(εiklmFlmFik), QE = Z6

5 =
1

g2
YM

∫
d4x tr(F0iDiX

6), (64)

So

E ≥ sin θCk(−Pk ±QMk) + cos θ(±P5 −QE) ≥Max(Z+, Z−), (65)

where

Z± =
[
(CkPk ± CkQMk)

2 + (P5 ±QE)2
] 1

2 . (66)

If Z+ ≥ Z−, E = Z+ for

F0i = sin θCkFik − cos θDiX
6, (67)
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1

2
CkεilmkFlm = cos θCkFik + sin θDiX

6. (68)

If Z+ ≤ Z−, E = Z− for

F0i = sin θCkFik − cos θDiX
6, (69)

1

2
CkεilmkFlm = − cos θCkFik − sin θDiX

6. (70)

In both cases,

E =
1

g2
YM

∫
d4x tr

[
(CkFik)

2 + (DiX
6)2
]
. (71)

Moreover, if θ 6= 0, from (67-70), we also have CiDiX
6 = CiF0i = 0. For simplicity, in the

following, we will only consider the case with Z+ ≥ Z−. The situation with Z+ ≤ Z− is

similar.

Without loss of generity, let Ck = δ4
k, then (67) and (68) become

F0i = sin θFi4 − cos θDiX
6, (72)

1

2
εilm4Flm = cos θFi4 + sin θDiX

6. (73)

E =
[
(P4 +QM4)2 + (P5 +QE)2

] 1
2 . (74)

For θ 6= 0, F04 = D4X
6 = 0. When θ = 0, (72)-(74) reduce to

F0i = −DiX
6,

1

2
εilm4Flm = Fi4. (75)

E = |P5 +QE|. (76)

These are the equations for the dyonic instantons discussed in [11]. F04 = D4X
6 = 0 is not

necessary. If is imposed, the original SO(4) symmetry will be broken to SO(3). P4 6= 0,

QM4 6= 0, but P4 +QM4 = 0. When θ = π/2,

F0i = Fi4,
1

2
εilm4Flm = DiX

6. (77)

E = |P4 +QM4|. (78)

The solution describes the monopole string extending along the x4 direction, carrying mo-

mentum P4. P5 6= 0, QE 6= 0, but P5 +QE = 0.

For the time-independent bosonic solutions with Ck = δ4
k, the supersymmetry transfor-

mation becomes

δεΨ =
1

2
FµνΓ

µνΓ5ε+DµX
6ΓµΓ6ε

= DaX
6Γa(Γ

6 + cos θΓ05 + sin θΓ123Γ5)ε

+Fa4Γa(Γ45 − sin θΓ05 + cos θΓ123Γ5)ε, (79)
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where a = 1, 2, 3. D4X
6 = F04 = 0 is imposed. δεΨ = 0, ε should satisfy

(1 + cos θΓ056 − sin θΓ046)ε = 0, (80)

(1 + sin θΓ04 − cos θΓ05)ε = 0, (81)

in which Γ012345ε = ε is used. The solution is 1/4 BPS. For θ = 0, we have ε = −Γ056ε =

Γ05ε, which are the supersymmetries preserved by dyonic instantons [11]. For θ = π/2,

ε = Γ046ε = −Γ04ε, which are the supersymmetries preserved by the monopole strings

extending along x4 carrying momentum P4. If DaX
6 and Fa4 are not independent, for

example, DaX
6 = sin θDaΦ and Fa4 = cos θDaΦ as that in [11], (79) will reduce to

δεΨ = DaΦΓa(sin θΓ
6 + cos θΓ45 − Γ04)ε

= DaΦΓaΓ04(sin θΓ04Γ6 + cos θΓ05 − 1)ε = 0. (82)

The solution becomes 1/2 BPS. Moreover, for this state, F0i = 0, so Pk = QE = 0, E =√
Q2
M4 + P 2

5 . It may describe the monopole string extending along x4 carrying the uniformly

distributed D0 charge. Conversely, if Fa4 = sin θDaΦ, DaX
6 = − cos θDaΦ, Fab = 0,

E =
√
Q2
E + P 2

4 . The solution describes the F1 string carrying P4 momentum, which is also

1/2 BPS.

Another special kind of 1/2 BPS states have Fi4 = 0 or X6 = 0. When X6 = θ = 0, we

get the instanton equation

F0i = 0,
1

2
εilm4Flm = Fi4, (83)

the solution of which describes the D0 branes revolved in D4 branes. E = |P5|. The

quantization of the instanton state gives the 5d massive (2, 0) tensor multiplet T5 without

charge. When θ 6= 0,

F0i = sin θFi4,
1

2
εilm4Flm = cos θFi4. (84)

The SO(4) symmetry is broken to SO(3). Therefore, we may look for solutions which are

translation invariant along x4. E =
√
P 2

4 + P 2
5 . The solution describes the D0 branes

localized in R3 carrying momentum P4, which, in D3 picture, is the (p, q) strings winding

x′4. The quantization gives the 4d massive vector multiplet V4 that is also the KK mode

of the 5d massive tensor multiplet T5. The original four position moduli of the instantons

become the three position moduli plus one momentum moduli. tan θ = P4/P5. The (p, q)

string can be open or closed, thus carries the [i, j] charge or not, so is the corresponding 4d

vector multiplet.

On the other hand, if Fi4 = θ = 0, the equations will be

F0i = −DiX
6,

1

2
εilm4Flm = 0, (85)

whose solutions are [i, j] F1 strings, the quantization of which gives the 5d vector multiplet

V5. E = |QE|. When θ 6= 0,

F0i = − cos θDiX
6,

1

2
εilm4Flm = sin θDiX

6. (86)
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The solution describes the bound state of the [i, j] F1 and the [i, j] monopole string extending

along x4, whose quantization also gives the 4d vector multiplet V4. E =
√
Q2
E +Q2

M4.

tan θ = QM4/QE. In this case, θ is just the previously mentioned label for the selfdual

strings parallel to the 45 plane. A reduction along x5 is made to get the states with P5 = 0.

Selfdual strings extending along x5 already have P5 = 0 and is projected to a point in 5d.

The rest selfdual strings are projected to a straight line extending along x4, which is the

bound state of the [i, j] F1 and the [i, j] monopole string. F1 has the definite momentum

P4 = 0, while the monopole string carries no D0 charge, so the bound state is the zero mode

of the 6d theory on x4 × x5, which should be unique, but is now degenerate.

For 1/4 BPS state, when θ = 0, we get (75), whose solution is the dyonic instanton, the

quantization of which gives the 5d massive (2, 1) multiplet with 26 complex states composed

by 1 spin-3/2 fermion, 13 spin-1/2 fermions, 2 selfdual tensors, 4 vectors and 10 scalars

[11], which is actually the previously mentioned T5 ⊗ ([1/2] ⊕ [0] ⊕ [0]). When θ 6= 0, the

equations are (72) and (73). The solution corresponds to the bound state of the string and the

monopole string, carrying the P4 P5 transverse momentum respectively. The string and the

monopole string carry the different charge, for example, [i, j] and [j, k]. The quantization

gives the 4d V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]) multiplet with 26 real states composed by 1 spin-3/2

fermion, 14 spin-1/2 fermions, 6 vectors and 14 scalars, which is the massive KK mode of

T5 ⊗ ([1/2] ⊕ [0] ⊕ [0]). Notice that for the F1-D0 bound state, D0 is chargeless, so the

corresponding multiplet can only carry the [i, j] charge. On the other hand, for the F1-D2

bound state with the transverse momentum involved, F1 and D2 may carry the [i, j] and

[j, k] charges, and so the corresponding multiplet may have the index [i, j, k]. Just as the

1/2 BPS case, D0 in momentum other than position eigenstate of x4 can carry charge.

5.2 Selfdual string carrying the longitudinal momentum

It is convenient to work in D3 picture. With x4 compactified, under the T-duality transfor-

mation along x4, A4 → X4. Let F0a = Ea,
1
2
εabc4Fbc = Ba, (72) and (73) could be rewritten

as

Ea = sin θDaX
4 − cos θDaX

6, (87)

Ba = cos θDaX
4 + sin θDaX

6, (88)

which are the standard BPS equations for the N = 4 SYM theory with two scalar fields X4

and X6 turned on. In the language of the N = 4 SU(N) SYM theory,∫
dSa Ea = ep ·H,

∫
dSa Ba =

4π

e
q ·H, (89)

where the vectors p and q are the electric and the magnetic charges respectively. H generates

the Cartan subalgbra of SU(N).

p ·H = diag(p1, p2, · · · , pN), q ·H = diag(q1, q2, · · · , qN), (90)
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∑N
i=1 pi =

∑N
i=1 qi = 0. Suppose

〈
XI
〉

= vI ·H = diag(vI1 , v
I
2 , · · · , vIN), v6

1 ≥ v6
2 ≥ · · · ≥ v6

N ,

Q4
E =

∫
d3x ∂atr

[
X4Ea

]
= ep · v4 = e

N∑
i=1

piv
4
i ∼ −P4, (91)

Q6
E =

∫
d3x ∂atr

[
X6Ea

]
= ep · v6 = e

N∑
i=1

piv
6
i ∼ QE, (92)

Q4
M =

∫
d3x ∂atr

[
X4Ba

]
=

4π

e
q · v4 =

4π

e

N∑
i=1

qiv
4
i ∼ −P5, (93)

Q6
M =

∫
d3x ∂atr

[
X6Ba

]
=

4π

e
q · v6 =

4π

e

N∑
i=1

qiv
6
i ∼ −QM4. (94)

The energy becomes9

E =
√

(Q4
E +Q6

M)2 + (Q6
E −Q4

M)2. (95)

x4 ∼ x4 + 2πnR. The transverse position of the ith D3 brane in 4-6 plane could be denoted

by (v4
i , v

6
i ), where vIi ∈ (−∞,+∞).

The generic 1/2 BPS state is the (p, q) string connecting the i j D3 branes with the mass

E =

√
[ep(v6

i − v6
j )−

4π

e
q(v4

i − v4
j )]

2 + [
4π

e
q(v6

i − v6
j ) + ep(v4

i − v4
j )]

2. (96)

Especially, if e2p(v6
i − v6

j ) = 4πq(v4
i − v4

j ), the state will reduce to a [j, i] D2 brane carrying

[j, i] P4 momentum, while if 4πq(v6
i −v6

j ) = −e2p(v4
i −v4

j ), the state will become a [i, j] string

with [j, i] D0 charge. Notice that in this case, the P4 momentum and the D0 charge spread

uniformly over the D2 branes and the strings.

The simplest 1/4 BPS state is the 3-string junction with i j k representing three distinct

D3 branes with coordinates (v4
i , v

6
i ), (v4

j , v
6
j ), (v4

k, v
6
k). With the charge vector ve = (1, 0,−1),

vm = (0, 1,−1), the mass is

E =

√
[e(v6

i − v6
k)−

4π

e
(v4
j − v4

k)]
2 + [

4π

e
(v6
j − v6

k) + e(v4
i − v4

k)]
2. (97)

The corresponding state on D4 is a [i, k] string with v4
k− v4

j D0 charge and a [k, j] D2 brane

with v4
k − v4

i P4 momentum. Especially, when e2(v6
i − v6

k) = 4π(v4
j − v4

k), the state reduces

to the [k, j] D2 brane carrying [k, i] P4 momentum, while when 4π(v6
j − v6

k) = e2(v4
k − v4

i ),

the state reduces to the [i, k] string carrying [k, j] D0 charge. The [i, k] string and the [k, j]

D2 brane are parallel, so the bound state does not exist, nevertheless, with suitable amount

of P4 momentum and the D0 charge, the bound state may form. With the given A4, the

[i, j] string (D2 brane) can only carry the [i, j] P4 momentum (D0 charge). However, they

can carry the [j, k] or [i, k] D0 charge (P4 momentum), which is actually the transverse

9For (95) to be valid, for the given vI , p q should be selected so that Z+ ≥ Z−, otherwise E =√
(Q4

E −Q6
M )2 + (Q6

E +Q4
M )2.
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momentum of the [j, k] or [i, k] D2 brane (string). The [i, j] selfdual string carrying the [j, k]

longitudinal momentum has the N3 scaling.

Now, consider string webs with more external legs. For i ≥ k ≥ l ≥ j, the [i, j] D2 brane

(string) [k, l] string (D2 brane) bound states do not exist. The bound state may exist if the

[k, l] string (D2 brane) carries the appropriate P4 momentum (D0 charge). In general, the

charge vector can be taken as pi = 1, pj = −1, pa = 0 for a 6= i, j, qa = 0 for a > i or a < j.

P4 = e(v4
j − v4

i ), QE = e(v6
i − v6

j ),

P5 = −4π

e

i∑
m=j

qmv
4
m =

4π

e

i∑
m=j

rm(v4
m+1 − v4

m),

QM4 = −4π

e

i∑
m=j

qmv
6
m =

4π

e

i∑
m=j

rm(v6
m+1 − v6

m). (98)

This is the bound state of the [i, j] string and rm [m+1,m] D2 branes each carrying v4
m+1−v4

m

[m + 1,m] D0 charge. Especially, if the [i, j] string carries the transverse momentum P4 so

that P4 + QM4 = 0, the state will reduce to the [i, j] string with rm v4
m+1 − v4

m [m + 1,m]

D0 charge. Conversely, one may let qi = 1, qj = −1, qa = 0 for a 6= i, j, pa = 0 for a > i or

a < j.

P5 =
4π

e
(v4
j − v4

i ), QM4 =
4π

e
(v6
j − v6

i )

P4 = −e
i∑

m=j

pmv
4
m = e

i∑
m=j

sm(v4
m+1 − v4

m),

QE = e
i∑

m=j

pmv
6
m = −e

i∑
m=j

sm(v6
m+1 − v6

m). (99)

The corresponding state is the bound state of the [j, i] D2 brane and sm [m,m + 1] strings

each carrying the v4
m+1− v4

m P4 momentum. When P5 +QE = 0, the state becomes [j, i] D2

brane carrying sm v4
m+1 − v4

m [m+ 1,m] P4 momentum.

We can give a more precise description for these longitudinal-momentum-carrying states.

For example, for string web in Fig.1, suppose the strings extending in x4 x6 directions

are (1, 0) and (0, 1) strings, while the rest ones are (1, 1) strings, then the state could be

taken as the [i, n] D2 extending along x4 × x6, for which, the [i, j] [k, l] [m,n] D2 carry the

zero P4 momentum, the [j, k] [l,m] D2 have the uniformly distributed TF1|v4
ab|, TF1|v4

cd|, P4

momentum, while the rest TF1|v4
ja|, TF1|v4

bk|, TF1|v4
lc|, TF1|v4

dm|, P4 momentums are localized

on the jth, kth, lth, mth D4 branes.

[i, j] D2 (F1) is composed by [i, i+ 1] · · · [j − 1, j] D2’s (F1’s). Each [a, a+ 1] D2 (F1)

must have the same transverse velocity, otherwise, the bound state cannot be formed. On

the other hand, the longitudinal momentums along x4 (x5) on each [a, a + 1] D2 (F1) are

independent, so the degrees of freedom on the [i, j] D2 (F1) is j − i. Altogether, there are

N(N − 1)/2 [i, j] D2 (F1), therefore, the total number of degrees of freedom is (N3−N)/6.
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Figure 1: The ijklmn string web

The N3 scaling comes from the longitudinal momentum. Both transverse momentum and

the longitudinal momentum carry the charge. The [i, j] D2 (F1) can only carry the [i, j]

transverse momentum but the [k, l] longitudinal momentum for any i ≤ k < l ≤ j. The

index calculation in [28] also showed the (N3−N)/6 degrees of freedom for the longitudinal

momentum mode on open D2’s connecting D4’s.

6 The degrees of freedom at the triple intersection of

M5 branes

In this section, we will consider the the triple intersecting configuration of the M5 branes

5⊥5⊥5. We will discuss the possible string junctions and their relevance with the N3 degrees

of freedom at the triple interaction.

Suppose there are N1, N2, N3, M5 branes extending in 0 1 2 3 4 5 direction, 0 1 2 3 6 7

direction, and 0 1 4 5 6 7 direction respectively (see Fig.2). The common transverse space

0      1      2      3      4      5      6      7      8      9      10

  *      *      *      *      *      *M5

M5

M5

  *      *      *      *                      *      *

  *      *                      *      *      *      *

Figure 2: The M5 M5 M5 configuration

is x8 x9 x10, while the common longitudinal spacetime is x0 x1 with x0 the time direction.
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If x8 = x9 = x10, the N1 + N2 + N3 M5 branes will have N1N2N3 triple intersections no

matter whether each bunch of M5 branes are coincident or not. The black hole entropy

calculation shows that there are N1N2N3 degrees of freedom at the triple intersections, so

each intersection will offer one degree of freedom [29]. The situation can be compared with

the 4⊥4 configuration for N1 and N2 intersecting D4 branes with N1N2 3d intersections.

There are U(1) × U(1) massless hypermultiplets living at each intersection, producing the

N1N2 entropy. So, we may expect that similarly the triple intersection will also capture some

nonabelian features of M5.

Consider one intersection and label the three M5 branes by i, j, k. In the most generic

case, i j k M5 branes appear as three points vIi v
I
j v

I
k in x8×x9×x10 transverse space. Still,

we want to compactify two longitudinal dimensions of M5 branes to simplify the problem.

There are two distinct possibilities: x2 × x4 and x2 × x1. M theory compactified on x2

gives the type IIA string theory, with the i j k M5’s becoming the D4 D4 NS5. The triple

intersection of the D4 D4 NS5 branes still have the N1N2N3 entropy, so the KK mode along

x2 can be safely dropped10.

0      1      2      3      4      5      6      7      8      9      10

  *      *              *              *D3

D5

NS5

  *      *              *      *              *      *

  *      *                      *      *      *      *

Figure 3: The D3 D5 NS5 configuration

Then compactify on x4 with the radius R4 and do a T-duality transformation, we get

D3 D5 NS5 (see Fig.3). The state carrying [i, j, k] index is the 3-string junction with (p, q),

(p, 0), (0, q) strings ending on D3 D5 NS5, which will become massless when vIi = vIj = vIk.

This is the scenario discussed in [30]. The 3-string junction is the point-like particle in

x0 × x1, so they may give the field f ijk(x0, x1) localized at the intersection. In M theory

with x2 × x4 compactified to T 2, the 3-string junction is lifted to a M2 embedded along a

holomorphic curve in x2 × x4 × x8 × x9 × x10, ending on the three M5’s along (pR2, qR4),

pR2, qR4 [26]. Still, the problem is that when the three M5 branes intersect, the 3-string

junction is at the threshold and may decay into the component strings. If they do decay,

then at the triple intersection, there will be no BPS state related with all three branes.

The other possibility is to compactify on x1 with the radius R1 and also do a T-duality

transformation. We get D3 D3 NS5 (see Fig.4). In x8 × x9 × x10, no string junction can

10The P2 momentum may have the relevance with the c = 6 central charge. With one M5 fixed, there
are 4 moduli to characterize the 5⊥5⊥5 intersection, while for D4 D4 NS5, only 3 moduli are left, since the
motion along x2 is frozen.
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Figure 4: The D3 D3 NS5 configuration

be formed. We may consider the 3-string junction in, for example, x1 × x8 plane. The KK

mode along x1 cannot be dropped. Actually, in the T-dual picture, x1 is a circle with the

radius 1
TF1R1

, so D3 and D3 will be separated with the distance m
TF1R1

in the covering space.

i

j

k
o

i
o

o’
j

k
o

(A) (C)(B)

j

i

Figure 5: The 3-string junction in 18 plane

In x1 × x8 plane, NS5 is a straight line locating in v8
k, while the i j D3’s appear as two

points with coordinates (v1
i , v

8
i ), (v1

j , v
8
j ), v

1
ij = m

TF1R1
. The simplest 3-string junctions are

given in Fig.5. In Figure 5 (A) and (C), the io oj ok strings carry the charge (p, q) (p, 0)

(0, q), tan 6 ioj = − qR1

pR2
. In Figure 5 (B), the io oo′ o′j strings carry the charge (p, q) (p, 0)

(p, q), tan 6 ioo′ = tan 6 oo′j = − qR1

pR2
. Actually, there are also (0, q) oa string and the (0, q) bo′

string ending on NS5 with the zero length. The string junctions like this always exist. The

mass of the string junctions in (A) and (C) is qTD1|v8
ik| + pTF1|v1

ij|. The mass of the string

junctions in (B) is qTD1|v8
ij|+ pTF1|v1

ij|. In the T-dual picture, Figure 5 (A) corresponds to

q [i, k] monopole strings with tension TM2|v8
ik| wrapping x1 carrying the [i, j] longitudinal

momentum P1 = pm/R1. The situation is similar for Figure 5 (C). Figure 5 (B) corresponds

to q [i, j] monopole strings with tension TM2|v8
ij| wrapping x1 carrying the [i, j] longitudinal

momentum P1 = pm/R1.

When v8
i = v8

j = v8
k, Figure 5 (A) and (C) reduce to the [i, k] tensionless monopole strings

wrapping x1 carrying the [i, j] longitudinal momentum P1 = m/R1, which is offered by the

potentially existing [i, j] massless string. In Figure 5 (B), with oa oo′ or oo′ bo′ kept, the

state becomes the [i, k] or [k, j] tensionless monopole string wrapping x1 carrying the [i, j]

32



longitudinal momentum P1 = m/R1 offered by the [i, j] massless string. Monopole string

wrapping x1 carrying P1 momentum corresponds to the KK mode of f ijk(x0, x1) along x1.

Again, at the intersection, the state may decay into the monopole string and the string, and

then there will be no BPS state relevant to all three branes.

At the 5⊥5⊥5 intersection of three NS5A’s or NS5B’s or D5’s, there are type IIA strings,

or type IIB strings, or D-strings living at the intersection. The F-string or D-string has the

4d transverse monition thus may produce the c = 6 central charge. The oscillation of the

F-string or D-string gives the P1 momentum. The problem is that neither F-string nor D-

string carries charge, so it is difficult to explain their relation with the three intersecting

branes.

7 Discussion

In this paper, we considered the momentum modes of the M5 branes on a plane, which

are the transverse momentum of the selfdual strings parallel to that plane. Different from

the D branes, on which, the momentum modes are carried by the same kind of point-like

excitations, here, the unparallel momentum modes are carried by selfdual strings with the

different orientations. Selfdual strings with the same orientation gives a 5d SYM theory with

the field configurations taking the zero Pontryagin number. The original 6d (2, 0) tensor

multiplet field is then decomposed into a series of θ-parameterized 5d U(N) SYM fields,

among which, fields labeled by the same θ have the standard SYM-type interaction. Fields

labeled by different θ are associated with the selfdual strings with the different orientations.

As a result, the [i, j] + [j, k]→ [i, k] relation is not valid and the coupling cannot be realized

as the standard matrix multiplication.

Since the bound state of the [i, j] θ1 selfdual string and the [j, k] θ2 selfdual string is

not some [i, k] selfdual string but the 3-string junction, we may also include the string

junction into the theory. Each 3-string junction is characterized by (θ1, θ2, θ3), forming

the tri-fundamental or anti-tri-fundamental representation of U(N), and may couple with

the θ1 θ2 θ3 selfdual strings in adjoint representation of U(N). [i, l] + [l, j, k] → [i, j, k],

[j,m] + [i,m, k]→ [i, j, k], [k, n] + [i, j, n]→ [i, j, k].

The quantization of the 3-string junction will give the higher-spin multiplet, for which

the simplest one is the (2, 1) multiplet with the highest spin 3/2. It is unclear whether

the introducing of the 3-string junction will solve the problem or bring more problems,

since at the beginning, we only want to get a theory for the (2, 0) tensor multiplet. The

incorporation of the 5d massive (2, 1) multiplet into the 6d (2, 0) theory compactified on S1

was also discussed in [15], where it was suggested that the algebraic structure of the 6d (2, 0)

theory may have a fermionic symmetry in addition to the self-dual tensor gauge symmetry.

Each 3-string junction carries three indices, so they may offer the N3 degrees of freedom

on N M5 branes. However, the existing of the 3-string junction is severely restricted by the

marginal stability curve, outside of which, the string junction may decay into the strings.
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For the given vacuum expectation values of the scalar fields on M5, the momentum of the

string junction on that plane cannot be arbitrary. Especially, on coincident M5 branes, the

3-string junctions are at best at the marginal stability curve, so it is quite likely that they

may decay.

Maybe it is easier consider the problem in the dual D3 picture. For D3 with the trans-

verse dimension x′45 compactified, the winding mode of the (p, q) strings is dual to the

(n/R4,m/R5) momentum mode on M5. For the give p and q, open (p, q) strings with the

arbitrary winding numbers have the SYM interaction. Then the questions are whether the

open (p, q) (r, s) strings can interact or not, if can, in which way, what is the situation when

D3 branes are coincident.

Among all selfdual strings, only those parallel to a given plane are taken as the pertur-

bative degrees of freedom; nevertheless, different planes give the dual theories. One may

compare the 6d theory with the 5d and 4d theories coming from the reductions on x5 and

x4 × x5. Obviously, selfdual string extending along x5 is the only candidate to define the 5d

theory. However, for 4d theory, any selfdual string parallel to the 45 plane, carrying zero

transverse momentum along it can act as the perturbative degrees of freedom. Only one is

selected to give the 4d field, while the rest ones define the dual theories. Similarly, for 6d

theory, selfdual strings parallel to a specific plane can be taken to give the 6d field, while

the other planes give the dual versions. M5 on S1 × S2 × S3 × S4 × S5 is dual to D3 on

Si × Sj × Sk with a transverse S ′lm, where {1, 2, 3, 4, 5} = {i, j, k, l,m}. The (p, q) string

ending on D3 winding S ′lm is dual to the selfdual string extending in (qRl, pRm) direction,

carrying transverse momentum in xl×xm, localized in xi×xj×xk. There are 10 possible dual

theories, corresponding to choosing the selfdual strings parallel to 10 different 2d subspaces.

M5 on T 5 is SL(5, Z) invariant. However, the 6d theory on M5 does not have the

explicit SL(5, Z) invariance. The SL(5, Z) U-duality transformation, or the SO(5) U-duality

transformation in R5, is not a simple differorphism transformation but is also accompanied

by a reallocation of the perturbative and the nonpertubative degrees of freedom. The U-dual

6d theories are equivalent, so the SL(5, Z) transformation is just like a change of the gauge.

This is similar with the D3. Although D3 is S-duality invariant, the 4d theory on D3 does

not have the SL(2, Z) invariance. The nonpertubative SL(2, Z) transformation gives the

equivalent 4d theories.
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