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ABSTRACT

Power delivery presents key design challenges in today’s systems ranging from high perfor-

mance micro-processors to mobile systems-on-a-chips (SoCs). A robust power delivery system

is essential to ensure reliable operation of on-die devices. Nowadays it has become an important

design trend to place multiple voltage regulators on-chip in a distributive manner to cope with

power supply noise. However, stability concern arises because of the complex interactions be-

tween multiple voltage regulators and bulky network of the surrounding passive parasitics. The

recently developed hybrid stability theorem (HST) is promising to deal with the stability of such

system by efficiently capturing the effects of all interactions, however, large overdesign and hence

severe performance degradation are caused by the intrinsic conservativeness of the underlying

HST framework. To address such challenge, this dissertation first extends the HST by proposing a

frequency-dependent system partitioning technique to substantially reduce the pessimism in stabil-

ity evaluation. By systematically exploring the theoretical foundation of the HST framework, we

recognize all the critical constraints under which the partitioning technique can be performed rig-

orously to remove conservativeness while maintaining key theoretical properties of the partitioned

subsystems. Based on that, we develop an efficient stability-ensuring automatic design flow for

large power delivery systems with distributed on-chip regulation. In use of the proposed approach,

we further discover new design insights for circuit designers such as how regulator topology, on-

chip decoupling capacitance, and the number of integrated voltage regulators can be optimized for

improved system tradeoffs between stability and performances.

Besides stability, power efficiency must be improved in every possible way while maintaining

high power quality. It can be argued that the ultimate power integrity and efficiency may be best

achieved via a heterogeneous chain of voltage processing starting from on-board switching voltage

regulators (VRs), to on-chip switching VRs, and finally to networks of distributed on-chip linear

VRs. As such, we propose a heterogeneous voltage regulation (HVR) architecture encompassing

regulators with complimentary characteristics in response time, size, and efficiency. By exploring
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the rich heterogeneity and tunability in HVR, we develop systematic workload-aware control poli-

cies to adapt heterogeneous VRs with respect to workload change at multiple temporal scales to

significantly improve system power efficiency while providing a guarantee for power integrity. The

proposed techniques are further supported by hardware-accelerated machine learning prediction of

non-uniform spatial workload distributions for more accurate HVR adaptation at fine time gran-

ularity. Our evaluations based on the PARSEC benchmark suite show that the proposed adaptive

3-stage HVR reduces the total system energy dissipation by up to 23.9% and 15.7% on average

compared with the conventional static two-stage voltage regulation using off- and on-chip switch-

ing VRs. Compared with the 3-stage static HVR, our runtime control reduces system energy by up

to 17.9% and 12.2% on average. Furthermore, the proposed machine learning prediction offers up

to 4.1% reduction of system energy.
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1. INTRODUCTION∗

1.1 Preliminaries

1.1.1 Power Delivery Network (PDN)

Very Large-Scale-Integration (VLSI) power delivery networks (PDNs) are critical IC subsys-

tems for distributing power from external supply source to on-die devices. A robust power delivery

system is essential to ensure reliable operation of circuits on a chip. The main functions of IC PDNs

include [4, 5]:

• Converting a high external supply voltage to a required on-chip voltage level for each power

domain with high energy efficiency.

• Providing fast line and load regulation during abrupt input voltage or output current changes

to satisfy supply noise constraint.

• Supporting advanced power management techniques such as dynamic voltage frequency

scaling (DVFS).

A typical PDN consists of off-chip voltage regulators (VRs), parasitics of printed circuit board

(PCB) and package, integrated VRs, on-die power grids and fast switching current loads. Besides,

there are both off-chip decoupling capacitors (decaps) and on-chip decaps in the power grids to

help mitigate voltage fluctuations caused by fast switching activities of load circuits. The diagram

of a complete PDN is illustrated in Fig. 1.1.

∗ c©2016 ACM. Reprinted, with permission, from Xin Zhan, Peng Li and Edgar Sánchez-Sinencio, "Distributed
On-Chip Regulation: Theoretical Stability Foundation, Over-Design Reduction and Performance Optimization", Pro-
ceedings of the 53rd Annual Design Automation Conference (DAC). ACM, June 2016. c©2018 IEEE. Reprinted, with
permission, from Xin Zhan, Peng Li and Edgar Sánchez-Sinencio, "Taming the Stability-Constrained Performance
Optimization Challenge of Distributed On-Chip Voltage Regulation", IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems. IEEE, July 2018. c©2018 IEEE. Reprinted, with permission, from Xin Zhan,
Joseph Riad, Peng Li and Edgar Sánchez-Sinencio, "Design Space Exploration of Distributed On-Chip Voltage Reg-
ulation Under Stability Constraint", IEEE Transactions on Very Large Scale Integration (VLSI) Systems. IEEE, April
2018.
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Figure 1.1: A typical structure of IC power delivery network (PDN).

1.1.2 Voltage Regulators (VRs)

Voltage regulators (VRs) are key components of a power delivery network with the main func-

tion of providing stable and correct voltages in response of dynamics in both input voltage and

load currents. The characteristics of VRs have critical impact on power efficiency and regulation

response of the entire PDN system. Buck switching VR and linear VR such as low dropout voltage

regulator (LDO) are commonly used for voltage conversion and regulation, respectively. To suf-

ficiently supply power, a higher voltage from external supply is usually stepped down by off-chip

buck VRs switching at a rate of hundreds of KHz to tens of MHz [6, 7, 8]. They can achieve

excellent power efficiency over a wide output range at the expense of bulky and costly off-chip

passive components. However, off-chip VRs have slow response times, and hence cannot support

fine-grained dynamic voltage scaling (DVS) which changes the voltage supply levels according to

the runtime computation needs of processor [9, 10, 11, 12]. There has been a great deal of progress

on fully-integrated buck switching VRs thanks to on-die/in-package inductors and new magnetic

materials [13, 14, 15]. Operating at a much higher frequency of tens or hundreds of MHz, fully

integrated switching VRs come with fast response times and promises for efficient local power
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delivery and fine-grain DVS. However, Integrating high-Q power inductors to support high cur-

rent density with low loss is still a significant challenge [13, 14, 15]. Compared to their off-chip

counterparts, on-chip switching VRs incur more conduction and switching losses, leading to lower

efficiency, especially at light loads. As an alternative of on-chip switching buck VRs, on-chip lin-

ear voltage regulators (e.g. LDOs) are area efficient and can achieve sub-ns response times [16].

However, their efficiency drops with increasing dropout voltage, making them inefficient for wide-

range voltage conversion. Clearly, those VRs have their own pros and cons and the VR topology

should be carefully selected according to the specific application requirements.

1.1.3 Distributed Voltage Regulation

Off-
chip
Buck

12V

Off-Chip On-Chip

VR

Vin

VR

Vin
VR

Vin

VR

Vin

...

...

...

...

... ... ... ...
VDD Grids

Figure 1.2: Demonstration of distributed voltage regulation.

Recently, it has become an important trend to place multiple on-chip VRs close to heavy-noise

circuitries in a distributive manner [17, 18, 19, 20, 16, 21, 22]. The distributed voltage regulation

system, as demonstrated in Fig. 1.2, has several important advantages. First, it forms an intercon-

nected active regulation network and shortens the distance between any load location on the power

grids and the nearest VR, resulting in reduced di/dt noises and IR drops [16]. The improved sup-
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ply noise can be further translated into a lower safe-operating voltage guardband, achieving energy

reduction of the entire system. Second, it enables fine-grained power management system where

the voltage supply levels can be independently controlled for different circuit blocks. In addition,

the use of distributed voltage regulation contributes to a better distribution of heat [23]. Due to all

the benefits as discussed above, distributed voltage regulation is receiving a large amount of inter-

ests in the design of power delivery network for modern high-performance SoCs and processors.

For instance, the recent POWER8 microprocessor integrates over a thousand on-chip micro-VRs

to support 48 power domains [21].

1.2 Present Challenges in PDN Design

We summarize several important design challenges for modern PDN designs as below:

• Stability. Stability is the first-order design consideration for power delivery system. An un-

stable PDN can induce sustained supply voltage oscillations in the on-chip power grids and

cause severe circuit performance degradation or even chip function failure. Although dis-

tributed voltage regulation has many appealing benefits as aforementioned, designing such

a PDN system with guaranteed stability is very challenging. As illustrated in Fig. 1.3(a),

a large number of feedback loops are formed in a distributed PDN system due to the com-

plex interactions between a large number of integrated active VRs, bulky on-chip passive

power grids, and on-board/package parasitics, giving rise to pressing stability design chal-

lenges. It has been observed that integrating multiple stable LDO VRs with large gain/phase

margin can render the entire network unstable (Fig. 1.3(b)), invalidating the conventional

phase/gain margin based stability metric targeting single-loop systems. On the other hand,

the brute force pole analysis has a cubic computational complexity, and is hence not practical

for real-life PDNs.

• Power efficiency. Power efficiency has become one of the greatest bottlenecks for modern

systems-on-a-chips (SoCs). While transistor sizes continue scaling down, power limitations

diminish the fraction of usable chip area [24, 25]. The arrival of the dark silicon age, i.e.,
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Figure 1.3: (a) A large number of feedback loops formed by complex interactions among active
voltage regulators, PCB/package parasitics and bulky power grids, and (b) resultant continuous
oscillation in a PDN integrating four LDOs with phase margin > 100◦.

cores in many-core processors cannot be powered on at the time is precisely due to the un-

acceptable power and thermal limits. Therefore, power management must be leveraged to

improve system power efficiency in every possible way. During runtime, modern proces-

sors must adapt to the very dynamic workloads with diverse compute, memory and temporal

characteristics with efficiency. At system and architecture level, various power management

techniques such as dynamic voltage frequency scaling (DVFS) [9, 10, 11, 12, 26] and clock

gating [27, 28] have been proposed to save power and improve the overall processor’s per-

formance. At circuit level, dynamic workloads and power management can push the VRs

away from their optimal operating points, degrading the efficiency of the entire PDN sys-

tem. Therefore, modern PDNs have to be workload-aware and re-configurable to minimize

the power loss in power delivery.
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• Power quality. Power must be delivered to on-die devices with high quality to prevent

operational failures such as timing violations. In addition to the stability issue highlighted

already, several other design challenges arise for maintaining a desirable power delivery

quality while maximizing the power efficiency. The ever-growing stringent workload de-

mands in today’s high-performance SoCs cause significant di/dt dynamics and IR drops

across the power grids, increasing the risk of voltage emergencies (i.e. supply voltage noise

exceeding a safe-operating margin). On the other hand, the use of advanced power manage-

ment techniques further exacerbates the supply noise. For example, power gating [27, 28]

incurs large voltage fluctuations in the power supply, while adaptive frequency and voltage

control [26, 29, 30, 31] reduces the amount of voltage guardband to save power and thus

causes smaller safe-operating margin for noise tolerance. The overall effect is that the PDN

is facing more and more design challenges to ensure power quality.

1.3 Survey of Previous Work

In the past few decades, there have been a lot of efforts and progresses on the stability-oriented

PDN design approaches and adaptive power management for improved tradeoffs among power

efficiency and quality.

1.3.1 Survey of Stability-Ensuring PDN Design

There are prior works such as [32] exploring the interaction between a single voltage regulator

and a passive input network by examining the open-loop characteristic for the coupled system.

However those approaches cannot be applied to our PDN system since deriving the transfer func-

tion for the bulky passive network is impractical and it cannot find a major loop in the multi-loop

PDN system to open for the stability analysis. Targeting at a distributed PDN with multiple on-chip

LDOs, [20] employs an adaptive RC compensation network to maintain a high phase margin for

each single VR over a wide range of load currents and process, voltage, and temperature (PVT)

variations. However, as discussed already, the classical single-loop based stability metrics such

as phase/gain margin fail to capture the complex interaction between active VRs and passive net-
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works and can lead to misleading stability result. Besides, [20, 33] study the stability of distributed

power system through an equivalent single-loop small-signal model, assuming equally shared load

current and symmetry VR placement. Such simplified model compromises the accuracy for sta-

bility analysis. Therefore, it is highly desirable to conduct more systematic and rigorous analysis

towards the stability of complex PDN systems.

Recently, several new design methodologies are proposed by leveraging the control theorems

targeting at multiple-input-multiple-output (MIMO) systems. A stability criterion based on the

passivity theory has been proposed in [34] and the effectiveness of this approach has been demon-

strated on practical power delivery systems. Earlier, [22, 35, 36] have presented a more desirable

localized stability-ensuring design methodology based on hybrid stability theory (HST) [37] for

large PDNs with distributed voltage regulation. This approach partitions the PDN system into a

feedback interconnection of the passive network and the active voltage regulators, and then the

HST is applied to check the system stability efficiently. Since HST leverages the passivity and

gain of the PDN system simultaneously, more design freedom is provided. Nonetheless, both

the passivity theory and HST only provide sufficient conditions for stability, and hence can lead

to pessimism in stability analysis and severe performance degradation due to large over-design

[38, 39]. Besides, the associated new design approaches based on complicated control theorems

are unfamiliar to circuit designers and, as a result, cannot offer much intuition to designers [40].

1.3.2 Survey of Adaptive Power Management

To save power, various power management techniques [9, 10, 11, 12, 26] have been proposed

recently at the system and architecture level. For example, [9] explores the benefits of fast DVFS at

sub-us time scale using on-chip switching regulators. And [26] proposes an adaptive guardbanding

approach to dynamically adapt the operating voltage and frequency of the chip based on timing-

margin measurements at runtime. These DVFS techniques are more focus on the optimization

of processor’s power and performance, without exploring the energy reduction opportunity in the

PDN which delivers energy to the processor.

At the circuit level, several works have investigated the benefits of workload-aware PDN de-
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signs [41, 42, 43, 44, 45]. They attempted to optimize the power efficiency of the system by

reconfiguring the PDN according to the practical workload of the processor at runtime. In [41],

multiple power domains with the same supply voltage level can be consolidated to share a single

off-chip inductor-based buck VR to avoid low conversion efficiency at light load condition. In the

same spirit, [42] proposes a reconfigurable PDN in which the output of multiple VRs can be com-

bined when the amount of workload exceeds the maximum workload for a single VR. These PDN

reconfiguration techniques are all based on the core- or chip-level workload estimations without

considering on-chip distributed LDOs and finer grained spatial workload distribution which can

significantly impact power delivery quality. Targeting a 2-stage PDN using both off-chip and on-

chip switching VRs, a workload-aware Quantized Power Management (QPM) scheme is proposed

in [43] to dynamically adjust the number of active on-chip and off-chip switching VRs at multiple

granularities according to the chip-level runtime workload. However, they do not consider the in-

terdependencies among different power stages during power efficiency optimization and lack the

demonstration of guaranteed power integrity while tuning the PDN.

1.4 Proposed Solutions

This dissertation is motivated by the foregoing problems in the design of modern PDNs. New

methodology and approach are proposed for stability-ensured PDN design and workload-aware

power management.

1.4.1 Proposed Stability-Ensuring PDN Design Methodology

As discussed earlier, the recently developed hybrid stability theory (HST) provides an efficient

stability checking and design approach, giving rise to highly desirable localized design of PDNs.

However, the inherent conservativenesss of the hybrid stability criteria can lead to pessimism in

stability evaluation and hence large overdesign. In this dissertation, we present several new contri-

butions towards establishing a theoretically complete framework for HST-based PDN design and

pessimism reduction.

• We first identify the great overdesign reduction opportunities brought by smart PDN system
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partitioning. Correspondingly, a frequency-dependent partitioning technique is proposed to

do so optimally. By the virtue of the fact that HST is only a sufficient stability condition, the

presented partitioning technique allows for bidirectional frequency-dependent admittance

splitting between the passive power grids and active voltage regulators in such a way to

minimize pessimism in PDN stability analysis. Importantly, we prove that the proposed

bidirectional admittance splitting only changes how the system-level building blocks are

constructed and internal feedback loops are formed, but does not alter the overall physical

PDN system.

• We further show that appropriate application of HST requires that the two partitioned PDN

system blocks fall into the H∞ space. This leads to the recognition of two important con-

straints for performing admittance splitting: 1) the frequency-dependent splitting functions

need to be well-behaving, i.e. they shall be in theH∞ space to ensure that the re-partitioned

admittance matrices of both the passive block and regulator block are in theH∞ space; 2) the

impedance matrix of the re-partitioned passive block, which is the inversion of its admittance

matrix, shall not have singularities in the right half complex plane. The first constraint can be

satisfied by defining the frequency-dependent splitting functions with a set of well-behaving

filters. Although the second constraint is a non-problem for the original RLC passive block

whose admittance and impedance matrices are always stable, the artificially partitioned pas-

sive block can violate such constraint and thus invalidate the application of HST. To meet

the second constraint, we propose to adopt the generalized Nyquist stability criterion for

multiple-input-multiple-output (MIMO) systems to check the stability of the inversion of the

admittance matrix (i.e. impedance matrix) of the passive block. Correspondingly, we append

the stability examination of the impedance matrix of the passive block to an optimal hybrid

stability margin (HSM) evaluator to rigorously assess the whole-system stability. This leads

to a theoretically rigorous and robust automated PDN design flow for joint optimization of

key system specifications such as stability, regulation performance, and power efficiency via

localized design of the voltage regulators.
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• Using a comprehensive set of design studies, we demonstrate that our stability evaluator

significantly reduces pessimism in stability analysis, which translates into large performance

gains produced by our automated design flow. When compared to the classical phase margin

design approach which provides no guarantee of stability, the proposed approach ensures

stability while improving system performance by up to 53%, measured by a figure of merit

(FOM). Furthermore, on average our approach boosts the FOM by 113% while consuming

11% less power compared to a reference hybrid stability design approach.

• As helpful as the new HST-based PDN design methodology is, the new stability margin is

unfamiliar to circuit designers and, as a result, the above design approach cannot offer much

intuition to designers, and therefore stability-constrained design intuitions are derivable. In

this dissertation, our systematic analysis further reveals unique design considerations which

can significantly impact the system-level stability and performances. Within a large design

space, a comprehensive set of design studies are conducted to shed light on the tradeoffs

between the HST-based stability margin and other PDN design specifications such as the

quiescent current consumption, maximum switching noise, and area overhead. Useful de-

sign insights like how regulator topology, passive decoupling capacitance, and the number

of on-chip regulators may be optimized for improved tradeoffs between stability and system

performance are discussed. These useful insights can aid circuit designers to make appropri-

ate design choices at the beginning of the design process for improved system tradeoffs.

1.4.2 Proposed Adaptive Power Management

In terms of workload-aware power management, improvements on both the PDN architecture

and control policies are explored in this dissertation. The proposed work is based on the vision

that the ultimate power quality and efficiency may be best achieved via a heterogeneous chain of

voltage processing starting from on-board switching VRs, to on-chip switching VRs, and finally

to networks of distributed on-chip linear voltage regulators. As depicted in Fig. 1.4, we propose

a heterogeneous voltage regulation (HVR) architecture encompassing regulators with complimen-
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tary characteristics in response time, size, and efficiency. This dissertation aims to answer the

following key question for the first time. Given a desired power supply voltage set by a higher-

level power management policy, e.g. one based on DVFS, for each power domain, how shall the

voltage regulators in the HVR system be adapted autonomously with respect to workload change

at multiple temporal scales to significantly improve system power efficiency while providing a

guarantee for power integrity? The contributions of the proposed work are severalfold:
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Figure 1.4: Illustration of proposed heterogeneous voltage regulation (HVR).

• We systematically explores the potential benefits of HVR. The most general form of HVR

consists of voltage regulators (VRs) with complimentary characteristics across three pro-

cessing stages. In the first two stages, off- and on-chip switching (DC-DC) buck converters

are employed to achieve high efficiency over a wide output voltage range, serving the major

role of voltage conversion. Compared with single stage DC-DC conversion, two stages DC-

DC conversion allows for area reduction, improved power efficiency, and fine-gained DVFS,
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which is supported by the fast response time of on-chip DC-DC converters. Unlike conven-

tional one or two-stage power delivery networks, HVR largely decouples voltage conversion

from voltage regulation, the latter of which is optimally achieved by placing a large num-

ber of compact LDOs with sub-ns response time in a distributed manner within each power

domain, forming an interconnected active regulation network.

• We propose systematic workload-aware control policies to jointly optimize power efficien-

cies of all voltage processing stages to maximize the overall system power efficiency. To

best exploit the potential of energy efficiency of HVR, our control policies minimize system

power losses by considering interdependencies across the entire voltage processing chain

and adapt HVR at multiple time scales given the significantly different response times of the

considered VRs.

• Uncertainties caused by unknown non-uniform spatial distribution of the workload are hard

to predict but can jeopardize power integrity. To minimize the extra voltage margin, hence

power loss, we propose a novel machine learning (ML) solution for the first time that accu-

rately sets the output voltage of the on-chip switching VRs to maximize the system power

efficiency while effectively tracking the worst-case voltage drop in each power domain to

safeguard power integrity. Our ML solution consists of a few on-chip voltage-noise sensors

that provides inputs to a low-overhead hardware-accelerated ML predictor, which fine tunes

the output voltage of the on-chip switching VRs. This provides an autonomous end-to-end

integrated ML solution whose low latency allows for fine-grained adaptation of HVR.

1.4.3 Organization of Dissertation

The rest of this dissertation is organized as follows. In Chapter II, we propose an efficient and

theoretically rigorous technique to assess the hybrid stability of large PDNs with integrated LDOs.

The achieved pessimism reduction in stability checking has been leveraged in a new automated

design flow that delivers significant performance improvements while ensuring the network-wide

stability of the PDN. The presented HST-based PDN design methodology is leveraged in Chap-
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ter III to systematically explore the large design space of distributed power delivery, and sev-

eral new design insights in terms of the network-wide PDN stability are summarized to facilitate

improved PDN design tradeoffs. In Chapter IV, we propose a heterogeneous voltage regulation

(HVR) architecture encompassing regulators with complimentary characteristics in response time,

size and efficiency. Systematic workload-aware power management policies are then developed

to adapt heterogeneous VRs with respect to workload change at multiple temporal scales to sig-

nificantly improve system power efficiency while providing a guarantee for power integrity. The

proposed techniques are further supported by hardware-accelerated machine learning prediction of

non-uniform spatial workload distributions for more accurate HVR adaption at fine time granular-

ity. Chapter V concludes this dissertation and discusses the future work.
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2. STABILITY-ENSURING DESIGN OPTIMIZATION FOR LARGE PDNS WITH

DISTRIBUTED ON-CHIP VOLTAGE REGULATION ∗

As stated in Chapter I, the recently developed hybrid stability theory (HST) provides an effi-

cient stability checking and design approach, giving rise to highly desirable localized design of

PDNs. However, the inherent conservativenesss of the hybrid stability criteria can lead to pes-

simism in stability evaluation and hence large overdesign. In this chapter, we address this chal-

lenge by proposing an optimal frequency-dependent system partitioning technique to significantly

reduce the amount of pessimism in stability analysis. With theoretical rigor, we then show how to

partition a PDN system by employing optimal frequency-dependent admittance splitting between

the passive network and voltage regulators while maintaining the desired theoretical propoerties

of the partitioned system blocks upon which the hybrid stability principle is anchored. At last,

we demonstrate a new stability-ensuring PDN design approach with the proposed over-design

reduction technique using an automated optimization flow which significantly boosts regulation

performance and power efficiency.

2.1 Background

Firstly, the theoretical background and framework of the hybrid stability theory (HST) are laid

out. The HST is built on the L2[0,∞)-space of square integrable functions defined as L2[0,∞) =

{v : R+ → Rm|
∫∞

0
vT(t)v(t)dt < ∞}, where v is a vector function of time and vT is its

transpose. A system is said to be L2-stable if for any input e ∈ L2[0,∞) the resultant output

y ∈ L2[0,∞). We consider the negative feedback interconnection of two multiple-input-multiple-

output (MIMO) blocks G and H as in Fig. 2.1, where the G block has input eG and output yG,

and the H block has input eH and output yH. To assess the stability of the entire feedback system

∗ c©2016 ACM. Reprinted, with permission, from Xin Zhan, Peng Li and Edgar Sánchez-Sinencio, "Distributed
On-Chip Regulation: Theoretical Stability Foundation, Over-Design Reduction and Performance Optimization", Pro-
ceedings of the 53rd Annual Design Automation Conference (DAC). ACM, June 2016. c©2018 IEEE. Reprinted, with
permission, from Xin Zhan, Peng Li and Edgar Sánchez-Sinencio, "Taming the Stability-Constrained Performance
Optimization Challenge of Distributed On-Chip Voltage Regulation", IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems. IEEE, July 2018.
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with input e and output y, two classical theorems are introduced first, and HST which combines

both of them follows.

H

G

y
eH

eGyG

yH
e

Figure 2.1: General negative feedback interconnection of two MIMO blocks.

2.1.1 Classical Stability Theorems

2.1.1.1 Small Gain Theorem

Definition 1. (Finite gain) A general square system with input e ∈ L2[0,∞) and output y ∈

L2[0,∞) mapped through the operator M : L2[0,∞)→ L2[0,∞) possesses a ‘finite gain’ if there

exists 0 < γ <∞ such that

γ−1

∫ T

0

yT(t)y(t)dt ≤ γ

∫ T

0

eT(t)e(t)dt

∀e ∈ L2[0,∞),∀T ≥ 0. (2.1)

For any LTI system the system gain γ can be computed in frequency domain

γ = sup
∀ω

γ(ω), (2.2)

where γ(ω) is the local system gain at a single frequency ω

γ(ω) = σ{M(jω)}, (2.3)
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where σ{·} is the maximum singular value.

Intuitively, if the loop gain of a feedback system is less than 1, the system shall remain stable

as any oscillation through the loop will be finally attenuated. This understanding leads to the

following small-gain theorem.

Theorem 1. (Small-gain theorem) The negative feedback interconnection in Fig. 2.2 is L2-stable

if the product of the system gains is less than one, i.e. γGγH < 1, where γG and γH are the gains

of the G block and the H block, respectively.

However, as the small gain theorem only utilizes the gain information, harsh stability constrains

may be placed on the full system. For example, at certain frequency one block can have a very

high gain, which in turn requires the other block to have a rather low gain, potentially resulting to

poor design performance.

2.1.1.2 Passivity Theorem

Definition 2. (Passive systems) A general square system with input e ∈ L2[0,∞) and output

y ∈ L2[0,∞) mapped through the operator M : L2[0,∞)→ L2[0,∞) is ‘very strictly passive’ if

there exist δ > 0 and ε > 0 such that

∫ T

0

eT(t)y(t)dt ≥ δ

∫ T

0

eT(t)e(t)dt+ ε

∫ T

0

yT(t)y(t)dt

∀e ∈ L2[0,∞),∀T ≥ 0. (2.4)

Furthermore, if δ > 0 and ε = 0, the system is said to be ‘input strictly passive’; if δ = 0 and

ε > 0, the system is said to be ‘output strictly passive’; if both δ = 0 and ε = 0, the system is

a ‘passive’ system. Similarly, the passivity for LTI system can be examined along the frequency

axis. The input passivity parameter is calculated as

δ = inf
∀ω
δ(ω), (2.5)
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where δ(ω) is the local input passivity parameter

δ(ω) = λ{MH(jω) + M(jω)}, (2.6)

where λ{·} is the minimum eigenvalue. Additionally, a system that is already input strictly passive

with finite gain is output strictly passive, i.e. there exists output passivity parameter ε > 0, and

hence is very strictly passive.

As passive systems do not produce energy, it is intuitive that the feedback loop composed of two

passive blocks is stable, as the total energy stored in the system decreases with time. Accordingly,

the passivity theorem states the following useful result for stability assessment.

Theorem 2. (Passivity theorem) The negative feedback interconnection in Fig. 2.2 is L2-stable if

εG + δH > 0 and εH + δG > 0, where δG, εG are the passivity parameters of the G block, and δH,

εH are those of the H block.

Furthermore, the following corollary states that the passivity theorem can be applied to check

the system stability only based on the input passivity parameter δ of each block.

Corollary 1. The feedback system is L2-stable if both δG > 0 and δH > 0.

Similar to the small gain theorem, the passivity theorem which merely utilizes the passivity

condition, is not a silver bullet guaranteeing stability as well. Practical active circuit blocks such

as voltage regulators can only exhibit local passivity within a certain frequency range.

2.1.2 Hybrid Stability Theorem

It is highly desirable to combine the two basic theories together to guarantee stability, leading

to the following hybrid stability theorem.

Theorem 3. (Hybrid stability theorem) The negative feedback interconnection in Fig. 2.2 is L2

stable if for all frequencies at least one of the following conditions is met:

1) (Passivity condition) δG(ω) > 0 and δH(ω) > 0.

2) (Gain condition) γG(ω)γH(ω) < 1.
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Appealingly, HST exploits two complimentary principles, passivity and gain, making it possi-

ble to rather efficiently ensure system stability by judiciously selecting one of the two principles as

the most cost-effective mechanism at each given frequency. Thus, the entire frequency domain can

be broken into passivity region (Ωpass) and gain region (Ωgain), where passivity condition and gain

condition are utilized respectively. While HST offers greater design freedoms, it only provides

sufficient condition for stability.

2.2 HST-Based Stability Checking for PDNs

2.2.1 PDN System Partitioning

The application of HST to the stability evaluation of PDNs with distributed on-chip voltage

regulators [35, 22] is outlined in this subsection. To begin with, we show a model of a PDN system

with n on-chip LDOs in Fig. 2.2(a), where the PDN is partitioned into two system blocks: block G

comprising LDOs and block H containing the bulky passive network. Note that G interfaces with

H through both the global VDD grids and regulated local power grids. Thus for a PDN embedded

with n LDOs, G and H both have 2n ports, and are described using a 2n × 2n transfer function

matrix. We model G with Y -parameters and H with Z-parameters. The identified system-wide

negative feedback loops are shown in Fig. 2.2(b). The loops start from H’s current inputs iH,

which induces the voltage outputs (fluctuations) vH of H. vH feeds G and produces G’s current

outputs iG. As iG and iH have the same magnitudes but opposite in sign, an inverter is placed to

indicate the negative feedback involved.

2.2.2 Hybrid Stability Metrics

To quantitatively measure the passivity and gain of the entire PDN system consisting of the

blocks G and H as shown in Fig. 2.2, we further define a passivity margin (PassMarg) and a

gain margin (GainMarg) concept at each frequency ω:

PassMarg(ω) =

 −
√
δG(ω)2 + δH(ω)2,δG(ω) < 0,δH(ω) < 0

min{δG(ω), δH(ω)},
(2.7)
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Figure 2.2: Partition the PDN into a negative feedback loop: (a) system model, and (b) block
diagram.
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GainMarg(ω) = 1− γG(ω)γH(ω) (2.8)

Obviously, at each frequency point, the system possesses a positive PassMarg iff both sub-

systems are passive while a positive GainMarg is observed iff the loop gain of the whole system

is less than one. Based on PassMarg(ω) and GainMarg(ω), the hybrid stability margin (HSM)

at frequency ω is defined in (2.9), which combines the gain and passivity margins into a single

stability measure. Finally, the global HSM is defined as the minimum HSM(ω) across the entire

frequency axis. In light of Theorem 3, the system is stable if the global HSM is positive.

HSM(ω) =


√

PassMarg(ω)2 +GainMarg(ω)2, PassMarg(ω), GainMarg(ω) ≥ 0

max{PassMarg(ω), GainMarg(ω)}, otherwise
(2.9)

2.2.3 Localized Stability-Ensuring Design Flow for PDNs

In the PDN design process, active voltage regulators, such as LDOs, may be re-designed multi-

ple times with the passive power grids fixed in order to meet certain specifications on stability and

performance. As such, by separating the bulky passive part of the PDN from LDOs, the system

partitioning in Fig. 2.2(a) allows us to spend only a one-time effort in characterizing the gain and

passivity of the RLC passive network and then focus solely on the design of LDOs, leading to an

efficient localized regulator design methodology while ensuring the full system stability. A local-

ized stability-ensuring design flow for PDNs is illustrated in Fig. 2.3. Note that only the low-cost

regulator characterization is repeated in design iterations (as in the grey box in Fig. 2.3). However,

the inherent conservativeness of HST can lead to large over-design, i.e. performance loss, which

is the key challenge we aim to address in this work.

It should be noted that the underlying HST framework works on LTI system and we need to

describe the G and H blocks using linear models. Although it is convenient to characterize the

linear analog LDOs via AC simulation, it is also possible to extend the HST-based design flow

in Fig. 2.3 to other regulator topologies such as digital LDOs and DC-DC buck converters by
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Figure 2.3: Localized stability-ensuring design flow for PDNs.

obtaining an approximated linear model for those voltage regulators. In the past several decades,

there has been a large body of work focusing on the modeling methodologies such as [46], [32]

and [47].

2.3 Proposed Admittance Splitting

2.3.1 Motivations

Recall that HST is only a sufficient but not necessary condition for stability checking. It comes

with the following important design implications. Meeting the HST stability criterion immediately

confirms the stability of the system under discussion. However, failing it with a negative global

HSM does not fully exclude the possibility of stability. In the latter case, striving for a positive

HSM margin could lead to unnecessary over-design due to the uncertainty imposed by the HST

based stability checking.

We make the following key observation regarding over-design reduction. While HST assesses

the stability of an interconnection of two subsystems (Theorem 3), how the overall system shall be

partitioned (the first step in Fig. 2.3) is completely left to us. This motivates us to leverage system

partitioning to significantly to reduce the conservativeness of the hybrid stability theory.

We use a realistic PDN design to shed light on the above idea. The PDN is first partitioned

into the G0 and H0 blocks as in Fig. 2.2(a), and then GainMarg and PassMarg are examined
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in Table 2.1. The minimum GainMarg is −∞ due to the nonexistence of DC paths between the

regulated power grids and the GND grids. The minimum PassMarg is -31.9, showing a severe

passivity violation. Next, we repartition the same PDN without altering the overall system in two

different ways. We move 10% of each self-admittance of the 2n×2n port model of G0 from G0 to

H0 to form a new partition of G1 and H1. In the opposition direction, we move 10% of each self-

admittance of H0 from H0 to G0 to form another partition of G2 and H2. Table 2.1 shows that

these two repartitions dramatically improve the system’s min GainMarg and min PassMarg,

respectively, suggesting that partitioning has a large impact on the HSM.

Table 2.1: Gain and passivity of different partitions.

Partition Min{GainMarg} Min{PassMarg}
G0+H0 −∞ −31.9
G1+H1 −11.9 –
G2+H2 – −3.7

2.3.2 Frequency-Dependent Bidirectional Admittance Splitting

From Theorem 3 and (2.9), it is evident that maximizing the global hybrid stability margin

(HSM) for a given PDN could maximize its chance to pass the HST checking and therefore reduce

the theoretical pessimism. This can be in turn achieved by maximizing the local HSM for each

frequency as in (2.9). To do so, it is instrumental to improve either PassMarg or GainMarg, or

both by finding the best system partitioning for each frequency ω, leading to the idea of frequency-

dependent admittance splitting. One further development is to allow bidirectional splitting of

self-admittances (or self-impedances) across the boundary of the G and H blocks as below.

2.3.2.1 Small-Gain Enhancement via Admittance Splitting

As shown in Fig. 2.4, splitting self-admittances from G to H helps lower the overall loop

gain, and therefore improves GainMarg. Intuitively, this is because lowering the self-admittance

values of the Y -parameter model of the G block tends to reduce its voltage-to-current gain. At
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Figure 2.4: Splitting admittance from G block to H block to improve the gain margin.

the same time, adding additional self admittances to the H block lowers the impedance from each

port to the ground, reducing the gain of the H block. Formally, we define a frequency-dependent

splitting factor Sg2h(jω) to split each self-admittance of the G block into two parts: the portion

to be moved from G to H corresponds to Sg2h(jω), and the remaining portion corresponds to

S̃g2h(jω) = 1− Sg2h(jω).

2.3.2.2 Passivity Enhancement via Admittance Splitting
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Figure 2.5: Splitting admittance from H block to G block to improve the passivity margin.

Fig. 2.5 shows the possibility of splitting self-admittances from the H block to the G block

using similarly defined splitting factors Sh2g(jω) and S̃h2g(jω) to improve PassMarg. This is

based on the observation that the original H network consists of passive RLC components and is

always passive. It is possible to remove certain self-admittances from the H block while maintain-
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ing its passivity. In the meantime, adding additional self-admittances into the G block enhances its

passivity property. To demonstrate this important trend, the detailed analysis is derived as below.

Firstly note that the LDOs in the G block are isolated to each other, accordingly the original

G2n×2n is a block diagonal matrix and its local passivity δG(ω) can be evaluated via each individual

LDO [22]:

δG(ω) = mini=1,2,...nδYi
(ω) (2.10)

where Yi is the 2 × 2 Y -parameter matrix of the i-th LDO. According to (2.6), the passivity of a

single LDO at a certain frequency ω can be calculated as:

δY = r11 + r22 −
√

(r11 + r22)2 − (4r11r22 −∆) (2.11)

where rij = Re{Yij}, mij = Im{Yij} and ∆ = (r12 + r21)2 + (m12 −m21)2. Evidently, the LDO

behaves like a passive circuit at this frequency iff the following conditions are met:

{
r11 + r22 > 0 (2.12a)

4r11r22 > (r12 + r21)2 + (m12 −m21)2 (2.12b)

Notice that Y’s first-column elements Y11 and Y21 are smaller in magnitude than the second-

column elements Y12 and Y22, approximately by a factor of ALL (denoted as local loop gain of

LDO). Additionally, the output admittance of the regulator often has a positive real part, i.e. r22 >

0. Therefore (2.12a) can be easily satisfied over a wide range of frequencies. On the other hand,

usually (2.12b) can be met only beyond its unit-gain bandwidth (UGB) where ALL drops below

unit. This is corresponding to the phenomenon that the original G block exhibits local passivity

merely at high frequencies.

Now we split self-admittances from H to G. It is obvious that such admittance splitting helps

increase r11 and r22 and boost the left side of (2.12b) dramatically, thus the passivity of the regulator
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is enhanced. Besides, the partial differential equations can be derived as


∂δY
∂r11

= 1− r11 − r22√
(r11 − r22)2 + ∆

> 0 (2.13a)

∂δY
∂r22

= 1− r22 − r11√
(r22 − r11)2 + ∆

> 0 (2.13b)

indicating that δY is a monotonically increasing function in terms of r11 and r22. According to

(2.10), the passivity of the G block grows by receiving admittances from the H block.

The analyses in this subsection illustrate that at a certain frequency, splitting admittance from

G to H can improve GainMarg while splitting admittance from H to G improves PassMarg.

As will be described later, an optimization-based approach has been developed to find the optimal

admittance splitting direction and the amount of splitting for each frequency, which maximizes the

chance of the system to pass the hybrid stability checking. Clearly, the resulting optimal HSM

provides a more truthful assessment of stability with reduced pessimism.

2.3.3 System Invariance with Admittance Splitting

While system repartitioning via the proposed frequency-dependent bidirectional admittance

splitting has the potential for overdesign reduction, this benefit is meaningful only if such admit-

tance splitting does not alter the physical PDN system. We rigorously prove that the overall PDN

transfer function is indeed not altered by the admittance splitting, which only changes the bound-

ary of the PDN partitioning and how the internal feedback loops are represented. To begin with, in

the close-loop feedback system shown in Fig. 2.2(b), we identify the input-output transfer matrix

where the input current noises induce the output voltage fluctuations as

Φ(jω) = (I + H(jω)G(jω))−1H(jω). (2.14)

Then the following important property is derived.

Property 1. The frequency-dependent bidirectional admittance splitting technique does not change

the input-output transfer matrix Φ(jω) in the close-loop system in Fig. 2.2(b).
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Proof. Firstly, the inverse transfer matrix can be written as

Φ−1(jω) = G(jω) + H−1(jω). (2.15)

Considering Fig. 2.2(a), again, before applying the proposed admittance splitting, let us denote

the admittance matrices of the passive network and regulator blocks by HY
0 (jω) and GY

0 (jω),

respectively. To relate to the negative feedback interconnection of Fig. 2.2(a), we invert HY
0 (jω)

to get the impedance representation of the passive network. In other words, we have: H−1(jω) =

HY
0 (jω) and the corresponding Φ−1(jω) without admittance splitting is

Φ−1
0 (jω) = GY

0 (jω) + HY
0 (jω). (2.16)

Next, we apply the proposed frequency-dependent bidirectional admittance splitting scheme

to the PDN system. As mentioned earlier, the two splitting factors Sg2h(jω) and Sh2g(jω), which

correspond to the admittance splitting in two different directions, operate complementarily along

frequency axis attempting to increase the local HSM at each frequency ω. According to Fig. 2.5

and Fig. 2.4, the re-partitioned G(jω) and H−1(jω) are

G(jω) = GY
0 (jω)− Sg2h(jω)Ĝ

Y
0 (jω) + Sh2g(jω)Ĥ

Y
0 (jω) (2.17)

H−1(jω) = HY
0 (jω) + Sg2h(jω)Ĝ

Y
0 (jω)− Sh2g(jω)Ĥ

Y
0 (jω) (2.18)

where ĜY
0 (jω) and ĤY

0 (jω) are the two diagonal matrices consisting of the diagonal entries of

GY
0 (jω) and HY

0 (jω), respectively:

ĜY
0 (jω) =



G1,1(jω) 0 . . . 0

0 G2,2(jω) . . . 0

...
...

. . .
...

0 0 . . . G2n,2n(jω)


2n×2n

,
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ĤY
0 (jω) =



H1,1(jω) 0 . . . 0

0 H2,2(jω) . . . 0

...
...

. . .
...

0 0 . . . H2n,2n(jω)


2n×2n

.

Making the appropriate substitutions for G(jω) and H−1(jω), it follows that:

Φ−1(jω) = G(jω) + H−1(jω)

= (GY
0 (jω)− Sg2h(jω)Ĝ

Y
0 (jω) + Sh2g(jω)Ĥ

Y
0 (jω))

+ (HY
0 (jω) + Sg2h(jω)Ĝ

Y
0 (jω)− Sh2g(jω)Ĥ

Y
0 (jω))

= GY
0 (jω) + HY

0 (jω)

By comparing (2.16) with above equation, it is clear that the frequency dependent bidirectional

admittance splitting does not change the transfer matrix of the entire system.

The proposed admittance splitting technique does not change the physical PDN system by

virtue of the fact that the total amount of admittance at each port remains the same. It means

that we do not add or remove elements into or from the system. In this scheme, only the way

modeling the system is changed. As the HST is only a sufficient condition, different admittance

splitting schemes can lead to different degrees of pessimism and therefore provides us potential

opportunities to reduce the theoretical conservativeness.

2.4 Theoretical Basis for Admittance Splitting

We have demonstrated the great opportunity for over-design reduction brought by the proposed

frequency-dependent admittance splitting scheme. However, to apply the HST in a rigorous way,

each individual partitioned block needs to maintain certain key theoretical properties upon which

the HST is anchored.
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Most physical systems of interest such as PDNs are causal. For a general system M, it is causal

if and only if its impulse response satisfies m(t) = 0,∀t < 0. Note that the signals that are consid-

ered in the HST framework are defined on L2[0,∞)-space {v : R+ → Rm|
∫∞

0
vT (t)v(t)dt <∞}

which are assumed to be causal. Importantly, this implies that the proposed frequency-dependent

admittance splitting must maintain the following key system properties: the resulting system

blocks G and H must be causal; and the outputs of each block in response to inputs in L2[0,∞)

must be in L2[0,∞).

While the above requirements are a nonproblem in well-behaving physical systems, artificially

performing admittance splitting can violate these theoretical conditions and thus jeopardize the

foundation of the hybrid stability analysis. However, since the proposed frequency-dependent

admittance splitting technique is performed in the frequency domain, it is not convenient for us

to examine whether the re-partitioned G and H blocks satisfy the time-domain requirements as

above. Therefore, we need to interpret the requirements from time domain to frequency domain

or s domain to constrain the frequency dependent slitting technique and maintain the theoretical

rigor. For this purpose, we introduce the definition ofH2-space and a theoretical result [48, 49].

Definition 3. (H2-space) The Hardy 2-space is defined as

H2 = {F : F (s) is analytic in Re(s) > 0 and ‖F‖2 <∞},

in which ‖F‖2 = {sup
α>0

1
2π

∫∞
−∞ F

∗(α + jω)F (α + jω)dω} 1
2 .

Theorem 4. Suppose Λu is the Laplace transform of function u in time domain, then:

(a) If u ∈ L2[0,∞), then Λu ∈ H2.

(b) If û ∈ H2, there exists u ∈ L2[0,∞) satisfying Λu = û.

Theorem 4 states that H2-space is isomorphic to L2[0,∞)-space. In other words, a system in

time domain maintains the input-output mapping L2[0,∞)→ L2[0,∞), if and only if its Laplace

transform maintains the mapping H2 → H2. This class of systems is known as H∞ which is

defined as:
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Definition 4. (H∞-space) The Hardy∞-space is defined as

H∞ = {M : M(s) is analytic in Re(s) > 0 and ‖M‖∞ <∞},

in which ‖M‖∞ = sup
α>0
{sup

ω
σ{M(α + jω)}}.

This implies us to perform the proposed admittance splitting technique with the re-partitioned

G and H blocks inH∞-space.

2.5 Theoretically Rigorous Admittance Splitting Scheme

2.5.1 Specific Constraints for Practical Admittance Splitting

According to the discussion in Section 2.4, the repartitioned G and H blocks must lie in H∞

space while performing admittance splitting. Practical systems such as PDNs considered in this

work have rational transfer functions. We further construct new G(s) and H(s) using rational

splitting factors Sg2h(s) and Sh2g(s):

G(s) = GY
0 (s)− Sg2h(s)ĜY

0 (s) + Sh2g(s)Ĥ
Y
0 (s) (2.19)

H(s) = (HY
0 (s) + Sg2h(s)Ĝ

Y
0 (s)− Sh2g(s)Ĥ

Y
0 (s))−1 (2.20)

Clearly, a rational transfer function is in H∞ space iff it has no RHP pole and is proper with the

relative degree (defined as the difference between the degree of the numerator and the degree of

the denominator) less than or equal to 0. As the blocks in our practical power delivery network

before repartitioning are stable proper systems with a relative degree of 0 for each entry in the

matrix transfer function, ĜY
0 (s) and ĤY

0 (s) are all in H∞ space. Based on that, we summarize

the following two important constraints for practical admittance splitting: 1) the splitting factors

Sg2h(s) and Sh2g(s) shall be well-behaving inH∞ space to ensure that G(s) and H−1(s) are inH∞

space as well; 2) the matrix inversion in (2.20) shall not generate unstable RHP poles to ensure that

H(s) is also in H∞. In the remainder of this section, a theoretically rigorous admittance splitting

scheme which satisfies the above two constraints is presented.
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2.5.2 Constructing Appropriate Splitting Factors

2.5.2.1 Naive Ideal Admittance Splitting

Recall that we partition the frequency axis into two disjoint sets of Ωgain and Ωpass, including

the frequency points at which the direction of the admittance splitting is from G to H and the

opposition direction, respectively. To maximize frequency-dependent admittance splitting, it might

appear to be appropriate to determine the best splitting strategy at each frequency completely

independent of other frequencies. We call this approach the ideal splitting.

ω

H GAdmittance 

Splitting

Sg2h

Sh2g

Sg2hSh2g

pass
gain

Figure 2.6: Naive ideal admittance splitting.

However, the splitting factors Sg2h and Sh2g resulted from the ideal splitting can have an arbi-

trary number of jumps and become discontinuous (Fig. 2.6). Although it seems to be beneficial

as it provides the maximum freedom in admittance splitting, the corresponding Sh2g and Sg2h can

have singularities leading to the violation ofH∞ requirement. Clearly, this choice and many other

artificial admittance splitting will destroy the key system properties discussed in Section 2.4.

2.5.2.2 Proposed Smooth Admittance Splitting

To employ HST with theoretical rigor, we propose a smooth admittance splitting scheme in

consistent to the first constraint in Section 2.5.1. Our key idea is to use a series of N-th order
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practical filters {A1(jω), A2(jω), ..., An(jω)}, which are rational and well-behaving, to construct

Sh2g(jω) and Sg2h(jω). As such, discontinuities as shown in Fig. 2.6 would be eliminated.

The practical implementation of this idea entails making the first filter as a low-pass filter, the

last one a high-pass filter, and all other filters band-pass. While it is possible to use other types of

filters, Butterworth filters are a good choice. The N-order Butterworth low-pass filter is given by

A1(s) =
M1∏N

k=1((s− sk)/ωc)
, (2.21)

where M1 is the magnitude and sk = ωce
(j(2k+N−1)π/2N). Note that Re{sk} < 0 and A1(s) ∈ H∞.

Butterworth bandpass and highpass filters are also in H∞. Now Sh2g and Sg2h are constructed as

follows:

Sh2g(jω) =
∑

Ωi∈Ωpass

Ai(jω), (2.22)

Sg2h(jω) =
∑

Ωi∈Ωgain

Ai(jω), (2.23)

where Ωi is the pass band of the i-th filter. The filters are assigned to two groups to construct

Sh2g(jω) and Sg2h(jω), respectively. Clearly, Sh2g(s) and Sg2h(s) are in H∞ space as they are

superpositions of the Butterworth filters. Fig. 2.7 gives a illustration of the filter-based splitting

technique where a single admittance are distributed into the G and H blocks according to fil-

ter transfer functions. Obviously, the well-behaved splitting factors will not introduce any RHP

singularity.

Compared to the ideal splitting, finite roll-offs and phase shifts are introduced by the filters

adopted in the proposed approach. It seems that high-order filters are more desirable since the

reduced roll-off can make the admittance splitting more flexible with small granularity. However,

since the total phase shift for an N -th order filter is N × 90◦, it inevitably introduces large phase

shift and may jeopardize the splitting for expected direction around the cutting-off frequency. For

example, for the frequencies with phase shift equals to −180◦, the splitting direction is completely

inversed. On the other hand, experimental studies show that small splitting granularities are un-
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Figure 2.7: A single admittance re-partitioned via smooth admittance splitting.

necessarily needed and therefore low-order filters are used in our experiments to control the phase

shifts. In the next section, we present an automated design flow which optimizes the gains and

the cutoff frequencies (i.e. placements) of the filters to optimally realize Sh2g and Sg2h over the

frequency axis so as to minimize the conservativeness in stability evaluation.

2.5.3 Stability Checking for H Block

With the help of the proposed filter-based admittance splitting technique, the admittance ma-

trices of the re-partitioned G and H blocks have no RHP singularities. However, in order to relate

to the negative feedback interconnection in Fig. 2.2(a), we need to invert H’s admittance matrix

to get the impedance representation. This may create unstable RHP poles in H(s) and violate the

second constraint in Section 2.5.1. It should be noted that the original H block comprising of only

RLC elements must satisfy this constraint as both of its admittance and impedance matrices are

stable. This is based on the fact that a bounded input cannot produce an unbounded branch current

or node voltage in a passive RLC circuit. Thus the above issue only exists in the repartitioned H

block with artificial splitting. To maintain the theoretical rigor, we proposed to confirm the stability

of H(s) based on the following generalized (MIMO) Nyquist stability criterion [50][51].

Theorem 5. Let Pol denote the number of unstable poles in the open-loop transfer matrix L(s).
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Then the closed-loop negative feedback system (I + L(s))−1 is stable, if and only if the Nyquist

plot of det(I + L(s)):

1) makes Pol anti-clockwise encirclements of the origin, and

2) does not pass through the origin.

Different from the single-input-single-output (SISO) case, the net encirclement of the origin

in Theorem 5 is evaluated via the determinant of the matrix (I + L(s)) as s traverse the Nyquist

contour shown in Fig. 2.8(a). In our case we have

I + L(s) = H−1(s) = HY
0 (s) + Sg2h(s)Ĝ

Y
0 (s)− Sh2g(s)Ĥ

Y
0 (s). (2.24)
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Figure 2.8: (a) Nyquist contour, (b) phase shift in the bode plot of det(H−1(jω)) for a realistic
design.

Then the encirclement can be obtained by examining [∆arg det(H−1(s))]/2π, where ∆arg

denotes the total change in argument as s traverses the Nyquist contour. As H−1(s) is proper, the

phase shift of det(H−1(s)) is zero when s traverses the semicircle with an infinite radius. Therefore

the total phase shift can be conveniently evaluated in the frequency domain, i.e. by tracking the
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phase curve in the Bode plot of det(H−1(jω)). A realistic example in shown in Fig. 2.8(b). As

each term in the right side of (2.24) is in H∞ space which gives Pol = 0, H(s) has no RHP poles

iff the number of the encirclements (or the total phase shift in Bode plot) is zero.

2.6 HST-Based PDN Design Flow

This section illustrates a bottom-level HSM optimization flow which is used to maximize the

HSM for a more truthful evaluation of the system-wide stability. After that, an efficient top-level

automated design flow which incorporates the optimal HSM evaluator is presented for the PDN

design optimization.

2.6.1 Optimal HSM Evaluator

The HSM optimization flow solves an optimal frequency-dependent admittance splitting prob-

lem to maximize the network-wide HSM corresponding to the objective function

f = HSM(M,ω), (2.25)

where M = {M1,M2, ...,Mn} defines the gain of each filter and ω = {ω1, ω2, ..., ωn−1} specifies

the cut-off frequencies. The optimization problem is subject to two constraints:

1. Filter magnitude constraint:

− 1 ≤M1,M2, ...,Mn ≤ 1. (2.26)

The i-th filter belongs to Sg2h when Mi > 0; otherwise it belongs to Sh2g. This supports bidirec-

tional splitting.

2. Filter frequency constraint:

ωL < ω1 < ω2 < ... < ωn−1 < ωH , (2.27)

where ωL and ωH are the lowest and highest frequency between which admittance splitting takes
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Figure 2.9: Flowchart of the optimal HSM evaluation for a given PDN design.

The optimal HSM evaluation flow is illustrated in Fig. 2.9. The transfer matrices G0(jω) and

H0(jω) are precomputed for the original regulator block and passive network. In each iteration,

the two splitting functions Sh2g(jω) and Sg2h(jω) are constructed based on the current magnitudes

M and cutoff frequencies ω of the filters. Then, the system is re-partitioned into the new G
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and H blocks according to (2.19) and (2.20). It is followed by a stability checking for the H

block based on the MIMO Nyquist stability theory as in Section 2.5.3. Our experimental study

shows that the re-partitioned H block doesn’t contain RHP poles in most cases. After that, the

gain and passivity information for each block are characterized and the temporary HSM for the

entire network is calculated. The filter parameters M and ω are adjusted in each iteration till the

optimizer converges, outputting the optimal HSM. Note that this flow invokes no circuit simulation

but only matrix operations for the system repartition and HSM evaluation. Since the size of the

matrices is only 2n × 2n where n is the number of LDOs in PDN, this optimal HSM evaluator is

implemented with high efficiency.

5M

ω

ω

5-M

h2g|S |

h2g|S |

6M1-M

2-M

3-M
4M

5M

ω

(a)

(b)

5ω1ω 2ω 3ω 4ω

5M
2-M1M

3M 4-M 6-M

ω

h2g|S |
g2h|S |

5ω1ω 2ω 3ω 4ω

g2h|S | h2g|S |

Figure 2.10: Frequency-dependent admittance splitting: (a) before optimization, (b) after opti-
mization.

Fig. 2.10 gives an intuitive picture of the above optimization process. Initially, all filters are

evenly placed along the frequency axis (Fig. 2.10(a)). The optimizer adjusts the magnitudes and

cut-off frequencies of the filters to realize the optimal bidirectional admittance splitting. A typical

optimal splitting is shown in Fig. 2.10(b), where the splitting from the H to the G block happens

at low frequencies while the opposite splitting direction takes place at high frequencies.

36



2.6.2 Automated PDN Design Flow
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Figure 2.11: Automated flow of the PDN design optimization. The optimal HSM evaluator flow
in Fig. 2.9 is adopted.

We present an efficient automated design flow for PDNs with distributed LDOs. As shown in

Fig. 2.11, it employs the optimal HSM evaluator in 2.6.1 to evaluate network stability. In each

iteration, it adjusts key LDO design parameters (e.g. the compensation capacitor Cc and transistor

sizing) to jointly optimize a given set of specifications such as HSM, regulation performance,

power efficiency, and area overhead.

Appealingly, the flow is local to the design of LDOs in the sense that after one-time AC (ad-

mittance) characterization of the large passive network, it tunes each LDO locally while ensuring

the stability of the entire PDN. As only the low-cost LDO circuits simulation is repeated in each
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iteration, the entire PDN optimization flow is computationally efficient.

2.7 Experimental Studies

The automated design flow has been implemented using C/C++ and the APPSPACK 5.0.1 op-

timization package [52]. The LDO topology from [1] as shown in Fig. 2.12 is adopted to design a

number of LDOs based on a commercial 90nm CMOS technology. The adopted package model is

similar to [53] as illustrated in Fig. 2.13 and the parameters are shown in Table 2.2. As in [53], the

parasitic values are chosen to match the measured off-chip impedance of the Pentium 4 processor

and the used system in the experiment is reasonable to model modern IC designs. HSPICE is em-

ployed for AC characterization of each circuit block using 200 samples per decade. To provide a

reference, we implement a simpler HSM checking approach which splits all self-admittances from

the G block to the H block to lower the PDN loop gain in the frequency range where gain condi-

tion is targeted. A similar approach is employed in [22]. This scheme is a restricted version of our

presented work with single direction admittance splitting, offering a meaningful reference of com-

parison for the proposed optimal bidirectional frequency-dependent admittance splitting scheme.

Since the stability must be maintained under all load conditions and the worst case stability for

each LDO usually happens at light load condition, we use the light load as the operating point to

characterize stability and HSM.
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Figure 2.12: A multi-loop LDO [1] adopted in the experiment setups.
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Table 2.2: Parameters for the package model.

Resistance Value Inductance Value Capacitance Value
RPCB1 0.094 mohm LPCB1 21 pH CPCB 240 uF
RPCB2 0.167 mohm
RPKG1 1 mohm LPKG1 120 pH CPKG 26 uF
RPKG2 0.542 mohm LPKG2 5.61 pH
Rbump 0.4 mohm Lbump 120 pH

2.7.1 Pessimism Reduction in Stability Analysis

Recall that the sufficient nature of HST can lead to conservativeness in stability evaluation. To

demonstrate, we start with a small PDN of about 200 nodes and 4 LDOs, such that the stability can

be feasibly analyzed using the pole analysis as the ground truth. We examine the PDN stability

by performing time-domain transient analysis (Fig. 2.14(a)). We assume the load current modeled

with current sources are evenly distributed across the regulated grids. It is observed that even

under a large injected load current (IL) variation stepping between 0.36A and 0.44A with 0.1ns

transition time, the voltage responses of the global VDD grids (GVDD) and the regulated local
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VDD grids (VREG) get settled quickly. The stability of the network is more rigorously confirmed

by a full-blown pole analysis which shows no RHP poles.

To see how the HSM based stability evaluation works, we first apply the reference approach

described at the beginning of this section and show its results in Fig. 2.14(b). The frequency

axis can be broken into four sub-regions: region “A” with only a positive PassMarg, region “B”

with only a positive GainMarg, region “C” where both margins are non-positive, and region “D”

with both PassMarg and GainMarg being positive. This frequency labeling convention is used

throughout the work. The existence of the “C” region in Fig. 2.14(b) might suggest “potential”

instability of the system, or at least prevents us from drawing any firm conclusion about stability.

The fact that the system is stable clearly shows the conservativeness of the reference method.

The same PDN is re-checked by our proposed optimal HSM evaluator in Fig. 2.14(c), where

the optimized Sg2h and Sh2g operate in a complimentary way and region “C” is eliminated, formally

confirming the stability and demonstrating the effectiveness of the proposed technique.

2.7.2 Stability-Ensuring PDN/LDO Design

The traditional phase and gain margins can lead to misleading conclusions about stability since

they are only applicable to single-loop stability analysis. To see this, we plug 4 LDOs depicted in

Fig. 2.12 into a small PDN with around 200 nodes. By adopting the active frequency compensation

scheme in the LDO topology, each LDO achieves a large phase margin of over 100◦. The transient

simulation of Fig. 2.15(a), however, indicates that integrating these seemingly stable LDOs into the

PDN actually creates instability, which is verified by a pole analysis that detects a pair of complex

RHP poles. The proposed stability evaluator can detect this instability by identifying a potential

unstable region (region “C”) that is between 180KHz and 27MHz as shown in Fig. 2.15(b).

We now apply our automated design flow to tune this LDO design locally to fix the detected

instability by achieving a positive HSM. The frequency-wise checking of the system is shown in

Fig. 2.15(c), where positive local HSM is achieved for all frequencies. As shown in Fig. 2.15(d),

the transient simulation of the optimized system confirms that the instability is indeed fixed.

40



0 200n 400n 600n 800n
0.96

1

1.04

Times(s)

V
R

E
G

(V
)

1.195

1.2

1.205

G
V

D
D

(V
)

0.36

0.4

0.44

IL
to

t(A
)

V
REG

 Settled

GV
DD

 Settled

Current Load
    Variation

(a)

0.2

0.4

0.6

0.8

1

 

 

10
0

10
2

10
4

10
6

10
8

10
10

−1
−0.5

0
0.5

1

Freq/Hz

 

 

|S
g2h

|

PassMarg
GainMarg

C
HST Violation

 

B D

  

24KHz 7.2GHz

(b)

0.2
0.4
0.6
0.8

1

 

 

10
0

10
2

10
4

10
6

10
8

10
10

−1

−0.5

0

0.5

1

Freq/Hz

 

 

|S
h2g

|

|S
g2h

|

PassMarg
GainMarg

A B

  

27MHz

(c)

Figure 2.14: HSM checking of a stable PDN: (a) transient simulation, (b) frequency-wise stability
checking using the reference method, and (c) frequency-wise stability checking using the proposed
evaluation.
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Figure 2.15: Stability-ensuring PDN design: (a) transient analysis showing the instability of a PDN
integrating 4 LDOs with a large phase margin, (b)the proposed frequency-wise stability checking
confirming the in-stability, (c) frequency-wise stability checking with the optimized stable design,
and (d) transient analysis of the optimized LDO design confirming the fixed instability.
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2.7.3 Joint Performance Optimization

Our automated design flow allows the designer to jointly optimize competing design specifi-

cations while ensuring the network’s stability. To demonstrate this, we consider several key LDO

specifications: DC accuracy of load regulationACC, unit-gain bandwidth UGB, quiescent current

Iq, average output admittance Yavg (representing the average load regulation performance within

the frequency range of interest), and Yavg/Iq, a measure of design efficiency, in addition to the

PDN’s global HSM. We consider two PDN examples with the first PDN (PDN1) having about 200

nodes and 4 integrated LDOs, and the second PDN (PDN2) having over 100K nodes and 9 LDOs.

Initially, the LDO is designed to achieve a large phase margin under a lumped capacitive load using

the standard analog design process.

We apply our proposed automated design flow to tune this LDO design to ensure network

stability while optimizing all other performances. We also replace our optimal HSM evaluator in

the design flow by the reference HSM checking method to come up a reference design flow for

comparison purposes. The performances based on the initial LDO design (LDO1), the reference

approach (LDO2), and the proposed approach (LDO3) are reported in Table 2.3 and Table 2.4.

The last column of each table shows the performance boosts of the proposed approach over the

reference approach.

Table 2.3: Performance comparisons for PDN1.

Initial
LDO1

Opt.
LDO2

Opt.
LDO3

Perform.
Gain

HSM -2.471/-0.232 6.69e-31 5.77e-22 −
Reg. ACC. 99.96% 99.95% 99.92% ↓ 0.03%
UGB(MHz) 380 501 562 ↑ 12.2%
Iq(µA) 639 320 313 ↓ 1.9%
yavg(S) 5.44 1.22 2.61 ↑ 114%
yavg/Iq(S/µA) 8.51e-3 3.81e-3 8.34e-3 ↑ 119%
1Evaluated by the reference approach.
2Evaluated by the optimal HSM evaluator.
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Table 2.4: Performance comparisons for PDN2.

Initial
LDO1

Opt.
LDO2

Opt.
LDO3

Perform.
Gain

HSM -1.801/-1.692 1.17e-21 0.582 −
Reg. ACC. 99.96% 99.96% 99.94% ↓ 0.03%
UGB(MHz) 380 531 661 ↑ 24.5%
Iq(µA) 639 353 352 ↓ 0.3%
yavg(S) 5.44 2.00 2.83 ↑ 41.5%
yavg/Iq(S/µA) 8.51e-3 5.67e-3 8.05e-3 ↑ 42%
1Evaluated by the reference approach.
2Evaluated by the optimal HSM evaluator.

According to Table 2.3 and Table 2.4, both design flows can fix the instability of the initial LDO

design by providing a positive HSM margin. However, the proposed design flow outperforms the

reference flow noticeably, boosting the performance by up to 119% and 42% in PDN1 and PDN2,

respectively. It suggests that the over-design with the proposed design approach is significantly

reduced.

We use a PDN with 100K nodes and 4 LDOs to extensively demonstrate the benefits brought

by the proposed over-design reduction. By weighting the six design specifications differently in the

objective function, we generate 25 LDO designs with a positive HSM using the reference design

flow and the proposed flow, respectively. After AC characterization of the passive network, it takes

about 9.7 hours to complete tuning each LDO design using 4 threads on a 2.3 GHz AMD Opteron

processor. To have a more truthful evaluation of stability, the HSMs of the designs produced

by the reference flow are re-evaluated using the optimal HSM evaluator at the conclusion of the

optimization process.

To systematically evaluate the design tradeoffs achieved by the two flows, we define two fig-

ures of merit (FOMs): FOM1 = UGB
UGB_max

· Yavg
Yavg_max

· 10HSM · ACC and FOM2 = UGB
UGB_max

·
Yavg

Yavg_max
· ACC, where UGB_max and Yavg_max are the maximum UGB and Yavg values among

these design points. Clearly, FOM2 involves important regulation performances while FOM1 con-

siders the overall performance including the HSM. Fig. 2.16(a) plots the FOM1 as a function of
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Iq, showing the proposed work can significantly boost FOM1 by an average 113% with a qui-

escent current saving by 11%. Then Fig. 2.16(b) visualizes the tradeoff between the regulation

performances (FOM2) and HSM, illustrating that the proposed approach improves the FOM2 and

HSM on average by 29% and 91%, respectively. Besides, the 3-D plot in Fig. 2.17 demonstrates

the tradeoffs between Iq, UGB and Yavg achieved by the two flows, demonstrating the improved

design tradeoffs within a large design space.
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Figure 2.16: Comparison of optimized design tradeoffs: (a) FOM1 as a function of the quiescent
current, and (b) tradeoff between HSM and FOM2.

Additionally, the bar charts in Fig. 2.18 give a full picture of the design tradeoffs within

the large design space. As each design achieves a similar high regulation accuracy, we only

compare HSM
HSM_max

, UGB
UGB_max

and Yavg/Iq
(Yavg/Iq)_max

of these designs, where HSM_max, UGB_max, and

(Yavg/Iq)_max are the maximum HSM , UGB, and Yavg/Iq values among all 50 optimized de-

signs. It is observed that the proposed work brings forth a 35% improvement on the average

overall performance (the average height for each bar). Evidently, the proposed approach produces

significantly improved design tradeoffs.
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Figure 2.17: Optimized design tradeoffs between three performances.

We also compare the classic phase margin (PM) based design approach with the HST-based

approaches. Three groups of optimized PDN designs are generated based on different design

methodologies. The first group is optimized using a phase margin based optimization flow. Dif-

ferent from the HST-based flow as in Fig. 2.11, the phase margin of individual LDO is used as the

stability metric instead of HSM in the optimization process. After optimization, each individual

LDO achieves a large phase margin of over 100◦. The second and the third groups obtain positive

HSMs based on the reference and the proposed approach respectively. Different Iq constraints are

placed to produce multiple design points. As in Fig. 2.19(a), while the large over-design in the

reference approach results in performance degradation, the proposed approach improves FOM2 by

up to 53% when compared with the PM-based approach. In the meantime, even though achiev-

ing large phase margins in the first group, Fig. 2.19(b) shows that the HST violation may happen

among some of the design points which can lead to potential instability.

We end our discussion in this section with the application of the proposed design flow to PDNs

with multiple domains of different size. We consider a 100K-node PDN with the first domain in-

tegrating 4 LDOs and the second domain integrating 2 LDOs. Through locally tuning the LDOs
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Figure 2.19: PM-based approach versus HST-based approaches: (a) FOM2 comparison, and (b)
HSM comparison.

in each domain, our design flow can jointly optimize the two domains with different performance

specifications. As illustrated in Table 2.5, the LDOs in the first domain is optimized by emphasiz-

ing high regulation performance, while the LDOs in the second domain is targeting low quiescent

power consumption. The achieved positive HSM after optimization indicates guaranteed stability

for the entire PDN system.

Table 2.5: Performance optimization for PDN with two domains.

LDOs in 1st domain LDOs in 2nd domain
HSM 5.21e-2
Reg. ACC 99.96% 99.96%
UGB(MHz) 562 275
Iq(uA) 467.5 397.5
yavg(S) 3.99 3.62
yavg/Iq(S/uA) 8.53e-3 9.11e-3
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2.8 Summary

In this chapter, a bidirectional frequency-dependent system partition technique with a theoreti-

cally complete framework has been proposed to reduce the inherent conservativeness of the hybrid

stability theorem. After recognizing all the necessary constraints making the partition scheme

theoretically rigorous, an efficient optimization-based approach has been presented to assess the

stability of large PDNs with distributed regulators. With the reduced pessimism in stability check-

ing, we propose a new automated PDN design flow which can significantly reduce the system

overdesign and improve the overall PDN performance while ensuring the stability of the entire

network.

49



3. STABILITY-CONSTRAINED DESIGN SPACE EXPLORATION FOR DISTRIBUTED

ON-CHIP POWER DELIVERY ∗

As discussed in Chapter II, a new stability-ensuring PDN design methodology, based on hybrid

stability theory (HST), is developed to cope with the complex stability problem of distributed on-

chip voltage regulation and enables efficient localized PDN design. As helpful as it is, the new

stability margin, combing the system gain and passivity, is unfamiliar to circuit designers and, as

a result, the above design approach mostly serves as a block box and cannot offer much intuition

to designers. For example, it takes the initial PDN design as the input and after the optimization it

outputs a certain PDN satisfying all the specifications on HSM and performances.

In order to offer more design intuitions about the HST-based design of power delivery net-

works, this chapter systematically explores the relationship between key circuit-level parameters

and the hybrid stability metric. We identify several important PDN design parameters which can

significantly influence the system-wide stability metric and other design specifications; namely,

regulator topology, on-chip passive coupling capacitance and the number of regulators. Being

aware of these key parameters and their impact on the overall PDN performance can help IC de-

signers make informed design choices at an early stage. After studying the effect of each design

parameter separately, extensive studies are conducted to bring together all the previous cases and

explore the circuit design tradeoffs. This chapter is concluded by summarizing all the new design

insights obtained from the HST-based design studies. Circuit designers can make use of these

meaningful design insights to improve the overall PDN tradeoffs.

∗ c©2018 IEEE. Reprinted, with permission, from Xin Zhan, Joseph Riad, Peng Li and Edgar Sánchez-Sinencio,
"Design Space Exploration of Distributed On-Chip Voltage Regulation Under Stability Constraint", IEEE Transactions
on Very Large Scale Integration (VLSI) Systems. IEEE, April 2018.
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3.1 PDN Design Study: Tradeoffs between Stability and Performance

3.1.1 Important Design Parameters for PDN Tradeoffs

Recall that for the application of HST, the entire PDN system is required to be partitioned into

a negative feedback interconnection of two blocks. The voltage regulators are contained in the

G block while the remaining passive elements including power grids and PCB/package parasitics

are pushed into the H block. We first identify several important design parameters within the

large PDN design space which can not only impact the design performances but also influence the

characteristics of G and H blocks thus hybrid stability of the entire system.

3.1.1.1 LDO Design Parameters

For a specific LDO topology, important transistor-level parameters can be adjusted to ensure

stability and optimized for performance. For example, through transistor sizing and tuning com-

pensation capacitors, the unity-gain bandwidth (UGB) of LDO can be effectively controlled. This

UGB change will in turn affect G’s admittance transfer matrix G(jω) and further alter γG(ω) and

δG(ω). To be more specific, the elements in G(jω) have small magnitudes after UGB and this will

be reflected on γG(ω) as it is in a sense of admittance. Besides, our experiment results show that

the G block usually exhibits a positive δG(ω) in a high frequency band above UGB. Therefore,

this category of circuit modification will not only affect the regulation performance of each LDO,

but also alter the hybrid stability of the whole system.

3.1.1.2 LDO Topology

Another important degree of freedom in the design comes from the choice of LDO topology.

From the hybrid stability point of view, G blocks with different LDO topologies exhibit different

characteristics in γG(ω) and δG(ω) and thus constrain the design process in different ways. On

the other hand, a judiciously chosen LDO topology facilitates stability-ensuring PDN design while

meeting all other specifications in power and area overhead.
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3.1.1.3 On-Chip Decaps

As well known, inserting on-chip decoupling capacitances is beneficial to suppress the high-

frequency switching noise as well as the mid/high-frequency impedance peaking due to off-chip

inductive parasitics [54]. From the HST perspective, the suppressed resonance peaking will be

reflected on the gain of the H block since H(jω) is an impedance matrix. This gives another

important degree of freedom for the design from the side of passives.

3.1.1.4 Number of LDOs

Having more LDOs would make them a stronger regulation system as they can share work

loads to respond to sudden changes in load current requirements. However, recall that the stability

issue comes from the inter-LDO interactions. Varying the number of on-chip LDOs alters the

inter-LDO coupling strength and therefore may affect the system stability.

In the rest of this chapter, a comprehensive set of design studies will be conducted to reveal

the specific impacts of the above design factors on the overall PDN design tradeoffs. New design

insights coming from those experiments will be discussed.

3.2 Experimental Results and Analysis

The HST-based PDN optimization flow [38, 39] is adopted to conduct the PDN design study.

It is implemented using C/C++ and the APPSPACK 5.0.1 optimization package [52]. A standard

90nm CMOS technology is used to design a number of LDOs. The same PCB/package model in

[53] is adopted. Since the stability must be maintained under all load conditions and the worst-

case stability for each LDO usually happens at light load condition, we use the light load as the

operating point to characterize stability and HSM.

3.2.1 Impact of LDO Topology

It is well understood how the LDO topology with certain gain and phase characteristics impact

the gain/phase margin of a single LDO circuit. However, the gain/phase margin based approach is

incapable to predict or analyze the system-level PDN stability in terms of LDO topology. By virtue
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of the HST-based PDN optimization flow, we gain the following new design insight: integrating

multiple LDOs with high loop gain and unit-gain bandwidth (UGB) may lead to deteriorated hybrid

stability of the entire PDN. Intuitively, this is because higher loop gain and UGB contribute to an

increased gain of the G block (represented using admittance transfer matrix), and hence make the

gain condition more difficult to satisfy.
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Figure 3.1: LDO topologies adopted in the experiments: (a) FVF LDO [2], (b) AB LDO [3], and
(c) ML LDO [1].

To see this, we compare three different LDO topologies as in Fig. 3.1. Based on a flipped

voltage follower (FVF) structure, the first LDO [2] (denoted as FVF LDO) achieves fast load
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regulation and high bandwidth. However, it is limited by its relatively weak feedback loop with

low gain. As contrast, while the steady-state performance of the second adaptive biased LDO

[3] (AB LDO) is notably improved with a multi-stage error amplifier, its bandwidth is heavily

lowered as more nodes are inserted into the loop. In the third LDO topology [1], an additional

feedback path is introduced to the FVF LDO so that both the steady-state performance and the

transient response are enhanced. Nonetheless, a large amount of quiescent current is consumed on

the active frequency compensation scheme. As multiple feedback loops are employed to boost the

performance, we denote the third topology as multi-loop LDO (ML LDO). This LDO topology

labeling is used throughout this chapter.

Clearly, the above three LDO topologies demonstrate different tradeoffs between steady-state

regulation, transient response and power consumption. To see how they impact the stability of the

network, we implement the three LDO circuits with the same output voltage (1V) and maximum

load current (50mA). The gain curve of the corresponding G block containing four identical LDOs

is depicted in Fig. 3.2(a). It is observed that for most frequencies the G block with ML LDOs has

the highest gain. This is caused by the enhanced loop gain and UGB of the ML LDO topology.
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Figure 3.2: (a) γG for different LDO topologies. (b) Design space exploration for different LDO
topologies. CostLDO and FOMLDO are normalized to the maximum values among all 60 designs.
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We use a PDN setup with over 100K nodes and 4 LDOs to extensively explore the impact

of LDO topology on the PDN’s stability. Although the passive networks are the same for all

PDNs, the on-chip LDOs are designed using different LDO topologies. After the one-time AC

characterization for the passive network, the HST-based optimization flow is applied to locally

tune each LDO circuit and produce 20 optimal stability-ensured designs with emphasis on different

LDO specifications such as the unity-gain bandwidth and the output admittance. Using 4 threads

on a 2.2 GHz AMD Opteron Processor, the optimization flow takes about 2.5/7.0/13.3 hours to

complete each PDN optimization with FVF/AB/ML LDOs. To evaluate the regulation performance

of each LDO, we define a figure of merit (FOM) for individual LDO as FOMLDO = UGB · Yavg ·

Acc, where UGB is the unity-gain bandwidth, Yavg is the average output admittance (within the

frequencies of interest) andAcc is the DC accuracy of load regulation. Besides, in order to measure

the power consumption/area overhead of each LDO, a cost function is defined as CostLDO =

Iq · Area, where Iq is the quiescent current and Area is the LDO area.

Fig. 3.2(b) demonstrates the tradeoffs between FOMLDO, CostLDO and HSM among all the

60 designs. While each LDO topology shows its own merits in cost/performance within a large

design space, the PDNs with AB and FVF LDOs tend to be more stable. Additionally, Table 3.1

reports the average performance over the 20 design points for each LDO topology. Compared

to ML LDO topology, the PDNs with AB and FVF LDOs achieve 2.72X and 3.94X enhance-

ments on HSM, respectively, demonstrating that choosing the LDO topology with lower loop

gain/bandwidth can lead to larger stability margin for the PDN network.

3.2.2 Insertion of On-Chip Decoupling Capacitance

As well known, the use of on-chip decoupling capacitors (decaps) is one of the most common

noise suppression techniques. In this subsection, the HST-based design approach is leveraged to

explore the new role of the on-chip decaps in the aspect of system-level stability for PDNs with

distributed regulators. Indicated by our design study, the insertion of additional on-chip decaps

may be beneficial to relax the hybrid stability constraint of large PDN system and lead to improved

PDN performance due to the enlarged design space.
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Table 3.1: Average PDN performance with different LDO topologies.

FVF LDO AB LDO ML LDO
HSM 0.49 0.71 0.18
UGB(MHz) 98 8.2 641
Yavg(S) 0.25 3.49 4.75
Reg.ACC. 98.83% 99.97% 99.96%
Iq(µA) 90.3 53.6 535.9
Area(µm2) 1948 1521 1686
FOM(MHz · S) 20.93 28.48 3.05e3
Cost(µA · µm2) 1.64e5 0.82e5 9.09e5

From the HST point of view, this can be understood by noting that inserting global decaps

(GD) which are allocated between the global VDD grids and GND grids can significantly suppress

the mid/high-frequency impedance peaking seen from the global VDD grids. On the other hand,

additional local decaps (LD) between the regulated local VDD grids and the GND grids help

reduce the impedance observed from the local VDD grids, by providing lower impedance paths

to ground. Since the H block interfaces with the G block through both the global VDD grids

(connected with the input pins of regulators) and local VDD grids (connected with the output pins

of regulators), inserting more GD/LD can lower the magnitudes of the entries in H associated with

the global/local VDD grids, respectively. As a consequence, GD and LD can work together to

decrease γH along frequency axis makes the gain condition easier to satisfy.

To see the above trend, we compare the gain curves for different amount of decaps in Fig.

3.3. In the meantime, we study the impact of decap distribution by assigning decaps based on two

different patterns for a given amount of decaps. In the first even pattern, all decaps are uniformly

distributed. While in the second uneven pattern, the decaps are randomly distributed but with 60%

decaps concentrated on a quarter of the chip area. From Fig. 3.3, it is observed that increasing

the amount of decaps can obviously reduce γH, while how the decaps are disctributed only has

secondary impact around the frequencies where impedance peaking happens. In the rest of the

section we assume that on-chip decaps are uniformly distributed.

To fully explore the benefits of inserting decaps, we insert different amounts of on-chip decaps
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Figure 3.3: The influence of local/global decaps on the gain of H block.

containing GD and LD in a 1:1 ratio into a PDN with 100K nodes and 4LDOs and then apply the

HST-based optimization flow to jointly optimize the HSM and other performance. To see how

the decaps insertion interacts with the choice of LDO topology, we also integrate LDOs based

on different topologies to explore the joint effects of the above two key parameters on the design

tradeoffs. In Fig. 3.4, the HSM and FOMLDO are plotted as the functions of decaps. Based on

the simulation results, we analyze the impacts of on-chip decaps in two cases.

3.2.2.1 PDN with High Loop-Gain/UGB LDOs

As discussed in Section 3.2.1, the high FOMLDO can be achieved by choosing LDO topology

with boosted loop gain and UGB (e.g. the ML LDO) at the price of high CostLDO. From the

stability point of view, integrating such LDOs into a PDN will make the gain condition harder to

satisfy due to large γG values. The gain condition will be even harder to satisfy around frequencies

where resonance peaking occurs in the H block. In this case, inserting GD and LD can notably

remedy the stability constraint via suppressing the impedance peaking. This trend is verified in

Fig. 3.4 that for ML LDO topology, both HSM and FOMLDO are significantly boosted with

increased GD/LD. Note that the optimized PDN designs under low GD/LD setup can only have

small or even negative HSM due to harsh stability constraint.
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3.2.2.2 PDN with Low Loop-Gain/UGB LDOs

In this case, the gain of the G block is already low around the frequencies where resonance

peaking happens. As a result, inserting additional decaps cannot play a critical role as in the

previous case to relieve the stability constraint. As shown in Fig. 3.4(a) and (b), though the HSM

for AB/FVF LDO is slightly improved with increased on-chip decaps, no obvious variations on

FOMLDO can be observed.

Besides, we evaluate the impact of decaps on the maximum switching noise ∆Vmax for each

optimized PDN design. ∆Vmax is captured in the local VDD grids under three different load

current transitions: 1) between 1mA and 5 mA with 1ns rising/falling (Tr/Tf) time; 2) between

160mA and 200mA with 1ns Tr/Tf; 3) between 10mA and 200mA with 100ns Tr/Tf. We assume

the total load current is uniformly distributed on chip. Then Fig. 3.5 depicts variation of ∆Vmax

with different decaps.

As in Fig. 3.5(a) and (b), more decaps can significantly improve the switching noise for all

the LDO cases when the load transition is fast (1ns). However, the improvement for the PDNs

with FVF and AB LDOs mainly comes from the enhanced noise suppression of decaps, while for

the PDN with ML LDO the decap has a twofold benefit: in addition to the high frequency noise
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Figure 3.5: Impact of on-chip decaps on ∆Vmax measured under three different load transitions.

suppression, it also boosts the ML LDO design due to enlarged design freedom. Also note for the

third slower load transition (100ns), the resulted lower frequency noise is mainly regulated by the

LDOs. As shown in Fig. 3.5(c), ∆Vmax under this load is mainly related to the LDO performance

and inserting more decaps cannot play a critical role for better switching noise, especially for FVF

and ML LDOs with enough bandwidth.

3.2.3 Impact of LDO Number

Recall that the stability problem is caused by the inter-LDO interaction. From the point of

view of hybrid stability, increasing the number of on-chip regulators may jeopardize the stability

margin of the entire network due to the enhanced coupling strength between LDOs. To shed some

light on this, we plug different numbers of pre-designed LDOs into a PDN and plot the gain of H

over frequencies. As in Fig. 3.6, γH goes up when more LDOs are integrated, making the gain

condition harder to satisfy. On the other hand, our investigation shows that the entire network can

meet the passivity condition in a narrower frequency band when it contains more active regulators.

Additionally, our experiment results show that with a certain number of LDOs, the LDO dis-

tribution doesn’t appear to be a strong factor influencing the final achievable HSM . Besides,

although the LDO distribution could alter the current sharing among LDOs and it is preferred to
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optimize the LDOs at the corresponding load point, our results show that different current sharing

cases may only have limited influence on the whole-system optimization and tradeoffs. Thus we

assume the LDOs are evenly distributed in this study.
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Through simulations, we examine the variation of ∆Vmax and HSM in the PDN with different
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number of LDOs. Fig. 3.7 illustrates that when more LDOs are embedded in this PDN, the

local voltage regulation is enhanced due to the stronger load sharing effect among different LDOs.

However, the HSM of the entire network is degraded. This suggests the opportunity to optimize

the number of LDOs for improved design tradeoffs between stability and performance.

3.2.4 Joint Effects of All Design Parameters
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To give a full picture of the joint effects of all design parameters, the following experiment is

conducted. We obtain 12 different PDN parameter sets by combining the choice of LDO topology,

the amount of decaps and the number of LDOs. To fully explore the design space, the HST-based

PDN design flow is applied to generate 10 optimized PDN designs for each strategy via locally

tuning the LDO design parameters. To systematically evaluate each PDN design, we define a

figure of merit for PDN as FOMPDN = UGB·Yavg ·Acc
∆Vmax

, where UGB, Yavg andAcc are the unity-gain

bandwidth, average output admittance and DC regulation accuracy of each LDO and ∆Vmax is the

maximum switching noise in the local VDD grids, measured under load transition from 160mA-

200mA with 1ns Tr/Tf. We also define an overall cost function: CostPDN = n2 ·Iq ·Area ·CDecap,
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where n is the number of LDOs, Iq and Area are the quiescent current and area of each LDO, and

CDecap is the amount of global/local decaps. Then Fig. 3.8 visualizes the tradeoffs between HSM

and FOMPDN among all design points. And Fig. 3.9 summarizes the tradeoffs between averaged

HSM , ∆Vmax and CostPDN for all designs. Based on these results we identify two important

design cases and the detailed design suggestions are summarized.

3.2.4.1 PDN Design Targeting High Regulation Performance

In this case, regulators with high loop-gain/UGB (e.g. ML LDOs) should be adopted to enhance

the load regulation of the network. Since the stability condition under this setting is harder to

satisfy as discussed in Section 3.2.2, additional decaps are needed to relieve the stability constraint

for improved LDO performance. Of course extra decaps will also help suppress the high-frequency

switching noises. In this way, the boosted PDN regulation performance is obtained at the price of

extra decap overhead as well as the high quiescent current required by ML LDOs. This design

trend can be seen in Fig. 3.9 as the lowest ∆Vmax is achieved in PDNs with 4/6 ML LDOs and

2nF decaps.

On the other hand, increasing the number of LDOs does not necessarily always enhance the
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regulation performance of PDN. This could be explained by noting that more LDOs may exacer-

bate the stability condition as mentioned in Section 3.2.3 and cause performance degradation. This

is verified by noting that with 2nF decaps, similar ∆Vmax is achieved for PDNs with 4 and 6 ML

LDOs.

3.2.4.2 PDN Designs Targeting Low Cost

In this circumstance, the regulators with low loop-gain/UGB such as AB and FVF LDOs should

be used as they consume much smaller Iq. The PDNs with such regulators usually achieve suffi-

cient HSM within a large design space, indicating that less design efforts are needed in the aspect

of stability. This can be observed from Fig. 3.8 and Fig. 3.9. On the other hand,inserting more

regulators and decaps into the network helps suppress ∆Vmax due to the strengthened load sharing

between regulators and better suppression on switching noises, demonstrating a tradeoff between

cost and regulation performance.

3.3 Summary

This chapter identifies critical design parameters impacting the stability of PDN network. Sys-

tematic design study is conducted to explore the relationship between those parameters and the

PDN design tradeoffs. Based on the HST-based PDN design approach, several new design insights

in terms of the network-wide PDN stability can be summarized to facilitate improved PDN design

tradeoffs.
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4. MACHINE LEARNING ENABLED POWER MANAGEMENT FOR HETEROGENEOUS

VOLTAGE REGULATION SYSTEM

The work presented in this chapter is based on the vision that the ultimate power integrity

and efficiency may be best achieved via a heterogeneous chain of voltage processing starting from

on-board switching voltage regulators (VRs), to on-chip switching VRs, and finally to networks

of distributed on-chip linear VRs. As such, we first propose a heterogeneous voltage regulation

(HVR) architecture encompassing regulators with complimentary characteristics in response time,

size, and efficiency. Through holistic exploration of heterogeneous voltage regulators and their sys-

tematic adaption considering complex interdependencies between such regulators, we then develop

comprehensive workload-aware control policies to adapt HVR with respect to workload change at

multiple temporal scales to significantly improve system power efficiency while providing a guar-

antee for power integrity. The proposed power management techniques are further supported by

hardware-accelerated machine learning prediction of non-uniform spatial workload distributions

for more accurate HVR adaptation at fine time granularity.

4.1 Motivation of Heterogeneous Voltage Regulation

4.1.1 Overview of Voltage Regulators

Voltage regulators (VRs) are key components of a power delivery system and the characteris-

tics of VRs have critical impacts on power efficiency and regulation response of the entire system.

Switching at a rate of hundreds of KHz to tens of MHz, off-chip buck voltage regulators (VR)

can achieve excellent efficiency at the expense of bulky and costly off-chip LC components [7, 8].

Furthermore, off-chip VRs have slow response times, and hence cannot support fine-grained dy-

namic voltage scaling (DVS). There has been a great deal of progress on fully-integrated buck

VRs thanks to on-die/in-package inductors and new magnetic materials [13, 14, 15]. Operating

at a frequency of tens or hundreds of MHz, fully integrated buck VRs come with fast response

times and promises for efficient local power delivery and fine-grain DVFS. However, Integrating
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high-Q power inductors to support large current density with low loss is still a significant challenge

[13, 14, 15]. Compared to their off-chip counterparts, on-chip buck VRs incur more conduction

and switching losses, leading to lower efficiency, especially at light loads. On-chip linear volt-

age regulators (e.g. LDOs) are area efficient and can achieve sub-ns response times [16]. Their

efficiency drops with increasing dropout voltage, making them inefficient for wide-range voltage

conversion. Clearly, those VRs have complimentary characteristics in response time, area and

power efficiency and none of them can address the IC power delivery challenge alone.

Conversion vs. regulation. While conversion and regulation are used almost interchangeably,

we shall note a fine distinction between them w.r.t. the best ways for realizing conversion and

regulation. Switching VRs are well suited for wide-range voltage conversion for which linear

VRs suffer from large loss. On the other hand, area-efficient integrated linear VRs provide fast

regulation. Table 4.1 summarizes the characteristics of different VRs.

Table 4.1: Comparison of different VRs.

Settling time Area Efficiency Function
Off-chip
buck 10’s of us [7] Large High Conversion

On-chip
buck 10’s of ns [15] Medium Medium Conversion

On-chip
LDO sub-ns [16] Small

Low w/ large
Vin − Vout

Regulation

4.1.2 Heterogeneous PDN Architecture

Three power delivery architectures are illustrated in Fig. 4.1. The single-stage PDN is managed

by only off-chip buck converters, achieving a high efficiency over a wide workload range. How-

ever, the board/package parasitics degrade the power quality delivered from the off-chip bucks

to the on-chip power domains. Furthermore, the slow response time of off-chip buck converters

limits the application of fine-grained DVS. Thanks to the progress of on-die/in-package inductors
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and new magnetic materials the buck converters can be integrated on chip. The two-stage PDN

(Fig. 4.1(b)) consists of both off-chip and on-chip buck converters, improves the quality of power

delivery by lowering the impedance from the power supply to the load circuits, and well supports

fine-grained per-core DVS since the integrated VRs can settle much faster. These benefits make

this architecture widely used in modern SoCs such as the Intel’s Haswell processors [55]. How-

ever, the response time of on-chip buck converters can still limits the PDN performance in the case

of highly unpredictable load currents which may occur, for example, in server-class processors

[21].

We argue that the ultimate quality and efficiency in supply voltage regulation may be only

achieved by fully exploiting the heterogeneity in PDN architecture with heterogeneous regulators

with complimentary characteristics in response time, power efficiency, and cost. As shown in Fig.

4.1(c), we propose a heterogeneous voltage regulation (HVR) architecture with three voltage pro-

cessing stages: multiple off-chip buck VRs supplying power to multiple clusters of on-chip buck

VRs with each cluster powering a network of distributed on-chip LDO driving a power/voltage

domain. Fig. 4.2(a) depicts a more detailed view of the three-stage HVR. Clearly, the first stage

enjoys the high efficiencies of off-chip buck VRs over wide ranges of workloads. Their slow

response is compensated by the second stage of on-chip buck VRs. Bypassing board/package par-

asitic impedances, on-chip buck VRs can settle much faster, enabling fine grained per core DVS

otherwise impossible. Having two stages of buck converters gives the added benefit of lowering

the step-down ratio for each stage, improving the efficiency of both off-chip and on-chip buck con-

verters, and reducing sizes of the off-chip passives and power transistors [43]. Leaving most of the

voltage conversion functionality to the first two stages, the on-chip LDO networks act as the last

(main) stage of voltage regulation. Due to the small footprint of LDOs, a large number of compact

LDOs with ultra-fast response time can be placed on-chip in a distributed manner within a power

domain (Fig. 4.2(b)), forming an interconnected active regulation network. In vicinity of on-chip

hot spots, on-chip LDO network can respond very quickly to local voltage droops, achieving good

regulation performance.
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4.1.3 Tuning Opportunities in HVR
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Figure 4.3: Overview of tunability in HVR system.

Heterogeneity brings in a great deal of tunability at multiple HVR stages for workload-aware

adaption. The power efficiency of a single VR stage is usually a function of its input/output volt-

ages and current load. For a cluster of VRs, its power efficiency can be optimized according to

runtime workload by either tuning its input/output voltages or modulating the number of online

VRs, which changes the load per regulator. There are important interdependencies among differ-

ent voltage processing stages which must be carefully considered in order to optimize the overall

energy efficiency and regulation performance. For example, the output of the preceding VR stage is

also the input of the subsequent VR stage. Fig. 4.3 summarizes the rich tunability and complicated

energy and performance interdependencies in HVR system.

We define several important control variables in Table 4.2, and will use them throughout this

chapter. Considering a HVR system consisting of N power domains as in Fig. 4.1(c), the control

decision variables are: the number of online converters in each on-chip buck VR cluster N (i)
online,on,
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Table 4.2: Control variables in HVR.

Variable Description

N
(i)
online,on Number of online VRs in the i-th on-chip buck cluster

V
(i)
out,on Output voltage of the i-th on-chip buck cluster
Nonline,off Number of online VRs in the off-chip buck cluster
Vout,off Output voltage of the off-chip buck cluster

and the cluster’s output voltage V (i)
out,on, i = 1, ..., N , which is the input voltage to the LDO network

driven by the cluster; the number of online converters in the off-chip buck cluster Nonline,off , and

its output voltage Vout,off , which sets the input voltage to all on-chip buck VR clusters in the

considered tree.

4.2 Modeling of HVR System

Clearly, the HVR voltage processing chain has a tree structure consisting of multiple voltage

processing stages starting from a cluster of off-chip buck VRs and ending at the on-die loads

in each local power domain. We look into the detailed energy and regulation characteristics at

each individual stage first then consider the interdependencies across different stages in the HVR

system.

4.2.1 Characteristics per Stage

4.2.1.1 On/Off-Chip Buck Clusters

Fig. 4.4 shows a typical multi-phase buck converter which is widely adopted in modern SoCs.

For each single phase of the buck VR, the pulse-width-modulation (PWM) comparator sets the duty

cycle of its output voltage waveform which then drives power switches to produce the modulated

final output voltage. The multiple parallel time-interleaved phases cancel out the high-frequency

output noise and reduce the transient response time at the cost of increased overhead of inductors

and control circuits [56].

The major power losses of a buck converter include two parts: the switching loss which is

largely independent of load current, and the resistive loss which is a function of load current
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Figure 4.4: Schematic of a multi-phase PWM buck converter.

[57]. The switching loss dominates the power loss at light loads while the resistive loss grows

quadratically with increasing load current. Besides, both parts of power loss are functions of the

input/output voltages of the buck converter. In a cluster of buck VRs, its overall power efficiency

can be further impacted by the number of online VRs Nonline which varies the total switching loss

under the same overall load current. As a result, the general form for the power efficiency of a

buck cluster can be written as

ηbuck = f(Vin, Vout, Nonline, IL) (4.1)

For a given input/output voltages, a single VR achieves the peak efficiency at an optimal load

point Iopt where the ratio of total loss over the load power is minimized. Besides, Fig. 4.5(a)

demonstrates that the power efficiency curves of a buck cluster can be dramatically changed with

different number of online VRs Nonline. The peak power efficiency for each curve can only be

achieved at a certain optimal current load point, which is roughly NonlineIopt. Therefore, it is

intuitive to bring online only a certain number of buck VRs in the cluster such that the load current
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per VR stays around Iopt. The number of required VRs Nonline can be quantized as

Nonline = min{Nmax,

⌈
IL
Iopt

⌉
}. (4.2)

where Nmax is the maximum number of VRs in a cluster and IL is the total load current.

(a) (b)

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

IL (A)

E
ff

ic
ie

n
c
y

 

 

N
online

=1

N
online

=2

N
online

=3

N
online

=4

I
OPT

2I
OPT

3I
OPT

4I
OPT

0 2 4 6
0.5

0.6

0.7

0.8

0.9

IL (A)

E
ff

ic
ie

n
c
y

 

 

V
in

=2V

V
in

=2.4V

V
in

=1.6V

I
OPT

Figure 4.5: (a) Impact of online buck VRs on power efficiency, and (b) impact of input voltage on
Iopt for a single buck VR.

Note that the chain structure of the HVR makes things much more complicated, because Iopt

is a function of VR’s input/output voltages which can be influenced by the preceding and subse-

quent stages. Fig. 4.5(b) illustrates the shift of Iopt for a single buck converter with varied input

voltage. Such effect must be considered in (4.2). As will be discussed later, the adaptive con-

trol policy proposed in this work requires short processing latency to enable fine grained temporal

control resolutions. Therefore, the complex characteristics of buck converters are stored in two

look-up-tables (LUTs) for the ease of online use. For instance, LUT η stores the power efficiency

characteristics which are indexed by the input/output voltages and load current for each buck VR.

As a function of the input/output voltage levels, LUT Iopt stores the optimal load current under

72



which the peak efficiency is achieved for a single buck VR.

Although the buck converters are more suitable for voltage conversion as discussed earlier, the

on-chip buck VRs, which is the final stage in the conventional 2-stage PDN, have to be carefully

designed with the consideration of supply noise. The power integrity will be largely determined

by the transient response of the on-chip buck VRs. In general, increasing the switching frequency

of the buck VRs will help reduce both the transient response time and output voltage ripple but at

the price of increased switching power loss. As a result, it is common to integrate on-chip buck

converters operating at hundreds of MHz in the 2-stage PDN [55].

4.2.1.2 On-Chip LDO Networks

The proposed 3-stage HVR system explores the fast voltage load regulation of an additional

stage of distributed on-chip LDOs as discussed earlier. In addition, LDOs can be designed with

a good power supply ripple rejection (PSRR) to suppress noise from the input voltage (i.e. line

regulation) [1]. As a result, the on-chip buck converters in the 3-stage HVR can be optimized to

achieve better power efficiency, e.g. by operating them at a lower switching frequency.

-
+

Ve

Vref

+
-

Error Amplifer

Vref
Vout

Figure 4.6: Schematic of LDO.

To supply a specific output voltage, a linear LDO converts an input voltage using an error

amplifier and feedback loop as depicted in Fig. 4.6. The power efficiency of an LDO is strongly

limited by the input-to-output differential voltage ∆V = Vin − Vout for a given targeted output
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voltage Vout:

ηldo =
Vout

Vout + ∆V
. (4.3)

At a certain load point, the dropout voltage Vdrop of an LDO is defined to be the minimum ∆V

at which the LDO ceases to regulate its output voltage, i.e. entering the dropout region from the

regulation region. 4.7(a) illustrates Vout as a function of Vin. Therefore, it is desirable to set Vin

just Vdrop above Vout to keep the LDO at the boundary between the dropout and regulation regions

to maximize efficiency. However, setting Vin too low may jeopardize the regulation of LDOs and

violate power integrity.
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Figure 4.7: Relationship between LDO’s dropout voltage and load current.

Vdrop is a function of the load current IL, which is shown in Fig. 4.7(b) for a realistic LDO

design [1]. It can be seen that Vdrop is approximately linear in IL, hence Vdrop ≈ IL
IL,max

Vdrop,max,

where Vdrop,max is the dropout voltage at the maximum current load IL,max. Given a target output

voltage Vdd, e.g. one set by DVS, the optimal LDO’s input voltage (output voltage of the on-chip
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buck VRs), which leads to the highest of LDO power efficiency, is:

Vin,opt ≈ Vdd +
IL

IL,max
Vdrop,max. (4.4)

4.2.2 Interdependencies between Voltage Processing Stages

According to the above discussion, the power efficiency of a single VR stage largely depends

on its input/output voltages and current load. Thus, there are important interdependencies among

voltage processing stages which must be carefully considered in order to optimize the overall en-

ergy efficiency and regulation performance. Such interdepencies can be observed in (4.5), which

describes the overall power efficiency as the product of efficiencies at all stages. Since the input

voltage of the off-chip buck VRs is assumed to be constant, it is not considered in the correspond-

ing power efficiency ηbuck,off . Under a certain workload ~IL,on = {I(1)
L,on, I

(2)
L,on, ...I

(N)
L,on} and DVS

setting ~Vdd = {V (1)
dd , V

(2)
dd , ...V

(N)
dd }, whereN is the number of power domains, the control variables

listed in Table 4.2 can simultaneously influence the power efficiencies at multiple stages due to the

interdepencies in the voltage regulation chain. For example, the output voltage of the off-chip buck

VRs Vout,off influences the efficiencies of both off- and on-chip buck VRs. Set by the output of

corresponding on-chip buck cluster V (i)
out,on, the input voltage to an LDO network significantly im-

pacts the power efficiencies of the (preceding) on-chip buck cluster, and the final power quality for

the loads observed on the power grids. As a result, such interdependencies have to be considered

in the online adaption for maximal power efficiency and noise tradeoffs.

ηHV R =ηbuck,off (Vout,off , Nonline,off , IL,off )

ηbuck,on(Vout,off , ~Vout,on, ~Nonline,on, ~IL,on)ηldo(~Vout,on, ~Vdd)
(4.5)

4.3 HVR Control Policies

We present our proposed control policies for 3-stage HVR while these policies can be straight-

forwardly applied to adapt 2-stage HVR consisting of only off- and on-chip switching VRs. Unlike

most related work executing power management in the OS or software [41, 42], the proposed poli-
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cies can be efficiently implemented in firmware based on simple arithmetics and pre-computed

look-up-tables (LUTs) supported by hardware accelerated machine learning prediction of work-

load.

The settling times of off- and on-chip switching VRs of the the first two stages can differ by

several orders of magnitude. Hence, they are adapted using two different control cycle times,

denoted by Toff and Ton, respectively. Each Toff is split into multiple cycles of Ton. Accordingly,

off- and on-chip switching VRs are adapted by two control procedures, which are shown in Fig. 4.8

for a HVR system with N power domains, one for each core. We estimate core-level workloads

~IL,Toff = {I(1)
L,Toff , I

(2)
L,Toff , ..I

(N)
L,Toff} and ~IL,Ton = {I(1)

L,Ton, I
(2)
L,Ton, ..I

(N)
L,Ton} respectively at the

time granularities of Toff and Ton using power sensors [58] at the output of each on-chip switching

VR (buck converter) cluster. At both time scales, we use the workload estimates obtained from the

previous control cycle to to generate control actions for the current cycle.

In each off-chip VR control cycle Toff , the off-chip VR control procedure V R_OFF_OPT is

invoked to optimize the off-chip VR otuput voltage Vout,off and the number of online off-chip VRs

Nonline,off based on ~IL,Toff . Each Toff is divided into a multiple of much finer grained on-chip VR

control cycles Ton as shown in Fig. 4.9. The on-chip control procedure V R_ON_OPT is invoked

in each Ton cycle to adjust the output voltage V (i)
out,on and the number of online VRs N (i)

online,on for

each on-chip VR cluster, i = 1, 2, ...N , based on the finer grained workload estimation I(i)
L,Ton. As

detailed in Section 4.4, V R_ON_OPT relies on a machine learning module utilizing a small num-

ber (NS) of voltage sensors to more precisely adjust ~Vout,on = {V (1)
out,on, V

(2)
out,on, ..., V

(N)
out,on}, based

on the spatial distribution of the workload in each power domain. The voltage sensor readings

~Vsensor = {V (1)
sensor, V

(2)
sensor, ..., V

(NS)
sensor} are included as input to V R_ON_OPT .

Fig. 4.9 shows the timing of the control sequences. There are three steps involved in each Ton

cycle. The first decision making step executes V R_ON_OPT procedure to compute ~Vout,on and

~Nonline,on and the on-chip VRs are adjusted accordingly in the second decision execution step.
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4.3.1 Off-Chip Switching VR Control

The output voltage Vout,off of the off-chip switching VRs is the input voltage to all on-chip

switching VR clusters. Vout,off impacts the power efficiencies of both on-chip and off-chip buck

VRs as well as the resistive power loss due to PCB/package parasitics. As in Algorithm 1, the

off-chip control procedure V R_OFF_OPT uses the following iterative search to find the optimal

Vout,off among a set of discretized values of Vout,off while considering the above interactions. At

each iterative search step with a targeted Vout,off value, we first estimate the input voltage to each

LDO network V (i)
out,on in line 5 as a linear function of workload to maximize the power efficiency

of the LDO’s as in Section 4.2.1.2 for 3-stage HVR. Otherwise, for 2-stage PDN V
(i)
out,on is directly

set by system’s power management (e.g. DVFS) unit as shown in line 7. Then, the optimal load

point for each on-chip buck VR I
(i)
opt is determined in line 9 via a LUT with the known input/output

voltages. N (i)
online,on is further determined in line 10. The power efficiency for each on-chip buck

cluster is conveniently estimated through the use of another LUT in line 11. The total through-

package current, which is the sum of the input currents of all on-chip buck clusters is computed in

line 13 and used as the load current of the off-chip buck cluster. The power efficiency of the on-

chip components of HVR is computed in line 14 considering both integrated buck VRs and LDOs.

Our experimental study shows that the resistive loss caused by PCB/package parasitics may not

be negligible, which is considered in line 15. Following a similar procedure, Nonline,off and the

off-chip power efficiency are determined in lines 16-18. The overall system power efficiency at

the current value of Vout,off is the product of the efficiencies of all stages as in line 19. Finally, the

combination of the value of Vout,off and the corresponding Nonline,off that maximizes the system

efficiency is chosen as the optimal control of the off-chip buck VRs for this Toff cycle.

4.3.2 On-Chip Switching VR Control

Once the slowly changing variables Vout,off and Nonline,off are determined for each Toff cy-

cle, V (i)
out,on and N

(i)
online,on per domain are updated for each finer temporal cycle Ton by calling

V R_ON_OPT shown in Algorithm 2. We follow a flow similar to V R_OFF_OPT to deter-
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Algorithm 1 Off-chip control algorithm V R_OFF_OPT .
Inputs:
Workload current estimations ~IL for each Toff cycle.

1: Maximize η(Vout,off ), subject to
2: Vmin_on ≤ Vout,off ≤ Vmax_on

3: for each power domain i do
4: if 3_stage_HV R == True then
5: V

(i)
out,on = V

(i)
dd + αI

(i)
L /I

(i)
max

6: else
7: V

(i)
out,on = V

(i)
dd

8: end if
9: I

(i)
opt,on = LUT Iopton (Vout,off , V

(i)
out,on)

10: N
(i)
online,on =

⌈
I

(i)
L /I

(i)
opt,on

⌉
11: η

(i)
on_sw = LUT ηon(Vout,off , V

(i)
out,on, I

(i)
L /N

(i)
online,on)

12: end for
13: Ipkg =

∑
i(I

(i)
L V

(i)
out,on/Vout,off/η

(i)
on_sw)

14: ηon_chip = (
∑

i V
(i)
dd I

(i)
L )/Ipkg/Vout,off

15: ηpkg = Vout,off/(Vout,off + IpkgRpkg)

16: Iopt,off = LUT Ioptoff (Vext, Vout,off )
17: Nonline,off = dIpkg/Iopt,offe
18: ηoff_chip = LUT ηoff (Vext, Vout,off , Ipkg/Nonline,off )
19: η = ηon_chipηpkgηoff_chip

20: Return {Vout,off , Nonline,off} with maximized η

Algorithm 2 On-chip control algorithm V R_ON_OPT .
Inputs:
Workload current estimations ~IL for each Ton cycle.
Voltage sensor readings ~Vsensor for each Ton cycle.

1: for each power domain i do
2: if 3_stage_HV R == True then
3: V

(i)
out,on = V

(i)
dd + αI

(i)
L /I

(i)
max

4: else
5: V

(i)
out,on = V

(i)
dd

6: end if
7: I

(i)
opt,on = LUT Iopton (Vout,off , V

(i)
out,on)

8: N
(i)
online,on =

⌈
I

(i)
L /I

(i)
opt,on

⌉
9: if MachineLearningOption == True then

10: V
(i)
out,on = MachineLearning(~SPDN , ~V

(i)
sensor)

11: end if
12: end for
13: Return {~Vout,on, ~Nonline,on}
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mine N (i)
online,on in lines 2-8. However, if the machine learning is enabled, the final V (i)

out,on is fine

tuned by the machine learning module with the consideration of fine-grained spatial workload

distribution, described next.

4.4 Machine Learning Enabled Adaption

One key objective of voltage regulation is to deliver power to on-die devices with ensured

power integrity, e.g. without dropping the worst-case voltage from the on-chip power grids below

a preset level. Power supply noise hotspots are created due to the non-uniform spatial distribution

of workload onchip. To make things even worse, the locations of hotspots can shift during run-

time. Such effects can significantly impact the on-die supply noise. Thus, the output voltage of

each on-chip switching VR cluster, which is the final point of 2-stage voltage regulation, and also

the input voltage to the distributed LDO network in the case of 3-stage HVR, shall be adapted with

the considerations of fine-grained spatial workload distribution. However, predicting such spatial

workload distribution for the purpose of PDN adaptation is a challenging problem.

Recently, machine learning (ML) has been received a significant amount of interest for power

system design. For instance, noise-sensor-based machine learning techniques [59, 60] have been

developed to detect voltage emergencies within functional blocks. Different from these works, we

leverage machine learning to directly learn the optimal control policy based on the fine-grained

spatial workload distribution predicted from a small number of distributed voltage-noise sensors.

This enables a very desirable end-to-end ML solution that can lead to additional energy and power

integrity benefits.

4.4.1 Machine Learning Problem Formulation

We first formulate the machine learning problem. For a power domain, denote the output volt-

age of the corresponding on-chip switching VR (buck) cluster Vout,on. By exploiting the correlation

between voltage droops at different nodes in the power grids (including sensor locations) and the

distribution of workload, a machine learning model can directly learn the optimal control variable

V opt
out,on using the voltage sensor readings as input features. Here V opt

out,on is defined as the minimum
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Vout,on value such that the worst-case supply voltage across the entire power grids doesn’t fall be-

low a preset safety voltage level. By leveraging the fine-grained spatial information of workload

distribution, Vout,on can be set in a more accurate way, achieving improved power efficiency and

quality. A ML model is used to learn the following mapping:

~SPDN , ~Vsensor → V opt
out,on, (4.6)

where ~Vsensor is the worst-case voltage values sensed by the voltage sensors during an on-chip VR

control cycle Ton. ~SPDN includes the PDN configurations such as control variables under which

the voltage sensor values are measured. The training samples can be collected by circuit simulation

by sweeping Vout,on within a certain range to obtain the target V opt
out,on under the same workload. Fig.

4.10 illustrates the ML module and voltage sensors in a power domain.

Voltage Sensors

Functional block

Machine Learning Module

919-um

Vout,on
opt

Parameter 

Memory

+

-+

Sensed Voltage VectorFigure 4.10: Demonstration of machine learning module and voltage sensors.

4.4.2 Preliminary of SRKM

We integrate our machine learning module (accelerator) on chip to enable fast real-time work-

load aware adaption. Such machine learning module must come with sufficient accuracy, low
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area/power overhead, and should incur low processing latency to enable HVR adaptation at fine

temporal granularity. The recently developed sparse relevance kernel machine (SRKM) [61, 62]

is shown to offer great learning accuracy for a variety of applications. Unlike the widely adopted

support vector machine (SVM) and relevance kernel machine (RVM), SRKM can lead to signifi-

cant sparsity in both (training) sample and feature space, resulting in lower processing latency and

hardware overhead. Therefore, we adopt SRKM as the machine learning algorithm.

A single training sample of the SRKM can be defined as a pair {xi, yi}, where the vec-

tor xi is the input containing F features and yi is the output. Given N samples, the objec-

tive of the SRKM training is to derive the model mapping x → y. The SRKM training pro-

cess only selects a certain number of relevance samples (NS) and features (FS), producing the

model consists of a sample weight vector w = {w(1),w(2), ...,w(NS)}, a feature weight vector

v = {v(1),v(2), ...,v(FS)}, and a NS × FS shrinked training matrixX .

Based on the trained model, the SRKM use the following equation to predict the expectation

of the output y for an input vector x:

y(x,w) =

NS∑
i=1

w(i) ·K(x,Xi), (4.7)

where Xi is the i-th relevance vector in X and K(x,Xi) is the kernel function computing the

similarity between the input vector x and the training vectorXi:

K(x,Xi) =

FS∑
k=1

v(k) · φ(x(k),Xi(k)), (4.8)

where x(k) is the k-th feature of the input vector x, Xi(k) stands for the k-th feature of the i-th

sample in the shrinked training set X , and φ(x(k),Xi(k)) measures the similarity of x(k) and

Xi(k):

φ(x(k),Xi(k)) = e−γ(x(k)−Xi(k))2 . (4.9)

In our work, we train an SRKM model offline based on 2,000 training samples collected from
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circuit simulation. It achieves a Normalized Mean Square Error (NMSE) of 4.3e-3, demonstrating

excellent prediction accuracy. As mentioned earlier, the trained SRKM model is mapped to an

hardware accelerator for efficient runtime application.

4.4.3 Pipelined Parallel VLSI Architecture for SRKM Accelerator
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Figure 4.11: VLSI architecture of SRKM accelerator.

We further present the design of VLSI SRKM accelerator circuit and address some design

decision makings such as control of parallelism and pipelining. The overall architecture of our

SRKM prediction circuit is shown in Figure 4.11. The computation of the kernel K(x,xi) is the

main function of the SRKM prediction and takes the majority of the design. Besides, for practical

applications, input features xin with different amplitudes are usually normalized before getting

into to the SRKM kernel module. The input normalization function is written as:

x = xin · diag(αin) + βin, (4.10)
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where x is the normalized sample vector input, αin and βin are the input scaling vector and offset

vector, respectively. Accordingly, the normalized prediction output y needs to be denormalize to

the actual final prediction result yout:

yout = (y + βout) · αout, (4.11)

where αout and βout are the output scaling scalar and offset scalar, respectively.

As shown in Figure 4.12, the computation of the kernelK(x,xi), which is the main function of

the SRKM prediction, can be further divided into four steps: feature difference computing (SUB),

feature difference squaring (SQR), exponential mapping (EXP) and weighted sum (W_SUM) for

kernel finalization. Among these steps, all calculations operate on vectors and there is no data

dependency among those vectors. In this case, at each step, we can process multiple vectors at a

time to speed up the prediction. However, a high level of parallelism among vectors requires a large

number of hardware resources, especially multipliers, which could be costly in terms of circuit

area. We will compare multiple SRKM designs with different configurations of the parallelism

level in terms of area, power, and latency in the following subsection.

Figure 4.12: Decomposition of the SKRM kernel computation. Equations shown here are for
element-wise operation.
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Besides, the four steps of kernel computation are processed in pipeline to further speed up the

SRKM prediction as well as improve the cost efficiency of the hardware implementation. The

flow diagram of the kernel computation pipeline is depicted in Figure 4.13. The number of sample

vectors processed at each clock cycle is decided by the configured parallelism level denoted as

PAR. With the proposed pipeline scheme, the total number of clock cycles Nc that needed to

finish the kernel computation is

Nc =
NS

PAR
+ 3, (4.12)

where NS is number of vectors in the shrinked data set. In this design, different pipeline stages

have the same parallelism level, thus the same PAR.

Figure 4.13: Flow diagram of the 4-stage SKRM kernel computation pipeline. The subscript
number index the group of sample vectors that are currently under this stage.

When implementing the pipelined SRKM prediction, each of the four stages are realized by a

corresponding functional module, which consists of only combinational logic thus can be finished

within one clock cycle. Besides, the output of each pipeline stage is registered, which are indicated

by the shaded blocks in Figure 4.11. A finite state machine (FSM) is used to control the state

transaction and the data transfer. It also controls the two address generators to generate the address

for reading the sample vector values in SUB stage and storing the kernel values in the W_SUM

stage based on the current clock cycle count.
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Then, in order to get φ(x(k),xi(k)) in (4.9), the square calculation (SQR) is carried out using

multipliers and the exponential calculation (EXP) follows. We adopt a 1024-entry LUT to effi-

ciently implement the exponential function e−γ·x in equation (4.9) in our VLSI SRKM prediction

circuit. At last, the kernel function value for the input vector is obtained by computing the weighted

sum (W_SUM) of differences between input vectors and relevance vectors over all features. The

resulting kernel function values (i.e. data_in in Figure 4.11) are stored in the kernel register array

whose depth is the number of input vectors. When the kernel function value corresponding to a

certain input vector is available, it will be written to the targeted address in the register array.

After all kernel function values have been updated in kernel registers, a data_ready control

signal will assert. This control signal enable computation of the normalized prediction output y in

which the kernel register output vector is multiplied with the pre-trained sample weight vectorsw.

The entire flow is finalized by denormalizing y to the predicted target yout.

4.4.4 Hardware Tradeoffs

Several SRKM accelerator using the proposed architecture are designed with Verilog HDL.

The hardware designs are synthesized with a 45nm CMOS standard cell library using Synopsys

Design Compiler under 167-MHz clock frequency. Cadence Innovus is used to perform floor-

planning, placement, and routing. We report the area, static analysis power and prediction latency

of hardware SRKM accelerator as below.

Table 4.3: Hardware result for SRKM accelerator with different parallelism.

Parallelism
Area
(mm2)

Power
(mW)

Latency
(ns)

Energy
(nJ)

Speedup
(X)

1 0.545 26.03 393 10.23 21.1
2 0.844 43.97 219 9.63 37.9
4 1.418 74.53 132 9.84 62.9
8 2.571 118.04 90 10.62 91.9

To explore the tradeoffs between area, power and prediction latency impacted by different
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Figure 4.14: Layout of SRKM predictor with parallel parameter PAR=2.

levels of parallelism, we implement four VLSI designs with parallel parameter PAR = 1, 2, 4, 8.

We set the number of relevance vectors (FS) to be 100 and the number of relevance features (NS) to

be 11 considering the number of voltage sensors in each power domain. The main hardware results

are summarized in Table 4.3, demonstrating good tradeoff between processing latency, power and

area overhead. For example, the estimated power and area of an SRKM design with parallelism

degree four are 74.53mW and 1.418mm2, respectively. By using the hardware SRKM accelerator

circuit, we can achieve up to 91.9X speedup compared to the software SRKM running on an Intel

Xeon E5-2697A Processor and the processing latency is only 90ns. The achieved low latency

guarantees the effectiveness of applying the control algorithm in Section 4.3 at a fine temporal

control granularity. It is also interesting to note that the consumed energy per prediction (defined

as the product of the power and latency) are kept in the similar level for different parallelism. The

layout of the SRKM hardware with 2-way parallelism is shown in Fig. 4.14.
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4.5 Experimental Evaluations

4.5.1 Experimental Setup

4.5.1.1 Multi-Core Processor Model and Power Analysis

We use the full-system multi-core simulator GEM5 [63] to generate run-time statistics with

the granularity of 100 ns and then feed them into the power analysis tool McPAT [64] to produce

realistic workload current traces. The 45nm four-core processor model of Table 4.4 is evaluated

using the PARSEC benchmark suite [65]. The total core area estimated by McPAT is 211.4mm2

and the peak workload current per core is 25A. As illustrated in Fig. 4.15, each CPU core is divided

into five blocks according to their functionality: IFU (instruction fetch unit), RU (renaming unit),

LSU (load/store unit), MMU (memory management unit) and EXEU (execution unit). Those five

blocks are further divided into eleven sub-blocks. The current workload of each block, derived

from McPAT, is evenly distributed within the block to load the power delivery network (PDN).

Table 4.4: Processor configuration.

# Cores 4 Vdd 1V
Frequency 1.8GHz@45nm Imax 25A
Branch Predictor 2K entries Core area 40.4mm2

ALU/MUL/FPU 6/2/6 I/D-TLB 48/64 entires
Load/Store buffer 32 ROB size 192

L1 I/D-Cache
32KB, 2-way,
2-cycle latency L2 Cache

Shared 2MB,
20-cycle latency

4.5.1.2 Power Delivery Network

To enable the comparison across different PDN architectures, we consider the widely used 2-

stage PDN in Fig. 4.1(b) with on/off-chip buck VRs as the reference. The main structure of the

reference system is similar to the 3-stage HVR except that the centered on-chip buck converters

are used as the last voltage processing stage instead of the distributed LDO network. We adopt
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Figure 4.15: Floor plan of a 4-core processor.

a PCB/package model similar to [53] for both PDNs. The on-chip power grids of the PDN are

modeled using an RC network with more than 3,000 nodes.

In the regulation chain of each PDN, a cluster of 5 off-chip buck VRs is used to drive 5 on-chip

buck clusters with each cluster containing 4 identical on-chip VRs. In 3-stage HVR, each on-chip

VR cluster further drives a network of 250 on-chip LDOs for each core (power domain). The

topology from [1] is adopted for on-chip LDOs with maximum 100mA load capability. The off-

chip and on-chip buck converters are designed using PowerSoC [56], which finds the key design

parameters such as switching frequency, filter inductance, and size of MOS switches under a static

nominal load condition. Considering the on-chip buck converters are the final regulation stage in

the 2-stage reference PDN, they are designed with more emphasis on regulation performance at

the cost of more energy loss. As a result, the on-chip buck VRs of the 2-stage PDN operate at

291MHz, while those of the 3-stage HVR operate at 107MHz. For fair comparisons, the total area

budget of on-chip VRs (including LDOs) is set to 15mm2 for all PDNs.
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4.5.1.3 Control Scheme Setup

The on- and off-chip VR control periods Ton and Toff are set to 1us and 100 us, respectively to

suit the response times of the considered on- and off-chip switching VRs.

As shown in Algorithm 2, the machine learning enabled control scheme takes the voltage sen-

sor readings as input to predict the optimal output voltage of on-chip switching VRs. However,

obtaining the voltage sensor readings for each PARSEC benchmark during runtime through the

simulation of our complex PDN model is prohibitively computationally expensive. To speed up

the evaluation process, we once again leverage machine learning but for the purpose of fast es-

timation of voltage sensor readings. We train another SRKM model offline which performs the

following mapping:

~SPDN , ~Iblock(n), ~Iblock(n− 1)→ ~Vsensor(n), (4.13)

where ~Iblock(n) and ~Iblock(n − 1) are the block-level workloads at the current and past 100ns time

steps, representing the fine-grained workload transition, ~Vsensor(n) is the worst-case voltage sensor

readings caused by the corresponding transitions. Based on the traces of ~Vsensor(n), the worst case

voltage sensor readings for each control cycle Ton can be computed as the input to the machine

learning module. Similar to the online SRKM module in Section 4.4, the PDN state variables ~SPDN

are included as part of the input features for this off-line SRKM model to estimate ~Vsensor(n).

Trained with 4,000 samples, this off-line SRKM model is very accurate and achieves an average

NMSE of 1.52e-4.

4.5.2 Online Machine Learning Overhead

The area and power overhead of the proposed machine learning (ML) enabled HVR adaptation

comes from the voltage sensors and SRKM accelerators. The voltage sensors can be implemented

based on low-power high-speed analog-to-digital converters (ADCs) [66, 67]. The ADC design

in [67] is considered to estimate the sensor cost. In our study, 10 voltage sensors and a compact

SRKM accelerator (parallelism parameter equaling 4) are placed in each core. As summarized in

Table 4.5, the proposed ML approach only incurs an overhead of 2.5% on area and 0.2% on power
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but comes with great benefits.

Table 4.5: Additional area and power overhead (%). Area is normalized to the original on-die area.
Power is normalized to half of the peak power.

Amount
Area
overhead

Avg. power
overhead

Voltage sensors 40 0.442% 0.166%
SRKM accelerators 4 2.090% 0.063%
Total - 2.532% 0.229%

4.5.3 Evaluation of Ideal Control Schemes

Firstly, intuitive study is conducted to shed some light on the possible energy saving brought

by the adaptive 3-stage HVR system through joint optimization of the control variables. To do so,

we evaluate four different ideal control schemes where important factors such as multiple control

granularities and on-die workload distribution are not considered at this moment. They are covered

in the presented overall control scheme and will be evaluated in the following subsections.

As shown in Fig. 4.16(a), four ideal schemes include a static reference with all control variables

fixed and several adaptive ones considering different number of control variables are evaluated. For

example, the last scheme Nonline,on/off +Vout,on/off means that it enables the tuning of the number

of online VRs, output voltage of both on- and off-chip switching VRs. Since the purpose of this

study is to demonstrate the potential of adaptive HVR system for energy reduction, we simplify

the load condition and assume that each power domain consumes the same amount of power. And

at each workload point, the input voltage of each LDO network Vout,on is set according (4.3) based

on LDO’s characteristics while all the other variables are optimized via exhaustively comparing

the overall power efficiency for all combinations of control variables. Then Fig. 4.16(a) plots

the power efficiency of each scheme as a function of normalized workload. It illustrates that the

first static scheme achieves the lowest overall efficiency among all load conditions. Nonline,on and

Nonline,off are optimized in the second scheme with evident energy improvement under light load
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condition. The third scheme with additional consideration of Vout,on demonstrates the effectiveness

of tuning LDOs’ input voltage for further energy saving. The last scheme, with all control variables

considered, further increases the energy efficiency by better trading-off the power losses among all

components.

To see how the optimal control variables vary with the change of workload, Fig. 4.16(b) further

plots these variables as functions of workload for the last control scheme. It is observed that in

general, the increasing workload requires more buck converters at both off-chip and on-chip stages

to go online. Besides, the output of off-chip converter Vout,off tends to be lowered at light load to

reduce the switching loss of integrated DC-DC converters while increase at heavy load to reduce

the package-through current and the corresponding I2R power loss. However, it is interesting to

note that every time when more on-chip buck converters are activated, Vout,off will suddenly steps

back to compensate such increased switching power loss, demonstrating that the overall power

efficiency may only be achieved by considering the interaction of all VR stages.

4.5.4 Power Integrity and Adaptive Overall Control

4.5.4.1 Power Integrity

Next we evaluate the overall control scheme presented in Section 4.3 with the considerations

of spatial workload distribution and multiple control granularities. We first examine the power

quality of several adaptive PDNs through detailed circuit-level simulation. Verilog-A models with

PWM control are used to model the on-chip buck converters based on design parameters obtained

from PowerSoC. Ideal voltage source is used for the off-chip VRs since they have little impact

on power supply noise. The complexlity of our PDN model with large number of VRs causes

significant simulation challenge. It takes around 112 hours to simulate a 100us segment of bench-

mark workload with 4 threads on a Intel Xeon E5-2697A processor @2.60GHz. We select a 100us

workload segment from each PARSEC benchmark, forming a workload simulation set. This set

contains a representative worst-case workload segment from the fluidanimate benchmark and ran-

dom segments from other benchmarks, serving as typical workload conditions. As described in
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Figure 4.16: (a) Power efficiencies of four different ideal control schemes, and (b) optimal control
variables versus workload current.
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Section 4.3, our control algorithm supports both 2-stage and 3-stage PDNs and also provides two

options with and without machine learning module. This creates four adaptive PDNs and they are

simulated based on the aforementioned workload simulation set.

To avoid using large supply voltage guard bands, we allow rare occurrences of voltage emer-

gencies (VE), i.e. supply voltage drops below a preset level. We assume that the processor under

study is equipped with a common fail-safe mechanism such as the rolling-back recovery [68] or

adaptive frequency tuning [69] in the events of rare VE. In this study, voltage emergency (VE) is

considered to occur when the maximum voltage droop on the on-chip power grids exceeds 10% of

the nominal Vdd. The count of VEs is used as a metric for power quality.
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Figure 4.17: Number of VEs per benchmark segment.

Fig. 4.17 plots the average count of VEs per power domain under the workload segment of

different PARSEC benchmarks. On average VE only occurs about once in each power domain for

all PDNs. In other words, all PDNs have the same power integrity level. Under this equal power

quality condition, we will compare these PDNs in terms of energy efficiency in Section 4.5.5.
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4.5.4.2 Case Study for Adaptive Control

Next, we use two simulation examples of the adaptive 3- and 2-stage PDN systems with and

without machine learning module to shed some light on how the proposed control polices adapt to

the workload change and the benefits brought by machine learning. Fig. 4.18 shows the transient

waveforms based on fluidanimate. Such workload segment represents a worst-case scenario since

the total load current suddenly increases to the maximum 25A peak current from light load con-

dition. The fast and large load variations as such tend to cause a considerable amount of power

supply noise, imposing a significant regulation challenge. The resulting worst voltage VPG in the

entire on-chip power grids is plotted. The dash line indicates the supply voltage level under which

VE is considered to happen. It can been seen that for both PDN architecture, the system armored

with machine learning (ML) can more accurately set the output voltage of the on-chip buck con-

verters Vout. That is, the Vout that is further fine tuned by the proposed ML module becomes lower

under lighter load conditions, reducing the energy at the corresponding stage. On the other hand,

Vout can be quickly increased in response to the arrival of heavier workloads. The number of online

on-chip buck converters Nonline is also well adapted to the workload variation for energy saving.

Fig. 4.19 shows a more typical workload example from the streamcluster benchmark. The

corresponding power trace exhibits periodic behavior resulted from a for loop in the program.

Although no VE happens in all PDNs, it is evident that for both PDN architectures, the machine

learning solution further improves energy efficiency due to lower values of Vout.

4.5.5 Overall Energy Evaluation

4.5.5.1 Energy Comparison

The overall energy efficiencies of different PDN architectures with various control schemes are

compared. We name all considered PDNs in the top of Fig. 4.20. There are four 3-stage PDNs

denoted by 3-S1 to 3-S4 with different control policies. Take the 3-S4 PDN with configuration

3stage-Nonline,on/off -Vout,on/off (ML) for example. The configuration means that the system uti-

lizes a 3-stage HVR PDN architecture, enables the tuning of the number of online VRs, output
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Figure 4.18: Transient waveforms of fluidanimate benchmark for (a) 3-stage HVR, and (b) 2-stage
PDN.
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Figure 4.19: Transient waveforms of streamcluster benchmark for (a) 3-stage HVR, and (b) 2-stage
PDN.
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voltage of both on- and off-chip switching VRs, and it integrates the machine learning module.

The first 3-S1 system indicates a static 3-stage PDN with no runtime adaptiaton. Similarly, we

have four different PDNs with a 2-stage architecture. We highlight several observations from Fig.

4.20.

• Without any adaptive control, the static 3-S1 outperforms 2-S1 with an energy reduction of

4.0% on average, demonstrating the potential of leveraging HVR for improved energy and

performance tradeoffs.

• 2-S2 adopts a simple control scheme similar to [43] by tuning the number of online on/off-

chip buck VRs in the 2-stage PDN. It is observed that it reduces the energy by 8.5% over

the static 2-S1. However, Adding Vout,off into 2-S3 can bring in an additional 2.1% energy

saving on average, since such scheme captures more interdependency among the regulation

chain. By comparing 2-S4 with 2-S3, the proposed machine learning module offers upto

4.1% reduction of system energy by utilizing the spatial workload distribution information.

• The highest energy efficiency is achieved by the proposed machine learning enabled adaptive

3-S4 system. The 3-S4 system reduces the total system energy dissipation by upto 17.9%

and 12.2% on average compared to the static 3-S1. Compared with the conventional static

2-S1, our 3-S4 with runtime control reduces system energy by upto 23.9% and 15.7% on

average.

Fig. 4.21 further decomposes the energy consumption for 2-S1, 2-S4, 3-S1 and 3-S4 systems.

It is observed that in general the processor in the 3-stage HVR consumes less energy compared to

that of the 2-stage PDN. That is because the distributed LDO network enhances the supply noise

suppression and thus enables lower supply voltage while maintaining the same power integrity,

demonstrating the benefit of HVR in voltage regulation. By setting the output voltage of on-chip

buck VRs in a more accurate way, the use of machine learning module significantly improves

the LDO’s power efficiency in the 3-stage HVR system while reducing the processor’s energy

consumption in the 2-stage system. With full consideration of the energy interdependency in the
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regulation chain, the proposed control policy achieves a near-optimal overall power efficiency by

carefully trading-off power loss at different stages.

4.5.5.2 Impact of Control Granularity

As discussed earlier, great benefits of adaptive control may be achieved at the finest possible

temporal granularity by tracking the workload more closely. To demonstrate it, Fig. 4.22(a) shows

the corresponding power loss increments for the 3-S4 system by applying coarser on-chip control

granularities. Enlarging Ton from 1us to 10us and 100us, the total power loss increases by up to

5% and 10%, respectively, demonstrating the benefits of fine-grained adaptive control. However,

it is observed in Fig. 4.22(b) that even with a coarser Ton, significant power reduction can still

be achieved over the static 3-S1 system, demonstrating the effectiveness of the proposed adaptive

HVR over a wide range of control granularity.

4.6 Summary

Targeting multi-stage heterogeneous voltage regulation (HVR) systems, this chapter develops

comprehensive workload-aware control policies acting at multiple temporal granularities based on

complimentary characteristics of on-chip and off-chip VRs. The considered control variables are

jointly optimized to improve the overall power efficiency according to important interdependencies

existing in the regulation chain. Our control policies are further supported with an integrated

machine-learning module to cope with fine-grained spatial distributions of workload, achieving

further improved power quality and efficiency. We show that the proposed adaptive HVR and

control policies reduce system energy by up to 17.9% and 23.9% over a static 3-stage HVR and

conventional 2-stage PDN, respectively.
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Figure 4.22: Impact of different control granularities on the power loss of 3-S4 PDN: (a) total loss
increment compared to Ton=1us, and (b) total loss reduction over static 3-S1 PDN.

102



5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation first addresses the stability design challenge for large PDNs with distributed

voltage regulation, which is caused by complicated interactions between multiple voltage regu-

lators and the passive network of surrounding RLC parasitics. Although the recently developed

hybrid stability theorem (HST) is promising to deal with the stability issue of distributed regula-

tion by efficiently capturing all the effects of interactions, the intrinsic conservativeness can lead to

large amount of pessimism in stability assessment and therefore cause significant overdesign. To

remove such overdesign as much as possible and enable the highly desirable localized regulator

design with guaranteed network-wide stability, this dissertation first identifies the great conser-

vativeness reduction opportunities brought by appropriate system partitioning. Then we propose

a frequency-dependent bidirectional admittance splitting technique to re-partition the system to

largely reduce the pessimisms in stability analysis. By systematically exploring the theoretical

foundation of the HST framework, we recognize all the critical constraints under which the par-

titioning technique can be performed rigorously to remove conservativeness while maintaining

key theoretical properties of the repartitioned subsystems. Based on that, an efficient and local-

ized stability-ensuring automatic design flow is developed for large power delivery systems with

distributed on-chip regulation. Comprehensive design studies show that the proposed approach

achieves significant performance gain over both the traditional phase margin based design ap-

proach and a reference hybrid stability approach with fixed system partitioning. In use of the

proposed approach, we further discover new design insights targeting improved system tradeoffs

between stability and performances by comprehensively exploring the vast design space of PDNs

with distributed regulation.

Besides stability, modern PDN must adapt itself according to the workload variation and op-

timize the tradeoffs between power efficiency and quality during runtime. In this dissertation, we
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argue that the ultimate quality and efficiency in supply voltage regulation may be only achieved by

fully exploiting the heterogeneity in PDN architecture with heterogeneous regulators with compli-

mentary characteristics in response time, power efficiency, and cost. Based on a proposed multi-

stage heterogeneous voltage regulation (HVR) architecture, this dissertation aims to answer the

following key question for the first time. Given a desired power supply voltage set by a higher-

level power management policy, how shall the voltage regulators in the HVR system be adapted

autonomously with respect to workload change at multiple temporal scales to significantly im-

prove system power efficiency while providing a guarantee for power integrity? Our solution is

a systematic workload-aware HVR control scheme which can jointly optimize power efficiencies

of all voltage processing stages to maximize the overall system power efficiency. The system

power loss is minimized via considering interdependencies across the entire voltage processing

chain and adapting HVR system at multiple temporal scales given the significantly different VR

response times. Besides, we further propose an integrated machine learning solution to cope with

fine-grained spatial distribution of workload, achieving further improved power quality and effi-

ciency by tuning the control variable in a more accurate way. Such machine learning solution is

enabled by a small number of voltage-noise sensors and an efficient machine learning hardware

accelerator with low silicon overhead, power consumption and prediction latency. This provides an

autonomous end-to-end integrated machine learning solution allowing for fine-grained adaptation

of HVR. We conduct comprehensive evaluations for the proposed techniques based on PARSEC

benchmarks. The experimental results show that the the proposed adaptive 3-stage HVR reduces

the total system energy dissipation by upto 23.9% and 15.7% on average compared with a conven-

tional static two-stage voltage regulation using off- and on-chip switching VRs. Compared with

the 3-stage static HVR, our runtime control reduces system energy by upto 17.9% and 12.2% on

average. Furthermore, the proposed machine learning prediction offers upto 4.1% reduction of

system energy.

5.2 Future Work

In this section, we discuss several potential directions to expand the presented work.
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5.2.1 PDN Design with Stability Assurance

The first interesting direction is to apply the proposed HST-based PDN design methodology to

investigate more complicated control mechanism for voltage regulation, such as novel centralized

control for distributed on-chip regulation network. In the PDN system with centralized control, all

the voltage regulators can respond globally to the workload dynamics, mitigating potential issues

of distributed regulation such as imbalanced load sharing. By leveraging the proposed PDN design

flow, such system can be designed targeting at improved regulation performance and guaranteed

system stability. This will add great value to the existing PDN design.

Besides, the application scope of the current HST-based desgin flow is mainly for linear VRs

such as LDOs. This is because the HST theoretical framework is built upon linear time-invariant

(LTI) systems and thus the partitioned blocks are characterized with linear models. However, it is

also possible to extend the proposed design methodology to various other VR types such as DC-

DC buck converter and switching-capacitor (SC) based converter with approximated linear models

with reasonable good accuracy. Investigating this direction will certainly make the entire design

methodology more complete and general.

5.2.2 Workload-Aware Power Management

In terms of workload-aware power management, all the control decisions in the current work

are made based on the workload estimation for the current control cycle through voltage/current

sensor network. However, the computation of control variables and execution of control policies

cause considerable latency in the close-loop control scheme and thus give rise to potential concerns

such as performance degradation of PDN. Therefore, there is a desire to predict the workload ahead

of time, for example, through machine learning based approach leveraging the statistical charac-

teristics of a certain workload. If successful, it will enable proactive control to further improve the

benefits of adaptive PDN.
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