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ABSTRACT

This study addresses the resource management problem in a large scale networked system

with high flexibility. We consider the supply and demand management problem specifically in the

context of the future Smart Grid. On the supply side, we design a secondary market to provide

stochastic energy service via distributed renewable energy resources. The performance of the

proposed market is evaluated in two circumstances, i.e. whether or not the extra energy penetration

caused by the market changes the operation point of the power grid. On the demand side, we would

like to take the advantages of the residential demand flexibility to relieve consumption peaks and

stabilize the system. We conduct certain demand response in a market approach and further build

a real experiment system to analyze the performance of such regime.

The study of supply side market is referred to the subheading: Small-Scale Markets for a

Bilateral Energy Sharing Economy followed by an extension of the corresponding market which

brings in the concern that the increased energy penetration may change the operation point of

the grid. As for the demand side study, design and analysis of such demand response market

is under the subheading: Mean Field Games in Nudge Systems for Societal Networks and the real

experiment built-up is presented in Incentive-Based Demand Response: Empirical Assessment and

Critical Appraisal. We model the agent behaviour in both markets via game theoretic approach

and analyze the equilibrium performance. We show that a Mean Field Game regime can be applied

to accurately approximate these repeated game frameworks and socially desirable equilibria that

benefit both system operator and agents exist.
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1. INTRODUCTION

Resource management problem in large scale system such as communication network, trans-

portation system and power grid becomes more complex when the uncertainty of the resource is

high. In power grid, the resource should be allocated economically so that supply and demand are

balanced at any time. With increasing renewable energy penetration, it is more and more difficult

for the system operator to fully utilize such time effective resources. Whereas the flexibility of

demand could help to handle the uncertainty of supply through intelligent management. Markets

facilitate trades taking advantages of such flexibility and potentially allocate resource efficiently.

People have proposed many market mediated sharing systems in the forms ranging from bartering

to bargaining. Such systems often involve large number of users with infrequent interactions in

any random subset of the total population. The users usually make decisions on the time and quan-

tity of possessing the corresponding resource repeatedly. Given these attributes, mean field game

framework is a promising approach towards studying such systems.

In Chapter 2, motivated by the ever-increasing installation of photovoltaics in homes and small

businesses, we consider a general small-scale market for agent-to-agent (energy) resource sharing,

in which each agent could either be a seller (server) or a buyer (client) in each time period. In every

time period of the market, a server has a certain amount of resources (e.g., units of energy) that

any client could consume, and randomly gets matched with a client. Our target is to maximize the

resource utilization in such an agent-to-agent market, where the agents are strategic. During each

successful transaction, the server gets money and the client gets resources. Hence, trade ratio max-

imization implies efficiency maximization in our system. We model the proposed market system

through a Mean Field Game approach and prove the existence of Mean Field Equilibria in general,

and also ones that can achieve an almost 100% trade ratio. Finally, we carry out a simulation study

on a generic problem instance and a case-study of a proposed photovoltaic market, and show the

designed market benefits both individuals and the system as a whole. A reasonable extension of

the proposed energy sharing market to a larger scale system so that different trade ratios between
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different locations induce different operating points of the power grid, i.e. different Locational

Marginal Prices (LMP), is discussed at the end of this chapter. This extension essentially dives

into the question what if the agents in such market is price anticipating instead of price taking.

In Chapter 3, we consider the general problem of resource sharing in societal networks, con-

sisting of interconnected communication, transportation, energy and other networks important to

the functioning of society. Participants in such network need to take decisions daily, both on the

quantity of resources to use as well as the periods of usage. With this in mind, we discuss the

problem of incentivizing users to behave in such a way that society as a whole benefits. In order to

perceive societal level impact, such incentives may take the form of rewarding users with lottery

tickets based on good behavior, and periodically conducting a lottery to translate these tickets into

real rewards. We will pose the user decision problem as a mean field game (MFG), and the incen-

tives question as one of trying to select a good mean field equilibrium (MFE). In such a framework,

each agent (a participant in the societal network) takes a decision based on an assumed distribution

of actions of his/her competitors, and the incentives provided by the social planner. The system is

said to be at MFE if the agent’s action is a sample drawn from the assumed distribution. We will

show the existence of such an MFE under general settings, and also illustrate how to choose an

attractive equilibrium using as an example demand-response in the (smart) electricity network.

In Chapter 4, we present the system design and results of a real user demand-response exper-

iment in the Smart Grid based on the analytical results discussed in Chapter 3. Demand response

(DR) provides both operational and financial benefits to a variety of stakeholders in the power sys-

tem. As an example, in the deregulated market such as the Electric Reliability Council of Texas

(ERCOT), load serving entities (LSEs) usually purchase electricity from the wholesale market

and sign fixed retail price contracts with their end-consumers. Therefore, end-consumers’ load

shift from peak to off-peak hours could benefit the LSE in terms of largely reducing its electricity

purchase with extremely high price from the real-time market. As a first-of-its-kind implemen-

tation of coupon incentive-based demand response (CIDR), the EnergyCoupon project provides

end-consumers with dynamic time-of-the-day DR event announcements, individualized coupon
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targets, as well as periodic lottery experiments. This chapter summarizes the design methodology,

the critical findings, and potential generalization of such experiment based on the activities in the

summer of 2017. Comparison with the conventional time-of-the-day price-based DR program is

conducted. It is shown that by combining dynamic coupon with lotteries, the effective cost for

demand response providers can be reduced substantially while achieving the same level of demand

reduction.

In Chapter 5, we conclude with a summary of the main results of this dissertation.
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2. SMALL-SCALE MARKETS FOR A BILATERAL ENERGY SHARING ECONOMY ∗

2.1 Introduction

The sharing economy is a paradigm shift in the working of the twenty-first century market-

place. Supported by the ease of communication and availability of information provided by the

Internet, this marketplace innovation has blurred the line between producers and consumers, turn-

ing participants into prosumers who can both provide and utilize resources and services. Successful

platforms here enable access to resources that are commonplace, but are needed at the right place

and at the right time. Typically, these resources are such that “unused value is wasted value,” in that

idle time cannot be utilized later on. Examples include peer-to-peer (P2P) networks such as Bit-

Torrent (bartering of bandwidth), Fon (token-based WiFi sharing), Uber/Lyft (typically, fixed-price

car sharing), and Airbnb (marketplace-mediated home sharing).

Prosumers typically provide or consume small amounts of resources, which means that bilateral

trade (one-to-one) is the norm. Thus, the sharing platform enables bilateral trading, with options

ranging from barter to bargaining with monetary instruments. Prosumers are ephemeral in that

they might participate for some duration of time, and then switch to some other platform or stop

altogether. The number of participants at any time is large, which is how sharing systems manage

to match demand and supply. Also, in most existing sharing systems, prosumers act largely as

consumers or producers, but rarely switch roles.

A novel set of applications are now emerging in which prosumers switch roles from being

producers to consumers frequently. Here, agents have either demand or resources that are bursty,

which results in recurring role changes. Like P2P networks used for content sharing, these applica-

tions are associated with easily sharable resources, and provide services that are indistinguishable

from traditional sources. In this chapter, we consider agent-to-agent (A2A) market design in the

context of distributed electricity generation and consumption. We focus on rooftop-photovoltaics

∗This chapter has been submitted to IEEE Transactions on Control of Network Systems and is under review. An
alternative version is available at https://arxiv.org/abs/1712.04427
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(PV) based electricity generation at the level of homes and small businesses, where generation de-

pends on the intensity of sunshine. Here, geographic vagaries mean that one can shift from being

a producer to consumer often, and the existing grid can allow incorporation of these resources. A

traditional alternative exists here in the form of electricity purchase from a utility provider.

While there are existing platforms using a two-sided market approach for some applications,

approaches that focus on prosumers that frequently change roles from provider to consumer are

few. Consider a bilateral market in which currency is used as the instrument of trading. A simple

mechanism is one in which a consumer (that we term as a client) is matched to a random producer

(that we term as a server), each places a bid, and a trade happens if the client bids higher than the

server’s demand. The server then receives the currency equal to her bid, and must incur a cost of

providing service. Thus, an agent in a client role pays the agent in a server role to obtain resources.

Likewise, the agent that is currently a server can use these currency units to obtain resources when

it in turn becomes a client. Also, each time an agent in a client role obtains resources, it generates

surplus, measured in currency units. This corresponds, for example, to the productivity gains due to

obtaining electricity. If the client does not succeed in obtaining service under the sharing economy,

it faces a cost, which can be thought of as the negative feeling of having to search for an alternative

source or to experience delays. Would such a market be sustainable, i.e., would there be enough

resource trades generating currency (surplus) such that available resource utilization is high?

In this chapter, we develop a game theoretic framework to model and analyze A2A markets for

electric energy under the mechanism described above. The choice of mechanism often depends

on the timescale of resource usage, with simple solutions such as bartering being effective at short

timescales, and more complex ones like bargaining at long timescales. The timescale of hours for

energy sharing suggests that a low complexity solution is desirable, and the value of our proposed

solution will be apparent in later sections. In the context of our application, random matching

of agents is viable since integration of renewable energy into the electricity grid is already well

established in the US (eg. using net-metering in which customers can sell back excess renewable

energy generated [4]). The net effect is to simply inject power into the bus to which the producer
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is connected, while the consumer draws energy from the grid at the bus to which it is connected.

Hence, the electrons produced by the producer are not directly transferred to the consumer, and

only monies are transferred between consumer and producer.

Our market model consists of random matching between a large number of ephemeral agents

that might leave at any time. We assume that a departing agent is replaced with a new agent,

keeping the total number of agents fixed. The state of any agent is the amount of currency that it

possesses at that time. A client can be constrained to place a bid only if it has sufficient currency

to do so. It is clear that such a budget constraint might restrict entering agents from obtaining

resources, and result in low trade volume. Indeed, some P2P networks such as BitTorrent build

in a measure of altruism to reduce friction in the system. In this chapter, we consider models in

which the client may obtain a loan in order to pay for service. The client must pay back the loan

with interest after the trade using the currency (surplus) generated by receiving resources and any

budget money in its coffers. We consider two loan options, namely, (i) the client can obtain the

loan from an outside lending agency – a bank-loan, or (ii) from the server itself – a peer-loan.

The peer-loan model is the most general in that an infinite interest rate will ensure a hard budget

constraint, while the bank-loan model is a special case under which the client pays interest, but the

server sees a zero interest rate as the interest is transferred out of the system.

2.1.1 Mean Field Games

We investigate the existence of an equilibrium using the framework of Mean Field Games

(MFG) [5]. Here, each agent assumes that the matched agent would play an action drawn indepen-

dently from a fixed distribution over its bid space. The agent then chooses an action that is a best

response against actions drawn in this manner. The system is said to be at Mean Field Equilibri-

um (MFE) if this best response action is itself a sample drawn from the assumed bid distribution.

This framework considerably reduces computational overhead, and can easily be shown to be an

accurate approximation in range of applications [2, 6–8] including our context, when the number

of agents is large enough.

The MFG framework offers a relatively simple way of modeling and analyzing large-scale
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games when each subset of agents interacts infrequently. In the context of the sharing economy,

a particular producer and consumer would rarely be matched together multiple times in their life-

times, since the number of participants is large and participant lifetime is limited. This implies that

little utility is lost due to minimal history retention, and the action choice becomes less complex.

The main related papers in the MFG setting are [6, 7]. In [6], a sytem for auctioning adver-

tisements on a webpage is considered. Here agents are advertisers that bid for these spots, and

the main result shows how convergence to the MFE takes place while learning about the value of

winning a slot on the webpage. The model is extended in [7] to include hard budget constraints

in the sense that agents may only bid an amount less than their existing budget. The budget it-

self is updated according to an independent arrival process, and the result is a characterization of

the reduced bid that would be made in this case. Neither of these considers matching markets of

producers and consumers that are interchangeable.

2.1.2 Other Related Work

There has recently been much work in the context of the sharing economy, but little in the way

of understanding systems in which agents change their roles often. Most work that deals with this

problem considers the special case of data/spectrum sharing in wireless networks. For instance, [9]

study pricing models for a system like Fon in which WiFi is shared. In the same manner, [10, 11]

study spectrum sharing and mobile data offload in which peers can use each other’s resources in the

setting of a small number of agents. They consider mechanisms across a small number of agents

such as contracts and double auctions. However, they do not consider repeated play with learning

of behaviors.

In the context of sharing electricity storage resources, [12] considers a model of charging when

prices are low and sharing when prices are high. However, storage is currently very expensive and

its penetration is still low as compared to PV installations, particularly in Texas which is the setting

of our case study. Hence, we do not assume any storage, and usage by a consumer can only happen

with successful trade.

To the best of our knowledge, there is no prior work that considers mechanism design for bi-
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lateral (A2A) repeated games with role switching agents between producer (server) and consumer

(client) in the mean-field setting. Our initial analysis on this problem [1] only considers the spe-

cial case of the bank-loan model. Furthermore, it only presents an overview of results and no

proofs are included. The current work generalizes the results to the peer-loan model that subsumes

hard budget constraints, bank-loan, as well as peer-loan and also emphasizes the methodological

contribution by presenting the important proofs.

2.1.3 Main Results

We present a characterization of the mean-field equilibrium bid distribution for the general case

of the peer-loan model, and show the existence of a mean-field equilibrium with all the important

proofs. We show that there exists a set of equilibria that are simple, and characterized by the server

setting a fixed price k, while the client chooses whether or not to bid k based on her budget and

estimate of future value. In particular, the client decision turns out to be a set of divisions of the

budget into intervals, with k being optimal in some and 0 being optimal in others. In all cases, if

the budget is sufficiently large, the client always bids k, while if it is sufficiently small, it always

bids 0.

The stable bid k is not unique, and a set of such bids exist (with the minimum being lower

bounded by server cost, and the maximum being upper bounded by the client surplus plus cost of

not obtaining service), each one of which is an MFE. However, the fraction of time that a trade

happens (i.e, the client actually bids k) is not the same for all systems and all values of k. In

particular, the bank-loan and peer-loan models both attain higher trade ratios than the hard budget

constrained system, particularly in the case when the initial budget of an agent is low. Essentially,

a small boost in the form of a loan (which is retuned immediately with interest via the surplus

generated by the trade) is successful in reducing friction in the market allowing it to attain high

efficiency.

The trade ratio also depends on the value of k itself. Interestingly, maximum trade is not

necessarily attained at the lowest possible value of k, but there exists a value between the highest

and lowest at which this happens. The reason is that since clients and servers are interchangeable,
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extraction of surplus by a server is not always a bad thing from the client’s perspective, since it too

will gain when the roles are reversed. When the initial budget is low, a client is forced to take a

loan in order to bid a high value of k. But when it does so, it transfers a larger sum to the server,

which then (subtracting service cost), might be in a position to obtain service without having to

take a loan in the future (when it’s a client). Thus, aggregation of surplus at servers may not be

bad.

For evaluation, we first conduct numerical studies to illustrate the viability of our scheme and

compare the performance among the three systems: the hard-budget-constrained model, the bank-

loan model and the peer-loan model, in all of which agents alternate probabilistically between

being a client or a server. Comparative statics on trade ratios and optimal prices are studied in this

setting. In order to make the learnings concrete, we also conduct a case study on a synthetic grid

of Texas from the Electric Grid Test Case Repository [13, 14]. We utilize a data trace with per-bus

demand at each hour, estimate the available PV energy using weather data traces, inject power at

certain buses based on trade achieved in our (secondary) market, and determine the impact both

on the feasibility and on location marginal prices (LMPs) in the primary market (as obtained by

solving the Optimal Power Flow Problem in each hour). We show that even when injections to the

tune of 25% of the peak residential load occur, there is essentially no change to the LMPs and the

grid feasibility conditions are not violated. We then estimate the gains on a per agent (household

or small business) basis from using our market mechanism to be close to two hundred dollars a

year.

2.2 Mean Field Model

We consider a general model of the proposed market with a large number of agents. Each agent

maintains a private budget state and can bid any value within her budget plus some affordable loan

in the role of a client. The meaning of “affordable” will become clear when the value functions are

defined. When a client gets matched to a server, each places a bid. If the server indicates a lower

price than what the client proposes, a bilateral trade happens. At the end of a successful trade,

the client pays the server’s asking price together with the interest on any loan received, receives
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service and translates it into a dollar value surplus that directly increases her budget. Meanwhile,

the server receives the payment, and pays the cost of the providing service. Thus, the client will

bid strategically under some belief about the likely bids of the server, and vice versa. Computing
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Figure 2.1: Mean Field Game

perfect Bayesian equilibria of such a system is complex, particularly when the number of agents

is large. Instead, we use a mean field approximation of the proposed market system, which has

proven to be an accurate representation when the number of agents is asymptotically large [6, 15].

Fig. 2.1 illustrates our mean field model from the perspective of a single agent.

At each discrete time step, an agent could either be a client or a server with fixed probabilities,

pc and ps, respectively. A client places a bid based on her belief of server’s bid distribution,

and vice versa. In addition to the client’s bid distribution, a server also maintains a belief of

client’s budget distribution conditional on the trade happening to evaluate the amount of interest

that she might gain through the loan. The conditional budget distribution can be obtained through

a re-normalization of the original budget distribution shifted by a constant, given the belief of

bid distributions. To simplify notation, we ignore this constant shift which induces no impact on

the following analysis, and use the notation of the original budget distribution instead. Note that

since clients and servers change roles, this is the same as a belief over a generic agent’s budget
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distribution, with a density function denoted by π̂. We assume that π̂ is continuous. Since the

number of the agents is large, which implies that both the number of clients and servers at any

instant are large as well, each individual can assume that her opponent’s bid is drawn independently

from the c.d.f. ρ̂c or ρ̂s, respectively. Then the complexity of the single agent decision making

problem is much reduced. In the rest of this section, we will provide a term-wise description of

our mean field model with the accompanying notation.

Time: Time is discrete and indexed by t ∈ {0, 1, ...}.

Agent: At each time period t, an agent is either a client or a server, with probability pc or ps,

respectively. Note that the total number of agents is large and pc + ps = 1.

Bids: When a client is matched with a server, each places a bid, denoted as xc and xs, for the

client and server, respectively. When xc ≥ xs, the trade occurs and the client pays xs to the server.

State: Each agent keeps track of her budget, b, as a private state. At time t, the budget of a

agent is updated as following if a trade happens, i.e. xc ≥ xs,

b[t+ 1]− b[t] =




s− xs − αc(xs − b[t])+, as a client w.p. pc

xs − cserve + αs(xs − B̂[t])+, as a server w.p. ps,

where B̂[t] is a random variable representing the budget of a contacted client, and is distributed

according to π̂. If a trade fails, i.e., xc < xs, then b[t+ 1] = b[t] for both agents.

Note that s represents the fixed dollar value surplus that a client gains from receiving service,

and cserve is the corresponding fixed cost that a server pays for providing service. Parameter αc is

the penalty term when a client overdraws on her budget, i.e., receives a loan from the peer server,

which is then paid back in full with interest after service is obtained and surplus is generated, and

αs is the return to the server. Here, both αc and αs are at least 1 with αs ≤ αc. For the hard budget

model αc = +∞ and αs = 1, and for the bank-model αs = 1 and αc > 1 with αc − 1 being the

bank’s interest rate. The support of the budget is R+ := [0,+∞).

Costs: We have already mentioned cserve, which is the server’s cost of providing service. In

addition, we introduce another cost, close, which denotes the cost of failure to obtain service as a
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client. This models an instantaneous dissatisfaction suffered by the client, but does not impact her

budget.

Regeneration: An agent may quit the system at the start of any time period t with probability

1 − β, and may stay with probability β ∈ (0, 1). We assume that a new agent enters the system

when an old agent leaves, and the budget of the new agent is drawn from a probability distribution

Ψ with a density on Binit that is a bounded subset of R+ (for simplicity).

Best Response Policy: As an agent participates in the system, she places bids at each time

period. Hence, she needs to solve a repeated decision making problem, given the private budget b,

the public belief about the bid distribution ρ̂ = [ρ̂c, ρ̂s] and the belief about the budget distribution

π̂. The probability of the trade happening can be computed for a given bid using the public belief

about her opponent’s bid distribution. This probability characterizes the next step transition of an

agent’s budget. Hence, a dynamic program is defined for an agent to find her best response policy,

θρ̂, as is shown in green/dark blocks of Fig. 2.1. We will discuss this in detail in section 2.3.

Stationary Distribution of Budget: Given the best response policy, the state transition of an

agent is described by equation (2.1) together with the regeneration, which forms the transition

kernel of a discrete-time Markov process. The stationary distribution of this Markov process, π, is

equivalent to the resulting budget distribution at the end of the lifetime of any given agent with the

public belief ρ̂ and π̂.

Mean Field Equilibrium: Given the assumed belief ρ̂ and π̂, solving the dynamic program,

the best response policy is obtained, which defines the kernel of the budget Markov process. There-

after, taking the stationary distribution of budget together with the best response of each state, a

new bid distribution γ(ρ̂) can be calculated. If γ(ρ̂) turns out to be the same as the public belief ρ̂,

the system is at an MFE. Detailed discussions of MFE can be found in Section 2.4. Note that there

are various ways to spread the public statistics ρ̂ and π̂ in practice, e.g., via mobile apps (see [16])

or a public website.

Discussion: While the above model is kept simple for purposes of exposition, more complex

phenomena can easily be added. For instance, the diurnal variation of weather causing client
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and server interchange can be included by an additional Markovian state variable indicating if

the weather is sunny or overcast. Similarly, variable demand over the course of the day can be

included by considering a time-of-day mean field model as in [2]. Availability of storage too can be

incorporated with an additional state variable for the agents, whose value could also determine the

likelihood of being a client or a server in the current state. While surplus is chosen as deterministic

in the above model, we expect similar results to hold with stochastic surplus. Given that one unit

of energy is being shared through one trade in the current setup, an opportunistic way to deal

with variable surplus is by conducting multiple trades upon request. Behavior with all of these

extensions will be more complex, since we would have to include a belief on the additional state

variables, and an expectation by the servers of a trade only yielding partial returns. However, the

feasibility of the simplest scenario then opens up the possibility of studying these generalizations.

While the technical reason for regeneration is to ensure correlation decay leading to asymptotic

independence of client and server budgets [15], it also models real behavior of agents such as

moving to a new house, changing utility providers, PV system maintenance, etc. Also, in our

current regeneration scheme, we keep the total number of agents being constant over time, which

is not necessary in the mean field model. Instead, only the average number of agents needs to be

stationary in order to show the stationarity of the budget. Finally, our analysis assumes that mixing

happens fast enough that stationary regime analysis is accurate in the current time-block and the

resource utilization could be maximized with little regularity. Our experiments in Sections 2.5 and

2.6 show that the required mixing indeed holds, even for large instances. In particular, the case

study that is based on a data trace does have hour-by-hour changes in the weather, and accounts

for this variation at each step. Beliefs converge even under this setup, which indicates robustness

of the approach.

2.3 Best Response Policy

We first introduce a few easily established facts regarding equilibrium behavior of the agents.

Here, we consider agents bidding discrete values in R+. Later, we will show a specific class of

highly efficient equilibria exists, in which all servers bid a single price while clients either accept
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or reject. We further define random variables X̃s and X̃c distributed according to ρ̂s and ρ̂c, and

the corresponding p.m.f. are pX̃s and pX̃c . Suppose the bid spaces of clients and servers are upper

bounded by x̄c and x̄s, we have following:

Fact 1. Given ρ̂s, a client should never bid higher than x̄s, where x̄s is the upper-end of the support

of ρ̂s, i.e., ρ̂s(xs) = 1 ∀xs ≥ x̄s and ρ̂s(xs) < 1 ∀xs < x̄s.

Fact 2. Given ρ̂c, a server should never bid higher than x̄c, where x̄c is the upper-end of the support

of ρ̂c, i.e., ρ̂c(xc) = 1 ∀xc ≥ x̄c and ρ̂c(xc) < 1 ∀xc < x̄c.

Fact 3. Given pX̃s , a client should never bid xc for xc > 0 such that pX̃s(xc) = 0.

Fact 4. Given pX̃c , a server should never bid xs such that pX̃c(xs) = 0.

These facts hold since the violation each of them yields a non-positive expected payoff to a

generic agent. Thus, we claim that if an equilibrium exists, which we will discuss in section 2.4,

then in each equilibrium, by Fact 1 and 2, we have x̄s = x̄c, meanwhile, by Fact 3 and 4, we

have the action space of an agent in each role has the same discrete support, denoted as D ⊂ R+,

with the corresponding beliefs. Furthermore, the number of clients and servers are not required

to be the same in our setup. The mismatched cases can be absorbed by the extreme values of

the corresponding support. If there are more servers than clients, then a server will have certain

extra probability to see a client bidding zero. In the opposite case, a client will see an increased

probability of servers bidding the upper bound. The existence of such boundaries in the action

space is shown later in Lemma 1.

2.3.1 Value Function

As we discussed in section 2.2, the repeated decision making problem for a single agent (with

a geometrically distributed lifetime) forms a discounted cost dynamic program. The agent plays

two roles (client or server) probabilistically over its lifetime. In each role, the agent encounter-

s a different decision making problem, but based on its private budget that is common to both

roles. Throughout, we will track a generic agent just before her role (client or server) is revealed.
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However, as an agent takes an action (bids) only after her role is revealed, this is consistent with

our set-up mentioned in Section 2.2. Hence, we define the Bellman equation associated with the

dynamic program of interest as follows:

vρ̂,π̂(b) = psvs(b) + pcvc(b)

= ps
(

max
xs∈D

Eρ̂[1x̃c≥xs(Eπ̂[βvρ̂,π̂(b+ xs − cserve + α(xs − B̂)+)] + xs − cserve)

+ 1x̃c<xsβvρ̂,π̂(b)]
)

+ pc
(

max
xc∈D∩[0,b+s/(1+α)]

Eρ̂[1xc≥x̃s(βvρ̂,π̂(b+ s− x̃s − α(x̃s − b)+) + s− x̃s)

+ 1xc<x̃s(βvρ̂,π̂(b)− close)]
)
, (2.1)

where x̃s and x̃c are realizations of random variables, X̃s and X̃c, and vρ̂,π̂(·) is the value function of

a generic agent, which is in turn composed of an average of vs(·) and vc(·) (value functions once her

role is revealed). Also αs = αc = α for ease of exposition. Since each agent’s role is determined

exogenously at the beginning of a time period, the evolution of both vs(·) and vc(·) depends on

vρ̂,π̂(·) so that (2.1) remains consistent. We believe that the exogenously driven role choice makes

this a natural assumption. Since the role of the agent in our context is usually determined by the

external environment, the value of currency should be determined by the underlying market and

not the role one’s currently playing.

In our model, a client is allowed to overdraw her budget with an upper limit such that the

budget does not end up negative after any possible transaction, i.e. a client is allowed to choose up

to the maximum value of xc subject to (b + s − xc − α(xc − b)+) being non-negative. A simple

calculation then yields the upper limit of a client’s bid as b + s/(1 + α). As mentioned earlier,

the interest that a server may gain through the peer loan depends on the realized budget of the

peer client, denoted by b̂ (drawn according to π̂). Also, for both clients and servers, when a trade

happens, a budget update as well as an instantaneous gain in value is induced, which captures the

fact that the trade generates value both in the present and in the future. Further, notice that the

expectation of the indicator functions in equation (2.1) can be determined using the probability of
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trade happening, which in turn can be calculated directly using ρ̂. Then we can further characterize

vρ̂,π̂(b) as follows:

vρ̂,π̂(b) = ps

(
βvρ̂,π̂(b) + max

xs∈D
(1− ρ̂c(xs))(β(Eπ̂[vρ̂,π̂(b+ xs − cserve + α(xs − B̂)+)]

− vρ̂,π̂(b)) + xs − cserve)
)

+ pc

(
max

xc∈D∩[0,b+s/(1+α)]

[ xc∑

x̃s=0

pX̃s(x̃s)
(
βvρ̂,π̂(b+ s

− x̃s − α(x̃s − b)+) + s− x̃s
)

+ (1− ρ̂s(xc))(βvρ̂,π̂(b)− close)
])

= βvρ̂,π̂(b) + max
(xs,xc)∈A(b)

([
ps(1− ρ̂c(xs))(xs − cserve) + pc

(
ρ̂s(xc)(s− E[X̃s|X̃s ≤ xc])−

(1− ρ̂s(xc))close
)]

+ β
[
ps(1− ρ̂c(xs))∆vs(b, xs, cserve, π̂) + pc

xc∑

x̃s=0

pX̃s(x̃s)∆vc(b, s, x̃s, α)
])
,

(2.2)

where

A(b) is the two dimensional bid space D ×D ∩ [0, b+ s/(1 + α)],

∆vs(b, xs, cserve, π̂) =
∫∞

0
π̂(b̂)vρ̂,π̂(b+xs−cserve+α(xs− b̂)+)db̂−vρ̂,π̂(b), and ∆vc(b, s, x̃s, α) =

vρ̂,π̂(b+ s− x̃s−α(x̃s− b)+)− vρ̂,π̂(b). Where we have used the fact that π̂ is the density function

of (belief) budget of an agent and the latter two functions account for the change in value with a

trade for a server and a client, respectively. Then, the space of possible value functions is

V = {f : (R+ → R) : ‖f‖∞ <∞} = L∞.

Define the Bellman operator Tρ̂,π̂ on L∞ as below:

(Tρ̂,π̂f)(b)

= βf(b) + max
(xs,xc)∈A(b)

((
ps(1− ρ̂c(xs))(xs − cserve) + pc

(
ρ̂s(xc)(s− E[X̃s|X̃s ≤ xc])− (1

− ρ̂s(xc))close
))

+ β
[
ps(1− ρ̂c(xs))∆fs(b, xs, cserve, π̂) + pc

xc∑

x̃s=0

pX̃s(x̃s)∆fc(b, s, x̃s, α)
])

(2.3)
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where

∆fs(b, xs, cserve, π̂) =
∫∞

0
π̂(b̂)f(b+ xs − cserve + α(xs − b̂)+)db̂− f(b),

∆fc(b, s, x̃s, α) = f(b+ s− x̃s − α(x̃s − b)+)− f(b).

2.3.2 Properties of the Value Function

In order to characterize the best response policy, we need to derive some useful properties of

the value function vρ̂,π̂. We start by proving the convergence of value iteration for the Bellman

operator Tρ̂,π̂(·). This follows immediately from classical results in [17], as long as we can prove

the following three lemmas. Define the transition kernel Q(B|b, (xs, xc)) for non-empty Borel

subset B ⊂ R+ by equation (2.1) together with the regeneration. Note that given xs, xc, the

probability of trade happening can be directly calculated through ρ̂.

Lemma 1. For every state b ∈ R+,

1) There exists an effective bid space Â(b), which is compact;

2) The reward-per-stage is lower semi-continuous in (xs, xc);

3) The function µ(b, xs, xc) := EQ[u(B)|b, (xs, xc)] is continuous in (xs, xc) ∈ Â(b) for every

function u ∈ V .

Proof. The proof of 1) follows from showing the existence of upper bounds on bids for both

client and server yielding Â(b). The reward-per-stage in (2.3) is defined as c(b, (xs, xc)) , ps(1−

ρ̂c(xs))(xs − cserve) + pc
(
ρ̂s(xc)(s− E[X̃s|X̃s ≤ xc])− (1− ρ̂s(xc))close

)
and given b, xs, xc, the

kernel Q is fully determined by ps, pc, ρ̂, π̂,Ψ. The continuity of Q over the discrete topology of

Â(b) is natural. Details of this proof are available in Appendix.

Lemma 2. There exist constants ξ ≥ 0 and η ≥ 0 with 1 ≤ η < 1/β, and a function w ≥ 1 s.t.

for every state b

1) supA(b) |c(b, (xs, xc))| ≤ ξw(b); and

2) supA(b) EQ[w(B)|b, (xs, xc)] ≤ ηw(b).

Lemma 3. For every state (b), the function ω(b, xs, xc) := EQ[w(B)|b, (xs, xc)] is continuous in

(xs, xc) ∈ Â(x).
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Proof. Since cserve, s and close are fixed, c(b, (xs, xc)) is bounded. Then taking a bounded function

w, with the continuity of Q, the results in Lemma 2 and 3 are straightforward.

Theorem 1. (Hernandez-Lerma [17]) Given the belief ρ̂s, ρ̂c, π̂ and the corresponding p.m.f. pX̃s , pX̃c

we have,

1) There exists a j ∈ N such that T jρ̂,π̂ : V → V is a contraction mapping. Hence, there exists a

unique f ∗ρ̂,π̂ ∈ V such that Tρ̂,π̂f ∗ρ̂,π̂ = f ∗ρ̂,π̂, and for any f ∈ V , T nρ̂,π̂f → f ∗ρ̂,π̂ as n→∞.

2) The fixed point f ∗ρ̂,π̂ of operator Tρ̂,π̂ is the unique solution to the Bellman equation, i.e., f ∗ρ̂,π̂ =

v∗ρ̂,π̂.

Lemma 4. v∗ρ̂,π̂(b) is monotonically increasing in b.

Proof. By Theorem 1, we have proved vρ̂,π̂ converges to a unique fixed point v∗ρ̂,π̂ over Tρ̂,π̂. Thus,

it is sufficient to prove that Tρ̂,π̂ maintains the assumed monotonicity. Full details of the proof are

presented in Appendix.

2.3.3 Best Response Policy Characterization

As discussed in Section 2.2, our goal is to maximize server utilization from the system per-

spective, which is equivalent to maximizing the expected trade ratio in the market. Furthermore,

the budget, which is defined through equation (2.1), increases through successful trade. These

observations imply that we should characterize the best response policy not only from the single

agent perspective, but also from the perspective of maximizing the expected trade ratio. We will

use this goal to motivate a specific family of equilibria for our problem. Given the four facts we

discussed at the beginning of this section, we then show that for the best system performance a

certain simpler class of bidding functions suffice.

Lemma 5. All servers bidding the same price within the clients’ affordable range maximizes the

expected trade ratio.

Proof. The proof follows from comparing the trade ratios between the scenarios in which the server

places multiple bids or a single bid. Using the four facts, the corresponding client bid distributions

can be further characterized. Full details are available in Appendix.
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Motivated by Lemma 5, we characterize the best response policy by initializing the belief of

server’s bid distribution to be pX̃s(k) = 1 for some fixed k, i.e. all servers bid the same price k. For

non-trivial behavior k ≥ cserve, but k can be higher than s, though not by much, i.e. s− k ≥ close,

otherwise, the trade will become worthless; see section 2.5 for the latter.

2.3.3.1 Client’s Best Response

Given the belief that all servers bid k, the value function of clients from (2.1) becomes

vc(b) = max
xc∈D∩[0,b+s/(1+α)]

(
1xc≥k(β(vρ̂,π̂(b+ s− k

− α(k − b)+)) + s− k) + 1xc<k(βvρ̂,π̂(b)− close)
)

By Facts 1 and 3, we conclude that the client will bid either 0 or k. If a client bids k, the trade will

happen w.p. 1, and will fail otherwise. We define the following useful terms:

vc_win(b) = β(v∗ρ̂,π̂(b+ s− k − α(k − b)+)) + s− k,

vc_lose(b) = βv∗ρ̂,π̂(b)− close, bc_win = b+ s− k − α(k − b)+, and bc_lose = b.

Since the budget can never go negative, we have an upper limit on a client’s bid of b+s/(1+α).

If k lies out of this range, the client will simply bid 0. Now, from Lemma 4, bc_win ≥ bc_lose i.e.

b ≥ ((1 +α)k− s)/α = k− s−k
α

implies that if vc_win(b) ≥ vc_lose(b), then the client should bid k.

Thus, we have a lower bound on the bid as 0, and the upper bound as k. The exact bidding strategy

depends on the relationship between vc_win(b) and vc_lose(b). A summary of the best responses of

a client with budget b is:

x∗c =





0 b ∈ [0, k − s
1+α

)

0 if vc_win(b) ≤ vc_lose(b) b ∈ [k − s
1+α

, k − s−k
α

]

k if vc_win(b) ≥ vc_lose(b) b ∈ [k − s
1+α

, k − s−k
α

]

k b ∈ ( (1+α)k−s
α

,∞)

(2.4)

Note that when k < s/(1 + α), all clients will bid k, which is an extreme case of a “cheap
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resource." It implies the price one needs to pay is too low, as compared to the gain from the trade.

We further characterize the best response function θc,ρ̂(b) in the following Lemma.

Lemma 6. θc,ρ̂(b) is piecewise constant on [0, k − s−k
α

] with a finite number of constant intervals.

Proof. The proof follows by showing the difference vc_win(b)− vc_lose(b) is of bounded total vari-

ation. Full details are available in Appendix.

2.3.3.2 Server’s Best Response

Given the client’s best response function, we observe that under certain circumstances, the

client will bid either 0 or k based on her private state. By Facts 2 and 4, we conclude that the server

will again bid either 0 or k. We can refine the server’s belief about the client’s bid distribution as

pX̃c = (ẑ, 1− ẑ), where ẑ = P(X̃c = 0). Then vs(b) = (1− ẑ)(Eπ̂[βvẑ,π̂(b+ xs− cserve + α(xs−

B̂)+)] + xs − cserve) + ẑβvẑ,π̂(b). By Lemma 4, for ∀b ∈ R+, we have vs(b) is monotonically

increasing in xs, when xs ≤ k. Hence, all servers will bid k.

Given a feasible k (which we refer to as a “unified price” for both clients and servers), the

discussion above lends credence to the existence of an equilibrium over the simple set of beliefs

given by ẑ, π̂. We will prove that such Mean Field Equilibrium (MFE) indeed exists in section 2.4.

2.4 Mean Field Equilibrium

The main result of this section is to show the existence of an MFE with under simple bidding

strategies. Given the unified price k and the (belief) probability of bidding 0 as a client, ẑ, and the

belief of the budget distribution π̂, the kernel of state transitions in (2.1) is well defined. Denote

the fixed point value function as v∗ẑ,π̂. Taking the best response of client using (2.4), we have the

following budget transitions for a generic agent before she reveals her role:

20



b[t+ 1] =





b[t] w.p. β(psẑ + pc1b[t]∈B0)

b[t] + s− k − α(k − b[t])+ w.p. βpc1b[t]∈R+\B0

b[t] + k − cserve + α(k − b̂[t])+ w.p. βπ̂(b̂[t])ps(1− ẑ)

Binit w.p. (1− β)Ψ(Binit)

(2.5)

where, B0 ⊂ R+, in which the agents bid 0 as a client, and Ψ is the probability measure of the

agent regeneration process. Set Binit ⊆ R+ is the set of possible budgets with regeneration. When

b[t] lies on the boundaries of B0, by Lemma 6, a client is indifferent to bidding 0 or k. Also, the

number of these boundary points in B0 is finite, which leads to a Borel-null set in B0. Hence,

w.l.o.g. adding these points by assuming the client will bid 0 with some probability ptie and k with

the complementary probability will not alter the proofs in the rest of this section.

Observe that from (2.5), given the current state b[t], the next state b[t+ 1] is independent of the

rest of the history. Thus, the transition kernel above defines a Markov process for the budget, and

we have following Lemma.

Lemma 7. The Markov process {b[t]}∞t=0 with transition kernel (2.5) is positive recurrent and has

a unique stationary distribution, π = Π(ẑ, π̂), where Π(.) is used to denote the mapping between

[ẑ, π̂] and π. Furthermore, given ẑ and π̂, π is absolutely continuous w.r.t. Lebesgue measure on

R+.

Proof. The proof of the first statement follows by showing that the one-step transition function

satisfies the Doeblin condition, then using the results in [18, Chap. 12]. Then we derive the

relationship between π(B) and π(τ)(B|b), where τ is the first regeneration time after t = 0 and

b(0) = b to prove the second statement. Details are in Appendix.

The best response of each state θẑ yields a resultant budget distribution with density π and a

new value z. If π = π̂ and z = ẑ, then we say the system is at an MFE. The main result of this

section is to prove the following theorem, where θc,ẑ(·) is the set-valued (subset of {0, k}) function
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of client bids as a function of its budget. More formally, θc,ẑ : R+ → {0, k} is the client’s best

response correspondence which maps the budget to a binary choice of bids, either 0 or k.

Theorem 2. Define γ(ẑ, π̂) , πẑ,π̂(θ−1
c,ẑ (0)),∀ẑ ∈ [0, 1], where θ−1

c,ẑ (0) is the lower inverse of θc,ẑ(·)

at 0. There exists an MFE (z, k, θẑ, π), such that π = Π(ẑ, π̂) and z = γ(ẑ, π̂).

To prove Theorem 2, we need to show that γ(·) and Π(·) have a fixed point, i.e., γ(z, π) = z

and Π(z, π) = π for some z ∈ [0, 1] and some (continuous) probability density π on R+. We use

the Schauder Fixed Point Theorem, which requires that γ(·) and Π(·) are continuous in ẑ and π̂,

and that the closure of their range spaces are compact.

It is straightforward to show that Π(.) is a continuous map. Now, from Section 2.3 the best

response function θc,ẑ(·) is a set-valued function with a range containing all non-empty subsets of

{0, k}. Then we show θc,ẑ(·) is upper hemicontinuous in ẑ, and combine with the continuity of π.

Finally, we prove the single point inverse (lower inverse) of the upper hemicontinuous set-valued

function θc,ẑ(·) is a subset that consists of finite number of continuous pieces, which leads to the

continuity of γ(·).

Now, ẑ lies in the closed interval [0, 1], which is compact and convex. We then consider the

range of the mapping Π. Now, R+ is a σ−compact metric space, and since Π is a continuous real

valued function, it can be easily shown that the closure of the image of the mapping Π is compact

in the norm space of π̂ directly using Theorem 13 in [19]. This completes the requirements of the

Schauder Fixed Point Theorem. The steps of the proof are given below.

Lemma 8. v∗ẑ,π̂ is Lipschitz continuous in π̂ and in ẑ.

Proof. The proof follows using the properties of the contraction mapping T jẑ,π̂ in Theorem 1. De-

tails are presented in Appendix.

Theorem 3. θc,ẑ(·) is upper hemicontinuous in ẑ.

Proof. Given ẑ and k, we can rewrite v∗ẑ,π̂ in a different way such that it can be represented as

a increasing piecewise linear convex function. The proof holds by applying Berge’s Maximum

Theorem. Details are presented in Appendix.
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Theorem 4. Π(ẑ, π̂) is continuous in π̂ and ẑ.

Proof. The key idea of the proof is using the Portmanteau Theorem to show for any uniform

converging sequence ẑn → ẑ, a sequence of density functions π̂n → π̂ and any open set B,

lim infn→∞ πn(B) ≥ π(B), where πn = Π(ẑn, π̂n) and π = Π(ẑ, π̂). Details are presented in

Appendix.

Theorem 5. γ(ẑ) , πẑ,π̂(θ−1
c,ẑ (0)) is continuous in ẑ.

Proof. We prove this by showing that θ−1
c,ẑ (0) is a continuity set for πẑ,π̂. See Appendix for details.

2.5 Simulation

Here we conduct Monte Carlo simulations of all three models of our market system with one

million virtual agents.

Before presenting simulation results, we first introduce the parameter settings. We use a regen-

eration factor β = 0.98; we assume that agents have an equal probability being clients and servers,

i.e., ps = pc = 0.5; α = 1.1, which is the penalty parameter for overdraft; s = 8 and cserve = 6

make the trade generate reasonable amount of value; close = 0.5 captures the client disappointment

when the trade fails; Ψ(Binit) = U [0, 5], new agents come with limited amount of budget, which

helps us better analyze the differences among three models; and price k = 7 in order to balance

the benefits between servers and clients through the trade. Later on in this section, we will show

how different prices and initial budgets affect the equilibrium trade ratio in the bank-loan model.

Fig. 2.2 shows the convergence of the MFE bid probability belief, z. In the hard constraint

model, clients cannot afford the price k = 7, so all clients bid 0 and the system freezes. However,

in the bank-loan model and peer-loan model, the system gradually ramps up through different

borrowing mechanisms and z dramatically reduces when the system attains more and more wealth

through successful trades. Fig. 2.3 presents the CDFs of budget at MFE across the three models,

which indicates agents are wealthier in the peer-loan model than in the bank-loan model at MFE

(as the bank extracts some of the surplus), while the budget distribution is similar to the initial
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Figure 2.2: Convergence of
the belief, z. Reprinted with
permission from [1].
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Figure 2.3: CDF of budget at
MFE. Reprinted with permis-
sion from [1].
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tribution at MFE. Reprinted
with permission from [1].
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Figure 2.5: Bank-loan mod-
el: trade ratio and expect-
ed value vs. k, Ψ(Binit) =
U [0, 5]. Reprinted with per-
mission from [1].
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Figure 2.6: Bank-loan mod-
el: trade ratio and expect-
ed value vs. k, Ψ(Binit) =
U [3, 8]. Reprinted with per-
mission from [1].
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Figure 2.7: Bank-loan mod-
el: trade ratio and expect-
ed value vs. k, Ψ(Binit) =
U [5, 10]. Reprinted with per-
mission from [1].
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Figure 2.8: Peer-loan model:
trade ratio and expected value
vs. k, Ψ(Binit) = U [0, 5]
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Figure 2.9: Peer-loan model:
trade ratio and expected value
vs. k, Ψ(Binit) = U [3, 8]
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Figure 2.10: Peer-loan mod-
el: trade ratio and expect-
ed value vs. k, Ψ(Binit) =
U [5, 10]

values in the hard constraint model. Fig. 2.4 shows the binary bid distributions of clients at MFE,

which verifies the results in Section 2.3. We further evaluate two important statistics, namely the

trade ratio and the expected value in Table 2.1, where the expected value is calculated according to

EΨ(Binit)[v
∗
MFE]. As we mentioned earlier, the higher the trade ratio the market system achieves,
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Table 2.1: Trade Ratio and Expected Value. Reprinted with permission from [1].

Initial Budget Ψ(Binit) = U [0, 5] Ψ(Binit) = U [5, 10]
Model Hard Bank Peer Hard Bank Peer

Trade Ratio 0% 84.3% 85.2% 97.7% 99.4% 99.5%
Value -12.49 40.14 41.74 48.53 49.6 49.7

the higher resource utilization it ends up with. Given the unified bid of server and binary bids of

client, the expected trade ratio is captured by 1−z at MFE. The empirical trade ratio among the one

million agents matches this quantity in all cases. Intuitively, a higher trade ratio implies a higher

expected value, which is verified in Table 2.1. For the sake of comparison, we also append the

results of sufficient initial budget case, i.e. Ψ(Binit) = U [5, 10], in Table 2.1 as well. We observe

that with a sufficient initial budget, the hard constraint model also achieves a reasonably high trade

ratio at MFE, and the statistics of bank-loan model catches up with the peer-loan model, and both

reach 100% trade ratio.

In the simulations above, we set the unified price k = 7 and the initial budget, Binit, to be

uniform distributed in [0, 5]. Next, we will show how these two attributes affect the trade ratio of

the market system. Figures 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10 illustrate the trade ratio and the corre-

sponding expected value versus different unified prices with different initial budget distributions

under the bank-loan and peer-loan models. Recall that s = 8 and cserve = 6, which means that

the reasonable range of k lies in [6, 8 + ε], given the client is allowed to overdraw his budget to

some extent. We observe that for Binit in [0, 5], the trade ratio increases in k; for Binit in [3, 8],

the trade ratio first increases then decreases; for Binit in [5, 10], the trade ratio decreases in k. An

intuitive explanation of these results is as follows. When most agents have a sufficient budget,

lower price yields higher trade ratio. However, when most agents have a limited budget, it is better

to set higher prices to aggregate the wealth at fewer agents, which then can obtain service without

taking a loan from the bank or the peer server. It is interesting to note that in the bank-loan model,

the expected value follows the corresponding trend in trade ratio, whereas in the peer-loan model,

maximum value and maximum trade do not correspond. The reason for this is the interest received
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by the server in the peer-model makes up for the lack of a high trade ratio at low prices.

2.6 Case Study: Photovoltaic Market

We consider a PV energy sharing market in which the agents could be householders or smal-

l business owners. During the hours with high sunshine, the system can supply the electricity

consumption of an agent. Moreover, it generates extra energy that can be fed back to the grid.

However, in rainy or overcast weather, solar panels only produce 10%-25% of their rated capaci-

ty [20]. This creates the opportunity to share the extra solar energy between locations with good

and bad weather.

However, electricity is a product that is hard to differentiate between different producers. In

our context, one cannot identify specific electron transactions between matched servers and clients.

However, since we build our market on top of the existing grid, servers inject power into the grid

and clients demand power from the grid. This gives us the flexibility of conducting trades between

any set of locations that are connected on the grid. For our case study, we pick two such cities,

Dallas and Houston, since both belong to Texas interconnection and are also associated with retail

competition.

To validate the model on a realistic system, we conduct our market on a 2000-bus synthetic

Texas grid [14] built using publicly available data of the actual U.S. transmission system in 2016,

the topology of which is shown in Fig 2.11. Collecting hourly historical weather data of the two

cities in 2016 from [21], we found that approximately 38% of the time, both cities have sunny

days, and about 20% of the time, both have cloudy days (hence do not need the market).

We are interested in situations in which the two cities have different weather so that they

could share energy. The probabilities of these events are 0.1 (Dallas-bad, Houston-good) and

0.32 (Dallas-good, Houston-bad). Normalizing these values, we obtain two type of agents: Dallas

agents that are clients about 23% of the time and are servers 77% of the time, and Houston agents

who are exactly the opposite. Given the heterogeneous agent types, we have a slightly different

setup from the previous section with homogeneous agents. Also, given the regional weather effect-

s, all Dallas agents are of one type, while all Houston agents are of another type. We will show the
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Figure 2.11: Synthetic Texas
Grid
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Figure 2.15: Impact on LMPs
for Dallas servers

0 200 400 600 800 1000 1200
Amount of energy trading (MWh)

0

5

10

15

20

25

30

D
ev

ia
tio

n 
fr

om
 b

as
ec

as
e 

(%
)

Max LMP for Dallas agent
Max LMP for Houston agent

Figure 2.16: Impact on LMPs
for Houston servers

convergence of the coupling beliefs and the consistency of budget distributions across agent types

under the chosen market price, k. The setting resembles the one in [22], with multiple agent types

that undergo exogenous changes.

We choose parameters for our analysis based on readily available data. As we discussed above,

ps and pc for Dallas (Houston) agents are 77%(23%) and 23%(77%) respectively. Given the aver-

age electricity price to be 10 cents/kwh, we set the value of surplus s = 10. However, an accurate

unit cost for rooftop solar energy is not well established, since it varies by the installation fee,

the maintenance fee, the government subsidy, etc., and we use 5 cents/kwh as a conservative es-

timate [23], which yields cserve = 5. We choose the unified price k = 7.5 to balance the benefits

of the trade between clients and servers. A sufficient budget initialization Ψ(Binit) = U [5, 10] is

used.

Fig. 2.12 shows the convergence of the coupled beliefs in loan model. We see that the agents
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quickly get involved in trades, since the peer-loan ramps up the system fast.Also, the higher prob-

ability of being a client for Houston agents makes their value of budget lower, which is shown in

Fig. 2.13. Fig. 2.14 illustrates the consistency of budget distributions between agent types. With

the balanced price chosen, the consistency of budget distributions implies a high trade ratio. In-

deed, the trade ratio turns out to be 99.9%, which matches our discussion of the sufficient budget

case in Section 2.5.

We next determine the feasibility of our system operating in conjunction with the existing

(primary) market, whose bus-prices are determined by the solution of the DC optimal power flow

(OPF) solution with a given demand. Hence, we first determine the baseline location marginal

prices (LMPs) when only the primary market exists, and compare with the situation that arises

under significant penetration of the our A2S (secondary) market. The physical impact of our

secondary market is to inject power at certain buses, and we aim to determine both the feasibility

of doing so without violating grid constrains, as well as the impact on the LMPs in the primary

market. Thus, we compare the DC optimal power flow (OPF) solution of the original network

(baseline) with the case when around one million customers from the two cities (split equally) are

involved in our market with different trade ratios.

The average rooftop PV system size in the U.S. is 5kW [24]. Given that the average electricity

usage is roughly 2.5kWh per hour in the daytime [25], a server is able to provide 2.5kWh extra

energy with one hour full sunshine, which is sufficient to supply a typical client. This implies

roughly 1250MWh maximum extra energy injection at servers’ buses when scaled by one million

participants. Fig 2.15 and 2.16 explicitly show the maximum LMP fluctuations are below 10% of

the value of the baseline LMP ($19.6/MWh) when different amounts of energy are traded. Further

notice that the potential energy penetration through the grid due to the market here is 5000MWh

(5kWh∗1 million), which is roughly one quarter of the residential load of the entire Texas system

in a typical peak hour during 2016. Thus, the secondary market is both physically possible, and

has minimal disruption on existing markets even with significant penetration.

Finally, we evaluate our market system using weather traces in the year 2016 [21]. We con-
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servatively define daytime to be the interval between one hour after sunrise to one hour before

sunset, and found that in 1379 time periods (hours) a Houston agent is a client, whereas in 402

time periods a Dallas agent is a client. One potentially saves (1379∗ (10−7.5) + 402∗ (7.5−5))∗

2.5/100 ∗ 99.9% ≈ $111.3/year through our market. Note that the price k is chosen to balance

the benefits of the trade, so the savings are consistent between different types of agents. However,

for a Net Meter user, the grid usually pays at the rate 5¢/kwh [26], which gives zero profit as a

server and deficits as a client, i.e. −1379 ∗ 10/100 = −$137.9/year for an Houston agent and

−402∗10/100 = −$40.2/year for an Dallas agent. The effective returns from the market are thus

$249.2 and $151.5 for the two agent types, respectively.

2.7 Extension

So far we have discussed the market system between two locations and showed the operation

point of the underlying power grid will not deviate too much even with large amount of energy

being traded. However, the power grid is a large scale networked system with thousands of buses

connected with each other. One geographic location often imply one bus in power system. Even

for big cities, several buses could handle the transmission requirement. What if we scale our

secondary market across the grid? With large group of agents in multiple locations participating

into the market and trading simultaneously with each other based on different weather conditions,

the overall extra transmissions due to the market may exceed the threshold of current operation

point and cause significant changes in LMPs, which is not observed in Fig 2.15 and 2.16.

In this section, we first show the possibility of changing LMPs dramatically by injecting cheap

PV energy to the network through a simple three bus case. Then we briefly describe the results

in [27], which describes the polyhedral structure of LMP. Finally, we introduce a possible extension

of our proposed market to price anticipating scenarios based on the geometry of LMPs.

2.7.1 A Three-Bus Example

Fig 2.17 shows a three-bus system with one traditional generator on each bus. The maximum

capacity of all traditional generators are 450MW . The cost curves are linear but different among
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generators. A load l = 360MW is attached to bus 3. The impedance of all three transmission

lines are the same, however, there is a capacity limit on the transmission line between bus 2 and

bus 3. We set this capacity limit to be 150MW + ε for the purpose of showing the boundary case

explicitly. Suppose a PV generator is installed on bus 2, of which the power output is stochastic

based on different whether conditions.

If there is no injection for the PV generator, the DC Optimal Power Flow (OPF) is shown in

blue text. In this case, generator g1 takes care of all the demand and LMP1 = LMP2 = LMP3 =

$10/MWh, which is the marginal cost of g1. The system reaches a boundary point when the PV

injection equals to 90MW , the OPF of which is shown in yellow text. When the PV injection

is beyond 90MW , we solve the OPF with ε = 0.5 and get LMP1 = $10/MWh,LMP2 =

$0/MWh,LMP3 = $20/MWh. Hence, the operation point of the system is changed due to the

PV injection.
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Figure 2.17: A three bus example

30



2.7.2 The Geometry of Locational Marginal Prices

Although the LMPs may vary due to extra power injection, it is not intractable. It is shown

in [27] that the state-space of a power system represented by a DC power flow model can be

partitioned into polyhedral price regions in which the LMPs are constant. Here, we use a simple

two bus example as shown in Fig 2.18 to illustrate the idea. In this two bus network, we have two
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The LMP vector for the set S3, after computing λ = Q3v3 is
given by

λ =

[
π1(l1 + C)
π2(l2 − C)

]
(56)

IV. APPLICATIONS

While the formulation presented so far is relatively abstract,
the closed form expressions for LMPs, and the geometric
concept of congestion sets can have many applications. For
example the LMP expression could be used in bi-level op-
timization programs, of which many examples arise in the
power systems literature. Here we present an application of
congestion sets to illustrate the potential of load flexibility
to eliminate congestion in transmission networks and provide
economic benefits for market participants.

A. Load Flexibiity for Congestion Free Dispatch

Load flexibility is considered essential for the development
of the smart grid. We take a broader definition of load flexibil-
ity to encompass both temporal demand response and energy
storage. Promising applications include frequency regulation,
peak load reduction, reserve capacity, volt/var control, and
crucially facilitating increased penetration of renewables and
distributed generation on the grid [23], [24], [25].

Another such application of load flexibility is congestion
mitigation. Due to out of merit order generation dispatch,
congestion causes prices to vary and typically increase across
a network, usually resulting in wealth transfers away from
end consumers. For instance, from 2008-2013, between 2
and 6% of PJM’s total annual billing was attributable to
congestion, representing an average annual cost of approxi-
mately $1bn [26].4 It may be desirable for the loads to avoid
congestion in the network so as to reduce their costs.

If we examine the congestion free sets in the two-bus
example, shown in blue in Figures 2, 3, we see that whilst
the individual sets S1, S2, are convex, their union is non-
convex. This suggests that if we could use flexibility to move
the load vector, we might be able to eliminate congestion for

4Specifically this figure refers to the congestion component of LMPs

some loads. We illustrate this idea using a simple example,
building on the two-bus case with linear generation costs.

We will define three loads, shown in Fig. 4. The red
triangular area in Fig. 4 is the set S3 ∩ conv(S1 ∪ S2), where
conv(S) denotes the convex hull of S.

l(1) =

(
X − α(G1 − C)

(1− α)
, C

)
∈ bd(S1)

l(2) =

(
G1 − C,

Y − (1− α)C

α

)
∈ bd(S2)

l(3) = (X,Y ) ∈ S3 ∩ conv(S1 ∪ S2)

= (1− α)l(1) + αl(2)

where α ∈ (0, 1), and bd(S) denotes the boundary of the
set S. l(3) is an arbitrary point in the congested load set
S3 ∩ conv(S1 ∪ S2), with coordinates (X,Y ). l(3) also lies
on the line segment connecting l(1) and l(2). This suggests
that if l(3) is constant over some time period, it can be met
congestion free using flexibility. In other words suppose we
need to serve a constant load l(3) over some time period T .
Since l(3) cannot be served without congesting the network,
suppose the loads admit flexibility and we dispatch l(1) over
a time period (1− α)T and l(2) over a time period αT . This
results in a congestion free dispatch.

Scenario (1− α)T αT Congestion free
Non-flexible l(3) l(3) No

Flexible l(1) l(2) Yes

To demonstrate the economic effects of a flexible and
congestion free dispatch, we consider each class of market
participants as a collective and calculate the system cost
(SC),5 the generation revenue (GR), the load payment (LP ),
and the merchandising surplus (MS) resulting from each
scenario. The MS is the surplus collected by the system
operator after paying all generators and receiving all payments
from loads, MS = LP − GR. It should be noted that the
MS is zero in the absence of congestion. We denote the non-
flexible scenario (n), and the flexible scenario (f), and we

5This is the value of the objective function solved by the system operator
i.e. the fuel cost of the generators.

Figure 2.18: A two bus network

generators g1 and g2 on bus 1 and bus 2 with maximum generation capacityG1 andG2 respectively.

Again the cost curves are linear and the marginal cost of g1 is smaller than g2. The loads are l1 and

l2. The line capacity is C, assuming C < Gi. Given the setup, the feasible load set is shown in Fig

2.19. According to the DC OPF solutions, the LMPs on the two buses turn out to be constant within

the three regions S1, S2 and S3. Specifically, in region S3, the transmission line is congested. One

could further derive the closed form expressions for the LMPs in each region. The technical details

regarding this work refer to [27].

2.7.3 Market Model Extension

Given the geometry of LMPs discussed in previous section, it is possible to extend our market

model into a more general system, in which agents from different locations share their extra PV

generation across the Smart Grid. Our current market model assumes the system operates in a

single polyhedral region of LMP, i.e. agents are price taking. However, the transitions between

different LMP regions can be fully captured by the trade ratios among different locations, which
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The LMP vector for the set S3, after computing λ = Q3v3 is
given by

λ =

[
π1(l1 + C)
π2(l2 − C)

]
(56)

IV. APPLICATIONS

While the formulation presented so far is relatively abstract,
the closed form expressions for LMPs, and the geometric
concept of congestion sets can have many applications. For
example the LMP expression could be used in bi-level op-
timization programs, of which many examples arise in the
power systems literature. Here we present an application of
congestion sets to illustrate the potential of load flexibility
to eliminate congestion in transmission networks and provide
economic benefits for market participants.

A. Load Flexibiity for Congestion Free Dispatch

Load flexibility is considered essential for the development
of the smart grid. We take a broader definition of load flexibil-
ity to encompass both temporal demand response and energy
storage. Promising applications include frequency regulation,
peak load reduction, reserve capacity, volt/var control, and
crucially facilitating increased penetration of renewables and
distributed generation on the grid [23], [24], [25].

Another such application of load flexibility is congestion
mitigation. Due to out of merit order generation dispatch,
congestion causes prices to vary and typically increase across
a network, usually resulting in wealth transfers away from
end consumers. For instance, from 2008-2013, between 2
and 6% of PJM’s total annual billing was attributable to
congestion, representing an average annual cost of approxi-
mately $1bn [26].4 It may be desirable for the loads to avoid
congestion in the network so as to reduce their costs.

If we examine the congestion free sets in the two-bus
example, shown in blue in Figures 2, 3, we see that whilst
the individual sets S1, S2, are convex, their union is non-
convex. This suggests that if we could use flexibility to move
the load vector, we might be able to eliminate congestion for

4Specifically this figure refers to the congestion component of LMPs

some loads. We illustrate this idea using a simple example,
building on the two-bus case with linear generation costs.

We will define three loads, shown in Fig. 4. The red
triangular area in Fig. 4 is the set S3 ∩ conv(S1 ∪ S2), where
conv(S) denotes the convex hull of S.

l(1) =

(
X − α(G1 − C)

(1− α)
, C

)
∈ bd(S1)

l(2) =

(
G1 − C,

Y − (1− α)C

α

)
∈ bd(S2)

l(3) = (X,Y ) ∈ S3 ∩ conv(S1 ∪ S2)

= (1− α)l(1) + αl(2)

where α ∈ (0, 1), and bd(S) denotes the boundary of the
set S. l(3) is an arbitrary point in the congested load set
S3 ∩ conv(S1 ∪ S2), with coordinates (X,Y ). l(3) also lies
on the line segment connecting l(1) and l(2). This suggests
that if l(3) is constant over some time period, it can be met
congestion free using flexibility. In other words suppose we
need to serve a constant load l(3) over some time period T .
Since l(3) cannot be served without congesting the network,
suppose the loads admit flexibility and we dispatch l(1) over
a time period (1− α)T and l(2) over a time period αT . This
results in a congestion free dispatch.

Scenario (1− α)T αT Congestion free
Non-flexible l(3) l(3) No

Flexible l(1) l(2) Yes

To demonstrate the economic effects of a flexible and
congestion free dispatch, we consider each class of market
participants as a collective and calculate the system cost
(SC),5 the generation revenue (GR), the load payment (LP ),
and the merchandising surplus (MS) resulting from each
scenario. The MS is the surplus collected by the system
operator after paying all generators and receiving all payments
from loads, MS = LP − GR. It should be noted that the
MS is zero in the absence of congestion. We denote the non-
flexible scenario (n), and the flexible scenario (f), and we

5This is the value of the objective function solved by the system operator
i.e. the fuel cost of the generators.

Figure 2.19: Polyhedral price regions for the two bus example

can be treated as a function of z. Here z is a vector, the entries of which define the trade ratio

between each location-wise client-server pair. Each agent in such extended system maintains a

belief of the distribution of z. The cost of service as a server will be different in different polyhedral

regions, which can be revealed by different ks.

2.8 Conclusion

We considered the problem of market equilibria that arise in an energy sharing economy where

agents change roles frequently from provider (server) to consumer (client). We developed a model

of bilateral trade under which consumers and providers are matched randomly with each other.

Under the MFG setting, we showed that the MFE consists of a single price bid by both client and

server. We conducted numerical evaluations to study the effects of different equilibrium prices on

trade ratios, and showed in a case study that significant savings are possible in a rooftop PV setting.

We proposed a reasonable extension of the market system accounting for the physical constraints

in the Smart Grid given the geometry of LMPs.

In next chapter, we will discuss the resource management problem from demand side perspec-

tive. Again, we first design a general market mechanism to steer the system toward a desirable
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equilibrium and conduct performance evaluation via realistic data in the Smart Grid.
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3. MEAN FIELD GAMES IN NUDGE SYSTEMS FOR SOCIETAL NETWORKS∗

3.1 Introduction

There has recently been much interest in understanding societal networks, consisting of in-

terconnected communication, transportation, energy and other networks that are important to the

functioning of human society. These systems usually have a shared resource component, and

where the participants have to periodically take decisions on when and how much to utilize such

resources, but with indirect knowledge of the aggregate utilization of the shared resource. Re-

search into these networks often takes the form of behavioral studies on decision making by the

participants, and whether it is possible to provide incentives to modify their behavior in such a way

that the society as a whole benefits [28, 29].

Our candidate application in this chapter is that of a Load Serving Entity (LSE) or a Load

Aggregator (LA) (e.g., a utility company) trying to reduce its exposure to daily electricity market

volatility by incentivizing demand response in a Smart Grid setting. The reason for our choice is

the ready availability of data and reliable models for the cost and payoff structure that enables a

realistic study. The data used in this chapter was obtained from the Electric Reliability Council of

Texas [30], an organization that manages the wholesale electricity market in the state. The price

shows considerable variation, and peaks at about 5 PM each day, which is when maximum demand

occurs. A major source of this demand in Texas is air conditioning, which in each home is of the

order of 30 kWh per day [31]. Incentivizing customers to move a few kWh of peak-time usage to

the sides of the peak each day could lead to much reduced risks of peak price borne by the LSE.

Such demand shaping could also have a positive effect on environmental impact of power plant

emissions, since supplying peak load is associated with inefficient electricity generation.

As an example, we take the baseline temperature setpoint as 22.5°C, and consider a customer

∗Republished with permission of ACM, from Mean Field Games in Nudge Systems for Societal Networks, Jian Li,
Bainan Xia, Xinbo Geng, Hao Ming, Srinivas Shakkottai, Vijay Subramanian, Le Xie, Transactions on Modeling and
Performance Evaluation of Computing Systems, Volume 3, 2018; permission conveyed through Copyright Clearance
Center, Inc.
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that every day increases the setpoint by 1°C in 5 − 6 PM and decreases the setpoint by 0.5°C in

the off-peak times. We will see later that even such a small change of the setpoint of the AC,

the incentives to the users (a group of fifty homes) can be tuned to achieve different trade-offs:

either just a utility increase for the users, just savings to the LSE (of the order of eighty dollars in

our case) or any objective that chooses some appropriate mix of the two. This result is under the

implicit assumption that the LSE in question is a price-taker so that changes in its demand profile

are assumed not to perturb the prices. The shifting of daily energy usage could potentially cause a

small increase in the mean and deviation of the internal home temperature, which is a discomfort

cost borne by the customer. In our approach, the LSE awards a number of “Energy Coupons” to

the customer in proportion to his usage at the non-peak times, and these coupons are used as tickets

for a lottery conducted by the LSE. A higher number of coupons would be obtained by choosing

an option that potentially entails more discomfort, and would also imply a higher probability of

winning at the lottery. Since the customers do not observe the variation of day-ahead prices on a

day-to-day basis nor do they see the aggregate demand at the LSE, the lottery scheme serves as

a light-weight and easy to implement mechanism to transfer some of this information over to the

customers by coupling them. We will explicitly demonstrate the advantage of this coupling over an

individual incentive scheme (a fixed reward for peak time reductions) that serves as a benchmark

for the comparison.

In our analytical model, each agent has a set of actions that it can take in each play of a repeated

game, with each action having a corresponding cost. Higher cost actions yield a higher number

of coupons. Agents participate in a lottery in which they are randomly permuted into groups, and

one or more prizes are given in each group. The state of each agent is measured using his surplus,

which captures the history of plays experienced by the agent, and is a proxy to capture his interest

in participating in the incentive system. A win at the lottery increases the surplus, and a loss

decreases it. Furthermore, we assume that the agent has a prospect incremental utility function

that is increasing and concave for positive surplus and convex for negative surplus. This prospect

theory model captures decision making under risk and uncertainty for agents. Any agent could
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depart from the system with a fixed probability independent of the others, and a departing agent is

replaced by a new entrant with a randomly drawn surplus. The main question we answer in this

chapter then is how would agents decide on what action to take at each play? Having answered this

we also comment on impact of this on the sum total value of the agents, the return to the system

and the trade-off between these two quantities provided by our proposed scheme.

3.1.1 Prospect Theory

Most previous studies account for uncertainty in agent payoffs by means of expected utility the-

ory (EUT). Here, the objective of the decision maker is to maximize the probabilistically weighted

average utilities under different outcomes, and it is assumed that he/she is capable of making ar-

bitrarily complex deductions. However, EUT does not incorporate observed behavior of human

agents, who exhibit bounded rationality and can take decisions deviating from the conventional

rational agent norm. For example, empirical studies have shown that agents ascribe high weights

to rare, positive events (such as winning a lottery) [32].

Prospect theory (PT) [32–35] is perhaps the most well-known alternative theory to EUT. It

was originally developed for binary lotteries [32] and later refined to deal with issues related to

multiple outcomes and valuations [33]. This Nobel-prize-in-economics-winning theory has been

observed to provide a more accurate description of decision making under risk and uncertainty

than EUT. There are three key characteristics of PT. First, the value function is concave for gains,

convex for losses, and steeper for losses than for gains. This feature is due to the observation that

most (human) decision makers prefer avoiding losses to achieving gains. Thus, the value function

is usually S-shaped. Second, a nonlinear transformation of the probability scale is in effect, i.e.,

(human) decision makers will overweight low probability events and underweight high probability

events. The weighting function usually has an inverted S-shape, i.e., it is steepest near endpoints

and shallower in the middle of the range, which captures the behaviors related to risk seeking and

risk aversion. Finally the third, the framing effect is accounted for, i.e., the (human) decision maker

takes into account the relative gains or losses with respect to a reference point rather than the final

asset position. As PT fits better in reality than EUT based on many empirical studies, it has been
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widely used in many contexts such as social sciences [36, 37], communication networks [38–40]

and smart grids [41, 42]. Since we study equilibria that arise through (human) agents’ repeated

play in lotteries, we use PT as opposed to EUT to account for agent-perceived value while taking

decisions.

3.1.2 Mean Field Games

The problem described is an example of a dynamic Bayesian game with incomplete informa-

tion, wherein each player has to estimate the actions of all his potential opponents in the current

lottery (and in the future) without knowing their surpluses, play a best response, and update his

beliefs about their states of surplus based on the outcome of the lottery. However, since the set of

agents is large and, from the perspective of each agent, each lottery is conducted with a randomly

drawn finite set of opponents, an accurate approximation for any agent is to assume that the states

of his opponents (and hence actions) are independent of each other. This is the setting of a Mean

Field Game (MFG) [5, 43, 44], which we will use as a framework to study equilibria in societal

networks. Here, the system is viewed from the perspective of a single agent, who assumes that

each opponent’s action would be drawn independently from an assumed distribution, and plays a

best response action. We say that the system is at a Mean Field Equilibrium (MFE) if this best

response action turns out to be a sample drawn from the assumed distribution.

3.1.3 Demand Response in Deregulated Markets

Demand Response is the term used to refer to the idea of customers being incentivized in some

manner to change their normal electricity usage patterns in response to peaks in the wholesale price

of electric power [45]. Many methods of achieving demand response exist, including an extreme

one of turning off power for short intervals to customers a few times a year if the price is very high.

Customers expect a subsidy in return, often in terms of a reduced electricity bill.

3.1.4 Main Results

Our objective in this chapter is to design and analyze a system that can provide greater ability

for the LSE to realize a desired combination of profit and user value by incentivizing user behavior.
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Our main contributions in this chapter are as follows:

(1) We propose a mean field model to capture the dynamics in societal networks. Our model is

well suited to large scale systems in which any given subset of agents interact only rarely. This

kind of system satisfies a chaos hypothesis that enables us to use the mean field approximation to

accurately model agent interactions. The state of the mean field agent is its surplus, and the agent

must choose from a finite set of actions based on its surplus and its belief about the action distribu-

tion of other agents. The state (surplus) evolves according to a Markov process that increases by

winning and decreases by losing at the lottery. Our mean field model of societal networks is quite

general, and can be applied to different incentive schemes that are currently being proposed in the

field of public transportation and communication network usage.

(2) We conduct a simulation analysis of our scheme under an accurate measurement-based model

of the daily usage of electricity in each hour in Texas. We also use the data on wholesale electricity

prices during the interval to calculate what times of day would yield the best returns to rewards.

We show that under several intuitive coupon allocation options and a $15 weekly reward (lottery

prize), customers would change their AC setpoints (as small as 1°C each day) and each week, the

LSE gains a benefit of the order of a $80 over a cluster of 50 homes. While doing so, we also

numerically verify that our model satisfies conditions needed for passage to the mean field.

(3) We conduct comparative studies between a benchmark scheme that returns a fixed reward per

action (assuming that each customer maximizes his return) versus the lottery scheme, and show

that the lottery scheme can outperform the fixed reward scheme by about 100% in terms of total

value to the users, and about 20% in terms of profit to the LSE. We also explore the relation be-

tween LSE profit and user value for both schemes, and show that as one changes the reward values

and coupon allocations, the lottery scheme bounds the achievable region of the benchmark scheme

in a Pareto-sense: it is better able to attain a desired combination of user value and LSE profit, and

includes combinations unachievable by the individual incentive scheme.

(4) We develop a characterization of a lottery in which multiple rewards can be distributed, but

with each participant getting at most one by withdrawing the winner in each round. Each lottery is
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played amongst a cluster of M agents drawn from a random permutation of the set of all agents.

While the exact form of the lottery is not critical to our results, we present it for completeness.

(5) We characterize the best response policy of the mean field agent, using a dynamic program-

ming formulation. We find that under our assumptions, the value function is continuous in the

action distribution, but that multiple actions could turn out to be best responses. Hence, an agent

also needs to choose some randomization method across such equal-value actions. If the value

function is super-modular, sub-modular or S-shaped (under the prospect-based utility function),

the action choices map to surplus intervals, with two actions being of equal value at each interval

boundary.

(6) The probability of winning the lottery defines the transition kernel (along with the regeneration

distribution) of the Markov process of the surplus, and hence maps an assumed distribution across

competitors states to a resultant stationary distribution. We show the existence of a fixed point of

this kernel, which is the MFE, by using Kakutani’s fixed point theorem. Essentially, the system is

a map between the space consisting of the triple of an assumed action distribution, a randomized

policy and a surplus distribution back to itself, and our result is to show this map has a fixed point.

Our proof of the existence of MFE does not depend on the shape of the utility function, which can

be quite general. Since we have a discrete action and state space, showing a fixed point in the space

of such triples is quite intricate.

A 2-page conference abstract that includes a high-level overview of our results developed here-

in was presented to practitioners in [46].

3.1.5 Related Work

In terms of the MFG, our framework is based on work such as [6, 47, 48]. In [6] the setting

is that of advertisers bidding for spots on a webpage, and the focus is on learning the value of

winning (making a sale though the advertisement) as time proceeds. In [47], apps on smart phones

bid for service from a cellular base station, and the goal is to ensure that the service regime that

results has low per-packet delays. In both works, the existence of an MFE with desired properties

is proved. In [48], the objective is to incentivize truthful revelation of state that would allow for
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optimal resource allocation in a device-to-device wireless network. The state space is discrete, and

the focus is on the exploration of truthful dynamic mechanisms in the mean field regime. However,

unlike that work, we focus on a lottery-based allocation in this chapter. The lottery is simple and

well-established, and has been successfully applied in a variety of existing nudge systems. Thus,

our goal is to analyze this well-established mechanism, rather than designing new ones. Also,

unlike the previous work, all of which focussed on pure strategy equilibria, our current work has a

more complex state space and pure strategy equilibria may not exist due to the non-uniqueness of

best responses. Hence, we seek a mixed strategy equilibrium, which necessitates a different proof

technique.

Nudge systems are typically designed and used to encourage socially beneficial behaviors and

individually beneficial behaviors. For instance, lottery schemes are widely used in practice to

incentivize good behavior, e.g., to combat (sales) tax evasion in Brazil ( [49]), Portugal ( [50]),

Taiwan ( [51]), and for Internet congestion management ( [52]). Similarly, [28, 29] provide exper-

imental results on designing lottery-based “nudge engines” to provide incentives to participants to

modify their behaviors in the context of evenly distributing load on public transportation. In anoth-

er scheme, [53] study the impact of nudging on social welfare by sending one-year home energy

reports to participants and using multiple price lists to determine participants’ willingness to stay

in the system for the next year. Our system is a form of nudge engine, but our focus is on analytical

characterization of system behavior and attained equilibria with large number of customers with

repeated decision-making. We aim to design incentive schemes to modify customer behavior such

that the system as the whole benefits from the attained equilibrium.

Our idea of offering coupons for reduced electricity usage at certain times is based on one

presented in [54], which suggests offering incentives to coincide with predicted realtime price

peaks. An experimental trial based on a similar idea is described in [55], in which the focus is

on designing algorithms to coordinate demand flexibility to enable the full utilization of variable

renewable generation. In [56], this kind of system is modeled as a Stackelberg game with two

stages: setting the coupon values followed by consumer choice. The decision making model in all
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the above research is myopic. The authors of [57] study demand-response as trading off the cost of

an action (such as modifying energy usage) against the probability of winning at a lottery in terms

of a mean field game. However, the game is played in a single step according to their model, and

there is no evolution of state or dynamics based on repeated play. Further, their conception of the

mean field equilibrium is that the mean value of the action distribution (not the distribution itself)

is invariant. Unlike these models, we are interested in characterizing repeated consumer choice

with state evolution when the number of customers is large, and identifying the action distribution

and benefits (if any) of the resulting equilibrium.

A rich literature studies lottery schemes, and here we can only hope to cover a fraction of them

that we see most relevant. In this chapter, we model lotteries as choosing a random permutation of

the M agents participating in it, and picking the first K of them as winners, with the distribution

on the symmetric group of permutations of {1, · · · ,M} being a function of the coupons assigned

to the different actions. Assuming that different actions yield different numbers of coupons, we

will choose the distribution such that more coupons results in a higher probability of winning.

There are various probabilistic models on permutations in the ranking literature [58, 59], Here we

use the popular Plackett-Luce model [60] to implement our lotteries. While the Plackett-Luce

model is used for concreteness, other probabilistic models on permutations such as the Thurstone

model [59] can also be used with the number of coupons as parameters of the distribution as long

as more coupons results in a higher probability of winning.

The monotonicity properties in rewards are shared with other literature, such as [61,62]. In par-

ticular, [62] focuses on the existence of the mean field equilibrium when playersąŕ welfare depends

on the distribution of other players actions. However, this previous work studies the existence of

pure strategy equilibria, whereas our discrete state and action spaces requires consideration of a

mixed strategy equilibrium. The proof of the existence of this equilibrium is one of the major

technical contributions of this chapter.
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3.1.6 Organization

The chapter is organized as follows. In Section 3.2, we introduce our mean field model. We

then conduct simulation-based numerical studies in Section 3.3, on utilizing our framework in the

context of demand response in electricity markets. In Section 3.4 we develop a characterization

of a lottery in which multiple rewards can be distributed, but with each participant getting at most

one by withdrawing the winner in each round. We discuss the basic property of the optimal value

function in Section 3.5. The existence of MFE is considered in Section 3.6. We characterize the

best response policy of the mean field agent, using a dynamic programming formulation in Section

3.7. We conclude in Section 3.8. To ease exposition of our results, all proofs are relegated to the

Appendix.

3.2 Mean Field Model

We consider a general model of a societal network in which the number of agents is large.

Agents have a discrete set of actions available to them, and must take one of these actions at each

discrete time instant. The actions result in the agents receiving coupons, with higher cost actions

resulting in more coupons. The agents are then randomly permuted into clusters of size M, and

a nudge is provided via a lottery that is held using the coupons to win real rewards. Thus, agents

must take their actions under some belief about the likely actions, and hence the likely coupons

held by their competitors in the lottery.

Figure 3.1 illustrates the mean field approximation of our model. We provide justification for

the mean field approximation in the discussion at the end of this section. The diagram is drawn

from the perspective of a single agent (w.l.o.g, let this be agent 1), who assumes that the actions

played by each of his opponents would be drawn independently of each other from the probability

mass function ρ. In this section, we will introduce the notation, costs and payoffs of the agent, and

provide a brief description of the policy space and equilibrium.

Time: Time is discrete and indexed by k ∈ {0, 1, · · · }.

Agents: The total number of agents is infinite, and we consider a generic agent 1 who in each
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Figure 3.1: Mean Field Game. Reprinted with permission from [2].

lottery will be paired with M − 1 others drawn randomly.

Actions: We suppose that each agent has the same action space denoted as A = {1, 2, · · · , |A|}.

Hence, the action that this agent takes at time k is a[k] ∈ A. Under the mean field assumption, the

actions of the other agents would be drawn independently from the p.m.f. ρ = [b1, b2, · · · , b|A|],

where ba is the probability mass associated with action a. We call ρ as the assumed action distri-

bution.

Costs: Each action a ∈ A taken at time k has a corresponding cost θa. This cost is fixed and

represents the discomfort suffered by the agent in having to take that action.

Coupons: When agent takes an action a, it is awarded some fixed number of coupons ra for

playing that action. These coupons are then used by the agents as lottery tickets.

Lottery: We suppose that there are only K rewards for agents in one cluster, where K is a fixed

number less than M . The probability of winning is based on the number of coupons that each

agent possesses. We model each lottery as choosing a permutation of the M agents participating

in it, and picking the first K of them as winners. We denote the winning probability as pρ,a and

derive its explicit form in Section 3.4.

States: The agent keeps track of his history of wins and losses in the lotteries by means of his net

surplus at time k, denoted as x[k]. The value of surplus is the state of the agent, and is updated in
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a Markovian fashion as follows:

x[k + 1] =




x[k] + w, if agent 1 wins the lottery,

x[k]− l, if agent 1 loses the lottery,
(3.1)

where w and l is the impact of winning or losing on surplus. Effectively, the assumption is that the

agent expects to win at least an amount l at each lottery. Not receiving this amount would decrease

his surplus. Similarly, if the prize money at the lottery is w + l, the increase in surplus due to

winning is w. Surplus values are discrete, and the set of possible values is given by a countable X

that ranges from (−∞,+∞).

Value function for prospect: The impact of surplus on the agent’s happiness is modeled by an S-

shaped incremental utility function u(x[k]), which is monotone increasing, concave for a positive

surplus and convex for a negative surplus. Moreover, the impact of loss is usually larger than that

of gain of the same absolute value. Note that we implicitly assume that the reference for all agents

is 0. Then following [33], we use the following value function for prospect

u(x) =





u+(x) = xγ, x ≥ 0,

u−(x) = −ϕ(−x)γ, x < 0,

(3.2)

where ϕ > 1 is the loss penalty parameter and 0 < γ < 1 is the risk aversion parameter. A larger

ϕ means that the operator is more loss averse, while a smaller γ indicates that the operator is more

risk seeking. From empirical studies [33, 35], realistic values are ϕ = 2.25 and γ = 0.88.

Weighting function for prospect: It has been observed empirically that people tend to subjec-

tively weight uncertain outcomes in real-life decision making [63]. In the proposed game, this

weighting factors capture the agent’s subjective evaluation on the mixed strategy of its opponents.

Thus, under PT, instead of objectively observing the probability of winning the lottery pρ,a, each

user perceives a weighted version of it, φ(pρ,a). Here, φ(·) is a nonlinear transformation that maps

the objective probability to a subjective one, which is monotonic increasing in probability. It has
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been shown in many PT studies that, people usually overweight low probability outcomes and

underweight high probability outcomes. Following [63], we use the weighting function

φ(p) = exp(−(− ln p)ξ), for 0 ≤ p ≤ 1, (3.3)

where ξ ∈ (0, 1] is the objective weight that characterizes the distortion between subjective and

objective probability. Note that under the extreme case of ξ = 1, (3.3) reduces to the conventional

EUT probability, i.e., φ(p) = p.

Regeneration: An agent may quit the system at any time, independent of others. This event occurs

with probability 1 − β, where β ∈ (0, 1). When this happens, a new agent takes the place of the

old one, with a state drawn from a probability mass function Ψ.

Best Response Policy: The agent must choose an action at each time, including staying with the

status-quo/baseline as an action too. The green/light tiles in Figure 3.1 relate to the problem of the

agent determining his best response policy. The agent assumes that the actions taken by each of his

M − 1 opponents are drawn independently from probability mass function ρ. Given this assump-

tion, the state of his surplus is x and current utility is u(x), the agent must calculate the probability

of winning at the lottery pρ,a(x), if he were to take action a(x) ∈ A, incurring a cost θa(x) and

gaining ra(x) coupons. Since the agent must take this decision repeatedly, he must solve a dynamic

program to determine his optimal policy. There could be many best response actions, and we as-

sume that the agent chooses a randomized policy σ(x) , [σ1(x), σ2(x), · · · , σa(x), · · · , σ|A|(x)],

in which σa(x) specifies the probability of playing action a when the agent’s surplus is x; in other

words, we enlarge the space to include mixed strategies as pure strategy equilibria may not exist.

The action taken by the agent is a random variable A ∼ σ(x). The details of the lottery and how

to calculate the probability of success are given in Section 3.4. The properties of the best response

policy are described in detail in Section 3.7.

Stationary Surplus Distribution: The assumed action distribution ρ, and the best-response ran-

domized policy σ(x) yield the state transition kernel of the Markov chain corresponding to the
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surplus, via the probability of winning the lottery pρ,a(x). This is illustrated by means of the

blue/dark tiles in Figure 3.1. The transition kernel also is influenced by the regeneration distribu-

tion Ψ. The stationary distribution of surplus associated with the transition kernel is denoted as ζρ.

This stationary distribution of the single mean field agent is equivalent to the one-step empirical

state distribution of infinite agents who all take a (mixed-strategy) action, σ(x) when state is x,

assuming that the actions of their competitors would be drawn from ρ.

Mean Field Equilibrium: The triple of an assumed action distribution ρ, randomized policy σ and

stationary surplus distribution ζ gets mapped via mapping Π∗ into a triple of action distribution

ρ̃, best-response randomized policy σ̃ and a stationary surplus distribution ζ̃ via the operations

described above. A fixed point of the resulting map is called an MFE. For a formal definition and

the proof of existence see Section 3.6.

3.2.1 Discussion

Is the MFG a good approximation? Specifically, we need to first show that for any agent, the

assumption that the states of any finite subset of agents that it interacts with are independent of it

and each other as the number of agents becomes asymptotically large. Second, we need to show

that when we repeat the game over time, the empirical distribution of the agents’ states converges

to a fixed point (mean field limit).

The first result is follows from an argument called propagation of chaos via constructing inter-

action sets defined in [15], which characterize the conditions under which any finite subset of the

state of the agents are independent of each other. Following a similar argument to [6], we can show

that after any finite number of lotteries (finite time), as the total number of agents becomes large

enough, the interaction sets of any finite collections of agents become disjoint with high probabil-

ity. Hence, the states of these agents become independent. Inspired by [6], the proof is divided

into two parts: (i) first, we need to show that as the total number of agents JM (J is the number

of lotteries) becomes large enough, the probability that agent 1 interacted with the set of agents

(that it interacts at the k-th lottery, k ≥ 1) before the k-th lottery become zero; and (ii) the action

distribution ρ1, the randomized policy σ1, and the surplus distribution ζ1 of agent 1 converges to
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the assumed distributions ρ, σ, ζ, respectively, as the number of agents JM becomes large enough.

We do not present the full argument here due to space limitations and the fact that it follows via

identical arguments to [6, 15].

The second result requires the establishment of the so called Mckean-Vlasov limit—a differ-

ential equation that specifies the evolution of the empirical distribution of state over the transition

kernel specified in Figure 3.1. In order to do this, we need to verify three sufficiency conditions

presented in [64]) (see Section 2 Assumptions A1 - A3) built on a continuous-time Markov chain

(CTMC). It is easy to move our discrete-time Markov chain (DTMC) setup to their framework by

equipping each agent with an independent Poisson clock with rate λQ (chosen as 1 w.l.o.g). An

agent whose clock ticks is allowed to take an action, and receives a reward with the same prob-

ability engendered by a lottery under the same action and with the same belief distribution. The

equivalence of the stationary distributions of the CTMC and DTMC versions follows immediate-

ly from [65] (Chapter 7), with the Bellman equation of the DTMC system being replaced by the

Hamilton-Jacobi-Bellman equation of the CTMC. In our problem, the Q-matrix of the equivalent

CTMC is simply−λQI +λQP, where P is the P-matrix of the DTMC version and I is the identity

matrix. The most important condition of [64] that needs to be verified is the assumption on the

Lipschitz nature of the map between the belief action distribution and the resultant action distribu-

tion. We numerically verify in Section 3.3.6.2 that given an action belief ρ, the derivative of this

map at each iteration step is bounded, leading to the desired Lipschitz property for both DTMC

and CTMC. While this supports the conjecture that the condition holds in our case, the proof is

beyond the scope of this work due to the implicit form of the map.

3.3 Numerical Study

We conduct an empirical data-based simulation in the context of electricity usage for home air

conditioning to illustrate the likely performance of our nudge system in the context of electricity

demand-response. In doing so, we will also numerically study the properties of the mean field

approximation. As mentioned in Section 3.1, our context is that of a Load Serving Entity (LSE)

trying to incentivize its customers to shape their electricity consumption so as to reduce its cost
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of electricity purchase from the wholesale market whose price variation is as shown in Figure 3.2.

These incentives could increase the net surplus of the end-users, the profit of the LSE, or the total

welfare of these agents as well. Data available for our simulations consist of historical electricity

prices from [30], and a data set containing appliance-wise electricity usage for about 1000 homes

along with the ambient temperatures over each day in June–August, 2013 [31].
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Figure 3.2: Day-ahead electricity market prices in dollars per MWh on an hourly basis between 12
AM to 12 PM, measured between June–August, 2013 in Austin, TX. Standard deviations above
and below the mean are indicated separately. Reprinted with permission from [2].

3.3.1 Home Model

A standard continuous time model [66, 67] for describing the evolution of the internal temper-

ature τ(t) at time t of an air conditioned home is

τ̇(t) =





− 1

RC
(τ(t)− τa)−

η

C
Pm, if q(t) = 1,

− 1

RC
(τ(t)− τa), if q(t) = 0.

(3.4)

Here, τa is the ambient temperature (of the external environment),R is the thermal resistance of the

home, C is the thermal capacitance of the home, η is the efficiency, and Pm is the rated electrical
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power of the AC unit. The state of the AC is described by the binary signal q(t), where q(t) = 1

means AC is in the ON state at time t and in the OFF state if q(t) = 0. The state is determined by

the crossings of user specified temperature thresholds as follows:

lim
ε→0

q(t+ ε) =





q(t), |τ(t)− τr| ≤ ∆,

1, τ(t) > τr + ∆,

0, τ(t) < τr −∆,

(3.5)

where τr is the temperature setpoint and ∆ is the temperature deadband.

Table 3.1: Parameters for a Residential AC Unit. Reprinted with permission from [2].

C(Capacitance) R(Resistance) Pm(Power) η(Coefficient) τr(Setpoint) ∆(Deadband)
10 kWh/°C 2 °C/kW 6.8 kW 2.5 22.5 °C 0.3 °C

A number of studies investigate the thermal properties of typical homes. We use the parameters

shown in Table 3.1 for our simulations. These are based on the derivations presented in [66] for

temperature conditioning a 250 m2 home (about 2700 square feet), which is a common mid-size

home in many Texas neighborhoods.

In order to determine the energy usage for AC in our typical home, we need to know how

the ambient temperature varies in Texas during the summer months of interest. These values are

available in the Pecan Street data set, and we plot the values of 3 days which are arbitrarily chosen

over three months for Austin, TX in Figure 3.3.

Next, we calculate the ON-OFF pattern of our typical air conditioner based on the ambient

temperature variation over the course of the day. We do this by simulating the controller in (3.5)

with the appropriate ambient temperature values taken from Figure 3.3. The pattern is presented

in Figure 3.4. We see that there is higher energy usage during the hotter times of the day, as is to

be expected. This also corresponds to the peak in wholesale electricity prices shown for the same
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Figure 3.3: Ambient temperature of 3 arbitrary days from June–August, 2013 in Austin, TX.
Measurements are taken every 15 minutes from 12 AM to 12 PM. Reprinted with permission
from [2].

period in Figure 3.2. The total energy used each day corresponding to our 2500 sq ft home with a

5 ton AC (= 6.8 kW; see Table 3.1) is 32.83 kWh. For comparison, we identified 4 homes in the

Pecan Street data set that have parameters in the same ballpark as our typical (simulated) home.

The average size of these real homes was 2627 sq feet, with a 4 ton AC on average, and the average

electricity consumed for airconditioning was 34.8 kWh per day during time interval corresponding

to our simulation. The numbers are quite similar to our simulated home, indicating accuracy of the

model.

3.3.2 Actions, Costs and LSE Savings

Since we are interested in peak-period usage, we consider an action set available to the cus-

tomer that consists of choosing different thermostat setpoints during each hour from 2− 8 PM, i.e,

6 periods (hours) in total. We denote each period by an index j, where j = 1 indicates the period

2−3 PM and so on until j = 6, which indicates the period 7−8 PM. Each action can now be iden-

tified with a vector (y1, y2, y3, y4, y5, y6), where yj indicates the setpoint in the period j. We take

the setpoint 22.5°C as the baseline. Hence, the vector (22.5, 22.5, 22.5, 22.5, 22.5, 22.5) indicates

a baseline action in which the customer does not change the original setpoint in each period. The
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Figure 3.4: Simulated ON/OFF state of AC over a 24 hour period in a home and the corresponding
interior temperature. The interior temperature falls when the AC comes on, and rises when it is
off. Reprinted with permission from [2].

set of all such setpoint vectors defines an action set A, and we define the action with index a = 0

to be the no-change action. Since the setpoints on a thermostat are discrete, the number of actions

is finite. We identified 5 other actions that appeared to have the most promise of being used. These

actions are shown in the second column of Table 3.2.

We next calculate the cost of taking each action a ∈ A, which corresponds to the discomfort

of having a potentially higher mean and standard deviation in the home temperature, and possibly

higher energy consumption. We measure the state of the home under action a ∈ A by the tuple

consisting of the mean temperature, the standard deviation and energy usage, denoted [τ̄a, σa,Ea].

The baseline state of these parameters is under action 0, denoted by [τ̄0, σ0,E0] We define the cost

of taking any action a as

θa = |τ̄0 − τ̄a|+ λ|σ0 − σa| − ς(E0 − Ea), (3.6)

where we choose λ = 10 to make the numerical values of the mean and standard deviation com-

parable to each other and ς = 10 ¢/kWh as the fixed energy price. We note that the map between

temperature variation, discomfort suffered, and its measurement in cents is not obvious. However,
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given the fact that the customer uses between 1−3 kWh or about ¢10−30 per hour to obtain a tem-

perature differential between the ambient temperature and interior temperature of about 15−20°C,

the discomfort cost of a degree C temperature increase being ¢1 seems reasonable in the limited

temperature range that we are interested in. Note that the calculation of cost for each action in-

volves simulating the home under that action to determine [τ̄a, σa,Ea]. However, this has to be

done only once to create a look-up table, which can be used thereafter. Note also that each action

in A is chosen to be close to energy neutral, i.e., the third term in (3.6) is essentially zero. Thus,

we focus on modifying usage time, not the total usage. Table 3.2 shows our selection of actions

and their corresponding costs.

When applied over a day, each action could result in some savings to the LSE towards the costs

it incurs in purchasing electricity. We measure the day-ahead price of electricity experienced by the

LSE in dollars/MWh and denote the price at time period j in day i as πi,j , where i = {1, 2, · · · , 92}

and j = {1, · · · , 6}. Each action vector of a customer would impose a net price on the LSE in

proportion to the usage. We define the differential price measured in dollars imposed by an action

y = (y1, y2, y3, y4, y5, y6) versus z = (z1, z2, z3, z4, z5, z6) as

H(y, z) =
∑

j

(k(yi,j)− k(zi,j)) πi,j, (3.7)

where k converts the setpoints into electricity usage in each period, which is measured in MWh.

Setting y as the baseline action (22.5, 22.5, 22.5, 22.5, 22.5, 22.5) presents a way of measuring the

reduction/increase in cost due to the incentive scheme.

We calculated the savings of each action applied over each day of our three month data set

and obtained the average savings. These values are shown in Table 3.2 (where the final columns

entitled “C0–C3” will be discussed in Section 3.3.4). As is clear, the cost of taking each of our

selected actions is considerably lower than the savings resulting from that action, and hence it

might be possible to create appropriate incentive schemes to encourage their adoption. We will

consider two such schemes, namely, (i) a fixed reward scheme used as a benchmark, and (ii) a
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lottery based scheme.

Table 3.2: Actions, Costs, LSE Savings and Coupons Awarded. Reprinted with permission from
[2].

Index Action Vector Cost (¢) LSE C0 C1 C2 C3

Savings (¢)
0 (22.5, 22.5, 22.5, 22.5, 22.5, 22.5) 0 0 37.4 8.416 8.416 8.416
1 (21.5, 21.5, 22.25, 23.5, 23.75, 21.25) 3.68 27.7 715 431.8 521.8 611.8
2 (21.5, 21.5, 22.25, 23.5, 23.25, 22.25) 3.15 22.7 693 431.8 511.6 591.5
3 (21.5, 21.5, 22.25, 24, 23, 22.5) 2.68 22 577 431.8 466.8 501.7
4 (22, 22, 22.25, 23, 23, 22.5) 1.34 19 434 287.4 325.6 363.7
5 (22, 22, 22.25, 23.25, 22.5, 22.75) 0.95 16.4 222 287.4 244.2 200.9

3.3.3 Benchmark Incentive Scheme

A simple incentive scheme to get users to adopt cost saving actions (from the LSE’s perspec-

tive) is to calculate the expected savings of each action, and to deterministically reward each agent

with some percentage of the expected savings for taking that action. Such guaranteed savings are

similar in spirit to rebate for using public transportation during off-peak hours, and a system of

sharing a fraction of the savings by demand-response providers such as OhmConnect [68]. We

will use this scheme as a benchmark in order to determine whether shared savings are large e-

nough to encourage meaningful participation. Thus, our benchmark incentive scheme attempts to

incentivize each action by returning to the user some fixed fraction of the expected LSE savings for

that action presented in Table 3.2. For example, a return of 50% for taking action 1 would imply

awarding ¢13.85 each time that action is taken.

3.3.4 Lottery-Based Incentive Scheme

Our second incentive scheme is lottery-based, with Energy Coupons being used as lottery tick-

ets. Now, the baseline action a = 0 corresponds to a setpoint of 22.5°C in period 3 at which πi,3

is highest (Figure 3.2) for any day i. Hence, the LSE should incentivize actions that are likely

to reduce the risks of peak day-ahead price by offering Energy Coupons in proportion to the us-
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age during the corresponding periods. In the context of our simulation, it is intuitively clear that

coupons must be placed at periods of lower price. Our candidate coupon profiles are shown in

Table 3.3, where coupons are awarded in periods 1 and 6 only if the usage is greater than base

usage values of x1 = 2.464 kWh and x6 = 2.24 kWh, respectively. We experimented with a range

of coupon profiles to explore their impact on the MFE, and present some examples C0–C3.

Table 3.3: Mean Day-ahead Price and Energy Coupon Profiles. Reprinted with permission from
[2].

Index Period Price/MWh C0/kWh C1/kWh C2/kWh C3/kWh
1 2− 3 PM $47 107 100 100 100
2 3− 4 PM $55 5.4 0 0 0
3 4− 5 PM $78 1.8 0 0 0
4 5− 6 PM $99.6 0 0 0 0
5 6− 7 PM $66.5 3.6 0 0 0
6 7− 8 PM $49.5 54 0 20 40

Given the coupon placement by the LSE, the customers need to determine the number of

coupons resulting from each action, and use these values to estimate the utility that they would

attain. Our six actions are shown in Table 3.2 with their attendant costs and number of coupons

received. The LSE conducts an lottery each week across clusters of M = 50 homes participating

in each lottery. For each cluster, there is K = 1 prize for winning the lottery. We assume that the

customers choose the same action on each day of the week, and then participate in the lottery.

3.3.5 Utility and Surplus

As described in Section 3.2, the user state consists of his/her surplus. Any rewards result in

an increase in surplus by the reward amount w, whereas performing an action but not receiving

a reward results in decreasing the surplus by some amount l. Since a reward is assured for each

action in the benchmark incentive scheme, there are no surplus decrease events. However, in the

lottery scheme, a user that does not win the lottery would see a decrease in surplus. We select l
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that results from losing at a lottery to be the average reward obtained form the lottery assuming

that every player has an equal probability of winning.

For the customer utility, which maps surplus to utility units, we use the value function of

prospect model (defined in (3.2)), u(x) = xγ if x ≥ 0 or u(x) = −ϕ(−x)γ if x < 0, where

ϕ = 2.25 and γ = 0.88 according to the empirical studies conducted in [33, 35]. The utility

model applies to both the benchmark and the lottery scheme. Under this model, we expect a user

who has lost a number of lotteries to stop participating in the system, since his surplus becomes

negative and he is not receiving enough of an incentive to stay, given the cost he bears each day.

Similarly, a user who has won too many times would have a large surplus, and would also not be

keen on participating since the marginal utility he gets may not be high enough for him. The latter

observation applies to the benchmark as well, although given the small rewards, we do not expect

it to happen frequently.

The participants in the lottery scheme see a distorted probability of winning, parameterized by

ξ, as defined in (3.3). This is an important feature of our model, since it captures the attractiveness

of lotteries in incentivizing risky actions. Consistent with empirical studies in [63], we choose

ξ = 0.37.

We assume that a customer remains in the system with probability 0.92, i.e., the average life-

time is 12 time steps, which parallels the fact that the main summer season lasts for about three

months. Further, a newly entering customer has zero surplus.

3.3.6 Equilibria Attained by Incentive Schemes

3.3.6.1 Benchmark Scheme

As described in Section 3.3.3, we construct a fixed-reward type of incentive scheme to obtain

a benchmark with which to compare the performance of the lottery scheme. Under the bench-

mark scheme, customers are awarded some percentage of the expected savings that their action is

likely to yield to the LSE, shown in Table 3.2. The actual action chosen by the customer will be

determined using a dynamic program (DP) similar to the one defined in (3.14). However, since
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rewards are deterministic, there is no dependence on the belief over competitors’ actions, and the

only randomness is from the lifetime of the user. Thus, solving the DP is straightforward, and we

can easily obtain a map between surplus and action for a given reward.

3.3.6.2 Lottery Scheme

We next consider the lottery with M = 50 competitors. The win probability pρ,a is the proba-

bility that the coupons generated by action a are greater than those generated byM−1 independent

actions drawn from ρ. We offer a single prize with value $15, which implies that the customer ex-

pects to win ¢30 on average by participating, i.e., the decrease in surplus due to losing at the lottery

is l = 0.3, while the increase in surplus due to winning is w = 15− 0.3 = 14.7.

We start with a uniform action distribution ρ0 as the initial condition. In each iteration i, given

the belief ρi (action distribution of other players), we first determine the value of each state using

the Bellman equation for value (3.15), with convergence in roughly 50 steps. We next determine

the stationary surplus distribution, and then map it to the resultant stationary action distribution

ρi+1, uniformly choosing all equal value actions. Note that this map Π̃, from belief ρi to the

resultant distribution ρi+1, is a sequential version of the map Π∗ from Section 3.2, and Π̃ and

Π∗ have the same fixed points. As described in Section 3.2.1, the iterative procedure is referred

to as the Mckean-Vlasov dynamics. As discussed in Section 3.2.1, we also identify the CTMC

version of our system, and simulate it using the same procedure above. Finally, as specified in

Section 3.2.1, an important sufficiency condition for convergence is the Lipschitzness of the map

Π̃. We calculate a numerical derivative (for both the DTMC and CTMC versions)

||Π̃i+1(ρi+1)− Π̃i(ρi)||sup

||ρi+1 − ρi||sup
. (3.8)

Figure 3.5 (Left) plots the derivative along a simulated trajectory for both DTMC and CTMC. That

they are bounded, indicates the Lipschitz property of the maps.

We found that typically convergence occurs rapidly and reaches within 0.1% of the final value

within 20 iterations. The eventual values to which each surplus value converge is the mean field
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surplus distribution, in which it turns out that customers win at a lottery at most once over an

average lifetime of 12 time intervals, as is to be expected with a cluster size of 50 customers at

each lottery. The mean field action distribution under the lottery scheme with a $15 reward and

the savings attained are shown in Table 3.4. The MFE shifts based on the coupon profile, but the

saving is quite robust to profiles that award comparable numbers of coupons in periods 1 and 6.

We observed multiple thresholds at which two actions have identical value. For example, under

coupon profile C0, there are three threshold surplus values −19.2, 1.7 and 190.3 at which we have

equal probabilities of choosing between actions 0 and 2, between 2 and 4, and between 4 and 5,

respectively.

Table 3.4: Mean Field Equilibria under $15 reward (lottery prize). Reprinted with permission
from [2].

Coupon Profile MFE Expected Surplus Expected Value LSE Saving
C0 [0.001, 0, 0.81, 0, 0.19, 0] 0.3563 $189.8 $77
C1 [0.001, 0, 0, 0.584, 0, 0.416] 0.3704 $203.5 $69
C2 [0.001, 0, 0.875, 0.124, 0, 0] 0.3565 $193.1 $79
C3 [0.001, 0, 0.999, 0, 0, 0] 0.3563 $189.4 $79.4

Example

Figure 3.5 (Middle) shows the interior temperature under actions 0, 2, 4, the mean field action

distribution and benchmark action when $15 is the total reward amount. We see that the mean field

behavior is more aggressive than the benchmark in reducing the interior temperature before the

peak period, and shows a marginally higher interior temperature during the peak period. Figure 3.5

(Right) shows the comparison of energy consumption between action 0 (doing nothing, with an

average energy consumption of 36.5 kWh per day), the mean field action distribution (average

energy consumption of 36.7 kWh per day), and the benchmark action (average energy consumption

of 36.4 kWh per day). We see that the mean field distribution is more aggressive in moving energy

usage away from the peak period as compared to the benchmark, although both have essentially

the same energy consumption and an identical reward value of $15 per week. Finally, we compute
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that the savings to the LSE over 50 homes each week in this is example is $57.4 in the benchmark

scheme and $77 in the lottery scheme. Thus, incentivizing customers by offering a prize of $15

each week is certainly feasible. The MFE illustrates that even as small as 1°C change of the

setpoint of AC each day over several homes can yield significant benefits.
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Figure 3.5: (Left) Numerical derivative of map; (Middle) Simulated ON/OFF state of AC over a 24
hour period under actions 0, 2, 4, the mean field action and the benchmark action on an arbitrary
day and the corresponding interior temperature. The temperature graph is slightly offset for actions
2, 4, the mean field action and the benchmark action for ease of visualization; (Right) Average daily
energy usage profile. Reprinted with permission from [2].

3.3.7 Performance Analysis of Incentive Schemes

Benchmark Scheme

We consider a range of scenarios wherein the LSE rewards customers for each action with

between 1%− 100% of its expected savings, in steps of 1% increments. The relations between the

total weekly reward to customers, savings to the LSE and profit to the LSE, are shown in Figure 3.6

(Left). We see that the maximum weekly profit of $52 is achieved when about 9% savings (about

$10 in total per week) is the customer reward regardless of the coupon awarding profile, indicating

robustness to the exact profile employed. Note that although the reward under the benchmark

scheme is indicated by a percentage returned, it corresponds to a dollar value returned based on the

actions of the customers, and the total dollar reward values are also shown in green (dashed line)

in Figure 3.6 (Left).
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Figure 3.6: The relation between offered reward, LSE savings and LSE profit: (Left) Benchmark
incentive scheme and (Middle) Lottery scheme; (Right) The relation between profit to the LSE
and the expected value of a generic customer when different rewards are given to the customers.
Reprinted with permission from [2].

Lottery Scheme

We next conduct numerical experiments under a range coupon profiles and lottery rewards from

$5 to $95 in steps of $5 increments as we did (by using percentage returns) with the benchmark

scheme. Hence, we set a reward value, calculate the values of l and w that it implies, and compute

the MFE for different coupon awarding profiles. Our results are shown in Figure 3.6 (Middle),

where we plot the total savings to the LSE as well as its profit (savings minus reward) as a function

of the reward offered for winning the lottery. From Figure 3.6 (Middle), the maximum profit is

achieved by in a robust manner giving a reward of $15 − $20 for all coupon profiles Also, from

observation of the mean field action distribution that results from this reward (Table 3.4), we note

that almost all the customers will participate in the system, i.e., the probability of choosing action

0 is close 0.

From Figures 3.6 (Left) and 3.6 (Middle), we see that the maximum profit using the lottery

scheme is a little over $62 per week, while the maximum profit is only about $52 under the bench-

mark scheme. Given that a typical LSE has several hundred thousand customers, a difference of

$10 each week over a cluster of 50 homes is quite significant.

Comparison of Local Social Welfare

Our final step is to characterize the local social welfare under the lottery (under different coupon

profiles) and the benchmark. We define the (expected) local social welfare (LSW) measured in
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dollars/week as

LSW = 50EMFE[Vi(X)] + profits of the LSE. (3.9)

For the lottery scheme, the maximum expected value to each user of roughly 600 each is ob-

tained when the LSE is revenue neutral. This is roughly 100% better than what can be achieved

with the benchmark individual incentive. This increase is due to both the prospect-based utility as

well as coupling across users in the lottery scheme.

Note also that the LSE obtains a maximum profit between $62 − $64.4 (for different coupon

profiles) by giving a $15 reward, under which each customer will take actions according to the

MFEs shown in Table 3.4. The corresponding surplus is also shown, which for a generic customer

is between $189.2− $203.5. Therefore, the local social welfare is about $9552.

For the benchmark, the profit to the LSE is $42 when $15 reward is given as shown in Figure 3.6

(Left), under which each customer will only take action 5. The corresponding expected value of

a generic customer is about $56.2, and the local social welfare is about $2852. Again, we see that

the lottery scheme outperforms the benchmark.

We perform the same analysis to determine the relation between profit to the LSE and the

expected value of a generic customer under different rewards and coupon profiles. Our results

are shown in Figure 3.6 (Right). We explore a range of rewards from $5 to the break-even point

($80 for lottery scheme and $95 for the benchmark, regardless of the coupons awarded). The

points on each curve correspond to increasing the reward by $5 in steps in a manner indicated

by the arrow marks. From Figure 3.6 (Right), we see that the lottery scheme appears to better

capture the frontier between LSE profit and customer value than the benchmark scheme, with the

lottery-based incentive being better in a Pareto-sense. This is true regardless of the exact maximum

coupon choice. Thus, based on a desired level of customer value and LSE profit, the lottery scheme

can ensure a better outcome than the benchmark scheme with an appropriate reward.
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3.4 Lottery Scheme

We first construct the lottery scheme that will be used in our mean field game. We permute all

the agents into clusters, such that there are exactly M agents in each cluster, and conduct a lottery

in each such cluster. Suppose there are K rewards for all agents in one cluster, where K is a fixed

number less than M . When an agent takes an action, he/she will receive the credit (number of

coupons) associated with that action. Then the probability of winning is based on the number of

coupons that each agent possesses. We will model the lotteries as choosing a permutation of theM

agents participating in it, and picking the firstK of them as winners. Then different lottery schemes

can be interpreted as choosing different distributions on the symmetric group of permutations on

M . In particular, we will use ideas from the Plackett-Luce model to implement our lotteries.

Without loss of generality, we assume that the actions are ordered in decreasing order of the

costs so that θ1 ≥ · · · ≥ θA. In order to incentivize agents to take the more costly actions we will

insist that the vector of coupons obtained for each action is also in decreasing order of the index,

i.e., r1 ≥ · · · ≥ rA.

The specific lottery procedure we consider is the following: for every agent m that takes action

a[m] and receives coupons ra[m] > 0, we choose an exponential random variable with mean 1/ra[m]

and then pick the first K agents in increasing order of the realizations of the exponentials. Note

the abuse of notation only in this section to use a[m] to refer to the action of agent m. Since we

consider only one lottery, we do not consider time k. Let the agent m = 1, . . . ,M receive ra[m]

number of coupons. The set of winners is a permutation over the agent indices, and we denote

such a permutation by µ = [µ1, µ2, · · · , µM ]. We then have the probability of the permutation µ

given by

P(µ|ra[1], . . . , ra[M ]) =
M−1∏

n=1

ra[µn]∑M
j=n ra[µj ]

. (3.10)

Essentially, after each agent is chosen as a winner, he is removed and the next lottery is conducted

just as before but with fewer agents.
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We now analyze the probability of winning in our lottery. For analysis under the mean field

assumption, it suffices to consider agent 1 with the coupons it gets by taking action a being denoted

as ra[1]. LetM := {2, . . . ,M}, which is the set of opponents of agent 1. For these agents, suppose

there are υn agents that choose action n, where
∑

n∈A υn = M − 1. We denote the vector of these

actions by ~υ = (υ1, . . . , υA).

The conditional probability of agent 1 failing to obtain a reward is given by

pL1,~υ =
∑

κ1∈M1

· · ·
∑

κK∈MK

∏K
l=1 ra[κl]∏K

l=1(ra[1] +
∑

m∈Ml
ra[m])

,

where L refers to the fact that agent 1 “loses,”M1 = M, and for l ≥ 2 we haveMl = Ml−1 \

{κl−1}. Essentially, the above looks at the lottery process round by round, and is a summation of

the probabilities of all permutations in which agent 1 does not appear in the first spot in any round.

The above expression considerably simplifies if the summations are instead taken over the

actions κ̃l that the lottery winner κl at round l ∈ {1, . . . , K} can take. Note that we assume that we

can distinguish the actions based on the number of coupons given out. If this were not true, then we

could further simplify the expression by summing over the coupon space. Given a coupon/action

profile ~υ, let J (~υ) denote the actions that have non-zero entries. Additionally, by ~υ − ~1κ̃ for

κ̃ ∈ J (~υ) denote the resulting coupon profile obtained by removing one entry at location κ̃, and

by r~υ the sum of all the coupons in profile ~υ, i.e.,
∑

κ̃∈J (~υ) rκ̃υκ̃. Then

pL1,~υ =
∑

κ̃1∈J (~υ1)

· · ·
∑

κ̃K∈J (~υK)

∏K
l=1 υ

l
κ̃l
rκ̃l∏K

l=1(ra[1] + r~υl)
, (3.11)

where ~υ1 = ~υ, for l = 2, . . . , K, ~υl = ~υl−1 − ~1κ̃l and υlκ̃ is the number of entries at location κ̃ for

coupon profile ~υl. Note that pL1,~υ is a decreasing function of ra[1] for every ~υ. Therefore, agent 1

comparing two actions i and j that have r1,i > r1,j will find pL1,~υ(i) < pL1,~υ(j) for all ~υ. Also by

taking the limit of ra[1] going to 0, having an action with 0 coupons results in a loss probability of

1 for every ~υ.
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To determine the probability of winning in the lottery we need to account for the fact that

the actions of the opponents are drawn from the distribution ρ (under the mean field assumption).

Hence, the probability of obtaining the coupon profile (equivalently action profile) of the opponents

~υ = (υ1, . . . , υA) is given by the multinomial formula, i.e.,

Pρ(~υ) =
(M − 1)!

∏
i∈A b

υi
i∏

i∈A υi!
. (3.12)

Using (3.11) and (3.12), we obtain the winning probability for the mean field agent 1 when

taking action a as

pρ,a = 1−
∑

~υ:|J (~υ)|=M−1

pL1,~υPρ(~υ). (3.13)

By lower bounding each term in the conditional probability of not obtaining a reward we get

pρ,a ≤ 1 − M−K
M

( rA
r1

)K =: pW ∈ (0, 1). If we ran the lottery without removing the winners

(and any of their coupons), we obtain a lower bound on the probability of winning that has a

simpler expression. Using this simpler expression we can obtain the lower bound pρ,1 ≥ 1− (1−
rA

rA+(M−1)r1
)K =: p

W
∈ (0, 1). Note that both bounds are independent of ρ. If we allow an action

that yields 0 coupons, then the above bounds become trivial with pW = 1 and p
W

= 0.

An important feature of our lottery scheme is that the probability of winning increases with the

number of coupons given out. For simplicity we assumed a fixed reward for any win. However, we

can extend the lotteries to ones where different rewards are given out at different stages, and also

where the rewards are dependent on the number of coupons of the winner. For the latter, we will

insist on the rewards being an increasing function of the number of coupons of the winner. Finally,

we can also extend to scenarios where we choose the number of stagesK in an (exogenous) random

fashion in {1, . . . ,M−1}. Since the analysis carries through unchanged except with more onerous

notation, we only discuss the simplest setting.
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3.5 Optimal Value Function

As discussed in Section 3.2, the mean field agent must determine the optimal action to take,

given his surplus x and the assumed action distribution ρ. We follow the usual quasi-linear combi-

nation of prospect function and cost consistent with Von Neumann-Morgenstern utility functions,

and under which the impact of winning or losing in the lottery is on the surplus of the agent (and

not simply a one-step myopic value change).

The objective of a particular agent i is

Vρ(x[k]) = max
{a(x[l])∈A|A|}∞

l=k

E

{
∞∑

l=k

βl−k
(
ui(xi[l])− θai(xi[l])

)
}
,

where x[k] = (x1[k], · · · , xM [k]), and a(x[k]) = (a1(x1[k]), · · · , aM(xM [k])) are the vectors of

surplus and actions for each agent in the particular lottery cluster of the agent at time k, respective-

ly. The expectation is over the distribution of competitors actions and the randomness introduced

by the lottery.

Under the mean field assumption, the actions of all agents besides i are drawn from a distri-

bution ρ independently of each other. Also, the agent uses a prospect function to estimate the

probabilities of winning and losing at the lottery. We can then drop the index of the agent i and

the dynamic program that the agent in prospect theory needs to solve is given by the following

Bellman equation

Vρ(x) = max
a(x)∈A

{u(x)− θa(x) + β[φ(pρ,a(x))Vρ(x+ w) + φ(1− pρ,a(x))Vρ(x− l)]}. (3.14)

Note that pρ,a(x) is a result of a lottery that we described in detail in Section 3.4, and φ(·) is

the weighting function, which overweights small probabilities (of winning the lottery) and un-

derweights moderate and high probabilities (of losing the lottery). Here, we use the weighting

function defined in (3.3).
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First, we need to define a set of functions as

Φ =

{
f : X→ R : sup

x∈X

∣∣∣∣
f(x)

Ω(x)

∣∣∣∣ <∞
}
,

where Ω(x) = max{|u(x)|, 1}. Note that Φ is a Banach space with Ω−norm,

||f ||Ω = sup
x∈X

∣∣∣∣
f(x)

Ω(x)

∣∣∣∣ <∞.

Also define the Bellman operator Tρ as

Tρf(x) = max
a(x)∈A

{u(x)− θa(x) + β[φ(pρ,a(x))f(x+ w) + φ(1− pρ,a(x))f(x− l)]}, (3.15)

where f ∈ Φ.

We now show that the optimal value function Vρ(x) exists and it is continuous in ρ.

Lemma 9. 1) There exists a unique f ∗ ∈ Φ, such that Tρf ∗(x) = f ∗(x) for every x ∈ X, and

given x ∈ X, for every f ∈ Φ, we have T nρ f(x)→ f ∗(x), as n→∞.

2) The fixed point f ∗ of operator Tρ is the unique solution of Equation (3.14), i.e. f ∗ = V ∗ρ .

Lemma 10. The value function Vρ(·) is Lipschitz continuous in ρ.

3.5.1 Stationary distributions

For a generic agent, w.l.o.g., say agent 1, we consider the state process {x1[k]}∞k=0. It’s a

Markov chain with countable state-space X, and it has an invariant transition kernel given by a

combination of the randomized policy σ(x) at each surplus x for any a(x) ∈ A, and the lottery

scheme from Section 3.4. By following this Markov policy, we get a process {W [k]}∞k=0 that takes

values in {win, lose} with probability pρ,a(x) for the win, drawn conditionally independent of the

past (given x1[k]). Then the transition kernel conditioned on W [k] is given by

P(x1[k] ∈ B|x1[k − 1] = x,W [k]) = β1{x+w1{W [k]=win}−l1{W [k]=lose}∈B} + (1− β)Ψ(B), (3.16)
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where B ⊂ X and Ψ is the probability measure of the regeneration process for surplus. The

unconditioned transition kernel is then

P(x1[k] ∈ B|x1[k − 1] = x) =β
∑

a(x)∈A

σa(x)pρ,a(x)1x+w∈B (3.17)

+ β
(
1−

∑

a(x)∈A

σa(x)pρ,a(x)
)
1x−l∈B + (1− β)Ψ(B).

Lemma 11. The Markov chain where the action policy is determined by σ(x) based on the states of

the users and the transition probabilities in (3.17) is positive recurrent and has a unique stationary

surplus distribution. We denote the unique stationary surplus distribution as ζρ×σ. Let ζ(k)
ρ×σ(B|x)

be the surplus distribution at time k induced by the transition kernel (3.17) conditioned on the

event that X[0] = x and there is no regeneration until time k. ζρ×σ(·) and ζ(k)
ρ×σ(·) are related as

follows:

ζρ×σ(B) =
∞∑

k=0

(1− β)βkEΨ

(
ζ

(k)
ρ×σ(B|X)

)
=
∞∑

k=0

(1− β)βk
∫
ζ

(k)
ρ×σ(B|x)dΨ(x). (3.18)

Thus ζρ×σ(B) in terms of ζ(k)
ρ×σ(B|x) is simply based on the properties of the conditional ex-

pectation. And note that in EΨ

(
ζ

(k)
ρ×σ(B|X)

)
, the random variable X is the initial condition of the

surplus, distributed as Ψ. For x ∈ X, the only possible one-step updates are the increase of the

surplus to x+ w or a decrease to x− l, i.e. B = {x+ w, x− l}.

3.6 Mean Field Equilibrium

The action distribution ρ is a probability mass function on the action set A: let bi be the proba-

bility of choosing action i. Note that ρ lives in the probability simplex on R|A|, which is compact

and convex; denote it as Γρ. Let ζ be the stationary surplus distribution and the set of all such

possible surplus distributions is denoted as Γζ , which is a compact and convex subset of l∞: all

surplus distributions are dominated by the distribution obtained by allowing the agent to win in

every period; all surplus distributions dominate the distribution obtained by allowing the agent to
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lose in every period; both these distributions have a finite mean (and convexity follows); and then

the compactness result follows using the argument in [69]. For a given surplus x, let σ(x) be the

action distribution at x. Denote Γσ as the set of all possible distributions over the action space for

each x, which is compact and convex. We further assume that ρ ∈ Γρ, ζ ∈ Γζ and σ(x) ∈ Γσ for

each x ∈ X.

Definition 1. Consider the action distribution ρ, the randomized policy σ and the stationary sur-

plus distribution ζρ: (i) Given the action distribution ρ, determine the success probabilities in the

lottery scheme using (3.13) and then compute the value function in (3.14). Taking the best response

given by (3.14) results in an action distribution σ̃; (ii) Given action distribution ρ, following the

randomized policy σ yields transition kernels for the surplus Markov chain and stationary surplus

distribution ζ̃ρ, (with each transition kernel having a unique stationary distribution); and (iii) Giv-

en the stationary surplus distribution ζρ, applying the randomized policy σ(x) at each surplus x

yields the distribution of actions ρ̃. Define the best response mapping Π∗ that maps Γρ⊗ Γ
|X|
σ ⊗ Γζ

into itself. Then we say that the assumed action distribution ρ, randomized policy σ and stationary

surplus distribution ζρ constitute a mean field equilibrium (MFE) if Π∗ : ρ⊗ σ ⊗ ζρ 7→ ρ̃⊗ σ̃ ⊗ ζ̃ρ
has (ρ, σ, ζρ) as a fixed point.

3.6.1 Existence of MFE

Theorem 6. There exists an MFE of ρ, the randomized policy σ(x) at each surplus x and ζ , such

that ρ ∈ Γρ, σ(x) ∈ Γσ and ζ ∈ Γζ , ∀a ∈ A and ∀x ∈ X.

We will be specializing to the spaces Γρ,Γσ,Γζ and define the topologies being used in the

following proofs first.

1. For the assumed action distribution ρ ∈ Γρ on the finite set A, all norms are equivalent,

we will consider the topology of uniform convergence, i.e., using the l∞ norm given by

||ρ|| = maxa∈A ρ(a).

2. For the randomized policy σ ∈ Γ
|X|
σ , we enumerate the elements in X as 1, 2, · · · , and

consider the metric topology generated by norm ||σ|| =
∑∞

j=1 2−j|σ(xj)|, where |σ(x)| =
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maxa∈A σ(x, a). We consider the convergence of any sequence {σn}∞n=1 to σ in this topolog-

ical space.

3. For the surplus distribution ζ on the countable set X, we consider the topology of point-

wise convergence, which can be shown to be equivalent to convergence in l∞, i.e., uniform

convergence, using coupling results presented in [69].

Note that from the definition of Γρ, Γσ and Γζ , they are already non-empty, convex and com-

pact. Furthermore, they are jointly convex. Then in order to show that the mapping Π∗ satisfies the

conditions of Kakutani fixed point theorem, we only need to verify the following three lemmas.

Lemma 12. Given ρ, by taking the best response given by (3.14), we can obtain the action distri-

bution σ(x) for every x, which is upper semicontinuous in ρ.

Remark 1. As we have discussed earlier, since our state space and action space are discrete, there

might exist multiple best response actions when the agent solves the dynamic program. Thus, a pure

equilibrium might not exist. Since the best response can be set-valued, we need to consider mixed

strategies. In other words, the agent needs to choose a randomized action policy for each state.

Hence, the randomized policy σ is critical in the construction of the MFE given in Definition 1.

Lemma 13. Given ρ and σ(x), there exists a unique stationary surplus distribution ζ(x), which is

continuous in ρ and σ(x).

Lemma 14. Given ζ(x) and σ(x), there exists a stationary action distribution ρ, which is contin-

uous in ζ(x) and σ(x).

3.7 Characteristics of the Best Response Policy

In this section, we characterize the best response policy under the assumption that Vρ in (3.14)

has some properties. Then we discuss the relations between the incremental utility function u(x)

and the optimal value function Vρ.
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3.7.1 Existence of Threshold Policy

We make the assumption that given the action distribution ρ, Vρ(x) is increasing and submod-

ular in x when x ≤ −l; increasing and linear in x when −l ≤ x ≤ w; and increasing and

supermodular in x, when x ≥ w.

In Section 3.4, our lotteries are constructed such that the probability of winning monotonically

increases with the cost of the action. This when combined with the monotonicity, submodularity

(decreasing differences) for positive argument and supermodularlity (increasing differences) for

negative argument of Vρ yields the following characterization of the best response policy.

Lemma 15. For any two action, say actions a1 and a2, suppose that θa1 > θa2 , so that pρ,a1 > pρ,a2 ,

i.e., φ(pρ,a1) > φ(pρ,a2), then there is a threshold value of the surplus queue for user such that

preference order for the actions changes from one side of the threshold to the other.

Using the same argument as Lemma 15, under the assumption that Vρ(x) is increasing and

submodular in x ∈ (−∞,∞), or increasing and supermodular in x ∈ (−∞,∞), we can show the

existence of a threshold policy.

3.7.2 Relations between incremental utility function u(x) and the optimal value function Vρ

3.7.2.1 Concave/Convex incremental utility function

Lemma 16. Given the action distribution ρ, Vρ(x) is an increasing and submodular (i.e., decreas-

ing differences) function of x if u(x) is a concave and monotone increasing function of x, super-

modular (i.e., increasing differences) function of x if u(x) is a convex and monotone increasing

function of x.

Thus, from Lemma 16 and Lemma 15, the optimal policy takes a threshold form for both

concave and convex incremental utility function.

3.7.2.2 Conjecture for S-shaped prospect incremental utility function

We found numerically that with an S-shaped utility function, the value function satisfies the

super/sub-modularity conditions on the positive/negative axis respectively. If this holds true in
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general, then from Lemma 15, the optimal policy would take a threshold form, and indeed this is

what we observed numerically. However, we are not able to prove this result due to the implicit

nature of the value function, and we can only conjecture that this condition might hold for some

class of S-shaped utility functions.

3.8 Conclusion

In this chapter we developed a general framework for analyzing incentive schemes, referred to

as nudge systems, to promote desirable behavior in societal networks by posing the problem in the

form of a Mean Field Game (MFG). Our incentive scheme took the form of awarding coupons in

such that higher cost actions would correspond to more coupons, and conducting a lottery period-

ically using these coupons as lottery tickets. Using this framework, we developed results in the

characteristics of the optimal policy and showed the existence of the MFE.

We used the candidate setting of an LSE trying to promote demand-response in the form of set-

ting high setpoints in higher price time of the day in order to transfer energy usage from a higher

to a lower price time of day for an air conditioning application. We conducted data driven simula-

tions that accurately account for electricity prices, ambient temperature and home air conditioning

usage. We showed how the prospect of winning at a lottery could potentially motivate customers

to change their AC usage patterns sufficiently that the LSE can more than recoup the reward cost

through a likely reduced expenditure in electricity purchase. Further, we showed that a lottery

is more effective than a fixed reward at enabling such desirable behavior and can attain a better

tradeoff between social value and LSE profits.

Given the desirable analysis so far, we implemented a real system called EnergyCoupon and

conduct experiment among customers in practice. We will present the experiment results and

analysis in the following chapter.
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4. INCENTIVE-BASED DEMAND RESPONSE: EMPIRICAL ASSESSMENT AND

CRITICAL APPRAISAL∗

4.1 Introduction

With the increasing penetration of renewable energy resources such as wind and solar, there is a

growing interest on the demand-side management, or demand response (DR). DR has the potential

to become a flexible resource to increase the reliability and efficiency to the power system. Refer-

ence [70] defines the demand response as the changes of end-consumers’ electricity consumption

in peak hours from their normal patterns. Many independent system operators in the U.S. such as

Electric Reliability Council of Texas (ERCOT), New York ISO (NYISO), California ISO (CAISO)

and ISO New England have operated day-ahead and real-time DR programs by means of providing

energy, reserve and auxiliary services [71–73].

Demand response in the U.S originated in the 1970s, mainly due to the popularity of usage of

central air conditioners [74]; Since then, a huge amount of DR programs are designed and imple-

mented. This chapter categorizes the DR programs in two dimensions: 1) Direct load control or

self-controlled (market-based) programs; and 2) the scale of target end-consumers (large industri-

al/commercial or small residential customers). Direct load control enables the DR operator (such

as the utility) to remotely turn off or change the setpoint of the customers’ equipments; in such

a way, the amount of load shedding can be easily controlled within specified intervals, but it also

causes problems in customers comfort and satisfaction (imaging your air conditioner is forced to

turn off in hot summer/cold winter). Market-based DR programs tend to use prize signals or other

incentives to encourage customers’ self-motivated load control behaviors. Such programs usually

have less ruin on the customers’ comfort and satisfaction, but less precise when a specified amount

of reduction needs to be achieved.
∗Part of the results reported in this chapter is reprinted with permission of ACM, from EnergyCoupon: A Case

Study on Incentive-based Demand Response in Smart Grid, Bainan Xia, Hao Ming, Ki-Yeob Lee, Yuanyuan Li,
Yuqi Zhou, Shantanu Bansal, Srinivas Shakkottai, Le Xie, e-Energy, 2017; permission conveyed through Copyright
Clearance Center, Inc.
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In terms of customer scale, industrial or commercial customers are usually large profit-seeking

entities; therefore they have advantages over small residential customers. Energy management

systems are developed to help increasing the energy efficiency in data centers, retails, telecoms etc

and coordinate with market based signals (such as real-time electricity and gas prices) [75]. On

the other hand, residential customers pay more attention on personal habit and comfort; therefore,

some price-based mechanisms (such as time-of-usage (TOU), critical peak pricing (CPP) [76] and

market-index retail plans offered by the utility) do not have significant impact to the majority of

residential end-consumers with fixed-rate retail plans. Given the fact that residential takes the most

electricity consumption in the U.S (38%, compared with commercial 37% and industry 25%) [75],

the potential of DR in residential is far from fully explored. Table 4.1 summarized some current

researches and implementations in different categories of demand response.

Table 4.1: Classification of Demand Response Programs

Direct load
control

(centralized)

Market-based
(price/incentive-

based)

Large
cus-

tomers

Researches
[77–79], direct

load control
programs [80]

Energy-
management
systems [75]

Small
resi-

dential

Direct load
control

programs [80]

Variable rate
retail plans [81],

CPP [76],
EnergyCoupon

[3]

Despite the research [76,82] and commercial programs (ENERNOC [83], Ohmconnect [84]) of

price-based DR, an alternative market-based solution to residential DR programs named coupon-

incentive based demand response (CIDR) aims at providing coupon incentives to reduce the elec-

tricity consumption of residential end-consumers during peak hours [85–87]. Compared with the

above traditional DR programs, this mechanism has the following advantages: purely voluntary,
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penalty-free to customers, and can be implemented to the majority of residential end-consumers

who face fixed retail plans. A program named EnergyCoupon is the first-of-its-kind implemen-

tation of CIDR, with additional inherited innovations: 1) it provides dynamic DR events to end-

consumers with individualized targets; 2) periodic lotteries are designed to convert coupons earned

in DR events into dollar-value prizes. A small-scale pilot project was conducted in 2016, and we

found clear load profile change of the residential customers [3].

In terms of 2) periodic lotteries, a lot of researches and commercial programs shows how the

“nudge engine”, games and lotteries help to encourage the desired behaviors of human beings.

Reference [88] tries to discover the social value of energy saving, [87] models the CIDR system as

a two-stage Stackelberg game, and [89–91] use the “mean field games” to describe end-consumers’

behaviors in the DR program with lottery-based incentives. On the other hand, the lottery scheme

has already been implemented on encouraging the uniform load on public transportation [92] and

relieving congested roadways [93]; however, there are few practical works, including some ongo-

ing experiments [94, 95], trying to adopt the lottery scheme on DR programs.

Built upon our previous studies, a larger-scale experiment, which is closer to the real world,

was carried out in 2017 with much more comprehensive designs and critical assessments1. The

improvements in experiment (’17) include but not limited to: 1) an extra comparison group for data

analysis and comparison; 2) an improved baseline algorithm (“similar day”); 3) the treatment group

divided into two subgroups facing fixed and dynamic DR events. More facts and comparisons

between two experiments are listed in Table 4.2. We will show in later sections that these changes

help to analyze end-consumers’ behaviors in-depth.

The main contributions EnergyCoupon are as follows:

1. Providing price and baseline prediction algorithms suitable for DR programs;

2. Systematically documenting the experiment design, collection, and posterior analysis of on

residential customers;
1Unless otherwise specified, in the remaining part of this chapter, “experiment (’16)” refers to our previous study

conducted in the year 2016 and “experiment (’17)” refers to the new one in 2017.

73



Table 4.2: Overview of EnergyCoupon Experiments in Year 2016 and 2017

Year 2016 2017
Experiment

length (weeks)
12 12

Treatment group
size

8 29

Comparison
group existence

No Yes

Baseline
algorithm

Hybrid
“Similar

day”

Active subjects
defined by

Energy
saving

Lottery
participa-

tion
Active subjects

No.
3 7

3. Experimental result shows the trend of load shedding/shifting effects, different behaviors

over fixed/dynamic coupon targets, financial benefits of the LSE and end-consumers, impact

of periodic lotteries on human behaviors, as well as the effective cost saving of Energy-

Coupon over traditional DR programs.

This chapter is organized as follows: Section 4.2 introduces the system architecture and the

interface of the EnergyCoupon App. Key algorithms including price prediction, baseline predic-

tion, individualized target settling and lottery are explained in Section 4.3. Experimental design

is described in Section 4.4, and data analysis is shown in Section 4.5. We finally conclude our

findings in Section 4.6.

4.2 System Overview

The EnergyCoupon system is designed to inform the end-consumers about the upcoming DR

event along with individualized targets, measure the demand reduction during the DR event, pro-

vide statistics and tips for energy saving, as well as operate periodic lotteries. Fig. 4.1 exhibits the

system architecture of EnergyCoupon. As the core component in the architecture, a SQL database

is hosted on a server running 24 hours a day, interacting with the data resources (shows in blue
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blocks), mathematical algorithms (green blocks) and the lottery scheme (pink blocks). An En-

ergyCoupon App (both Android/IOS versions available) is developed and installed in the mobile

phones of the treatment group subjects. The app (interface shown in Fig. 4.2) receives coupon

targets, tips and statistics, and is also used to submit coupons in the lottery. A brief overview of

the remaining components is as follows:

SmartMeter
Texas ERCOT Data Weather Data

SQL Database

Price 
Prediction

Baseline 
Estimate

Tips and Usage 
Statistics

Lottery

Coupon 
Generation

Figure 4.1: System architecture. Reprinted with permission from [3].

(a) (b) (c)

Figure 4.2: EnergyCoupon app interface. (a) Main page, coupon targets and tips (b) Usage statis-
tics (c) Lottery interface. Reprinted with permission from [3].
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(1) SmartMeterTexas: The source of the electricity consumption of all end-consumers in 15-min

resolution [96]. Data is used in baseline prediction and coupon target generation algorithms in

Section 4.3.2 and 4.3.3.

(2) ERCOT Data: The source of day-ahead and real-time market prices, as well as the system load

in ERCOT area [30]. Data is used in the price prediction algorithm described in Section 4.3.1.

(3) Weather Data: The source of weather information used in the price (Section 4.3.1) and baseline

prediction algorithms (4.3.2).

(4) Price Prediction: An algorithm with the purpose of determining whether a dynamic DR event

should be announced two hours in advance. This algorithm is introduced in detail in Section

4.3.1.

(5) Baseline Estimate: An algorithm with the target of predicting the “normal consumption” of

the end-consumer without DR. This algorithm is designed to eliminate the gaming effects

described in [97] while keeping a relatively high accuracy. Details are included in Section

4.3.2.

(6) Tips and Usage Statistics: Usage statistics are provided including the estimate of the number of

coupons the user is likely to win, and his/her behavior compared with neighbors. Personalized

tips to save energy are generated based on his/her usage statistics.

(7) Coupon Generation: DR events are determined according to price prediction, and personalized

target are generated using baseline estimate. See Section 4.3.3 for details.

(8) Lottery: Periodic lotteries enable the end-consumers to convert his/her coupons earned into

dollar-value gifts. See Section 4.3.4 for more details.

4.3 Algorithms

In this Section, we will elaborate the key analytics behind the experiment (’17). These in-

clude the price prediction, baseline estimate, coupon generation, and lottery. These analytics are
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important not only to this experiment, but also to any other possible means of demand response

mechanisms.

4.3.1 Price Prediction

We would like to incentivize load shift from peak (price) hours to non-peak (price) hours for

end-customers. In order to run our system in real-time, we must be capable to predict the high

price occurrences ahead of time. Regarding the topic on electricity price prediction, various work

has been carried out so far. Time series models are used to predict day-ahead electricity prices

in [98, 99]. A combination of wavelet transform and ARIMA model is considered in [100]. A

hybrid method mixed with time series and neural network is discussed in [101]. In [102], spot

price prediction is conducted with load prediction and wind power generation involved. We have

different concerns on price prediction given the specific requirements of EnergyCoupon system,

since there is less interest in the exact number of the price. Instead, the label of the price, either

high or low, is more valuable. Moreover, time series techniques have good performance in handling

data with repeating periods, i.e. 24 hours, and achieve high accuracy in predicting the following

successive samples. The high prices we target in our situation do not have such behavior. Also,

as an online algorithm, low computing complexity is critical. Together with all the concerns, we

design and deploy a specific decision tree to deal with the price prediction in our system.

Decision tree is a well-known classifier with selected features in non-leaf nodes and labels

in leaf nodes. Different from traditional ones, we have unbalance error concerns in our Ener-

gyCoupon system, as a false high price alert will not induce much loss since the total budget is

controlled by lottery prizes. However, a failure in actual high price catch may cause loss of ef-

ficiency. Hence, our decision tree should have higher tolerance in false positive errors than false

negative ones. This can be captured by adjusting the penalty ratio between two kinds of errors in

training stage, though one must be careful in doing so due to the risk of overfitting the training set.

Considering the DR procedure conducted by our system, we believe a 2-hour time window

is reasonable for participants to react. Given the target time slot to be 2-hour in advance, there

are enormous features in both spatial and temporal space to choose from. Since air-conditioning
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dominates household electricity consumption in Texas and weather has an impact on renewable

energy availability as well, we finalize five fundamental feature classes: Price(π), Demand(P ),

Temperature(T ), Humidity(H) and WindSpeed(W ). Furthermore, we choose the temporal offsets

in each feature class according to the self/cross-correlation between the feature and the price label.

A numerical study on high price appearances based on different thresholds is carried out to choose

a proper threshold in our study, so as to label data samples. Table 2 in reference [3] shows the

prediction accuracy over 90% in validation.

Details on training data preparation, feature selection and performance evaluation are beyond

the scope of this chapter. readers may refer to [3] for more information.

4.3.2 Baseline Estimate

As defined by the U.S. Department of Energy, baseline is the “normal consumption pattern” by

end-consumers without the impact of DR [70]. Daily baseline prediction algorithm is with crucial

importance in our EnergyCoupon program, since it affects the energy reduction measurement, and

the number of coupons issued to participants. Energy reduction for an end-consumer i on interval

k in a particular day D, PD
DR,i(k) is calculated as the difference between the the subject’s predicted

baseline PD
base,i(k) and his/her real electricity consumption PD

real,i(k) (as shown in (4.1)); PD
real,i(k)

can be measured by the smart meter installed in the his/her household with high reliability.

PD
DR,i(k) = PD

base,i(k)− PD
real,i(k). (4.1)

Reference [3,97,103] address the limitations of conventional baseline estimate algorithms used

by the ISOs [71, 72] considering baseline manipulation and user’s dilemma. The “similar day”

algorithm was sprouted in our previous work [3].

Deriving from k-nearest neighbors algorithm (k-NN) and kernel regression [104, 105], this

proposed “similar day” algorithm 1) predicts the baseline by matching the targeted 6-hour time

window with historical windows having the same time of day and similar ambient temperature

(measured by Euclidian distance, see 4.2); 2) efficiently eliminates the gaming effect of participants
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by avoiding using end-consumers’ consumption during the experiment.

TD,l,tMSE =
1

Nt

Nt∑

k=1

(TD,t(k)− T l,t(k))2, (4.2)

where D, l represents the index of the target day and a particular historical day, t ∈ {1, 2, 3, 4} in

the index of time window, Nt is the number of samples in each section. Therefore, the day-ahead

baseline in this section is calculated as the average consumption of all corresponding Ns “similar

days” for the same end-consumer,

PD,t
base,i(k) =

1

Ns

Ns∑

l=1

P l,t
base,i(k). (4.3)

Previously the “hybrid” method is adopted as the baseline estimate algorithm in experiment

(’16) [3]. However, later we discovered that this algorithm neither 1) eliminated gaming effects,

nor 2) kept a small prediction error due to large diversity among residential end-consumers. There-

fore, the “similar day” algorithm is used in both baseline estimate and data analysis in the recent

EnergyCoupon experiment in 2017.

4.3.3 Individualized Target Settling and Coupon Generation

There are two types of DR events in the EnergyCoupon program: “fixed” and “dynamic”.

Both types of event last for 30 min, and only appear during 1-7 pm every day. However, the

major difference of two types of event lies in the way to determine the time period. Through price

statistics in ERCOT real-time market [30], “fixed” events are pre-determined on the periods that

have highest probability to have peak prices. In contrast, “dynamic” events are triggered when

the 2 hour-ahead predicted price (calculated using the algorithm in Section 4.3.1) is higher than

$50/MWh. “Fixed” event periods are unchanged during the month, with up to no more than 3

times in a day; while there is no restriction for the number of “dynamic” events. These two types

of DR events are collectively referred to as “hybrid” event.

After the time period of a DR event is determined, a multi-layer coupon target is generated only
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depending on individual predicted baseline, regardless of the specific event type. Fig. 4.3 shows

the multi-layer structure of the coupon target. When a particular end-consumer reduces his/her

electricity consumption to 70% of the predicted baseline (yellow region), he/she will be awarded

2 coupons; when he/she further reduces the usage to the green region (more than 70% reduction

from baseline), he/she will be awarded 5 coupons.

70% of baseline

30% of baseline

Predicted baseline

Yellow zone: 2 coupons

Green zone: 5 coupons

White zone: no coupon

Figure 4.3: Individual target setting. Reprinted with permission from [3].

Fig. 4.4 summarizes the logic flow of a coupon target generated based on algorithms introduced

in Section 4.3.1 to 4.3.3.

4.3.4 Lottery Algorithms

Due to the framing effect and the prospect theory [106–109], lottery scheme is considered to

provide incentives to desired human behaviors when there is a large group and each person con-

tributes a small impact. In our experiment, weekly lotteries are provided to convert end-consumers’

earned coupons into dollar-value prizes. Three amazon gift cards with face value $20, $10 and $5

are issued to the lottery winners every week. A participant is allowed to bid any positive number

of coupons (no more than the number he/she has) in each lottery; the more coupons he/she bids,

the higher probability he/she will win the prize. End-consumers are also allowed to collect the

remaining coupons for future lottery bids.
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Real-time 
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setting
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Coupon target 
distributed

No coupon target

Yes

NoYes

Figure 4.4: EnergyCoupon algorithm flow chart. Reprinted with permission from [3].

4.4 Experiment Design

4.4.1 Brief summary of Experiment (’16)

A small-scale preliminary EnergyCoupon experiment was carried out between June and August

in 2016, and 7 end-consumers were recruited in the same residential area in Cypress, Texas. Each

subject received a number of 30-min-length DR events along with coupon targets, between 1-7 pm

every day, and they are allowed to participate in lotteries with $35 amazon gift card in total every

week. Peak time estimate, individualized target settling, coupon generation and lottery scheme

followed the algorithms introduced in Section 4.3. “Hybrid” method was used in baseline estimate,

and “similar day” was used in posterior data analysis with normalization.

Experimental result shows a load shifting from peak to off-peak hours; it yields substantial

savings for the LSE, about $0.44/(week · user) on average, and $1.15/(week · subject) for active

subjects. Readers can refer to [3] for more details.
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4.4.2 Subjects in Experiment (’17)

A larger-scale EnergyCoupon experiment was conducted in the summer of 2017, with 29

anonymous residential end-consumers in Woodland, Texas recruited to form the treatment group.

All these end-consumers are employees of a local utility company named MP2 energy. The exper-

iment was purely voluntary and end-consumers were free to quit the experiment at any time.

In addition, the electricity consumption data for another 16 anonymous residential end-consumers

is also provided by MP2 energy. Those end-consumers form the comparison group. The relation-

ship between the treatment and comparison group is exhibited in Fig. 4.5(a).

Subgroup 2 
(15)

(a) (b) (c)

Inactive 
subjects in S2 

(10)
Inactive  

subjects in S1 
(12)

Active subjects 
in S1 (2)

Active subjects 
in S2 (5)

Subgroup 1 
(14)

Treatment 
Group (29)

Figure 4.5: Subjects in experiment (’17). (a) Treatment vs. comparison group (b) Subgroup 1 vs.
Subgroup 2 (c) Active vs. Inactive subgroups. Numbers in brackets are group sizes.

4.4.3 Procedure in Experiment (’17)

The experiment lasted for 12 weeks from Jun 10, 2017 to Sep 1, 2017. The treatment group

subjects were asked to create an account for SmartMeterTexas.com in order for the server to track

their energy consumptions during the experiment. In Week 0 (Jun 10-Jun 16, 2017), the treatment

group subjects were asked to download and install the EnergyCoupon App, get familiar with inter-

faces, practice to make energy reduction following individualized coupon targets and participate

into the lottery. The electricity consumption data during this period of time is neither considered

as the experimental data, nor used as the historical data in baseline estimate.

During the experiment, the treatment group subjects were able to see the coupon targets at
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least 2 hours prior to the DR event. A subject who wanted to save energy only needed to turn

off/change the setpoints of his/her appliances during the 30-min-length DR event period. The

subject’s electricity consumption would be recorded by the smart meter installed in the house and

data would be available to the server within 36 hours. Each subject would be awarded coupons

based on his/her coupon target achievement during the DR events.

In the first three weeks (Jun 17, 2017 to Jul 7, 2017), all the subjects in the treatment group were

faced with “hybrid” coupon targets; Starting from Jul 8, 2017, and till the end of the experiment,

those subjects were randomly assigned to two subgroups (Subgroup 1 and 2, or S1 and S2 for

short) with almost the same scale (14 subjects in S1 and 15 in S2). S1 and S2 subjects only

received “fixed” and “dynamic” coupon targets separately (Fig. 4.5(b)).

The “similar day” algorithm is used in baseline estimate, and coupon target generation follows

the algorithm in Section 4.3.3. All DR events were generated within 1-7 pm every day.

Weekly lotteries were provided during the experiment, with each lottery cycle beginning at

12:00 am on Saturday and till 11:59 pm on the next Friday. Lotteries are designed following the

algorithm explained in Section 4.3.4. For the analysis purpose, at the end the the whole experiment,

all subjects in the treatment group are assigned into another two subgroups according to their

lottery engagements. Subjects who participated at least 5 out of totally 11 lotteries (7 subjects) are

called active subjects and assigned to the “Active” subgroup, and the remaining treatment group

subjects (22 subjects) are regarded as inactive subjects and are assigned to the “Inactive” subgroup.

As Fig. 4.5(c) shows, 2 active subjects belong to S1 and 5 belong to S2, and 12 of the inactive

subjects belong to S1 and 10 belong to S2.

As we have briefly described in Section 4.1, there are major differences between the designs of

EnergyCoupon experiment (’16) and (’17). Change of the algorithm and removal of normalization

in baseline estimate help to increase the prediction precision and eliminate gaming effect, the avail-

ability of comparison group provides an alternative in measuring energy saving for the treatment

group, and the assignment of S1 and S2 helps to reveal more behaviors of end-consumers.
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4.5 Data Analysis

Through experiment (’17) our server has collected electricity consumption data for all the sub-

jects in the treatment and comparison groups. In this section, the calculation and discussion on

the energy saving for the treatment group is from subsection 4.5.1 to 4.5.2; Financial benefit for

this experiment is estimated in 4.5.4, and behavioral changes due to lottery is investigated from

subsection 4.5.5 to 4.5.7.

4.5.1 Energy Saving for the Treatment Group

There are two ways to measure the electricity reduction for the treatment group during the

experiment: compare the real electricity consumption with (i) historical consumption data or (ii)

consumers’ baseline. Fig. 4.6 exhibits the energy consumption ratio of the treatment and compari-

son groups following method (i). The ratio is defined as the group’s weekly consumption between

1-7 pm divided by historical consumption in 2016, and a lower ratio indicates a higher energy

reduction level during peak hours.
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Figure 4.6: Energy saving at 1-7 pm for treatment and comparison group during the experiment
(2017), based on the consumption of same days in 2016 2

2Historical consumption data for some treatment group subjects in Week 9, 2016 is not available; We used dashed
lines to show the less reliable trend between Week 8-9 and 9-10.
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Fig. 4.6 shows the energy saving for the active subjects during the experiment. While the

ratios for inactive and comparison groups are around 1 in most weeks during the experiment, there

is clear gap between the active subjects (red curve) and these two groups. Active subjects consume

less electricity in most weeks compared with their consumption in 2016, with the maximum saving

around 40% in Week 8.

The disadvantage of method (i) is that we cannot tell the exact energy saving, since there are

variables that change between the year 2016 and 2017. Energy saving will be measured using

method (ii) in the next subsection.

4.5.2 Comparison between Active and Inactive Subjects in Treatment Group

As introduced above, method (i) calculates energy consumption ratio using the estimated base-

line as the reference, instead of historical consumption in 2016. Fig. 4.7 shows the energy saving

ratios of active, inactive subgroups and the whole treatment group.
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Figure 4.7: Energy saving at 1-7 pm for active/inactive subjects by week, based on their baseline
consumptions

The performance of the inactive subgroup is quite constant, with the ratio around 1.0 in most

of the weeks, and never falls below 0.9. This is accord with our intuition that less engagement in
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lottery is a sign of lack of enthusiasm about energy saving in the EnergyCoupon program. Since

inactive subjects take the majority of the treatment group (as shown in Fig. 4.5), the gap between

the blue and black curves are minor.

The curve for the active subgroup is far below the other two curves, indicating the energy

saving and load pattern change for active subjects during the experiment. Energy saving for the

active subgroup gradually increases in the first few weeks and reaches the peak at about 40% in

Week 8. After Week 9, the saving begins to decline, until reach only 10% in Week 11. The

rebound of the ratio can be explained by the Harvey hurricane arrived in Week 10 and 11, which

may distract the subjects from the DR program.

To better visualize the load pattern change for the active subjects, 24-hour average real con-

sumptions (red curves) are illustrated for the active and inactive subgroups in a particular week

(7/29-8/4/2017), and the corresponding baselines (blue curves) are set as references (Fig. 4.8).

Energy saving during 1-7 pm (interval 27-38) for active subjects can be calculated as 28.9%, while

that of inactive subjects is only −0.2%. The close-to-zero energy saving for inactive subjects

is unsurprising, and also proves the precision of our baseline estimate from another prespective;

However, the surprising finding from Fig. 4.8(a) is the load shedding effect in non-peak hours

(25.0% energy saving). This observation conflicts with our previous assumption of pure load shift-

ing in [3], and it can be explained by the assumption that there is “inertia” in demand response;

incentivized energy reduction in peak hours would influence that of off-peak hours.

4.5.3 Comparison between Subjects in Treatment Group Facing Fixed/dynamic Coupons

Starting from Week 3 and till the end of the experiment, the treatment group subjects are

randomly assigned into two subgroups S1 and S2 facing “fixed” and “dynamic” coupon targets

seperately. We aim to discover the effectiveness of different types of coupon targets on energy

saving of end-consumers. Energy savings for these two subgroups during 1-7 pm are exhibited in

Fig. 4.9(a).

As observed from Fig. 4.9(a), the active subjects in S1 and S2 are not homogeneous, as S1 on

average saves 35% and S2 saves −5% in Week 1-2. However, a clear “activation” is observed for
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Figure 4.8: Daily consumption vs. baseline for active/inactive subjects (7/29/2017-8/4/2017). (a)
Active subjects (b) Inactive subjects
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Figure 4.9: Behavior comparisons between subjects facing fixed (Subgroup 1) and dynamic
coupons (Subgroup 2). (a) Average energy saving at 1-7 pm (b) Coupon target achievement per-
centage

S2 subjects, as their energy saving jumps from −5% to −10% in Week 3-10; while no such effect

is observed for S1 subjects. In week 11, the energy saving for S2 subjects returns to their initial

level, which can be attributed to the hurricane.

Fig. 4.9(b) illustrates the coupon target achievement ratios of active subjects in two subgroups.

The ratio is defined as the proportion of DR events that the subjects at least earn one coupon
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(reduce at least 30% energy from their baseline). Comparing Fig. 4.9(a)(b), an interesting finding

is that although S1 has higher energy saving than S2 in all periods, both subgroups reach a similar

level of coupon achievement.

One possible explanation for our observation is that S1 subjects facing “fixed” DR events would

prefer to program their home appliances (such as AC) in advance to hit coupon targets, and do not

change their setpoints frequently. This results in a decrease of electricity consumption at around 1

pm and the rebound at 7 pm, which clearly is an overreaction to coupon targets. At the same time,

S2 subjects facing “dynamic” DR events have to check the app more regularly, since dynamic

coupon targets only appear within 2 hours in advance. Therefore, they are more aware of the

coupon targets, and can hit the targets and earn coupons more “efficiently” with minimum energy

reduction. To support our explanation, Fig. 4.10 provides the load patterns of two active subjects

in S1 and S2 for a particular day.
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Figure 4.10: Energy consumption curve for two active subjects on 7/19/2017. (a) Subject No.19
(Subgroup 1) (b) Subject No.18 (Subgroup 2)

4.5.4 Financial Benefit Analysis

Previously we assume that all the subjects perform pure load shifting from peak to off-peak

hours [3]; therefore, the DR program will bring financial benefits to both the LSE and active end-
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consumers, since LSE could reduce their purchase in peak price hours, while not losing its retail

revenue, and end-consumers win extra rewards from the LSE for their energy saving behaviors

during peak hours. However, our finding in Section 4.5.2 conflicts with the pure load shifting

assumption. Therefore, it’s not obvious whether the LSE and end-consumers reach a win-win

situation.

The net benefit for the LSE consists for three parts: (a) the saving in electricity purchase in

high-price hours (b) the decrease of sales revenue due to the load shedding effect and (c) the cost

of rewards issued to lottery winners. Our calculation shows the saving in three parts is $2.6, $−2.7

and 4.0/(week · activesubject). Due to the load shedding effect, the loss in (b) offsets the benefit

in (a) and the LSE suffers a net loss close to 4.0/(week · activesubject).

Table 4.3: Financial Benefit of the LSE and Active Subjects

Subjects LSE
Active

subjects
Savings
($/(week·
subject))

2.6−
2.7− 4.0

4.0 + 2.7

An active subject, in contrast, on average receives $4.0 lottery rewards per week from the LSE;

at the same time, the load shedding effect leads to the decrease of his/her electric bill by around

$2.7 per week. Therefore, our EnergyCoupon program brings positive financial benefit to active

subjects.

Although this experiment did not bring a win-win situation to both the LSE and end-consumers,

it still increases the social welfare on the demand side, as the summation of benefits is positive

($2.6/(week · subject)). We can also summarize that the financial benefit of LSE in the DR

program is closely related to the level of load shifting in the subjects’ behavior; if the load shift is

minor, cost saving from its purchase may not cover the loss of retail revenue, which leads to a net

financial loss to the LSE.
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4.5.5 Influence of Lottery on Human Behaviors

As discussed in Section 4.3.4, the lottery scheme is considered to provide incentive to desirable

behaviors of the treatment group. Table 4.4 lists some influences of the lottery on the participants’

behaviors.

Table 4.4: Subjects’ Behavior Change due to Lottery

Subjects
(on

average)

Energy
saving

improve-
ment (1-7
pm) (%)

Next
lottery

participa-
tion prob.

(%)

Porb. of ≥ 1
participation

in next 3
lotteries (%)

All
winners

10.7 56.6 80.5

Prizeless
partici-
pants

−0.03 40.0 70.0

The first column in Table 4.4 shows that winning a lottery prize has a positive impact on the

energy saving, as lottery winners make an energy saving improvement of 10.7% in the next lottery

cycle on average (for example, 10% to 20.7%). In contrast, the average energy saving improve-

ment for prizeless participants is close to zero (−0.03%). The second and third columns clearly

demonstrate that lottery winners on average tend to have higher engagements than prizeless partic-

ipants in the next lottery (56.6% to 40.0%) and next three lotteries (80.5% to 70.0%). Therefore,

we can summarize that the lottery prize has positive impacts on both energy saving and lottery

engagements in future lottery cycles.

4.5.6 Comparison with previous CPP Experiment

In this subsection, we compare our EnergyCoupon experiment with previous price-based DR

experiment conducted by Prof. Wolak [76], which was carried out in Anaheim, CA in the year

of 2005. Critical peak pricing (CPP) was used in this experiment; CPP days are selected based
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on some price prediction algorithm, and on CPP days during noon-6 pm, subjects in the treatment

group receives $0.35 for every kWh reduction from baseline. Some comparisons of these two

experiments are listed in Table 4.5.

Table 4.5: Comparison between EnergyCoupon and Previous Experiments

Compare items
Critical

Peak
Pricing

Energy-
Coupon

Category
Price-
based
DR

Incentive-
based
DR

Treatment group
scale

71 29

Experiment
length

Jun-Oct Jun-Aug

Number of DR
days

Certain
CPP days

(12)

Regular
(77)

Peak hours
Noon-6

pm
1-7 pm

Energy reduction 12% 10.7%a

Effective cost
compared with

retail price b
368% 58.8%

a Electricity reductions for active and inac-
tive subjects are 24.8% and 7.36%, respec-
tively.

b We choose retail price in Anaheim in 2005
as $0.095/kWh [110], and average re-
tail price in Woodland, TX in 2017 as
$0.090/kWh [81].

We can observe that our experiment has reached a similar level of energy reduction with the

CPP experiment (12% to 10.7%). Since our EnergyCoupon provides DR events every day com-

pared with only 12 CPP days in their experiment, EnergyCoupon project helps to save energy more

efficiently than the CPP experiment.

91



Moreover, effective cost is defined as the cost of reducing 1 kWh of electricity during peak

hours. This value in our experiment is calculated by the total value of lottery prizes divided by the

energy reduction for all treatment group subjects. Data analysis shows that effective cost in our

experiment ($0.053/kWh) is only 1/7 of that in the CPP experiment.

4.5.7 Cost Saving Decomposition

In this subsection we would like to estimate how the lottery scheme contributes to the effective

cost saving in our EnergyCoupon experiment, compared with previous CPP experiment described

in Section 4.5.6. We split and model the contributions of (i) the lottery scheme and (ii) other

features of EnergyCoupon (CIDR, mobile app) as

CCPP = αβCEnergyCoupon, (4.4)

where C(·) represents the effective cost shown in Table 4.5 (CCPP = 0.35, CEnergyCoupon = 0.053),

and α, β are the contributions of the above two factors ((i), (ii)), modeled as multipliers to the

effective cost of EnergyCoupon.

The value α can be estimated using cumulative prospect theory. As a behavioral game theory,

this theory describes the individual choice between risky probabilistic alternatives [107]. It models

the probability weighting and loss aversion, which leads to the overweighting of small probabilities

and underweighting of moderate and high probabilities. A gain prospect f = (xi, pi) describes a

prospect results in the multiple outcome xi, xi < xj iff i < j with probability pi, and
∑

i pi = 1.

This theory defines a certain equivalent f as

V (f) =
N∑

i=0

πiV (xi), (4.5)

where V (·) is the utility function, πi are decision weights calculated by

πi = w(pi+, ...,+pn)− w(pi+1+, ...,+pn), 0 ≤ i < N, (4.6)
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and w(·) is the probability weighting function.

As a rough estimate, according to the coupons they have earned, on average each active subject

has approximately 7.0% chance to win each prize ($20, $10 and $5) in the weekly lottery; the

probability for an inactive user to win each prize is around 2.3%. Therefore, the prospect each

active/inactive subject faces (fa and fb) can be described as

fa =(0.79, $0, 0.07, $5, 0.07, $10, 0.07, $20),

fb =(0.931, $0, 0.023, $5, 0.023, $10, 0.023, $20).

(4.7)

Since each lottery prize is relatively small (< $200), the utility function V (·) is linear and can be

eliminated from both sides of (4.5) [109]; thus the certain equivalent can be calculated as

f ea =w(0.07)× (5 + 10 + 20) = $5.25,

f eb =w(0.023)× (5 + 10 + 20) = $2.28.

(4.8)

The value of w(·) comes from the estimate in [107]. Equation (4.8) shows the estimate of direct

cash needed in our experiment to maintain the same level of incentive to the treatment group, if no

lottery scheme is adopted (f ea × 7 + f eb × 22 = 86.91). Therefore, multiplier α is estimated as the

ratio of equivalent cash divided by total weekly lottery prizes α = 86.91/35 = 2.48. According

to (4.4), β = 2.66 and we can conclude that lottery scheme and other EnergyCoupon designs have

equal levels of contribution to reducing the effective cost.

4.6 Concluding Remarks

This chapter presents the design and critically assesses the empirical experiment of coupon

incentive-based demand response for end-consumers over a two-year period in Houston area. D-

ifferent from traditional price-based DR programs, EnergyCoupon has the following features: (1)

Dynamic time-of-the-day DR events and individualized coupon targets; (2) End-consumers re-

ceive coupon targets and usage statistics through mobile app; (3) Periodic lottery allows to convert

coupons into dollar-value prizes.
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Data analysis shows that there is significant load shedding effect for the treatment group, but

not much load shifting effect is observed. In addition, there are incentives of lottery prizes on

desirable behaviors such as energy saving improvement and lottery participation. Our experiment

has much lower DR cost (c5.3/kWh) compared with previous CPP projects (c35.0/kWh); Using

prospect theory we estimate that the design of system architecture and lottery scheme have equal

contributions to the cost saving.

This chapter is generalizable towards other Internet-of-Things-enabled demand response activ-

ities, and could shed light on the overall discussion of incentive-based versus price-based demand

response.

Future work would examine the value added from obtaining the consumer behavior data in this

experiment. Another possible venue of future work is to further develop a platform that allows for

the end users to aggregate and participate in wholesale level ancillary services.
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5. CONCLUSION

In this thesis, we explored the market methods to approach resource management problem for

both supply and demand in the Smart Grid. In Chapter 2, we designed a bilateral energy sharing

market which maximizes the resource utilization through high trade ratio with a unified price and

evaluated the system by a PV market case study with parameters chosen from realistic statistics.

We further provided an extension of such secondary market in price anticipating scenario, which

could provide stochastic energy service in the Smart Grid. In Chapter 3, we developed a coupon

incentive-based demand response market to encourage end-customers to shift their electricity us-

age from peak hours to off-peak hours. We simulated our system with Texas data and showed that a

LSE can potentially attain substantial savings using our scheme. We modeled both market systems

in a Mean Field Game framework and showed the existence of desirable equilibria. In last chapter,

we presented the design and implementation of a real world experiment system as we discussed

in Chapter 3. The experiment results indicated that to achieve same amount of consumption re-

duction, the effective cost of demand response providers can be reduced substantially through our

system compared with other demand response schemes.
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APPENDIX A

PROOFS FROM CHAPTER 2

Proof of Lemma 1 Recall the definition of A(b) : D × D ∩ [0, b + s/(1 + α)]. We claim

the effective bid of a server, xs, lies in a compact set with an upper bound x̄s, which follows

from the argument that no server will bid above x̄s < ∞ such that the expected return is below

cserve (since this has to be paid in every time-frame). By (2.1), when a server bids xs we have

only the clients with budget b ≥ xs − s/(1 + α) will respond so that the expected return is

given by
∫∞
xs−s/(1+α)

π̂(b̂)(xs + α(xs − b̂)+)db̂ ≤
∫∞
xs−s/(1+α)

π̂(b̂)(xs + sα/(1 + α))db̂ = P(b̂ ≥

xs−s/(1+α))(xs+sα/(1+α)). However, all budget distributions in our system are stochastically

dominated by the distribution obtained by transferring all wealth s − cserve + sα/(1 + α) to the

server in every time period. Note that the initial budget is given by the regeneration distribution

that has support Binit. We will assume that Binit is bounded with upper-bound b̄init. Given the

lifetime of an agent in the system is geometrically distributed with parameter 1− β, we have

P
(
b̂ ≥ xs −

s

1 + α

)
≤ βxs−s/(1+α)−b̄init .

Thus, we have the expected return of the server

(xs + sα/1 + α)P(b̂ ≥ xs − s/(1 + α)) ≤ (xs + sα/1 + α)βxs−s/(1+α)−b̄init , and

lim
xs→∞

(xs + sα/1 + α)P(b̂ ≥ xs − s/(1 + α)) ≤ lim
xs→∞

(xs + sα/1 + α)βxs−s/(1+α)−b̄init = 0.

Define the following

R , max
xs≥0

(xs + sα/1 + α)βxs−s/(1+α)−b̄init .
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We will assume that the parameters (β, s, α) are chosen such that R ≥ cserve. Under this assump-

tion we set x̄s to be the largest root of the transcendental equation

cserve = (x+ sα/1 + α)βx−s/(1+α)−b̄init .

Meanwhile, as a client, given a finite budget b, the closed interval [0, b + s/(1 + α)] is compact.

Hence the effective action space lies in a compact set Â(b) , D ∩ [0, x̄s] × D ∩ [0, x̄c], where

x̄c , b+ s/(1 + α).

We define the reward per stage as

c(b, (xs, xc)) , ps(1− ρ̂c(xs))(xs − cserve) + pc
(
ρ̂s(xc)(s− E[X̃s|X̃s ≤ xc])− (1− ρ̂s(xc))close

)
.

Since cserve, s and close are constants, we have c(b, (xs, xc)) is bounded and continuous in (xs, xc).

Finally, the third result follows from the continuity of the transition kernelQ over discrete topology

of Â(b).

Proof of Lemma 4 Suppose fn is monotonically increasing and x∗s, x
∗
c maximize Tρ̂,π̂fn(b) =

fn+1(b). Let b′ > b we have

fn+1(b′)

≥ ps

(
Eρ̂[1x̃c≥x∗s(Eπ̂[βfn(b′ + xs − cserve + α(xs − B̂)+)] + xs − cserve) + 1x̃c<x∗sβf(b′)]

)

+ pc

(
Eρ̂[1x∗c≥x̃s(βfn(b′ + s− x̃s − α(x̃s − b′)+) + s− x̃s) + 1x∗c<x̃s(βfn(b′)− close)]

)

≥ ps

(
Eρ̂[1x̃c≥x∗s(Eπ̂[βfn(b+ xs − cserve + α(xs − B̂)+)] + xs − cserve) + 1x̃c<x∗sβf(b)]

)

+ pc

(
Eρ̂[1x∗c≥x̃s(βfn(b+ s− x̃s − α(x̃s − b)+) + s− x̃s) + 1x∗c<x̃s(βfn(b)− close)]

)

= fn+1(b)

Proof of Lemma 5 Denote the expected trade ratio variable as κ. Consider the case in which

servers bid multiple values, w.l.o.g., we assume pX̃s = (pX̃s(k1), pX̃s(k2)), where cserve < k1 <
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k2 < s and all clients can afford k2. By the four facts, we have the client will bid either k1 or k2.

We denote the probabilities of clients placing such bids as pX̃c = (pX̃c(k1), pX̃c(k2)). This gives us

κ =pX̃c(k1)pX̃s(k1) + pX̃c(k2)(pX̃s(k1) + pX̃s(k2))

=pX̃c(k1)pX̃s(k1) + pX̃c(k2)

Now if the servers decide to change unilaterally to p′
X̃s

= (p′
X̃s

(k′)), where k′ ∈ [k1, k2], p′
X̃s

(k′) =

1, the clients who were bidding k2 will follow the new price k′, since it leads to a higher payoff.

Meanwhile, the clients who were bidding k1 will choose a bid between 0 and k′ by Fact 3. Bidding

k′ yields a lower but positive payoff compared with the earlier, however, bidding 0 yields a zero

payoff. Thus, these clients will bid k′ as well. The new trade ratio is then

κ′ =(pX̃c(k1) + pX̃c(k2))p′
X̃s

(k′) = pX̃c(k1) + pX̃c(k2) > κ.

The proof above implies within the clients’ financial ability, merging two server’s bids always

increases the trade ratio, which induces the result of Lemma 5. Note that the proof also follows in

the case that pX̃c , pX̃s are p.d.fs by replacing the summations with integrals.

Proof of Lemma 6 By Lemma 4, we have v∗ρ̂ is monotonically increasing in b, which induces

the monotonicity of vc_win and vc_lose. Therefore, vc_win and vc_lose are bounded increasing on the

closed interval [k− s
1+α

, k− s−k
α

]. Define g(b) , vc_win(b)− vc_lose(b) for b ∈ [k− s
1+α

, k− s−k
α

].

We have g(b) is of bounded variation, i.e. g(b) has finite total variation on [k − s
1+α

, k − s−k
α

].

Thus, the number of zero crossings of g(b) over the closed interval is finite. Therefore, θc,ρ̂(b)

is piecewise constant on [0, k − s−k
α

] with a finite number of constant intervals. Within each of

the intervals, θc,ρ̂(b) is constant and either 0 or k. At the boundaries of these intervals, where

vc_win(b) = vc_lose(b), we have θc,ρ̂(b) = {0, k}.

Proof of Lemma 7 From (2.5), for Borel set B, we have P(b[t + 1] ∈ B|b[t] = b) ≥ (1 −

β)Ψ(B) > 0, which satisfies the Doeblin condition. Then the budget chain is ergodic. The

rest of the first part proof follows the results in Chapter 12, Meyn and Tweedie [18]. Since the
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regeneration happens independently of the budget transition, between two regenerations, we could

further derive the relationship between π(B) and π(τ)(B|b), where τ is the first regeneration time

after t = 0 and b(0) = b so that π(τ)(·|·) is the τ -step transition function without any regenerations.

π(B) =
∞∑

τ=0

(1− β)βτ
∫
π(τ)(B|b)dΨ(b)

=
∞∑

τ=0

(1− β)βτEΨ

(
π(τ)(B|Binit)

)
,

where we use the short-hand EΨ

(
π(τ)(B|Binit)

)
to mean

∫
π(τ)(B|b)dΨ(b).

Since π(·) is the invariant budget distribution through the transition kernel defined in (2.5),

π(τ)(B|b) is basically the τ -step transitions starting at b0 = b without regenerations. If B is

a Lebesgue null-set, we have Ψ(B) = 0 and in each of the τ step π(τ)(B|b) = 0, therefore,

π(B) = 0.

Proof of Lemma 8 We demonstrate the proof in two parts a) given π̂, v∗ẑ,π̂ is Lipschitz contin-

uous in ẑ, and b) given z, v∗ẑ,π̂ is Lipschitz continuous in π̂. Then the proof completes by applying

triangle inequality between the two parts.

a) For any given ẑ and π̂, by Theorem 1 there is a unique v∗ẑ,π̂(·) which is the unique fixed point of

the contraction mapping T jẑ,π̂ with Lipschitz constant λ ∈ (0, 1). Rewriting (2.3) in terms of ẑ and

k, we have

(T jẑ,π̂f)(b)

= βf(b) + ps(1− ẑ)(k − cserve + β∆fs(b, k, cserve, π̂))+

max
xc∈Ak(b)

(
pcxc

s− k + close + β∆fc(b, s, k, α)

k
, 0

)
− pcclose

where

Ak(b) = [0, b+ s/(1 + α)] ∩ {0, k},

∆fs(b, k, cserve, π̂) =
∫∞

0
π̂(b̂)f(b + k − cserve + α(k − b̂)+)db̂ − f(b), and ∆fc(b, s, k, α) =

f(b+ s− k − α(k − b)+)− f(b).

Taking the derivative with respect to ẑ using the Envelope Theorem, we have T jẑ,π̂ is Lipschitz
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continuous in ẑ with constant k − cserve.

Pick ẑ1 and ẑ2, we have
||T jẑ1,π̂v

∗
ẑ2,π̂
−T jẑ2,π̂v

∗
ẑ2,π̂
||∞

|ẑ1−ẑ2| ≤ k−cserve. Since v∗ẑ2,π̂ is the unique fixed point

of the contraction mapping T jẑ2,π̂, we have T jẑ2,π̂v
∗
ẑ2,π̂

= v∗ẑ2,π̂. Then we have
||T jẑ1,π̂v

∗
ẑ2,π̂
−v∗ẑ2,π̂ ||∞

|ẑ1−ẑ2| ≤

k−cserve. Applying T jẑ1,π̂ n times, given the contraction parameter λ, we have
||T (n+1)j
ẑ1,π̂

v∗ẑ2,π̂
−Tnjẑ1,π̂v

∗
ẑ2,π̂
||∞

|ẑ1−ẑ2|

≤ λn(k − cserve). Also, we have the unique fixed point of T jẑ1,π̂ being v∗ẑ1,π̂. Letting n→∞, com-

pletes the proof as follows:

||v∗ẑ1,π̂ − v∗ẑ2,π̂||∞
|ẑ1 − ẑ2|

≤
∞∑

n=0

||T (n+1)j
ẑ1,π̂

v∗ẑ2,π̂ − T
nj
ẑ1,π̂

v∗ẑ2,π̂||∞
|ẑ1 − ẑ2|

≤ k − cserve
1− λ

b) We consider the Lipschitz continuity of v∗ẑ,π̂ in π̂. From the discussion in a), we only need to

show T jẑ,π̂ is Lipschitz continuous in π̂, then the rest of the proof goes through in the similar way.

Recall the expression of (T jẑ,π̂f)(b), there is only one term of interest, ∆fs(b, k, cserve, π̂) =
∫∞

0
π̂(b̂)f(b+k−cserve+α(k− b̂)+)db̂−f(b). According to Lemma 4, f is monotonic increasing.

Then, f is of bounded total variation on the closed interval [b+ k− cserve, b+ k− cserve + αk] for

any b. Therefore, given f , T jẑ,π̂ is Lipschitz continuous in π̂ with constant C = f(b+ k − cserve +

αk)− f(b+ k − cserve).

Proof of Theorem 3 Given ẑ and k, the optimal value function can be rewritten as

v∗ẑ,π̂(b)

= βv∗ẑ,π̂(b) + ps(1− ẑ)(k − cserve + β∆vs(b, k, cserve, π̂))+

max
xc∈Ak(b)

(
pc
(
1xc=k(s− k + β∆vc(b, s, k, α))− 1xc=0close

))

= βv∗ẑ,π̂(b) + ps(1− ẑ)(k − cserve + β∆vs(b, k, cserve, π̂))+

max
xc∈Ak(b)

(
pcxc

s− k + close + β∆vc(b, s, k, α)

k
, 0

)
− pcclose

where

Ak(b) = [0, b+ s/(1 + α)] ∩ {0, k},
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∆vs(b, k, cserve, π̂) =
∫∞

0
π̂(b̂)v∗ẑ,π̂(b+ k − cserve + α(k − b̂)+)db̂− v∗ẑ,π̂(b), and ∆vc(b, s, k, α) =

v∗ẑ,π̂(b+ s− k − α(k − b)+)− v∗ẑ,π̂(b).

Define the increasing piecewise linear convex function hẑ(y):R 7→ R given by

hẑ(y) =φ(ẑ) + max
xc∈Ak(b)

(
xcy)+,

where (·)+ := max(·, 0) and

φ(ẑ) := βv∗ẑ,π̂(b) + ps(1− ẑ)
(
k − cserve + β∆vs(b, k, cserve, π̂)

)
− pcclose.

y = pc
s− k + close + β∆vc(b, s, k, α)

k

By Lemma 8, we have v∗ẑ,π̂(·) is continuous in ẑ for all xc ∈ Ak(b). Thus we have φ(ẑ) is continu-

ous in ẑ for all xc ∈ Ak(b). By Berge’s Maximum Theorem we have the correspondence,

F(y) := arg max
xc∈Ak(b)

(xcy)+

is upper hemicontinuous in ẑ. Note that θc,ẑ(b) is given by

θc,ẑ(b) = F
(
pc
s− k + close + β∆vc(b, s, k, α)

k

)
. (A.1)

Given the Lipschitz continuity of v∗ẑ,π̂(·) in ẑ, we conclude for every state b, θc,ẑ(b) is upper hemi-

continuous in ẑ.

Proof of Theorem 4 By Lemma 7, given ẑ and π̂, we have the Markov process of the bud-

gets has a unique stationary distribution π = Π(ẑ, π̂). Here, we will prove the continuity of

Π(ẑ, π̂) in ẑ and π̂. By the Portmanteau Theorem, we only need to show that for any unifor-

m converging sequence ẑn → ẑ, a sequence of density functions π̂n → π̂ and any open set B,
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lim infn→∞ πn(B) ≥ π(B), where πn = Π(ẑn, π̂n). Thus, by Fatou’s Lemma, we have

lim inf
n→∞

πn(B) = lim inf
n→∞

∞∑

τ=0

(1− β)βτEΨ

(
π(τ)
n (B|Binit)

)

≥
∞∑

τ=0

(1− β)βτEΨ

(
lim inf
n→∞

π(τ)
n (B|Binit)

)

To complete the proof, we need to show that

lim inf
n→∞

π(τ)
n (B|b) ≥ π(τ)(B|b). for every b ∈ Binit

The proof of the above holds by mathematical induction and the Skorokhod representation theo-

rem. Details of a similar proof can be found in the appendix of [19].

Proof of Theorem 5 Define the single-point inverse (lower inverse) θ−1
c,ẑ (0) = {b ≥ 0 : 0 ∈

θc,ẑ(b)} and also the upper inverse θ̃−1
c,ẑ (0) = {b ≥ 0 : θc,ẑ(b) = {0}}. By Lemma 6, we have

θ−1
c,ẑ (0) consists of a finite number of closed subintervals in [0, k− s−k

α
], and θ̃−1

c,ẑ (0) a finite number

of open intervals (in R+) the closure of which is exactly θ−1
c,ẑ (0), with the difference being only

finitely many points. Since πẑ,π̂ is absolutely continuous with respect to Lebesgue measure we

have

πẑ,π̂
(
θ−1
c,ẑ (0)

)
= πẑ,π̂

(
θ̃−1
c,ẑ (0)

)
,

so that θ−1
c,ẑ (0) is a continuity set of πẑ,π̂ for every ẑ.

From the definition of θc,ẑ(·) we have

θ−1
c,ẑ (0) =

{
b : h(b) ≥ 0, v∗ẑ,π̂(h(b))− v∗ẑ(b) ≤

k − s− close
β

}
∪ {b : h(b) ≤ 0}

θ̃−1
c,ẑ (0) =

{
b : h(b) ≥ 0, v∗ẑ,π̂(h(b))− v∗ẑ(b) <

k − s− close
β

}
∪ {b : h(b) ≤ 0},
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where we have

h(b) = b+ s− k − α(k − b)+and {b : h(b) ≤ 0} =

[
0, k − s

1 + α

]

We know that v∗ẑ,π̂(·) is Lipschitz continuous in ẑ so that for all ε > 0 we have

‖vẑ′,π̂ − vẑ,π̂‖∞ ≤ Lε ∀ẑ′ ∈ [ẑ − ε, ẑ + ε] ∩ [0, 1]

‖vẑ′,π̂ − vẑ,π̂‖∞ < Lε ∀ẑ′ ∈ (ẑ − ε, ẑ + ε) ∩ [0, 1].

This then implies that for all {b ≥ k − s
1+α

: h(b) ≥ 0} we have

v∗ẑ,π̂(h(b))− v∗ẑ,π̂(b)− 2Lε ≤ v∗ẑ′,π̂(h(b))− v∗ẑ′,π̂(b)

≤ v∗ẑ,π̂(h(b))− v∗ẑ,π̂(b) + 2Lε ∀ẑ′ ∈ [ẑ − ε, ẑ + ε] ∩ [0, 1]

v∗ẑ,π̂(h(b))− v∗ẑ,π̂(b)− 2Lε < v∗ẑ′,π̂(h(b))− v∗ẑ′,π̂(b)

< v∗ẑ,π̂(h(b))− v∗ẑ,π̂(b) + 2Lε ∀ẑ′ ∈ (ẑ − ε, ẑ + ε) ∩ [0, 1]

Therefore we have

θ−1
c,ẑ′(0) ⊆ Fẑ(ε), Oẑ(ε) ⊆ θ̃−1

c,ẑ′(0),

where the closed set Fẑ(ε) and the open set Oẑ(ε) are given by

Fẑ(ε) =

{
b : h(b) ≥ 0, v∗ẑ,π̂(h(b))− v∗ẑ,π̂(b) ≤ k − s− close

β
+ 2Lε

}
∪ {b : h(b) ≤ 0},

Oẑ(ε) =

{
b : h(b) ≥ 0, v∗ẑ,π̂(h(b))− v∗ẑ(b) <

k − s− close
β

− 2Lε

}
∪ {b : h(b) ≤ 0}.

Given a sequence {ẑn}n≥1 such that limn→∞ ẑn = ẑ, we know that πẑn,π̂ ⇒ πẑ,π̂. Next fix an
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ε > 0. Then by the Portmanteau theorem we have

πẑ,π̂(Oẑ(ε)) ≤ lim inf
n→∞

πẑn,π̂(Oẑ(ε))

≤ lim inf
n→∞

πẑn,π̂(θ̃−1
c,ẑn

(0)) = lim inf
n→∞

πẑn,π̂(θ−1
c,ẑn

(0))

≤ lim sup
n→∞

πẑn,π̂(θ̃−1
c,ẑn

(0)) = lim sup
n→∞

πẑn,π̂(θ−1
c,ẑn

(0))

≤ lim sup
n→∞

πẑn,π̂(Fẑ(ε))

≤ πẑ,π̂(Fẑ(ε)).

Now the proof that limn→∞ πẑn,π̂(θ−1
c,ẑn

(0)) = πẑ,π̂(θ−1
c,ẑ (0)) follows by noticing that for ε1 < ε2 we

have

Oẑ(ε2) ⊆ Oẑ(ε1), Fẑ(ε1) ⊆ Fẑ(ε2),

so lim
ε↓0

Oẑ(ε) = θ̃−1
c,ẑ (0), lim

ε↓0
Fẑ(ε) = θ−1

c,ẑ (0),

and also the fact that πẑ,π̂(θ̃−1
c,ẑ (0)) = πẑ,π̂(θ−1

c,ẑ (0)).
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APPENDIX B

PROOFS FROM CHAPTER 3

B.1 Properties of the optimal value function

Proof of Lemma 9

We first show that Tρf ∈ Φ for ∀f ∈ Φ. The proof then follows through a verification of the

conditions of Theorem 6.10.4 in [111]. From the definition of Tρ in (3.15), we have

|Tρf(x)| ≤ |u(x)|+ max
a(x)∈A

θa(x) + βmax(|f(x+ w)|, |f(x− l)|).

From this it follows that

sup
x∈X

|Tρf(x)|
Ω(x)

≤ sup
x∈X

|u(x)|
Ω(x)

+ sup
x∈X

maxa(x)∈A θa(x)

Ω(x)
+ βmax

(
sup
x∈X

|f(x+ w)|
Ω(x)

, sup
x∈X

|f(x− l)|
Ω(x)

)
.

Let x+ be the unique positive surplus such that u(x+) = 1 and x− be the unique negative

surplus such that u(x−) = −1. Note that Ω(x) is non-decreasing for x ≥ x− and non-increasing

for x ≤ x+. To avoid cumbersome algebra we will assume x+ − w > 0 and x− + l > 0. Since

Ω(x) ≥ |u(x)| ≥ 0 and Ω(x) ≥ 1, the first two terms are bounded by 1 and maxa(x)∈A θa(x). For

the last term we have

sup
x∈X

|f(x+ w)|
Ω(x)

≤ ‖f‖Ω sup
x∈X

Ω(x+ w)

Ω(x)
.
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We have the following

Ω(x+ w)

Ω(x)
=





u(x+w)
max(u(x),1)

≤ u(x+w)
u(x)

, if x ≥ x+,

u(x+w)
max(u(x),1)

≤ u(x+w)
u(x+)

, if x ∈ [x+ − w, x+],

1, if x ∈ [x−, x+ − w],

1
|u(x)| ≤ 1, if x ∈ [x− − w, x−],

u(x+w)
u(x)

≤ 1, if x ≤ x− − w.

For x ≥ x+, we know using monotonicity of u(·)

u(x+ w)

u(x)
= 1 +

u(x+ w)− u(w)

w

w

u(x)
≤ 1 +

u(x+ w)− u(w)

w
w.

Additionally, for x ∈ [x+ − w, x+] we have

u(x+ w)

u(x+)
= 1 +

u(x+ w)− u(x+)

x+ w − x+

(x+ w − x+) ≤ 1 +
u(x+ w)− u(x+)

x+ w − x+

w.

For the analysis we assume that u(·) is Lipschitz such that supx∈X u
′(x) < +∞. Therefore, by the

mean value theorem

u(x+ w)− u(x)

w
= u′(ξ1) ≤ sup

x≥x+
u′(x), ∀ξ1, x ∈ [x+,∞),

u(x+ w)− u(x+)

x+ w − x+

= u′(ξ2) ≤ sup
x∈[x+−w,x+]

u′(x), ∀ξ2, x ∈ [x+ − w, x+],

sup
x∈X

Ω(x+ w)

Ω(x)
≤ ‖f‖Ω(1 + w sup

x≥x+−w
u′(x)), ∀x ∈ [x+ − w,∞).

Similarly, we have

sup
x∈X

|f(x− l)|
Ω(x)

≤ ‖f‖Ω sup
x∈X

Ω(x− l)
Ω(x)

.
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Now we have the following

Ω(x− l)
Ω(x)

=





u(x−l)
min(u(x),−1)

≤ u(x−l)
u(x)

, if x ≤ x−,

u(x−l)
max(u(x),−1)

≤ u(x−l)
u(x−)

, if x ∈ [x−, x− + l],

1, if x ∈ [x− + l, x+],

1
u(x)
≤ 1, if x ∈ [x+, x+ + l],

u(x−l)
u(x)

≤ 1, if x ≤ x+l.

Using the same logic as before, we get

sup
x∈X

Ω(x− l)
Ω(x)

≤ ‖f‖Ω(1 + l sup
x∈X:x≤x−

u′(x)).

Since u(·) is Lipschitz, thus, there exists an α0 ∈ (0,+∞) such that ‖Tρf‖Ω ≤ α0.

Next, we need to verify the conditions of Theorem 6.10.4 in [111]. The lemma requires verifi-

cation of the following three conditions. We set x[k] to be the state variable denoting the surplus

at time k. We need to show that ∀x ∈ X, for some constants (independent of ρ) α1 > 0, α2 > 0

and 0 < α3 < 1,

sup
a(x)∈A

|u(x)− θa(x)| ≤ α1Ω(x), (B.1)

Ex[1],a0 [Ω(x[1])|x[0] = x] ≤ α2Ω(x), ∀a0 ∈ A, (B.2)

with the distribution of x[1] chosen based on action a0, and

βJEx[J ],a0,a1,...,aJ−1
[Ω(x[J ])|x[0] = x] ≤ α3Ω(x), (B.3)

for some J > 0 and all possible action sequences, i.e., aj ∈ A for all j = 0, 1, . . . , J − 1 with the

distribution of x[J ] chosen based on the action sequence (a0, a1, . . . , aJ−1) chosen.

First consider (B.1). Since Ω(x) = max(|u(x)|, 1), using the earlier analysis in Section 3.4,
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(B.1) is true with α1 = 1 + maxa∈A θa. Now consider (B.2). We have

Ex[1],a0 [Ω(x[1])|x[0] = x] = Eρ[φ(pρ,a(x))Ω(x+ w) + φ(1− pρ,a(x)),Ω(x− l)]

≤ max(Ω(x+ w),Ω(x− l)),

which is bounded by α2Ω(x) using our analysis from before.

Finally, (B.3) holds true using the properties of Ω(·), the bounds on the probability of winning

and losing (from Section 3.4) and our analysis from earlier in the proof as follows:

βJEx[J ],a0,a1,...,aJ−1
[Ω(x[J ])|x[0] = x]

≤βJ max(φ(pW ), φ(1− p
W

))J max(Ω(x+ Jw),Ω(x− Jl))

≤(βmax(φ(pW ), φ(1− p
W

))Jα4(J)Ω(x),

for some affine α4(J) > 0 using our analysis from before. It now follows that take J large enough

we obtain an α3 < 1 that is also independent of ρ. Note that we can get a simpler bound of

βJEx[J ],a0,a1,...,aJ−1
[Ω(x[J ])|x[0] = x] ≤ βJα4(J)Ω(x),

using just the properties of Ω(·). Again we can take J large enough to obtain a α3 < 1 that

is independent of ρ. This bound is useful when there is an action for which the probability of

winning or losing is 1. Since all the conditions of Theorem 6.10.4 of [111] are met, then the first

result in the lemma holds true. The second then follows immediately from (3.14).

Proof of Lemma 10

For any given ρ, from Lemma 9 we know that there is a unique Vρ(·). Furthermore, it is the

unique fixed point of operator Tρ where T Jρ is a contraction mapping with constant α3 that is

independent of ρ. From (3.15), it follows that T Jρ is a continuous in ρ: computing derivatives using

the envelope theorem and the expressions from Section 3.4, it is easily established that T Jρ is, in

fact, Lipschitz with constant (M − 1)J when the uniform norm is used for ρ.

Let ρ1 and ρ2 be two population/action profiles such that ‖ρ1 − ρ2‖ ≤ ε (the choice of norm
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is irrelevant as all are equivalent for finite dimensional Euclidean spaces). As T Jρ is continuous in

ρ, there exists a δ > 0 such that ‖T Jρ1Vρ2 − T Jρ2Vρ2‖Ω ≤ δ. However, since T Jρ2Vρ2 = Vρ2 , we have

shown that ‖T Jρ1Vρ2 − Vρ2‖Ω ≤ δ. Applying T Jρ1 n times and using the contraction property of T Jρ1 ,

we get

‖T (n+1)J
ρ1

Vρ2 − T nJρ1 Vρ2‖Ω ≤ αn3δ.

The proof then follows since limn→∞ ‖T nJρ1 Vρ2 − Vρ1‖Ω = 0 so that

‖Vρ1 − Vρ2‖Ω ≤
∞∑

n=0

‖T (n+1)J
ρ1

Vρ2 − T nJρ1 Vρ2‖Ω ≤
δ

1− α3

.

Furthermore, using the comment from above we can show that Vρ is Lipschitz continuous in ρ.

B.2 The existence and uniqueness of stationary surplus distribution

Proof of Lemma 11

First, from the transition kernel (3.17), we satisfy the Doeblin condition as

P(x[k] ∈ B|x[k − 1] = x) ≥ (1− β)Ψ(B),

where 0 < β < 1, and Ψ is a probability measure for the regeneration process. Then from results

in [18, Chapter 12], we have a unique stationary surplus distribution.

Next, let −τ be the last time before 0 that the surplus has a regeneration. Then we have

ζρ×σ(B) =
∞∑

k=0

P(B, τ = k) =
∞∑

k=0

P(B|τ = k) · P(τ = k). (B.4)

Since the regeneration process happens independently of the surplus with inter-regeneration times

geometrically distributed with parameter (1− β), then P(τ = k) = (1− β)βk. Also given τ = k,
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we have X−k ∼ Ψ. Therefore

ζρ×σ(B) =
∞∑

k=0

(1− β)βkP(B|τ = k) =
∞∑

k=0

(1− β)βkE
(
E
(
1x[0]∈B|τ = k,X−k = X

)
|τ = k

)

=
∞∑

k=0

(1− β)βkE
(
ζ

(k)
ρ×σ(B|X)|τ = k

)
=
∞∑

k=0

(1− β)βkEΨ

(
ζ

(k)
ρ×σ(B|X)

)

=
∞∑

k=0

(1− β)βk
∫
ζ

(k)
ρ×σ(B|x)dΨ(x). (B.5)

B.2.1 Existence of MFE

Proof of Lemma 12

Define the increasing and piecewise linear convex function

gρ(y) = max
a∈A

φ(pρ,a)y − θa = max
σ∈∆(|A|)

∑

a∈A

σa
(
φ(pρ,a)y − θa

)
, (B.6)

where ∆(A) is the probability simplex on A = |A| elements. By the properties of the lottery

and the weight function φ(·), φ(pρ,a) is continuous in ρ for all a ∈ A. Using Berge’s maximum

theorem, we have

arg max
σ∈∆(|A|)

∑

a∈A

σa (φ(pρ,a)y − θa) (B.7)

is upper semicontinuous in ρ.

Now let

A(y) := arg max g(y) = arg max
a∈A

φ(pρ,a)y − θa, (B.8)

then set-valued function above is exactly ∆(|A(y)|).

Hence, the optimal randomized policies at surplus x are a set-valued function ∆(|A(y)|) =

∆(|A(Vρ(x + w) − Vρ(x − l))|), which is upper semicontinuous due to the Lipschitz continuity

of Vρ(·) in ρ and the u.s.c. of φ(pρ,a) in ρ, i.e., for every state x, the action distribution σ(x) is

(pointwise) upper semicontinuous in ρ.

Proof of Lemma 13
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The existence and uniqueness of ζ(x) for a given ρ and σ(x), and the relationship between

ζ(·) and ζ(k)(·) are shown in Lemma 11. Now, we will prove the continuity of ζρ×σ in ρ and

σ(x) for every surplus x ∈ X. For the assumed action distribution ρ on the finite set A, we

consider the topology of pointwise convergence which is equivalent to the uniform convergence

by strong coupling results in [69]. For the randomized action distribution σ, corresponding to σ(x)

at each surplus x ∈ X, we consider the topology with metric ρ(σ1, σ2) =
∑∞

j=1 2−j min(‖σ1(xj)−

σ2(xj)‖, 1), where ‖ · ‖ is any norm for R|A|.

First, we will show that the surplus distribution ζ(k)
ρ×σ is continuous in ρ and σ. By Portmanteau

theorem, we only need to show that for any sequence ρn → ρ uniformly, σn → σ pointwise, and

any open set B, we have lim infn→∞ ζ
(k)
ρn×σn(B|x) ≥ ζ

(k)
ρ×σ(B|x).

Lemma 17. lim infn→∞ ζ
(k)
ρn×σn(B|x) ≥ ζ

(k)
ρ×σ(B|x).

Proof of Lemma 17

The proof proceeds by induction on k. For k = 0, ζ
(0)
ρn×σn(B|x) = 1(x∈B) is a point-mass at

x irrespective of ρn × σn, and in fact, for any n ∈ N+, we have ζ(0)
ρn×σn(B|x) = ζ

(0)
ρ×σ(B|x). Let

ρn → ρ uniform, and σn(x)→ σ(x) pointwise for every surplus x. We will show that ζ(k)
ρn×σn(B|x)

converges pointwise to ζ(k)
ρ×σ(B|x).

We will refer to the measure and random variables corresponding to ρn × σn for the nth sys-

tem and those corresponding to ρ × σ as coming from the limiting system. We will prove that

ζ
(k)
ρn×σn(B|x) converges to ζ(k)

ρ×σ(B|x) pointwise using the metrics given above.

Suppose that the hypothesis holds true for k − 1 where k > 1, i.e., ζ(k−1)
ρn×σn(B|x) converges

pointwise to ζ(k−1)
ρ×σ (B|x). To prove this lemma, we only need to show that the hypothesis hold-

s for k. Let Pρ×σ,x(·) be the one-step transition probability measure of the surplus dynamic-

s conditioned on the initial state of the surplus being x, and there is no regeneration. Then

we have Pρn×σn,x(x + w) =
∑

a∈σn(x) pρn×σn,a, Pρn×σn,x(x − l) = 1 −∑a∈σn(x) pρn×σn,a and

Pρ×σ,x(x + w) =
∑

a∈σ(x) pρ×σ,a, Pρ×σ,x(x − l) = 1 −∑a∈σ(x) pρ×σ,a. By the properties of the

lottery, pρ×σ,a is continuous in ρ × σ for all a ∈ A, thus we have pρn×σn,a converges to pρ×σ,a

pointwise, i.e., Pρn×σn,x(·) converges to Pρ×σ,x(·) pointwise. By the Skorokhod representation the-
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orem [112], there exist random variables Xn and X on common probability space and a random

integer N such that Xn ∼ Pρn×σn,x(·) for all n ∈ N, and X ∼ Pρ×σ,x(·) , and Xn = X for n ≥ N .

Then we have,

lim inf
n→∞

ζ
(k)
ρn×σn(B|x) = lim inf

n→∞
E
(
ζ

(k−1)
ρn×σn(B|Xn)

)
≥ E

(
lim inf
n→∞

ζ
(k−1)
ρn×σn(B|Xn)

)

≥ E
(
ζ

(k−1)
ρ×σ (B|X)

)
= ζ

(k)
ρ×σ(B|x), (B.9)

where the second and third inequality hold due to Fatou’s lemma and the induction hypothesis.

Hence, for a given ρ and randomized policies σ(x), the unique stationary surplus distribution

ζ
(k)
ρn×σn(B|x) converges pointwise to ζ(k)

ρ×σ(B|x).

Now by Lemma 11 and Equation (3.18), we need to show that lim infn→∞ ζρn×σn(B) ≥

ζρ×σ(B). By Fatou’s lemma, we have

lim inf
n→∞

ζρn×σn(B) = lim inf
n→∞

∞∑

k=0

(1− β)βkEΨ

(
ζ

(k)
ρn×σn(B|Xn)

)

≥
∞∑

k=0

(1− β)βkEΨ

(
lim inf
n→∞

ζ
(k)
ρn×σn(B|Xn)

)
≥

∞∑

k=0

(1− β)βkEΨ

(
ζ

(k)
ρ×σ(B|X)

)
= ζρ×σ(B).

(B.10)

Thus, for a given ρ and the randomize policies σ(x), the unique stationary surplus distribution

ζρn×σn converges pointwise to ζρ×σ. Then the stationary surplus distribution ζρ×σ is continuous in

ρ and σ(x) for every surplus x ∈ X.

Proof of Lemma 14

Given the stationary surplus distribution ζ(x) and the action distribution σ(x) at every surplus

x, those will introduce a population profile based on the actions chosen at each point x, denoted

that action distribution as ρ, and we have ρa =
∑

x∈X ζ(x) · σa(x), where a ∈ A, X is a countable

set and A is a finite set.

To show that ρ is continuous in ζ(x) and σ(x), we only need to show that for any sequence

{ζn}∞n=1 converging to ζ in uniform norm, {σn(x)}∞n=1 converging to σ(x) pointwise, we have
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{ρn}∞n=1 converges to ρ pointwise, which is equivalent to convergence in uniform norm as we have

a finite set A.

Since ζn → ζ uniformly, we have ∀ε1 > 0, ∃N1 ∈ N, so that ∀n ≥ N1, ∀x ∈ X, |ζn(x) −

ζ(x)| ≤ ε1. Similarly, {σn(x)}∞n=1 converges to σ(x) pointwise, we have ∀x ∈ X, and ∀ε2 > 0,

∃N2 ∈ N so that ∀n ≥ N2, , |σn(x)− σ(x)| ≤ ε2. Now consider ∀ε = max(ε1, ε2), we can find an

all but finite subset X1 of X, such that
∑

x∈X1
ζ(x) ≤ ε

2
. Let N = max(N1, N2), for ∀x ∈ X \ X1,

∃n > N large enough, such that |σn,a(x)− σa(x)| ≤ ε
2
. Then ∀x ∈ X, ∀a ∈ A, we have

|ρn,a − ρa| =
∣∣∣∣∣
∑

x

ζn(x)σn,a(x)−
∑

x

ζ(x)σa(x)

∣∣∣∣∣

=

∣∣∣∣∣
∑

x

ζn(x)σn,a(x)−
∑

x

ζn(x)σa(x) +
∑

x

ζn(x)σa(x)−
∑

x

ζ(x)σa(x)

∣∣∣∣∣

≤
∣∣∣∣∣
∑

x

ζn(x)σn,a(x)−
∑

x

ζn(x)σa(x)

∣∣∣∣∣+

∣∣∣∣∣
∑

x

ζn(x)σa(x)−
∑

x

ζ(x)σa(x)

∣∣∣∣∣

≤
∑

x

ζn(x)|σn,a(x)− σa(x)|+
∑

x

σa(x)|ζn(x)− ζ(x)|

=
∑

x∈X1

ζn(x)|σn,a(x)− σa(x)|+
∑

x∈X\X1

ζn(x)|σn,a(x)− σa(x)|+
∑

x

σa(x)|ζn(x)− ζ(x)|

(a)

≤
∑

x∈X1

ζn(x) · 1 +
∑

x∈X\X1

ζn(x) · ε
2

+
∑

x

σa(x) · ε1

(b)

≤ ε

2
· 1 + 1 · ε

2
+ ε1 · 1 ≤ ε · 1 + ε · 1 = 2ε, (B.11)

where (a) follows from the fact that |σn,a(x)− σa(x)| ≤ 1 for ∀x ∈ X, and |σn,a(x)− σa(x)| < ε
2
,

for x ∈ X \ X1 given ε > 0 and n large enough, and the convergence of ζn. (b) follows from that
∑

x∈X1
ζ(x) < ε

2
for x ∈ X1.

Therefore, |ρn,a − ρa| < 2ε for all a ∈ A and ∀n ≥ N , hence ρn → ρ pointwise, which is

equivalent to convergence in uniform norm as we have a finite set A.

B.3 Characteristics of the best response policy

Proof of Lemma 15
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First, we consider x ∈ X and x ≥ 0. We have

u(x)− θa2(x) + β[pρ,a2(x)Vρ(x+ w) + (1− pρ,a2(x))Vρ(x− l)]

≷ u(x)− θa1(x) + β[pρ,a1(x)Vρ(x+ w) + (1− pρ,a1(x))Vρ(x− l)]

⇔ θa1(x) − θa2(x) ≷ β[(pρ,a1(x)− pρ,a2(x))Vρ(x+ w)

+ ((1− pρ,a1(x))− (1− pρ,a2(x)))Vρ(x− l)]

⇔ θa1(x) − θa2(x) ≷ β(pρ,a1(x)− pρ,a2(x))[Vρ(x+ w)− Vρ(x− l)]. (B.12)

As we assumed θa1(x) > θa2(x), it follows that pρ,a1(x) > pρ,a2(x). Also, since w + l > 0 and

Vρ(x) is increasing in x, so both sides of the above inequality are non-negative. Since Vρ(x) is

submodular when x ≥ −l, the RHS is a decreasing function of x. Let x∗a1,a2 ∈ X be the smallest

value such that LHS ≥ RHS, then for all x > x∗a1,a2 action a2(x) is preferred to action a1(x), for

all x < x∗a1,a2 action a1(x) is preferred to action a2(x), and finally, if at x∗a1,a2 LHS=RHS, then

at x∗a1,a2 the agent is indifferent between the two actions, and if instead LHS > RHS, then action

a2(x) is preferred to action a1(x). We call x∗a1,a2 the threshold value of surplus for actions a1(x)

and a2(x).

Similarly, for x ∈ X and x ≤ 0, Vρ(x) is supermodular when x ≤ w, which implies the

existence of a threshold policy.

Proof of Lemma 16

First, let f ∈ Φ, suppose that f is an increasing and submodular function. First we prove that

Tρf is increasing and submodular too. Let a∗(x) be an optimal action in the definition of Tρf(x)

when the surplus is x, i.e., one of the maximizers from (3.15). Let x1 > x2, then

Tρf(x1)− Tρf(x2) = u(x1)− u(x2)− θa∗(x1) + θa∗(x2) + β
[
pρ,a∗(x1)(x1)f(x1 + w)+

(1− pρ,a∗(x1)(x1))f(x1 − l)− pρ,a∗(x2)(x2)f(x2 + w)− (1− pρ,a∗(x2)(x2))f(x2 − l)
]

≥ u(x1)− u(x2)− θa∗(x2) + θa∗(x2) + β
[
pρ,a∗(x2)(x2)f(x1 + w)
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+ (1− pρ,a∗(x2)(x2))f(x1 − l)− pρ,a∗(x2)(x2)f(x2 + w)− (1− pρ,a∗(x2)(x2))f(x2 − l)
]

= u(x1)− u(x2) + β
[
pρ,a∗(x2)(x2)(f(x1 + w + a)− f(x2 + w)

+ (1− pρ,a∗(x2)(x2))(f(x1 − l)− f(x2 − l))
]
≥ 0.

The first inequality holds because a∗(x2) need not be an optimal action when the surplus is x1.

Again, let x1 > x2 and let x > 0. Since u(·) is a concave function, it follows that it is

submodular, i.e.,

u(x1 + x)− u(x1) ≤ u(x2 + x)− u(x2)⇔ u(x1 + x) + u(x2) ≤ u(x2 + x) + u(x1).

Assuming that f ∈ Φ is submodular, we will now show that Tρf is also submodular. Consider

Tρf(x1 + x) + Tρf(x2) = u(x1 + x) + u(x2)− θa∗(x1+x) − θa∗(x2)

+ β
[
pρ,a∗(x1+x)(x1 + x)f(x1 + x+ w) + pρ,a∗(x2)(x2)f(x2 + w)

+ (1− pρ,a∗(x1+x)(x1 + x))f(x1 + x− l) + (1− pρ,a∗(x2)(x2))f(x2 − l)
]
.

We assume without loss of generality that pρ,a∗(x1+x)(x1 + x) ≥ pρ,a∗(x2)(x2) and let δ be the

difference; if pρ,a∗(x1+x)(x1 + x) ≤ pρ,a∗(x2)(x2), then a similar proof establishes the result. Using

this we have the RHS (denoted by d) being

d = u(x1 + x) + u(x2)− θa∗(x1+x) − θa∗(x2) + β
[
pρ,a∗(x2)(x2)(f(x1 + x+ w) + f(x2 + w))

+ (1− pρ,a∗(x1+x)(x1 + x))(f(x1 + x− l) + f(x2 − l)) + δ(f(x1 + x+ w) + f(x2 − l))
]
.
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By submodularity of f(·) we have

f(x1 + x+ w) + f(x2 + w) ≤ f(x2 + x+ w) + f(x1 + w),

f(x1 + x− l) + f(x2 − l) ≤ f(x2 + x− l) + f(x1 − l),

f(x1 + x+ w) + f(x2 − l) ≤ f(x2 + x+ w) + f(x1 − l).

With these and using the submodularity of u(·) we get

d ≤ u(x2 + x) + u(x1)− θa∗(x1+x) − θa∗(x2) + β
[
pρ,a∗(x2)(x2)(f(x2 + x+ w) + f(x1 + w))

+ (1− pρ,a∗(x1+x)(x1 + x))(f(x2 + x− l) + f(x1 − l)) + δ(f(x2 + x+ w) + f(x1 − l))
]

= u(x2 + x)− θa∗(x1+x) + β[pρ,a∗(x2)(x2)f(x2 + x+ w) + (1− pρ,a∗(x2)(x2))f(x2 + x− l)]

+ u(x1)− θa∗(x2) + β[pρ,a∗(x2)(x2)f(x1 + w) + (1− pρ,a∗(x1+x)(x1 + x))f(x1 − l)]

≤ Tρf(x2 + x) + Tρf(x1),

where the last inequality holds as using the optimal actions (a∗(x2 + x), a∗(x1)) yields a higher

value as opposed to the sub-optimal actions (a∗(x1 + x), a∗(x2)) when the surplus is x2 + x and

x1.

Since both the monotonicity and submodularity properties are preserved when taking pointwise

limits, choosing f(·) ≡ 0 (or u(·)) to start the value iteration proves that the value function Vρ(·)

is increasing and submodular.

Similarly, if f ∈ Φ is an increasing and supermodular function, following the same argument,

we can prove that the value function Vρ(·) is increasing and supermodular.
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