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Abstract

We study the spectral stability of solitary wave solutions to the nonlinear Dirac equation in one dimension. We
focus on the Dirac equation with cubic nonlinearity, known as the Soler model in (1+1) dimensions and also as
the massive Gross-Neveu model. Presented numerical computations of the spectrum of linearization at a solitary
wave show that the solitary waves are spectrally stable. We corroborate our results by finding explicit expressions
for several of the eigenfunctions. Some of the analytic results hold for the nonlinear Dirac equation with generic
nonlinearity.

1 Introduction

The study of stability of localized solutions to nonlinear dispersive equations takes its origin in [Der64], where the
instability of stationary localized solutions to nonlinear Klein-Gordon equation was proved. It was suggested there
that quasistationary finite energy solutions of the formφ(x)e−iωt, which we callsolitary waves, could be stable. The
first results on (spectral) stability of the linearization at solitary wave solutions to a nonlinear Schrödinger equation
were obtained in [Zak67, VK73]. Orbital stability and instability of solitary waves in nonlinear Schrödinger and Klein-
Gordon equations have been extensively studied in [Sha83, SS85, Sha85, Wei86, GSS87]. The asymptotic stability of
solitary waves in nonlinear Schrödinger equation was proved in certain cases in [Wei85, BP93, SW92, SW99, Cuc01,
BS03, CM08].

Systems with Hamiltonians that are not sign-definite are notoriously difficult, due to the absence of the a priori
bounds on the Sobolev norm. Important examples of such systems are the Dirac-Maxwell system [Gro66] and the
nonlinear Dirac equation [Sol70], which have been receiving a lot of attention in theoretical physics in relation to
classical models of elementary particles. The stability ofsolitary wave solutions to the nonlinear Dirac equation is
far from being understood. Some partial results on the numerical analysis of spectral stability of solitary waves are
contained in [Chu07]. Generalizing the results on orbital stability of solitary waves [GSS87] to the nonlinear Dirac
equation does not seem realistic, because of the corresponding energy functional being sign-indefinite; instead, one
hopes to prove the asymptotic stability, using linear stability combined with the dispersive estimates. The first results
on asymptotic stability for the nonlinear Dirac equation are already appearing [PS10, BC11], with the assumptions
on the spectrum of the linearized equation playing a crucialrole. In view of these applications, the spectrum of the
linearization at a solitary wave is of great interest.

In the present paper, we give numerical and analytical justifications of spectral stability of small amplitude solitary
wave solutions to the nonlinear Dirac equation in one dimension.

∗Supported in part by the National Science Foundation under Grant DMS-0907968.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/231875433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0910.0917v6


Let us remind the terminology. Given a solitary waveφ(x)e−iωt, we consider a small perturbation of the form
ψ(x, t) = (φ(x) + ρ(x, t))e−iωt. We call a solitary waveφ(x)e−iωt linearly unstableif the equation onA is given by
∂tρ = Aρ + o(ρ), with A having eigenvalues with positive real part. If the entire spectrum ofA is on the imaginary
axis, we call the solitary wavespectrally stable. The solitary wave is calledorbitally stable[GSS87] if any solution
ψ(t) initially close toφ (in a certain norm, usually the energy norm) will exist globally, remaining close to the orbit
spanned byφ for all times:

For anyǫ > 0 there isδ > 0 such that if‖ψ0 − φ‖ < δ, then there is a solutionψ(t)

which exists for allt ≥ 0 and satisfiesψ|
t=0

= ψ0, sup
t≥0

inf
s∈R

‖ψ|
t
− eisφ‖ < ǫ.

Otherwise, the solitary wave is calledorbitally unstable. A solitary wave is calledasymptotically stableif any solution
initially close to it (in a certain norm) will converge (in a certain norm) to this or to a nearby solitary wave. Linear
instability of solitary waves generically leads toorbital instability [Gri88, GO10]; at the same time,spectral stability
does not imply neither orbital nor asymptotic stability.

ACKNOWLEDGMENTS The authors would like to thank Marina Chugunova for providing us with her preliminary
numerical results on spectral properties of coupled mode equations (see also [Chu07]) which greatly stimulated our
research. The authors are grateful to Nabile Boussaid, Thomas Chen, Linh Nguyen, Dmitry Pelinovsky, Bjorn Sand-
stede, Walter Strauss, Boris Vainberg, and Michael Weinstein for most helpful discussions.

2 Nonlinear Dirac equation

The nonlinear Dirac equation has the form

i∂tψ = −i
n
∑

j=1

αj∂xjψ + βg(ψ∗βψ)ψ, ψ(x, t) ∈ C
N , x ∈ R

n, (2.1)

with ψ∗ being the Hermitian conjugate ofψ. The Hermitian matricesαj andβ are chosen so that

α2
j = I, β2 = I, {αj, αk} = 2δjk, {αj, β} = 0, 1 ≤ j, k ≤ n.

We assume that the nonlinearityg is smooth and real-valued. We denotem ≡ g(0). Equation (2.1) withn = 3 and
g(s) = 1− s is known as the Soler model [Sol70] (whenn = 3, one can take Dirac spinors withN = 4 components).
The casen = 1 (when one can take spinors withN = 2 components) is known as the massive Gross-Neveu model
[GN74, LG75].

In the present paper, we consider the Dirac equation inR1:

i(∂t + α∂x)ψ = g(ψ∗βψ)βψ, ψ(x, t) ∈ C
2, x ∈ R

1. (2.2)

As α andβ, we choose
α = −σ2, β = σ3, (2.3)

with the Pauli matricesσ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. Noting thatψ∗σ3ψ = |ψ1|2 − |ψ2|2, we

rewrite equation (2.2) as the following system:
{

i∂tψ1 = ∂xψ2 + g(|ψ1|2 − |ψ2|2)ψ1,
i∂tψ2 = −∂xψ1 − g(|ψ1|2 − |ψ2|2)ψ2.

(2.4)

3 Solitary wave solutions

We start by demonstrating the existence of solitary wave solutions and exploring their properties.

Definition 3.1. The solitary waves are solutions to (2.1) of the form

ψ(x, t) = φω(x)e
−iωt, φω ∈ H1(Rn,CN ), ω ∈ R.

2



The following result follows from [CV86].

Lemma 3.2. Assume that
m := g(0) > 0. (3.1)

LetG(s) be the antiderivative ofg(s) such thatG(0) = 0. Assume that for givenω ∈ R, 0 < ω < m, there exists
Xω > 0 such that

ωXω = G(Xω), ω 6= g(Xω), and ωs < G(s) for s ∈ (0,Xω). (3.2)

Then there is a solitary wave solutionψ(x, t) = φω(x)e
−iωt, where

φω(x) =

[

v(x)
u(x)

]

, v, u ∈ H1(R), (3.3)

with bothv andu real-valued,v being even andu odd.
More precisely, let us defineX (x) andY (x) by

X = v2 − u2, Y = vu. (3.4)

ThenX (x) is the solution to

X
′′ = −∂X (−2G(X )2 + 2ω2

X
2), X (0) = Xω , X

′(0) = 0, (3.5)

andY (x) = − 1
4ωX ′(x).

Proof. From (2.4), we obtain:
{

ωv = ∂xu+ g(|v|2 − |u|2)v,
ωu = −∂xv − g(|v|2 − |u|2)u. (3.6)

Assuming that bothv andu are real-valued (this will be justified once we found real-valuedv andu), we can rewrite
(3.6) as the following Hamiltonian system, withx playing the role of time:

{

∂xu = ωv − g(v2 − u2)v = ∂vh(v, u),
−∂xv = ωu+ g(v2 − u2)u = ∂uh(v, u),

(3.7)

where the Hamiltonianh(v, u) is given by

h(v, u) =
ω

2
(v2 + u2)− 1

2
G(v2 − u2). (3.8)

The solitary wave corresponds to a trajectory of this Hamiltonian system such that

lim
x→±∞

v(x) = lim
x→±∞

u(x) = 0,

hence lim
x→±∞

X = 0. SinceG(s) satisfiesG(0) = 0, we conclude that

h(v(x), u(x)) ≡ 0, (3.9)

which leads to
ω(v2 + u2) = G(v2 − u2). (3.10)

Studying the level curves which solve this equation is most convenient in the coordinates

X = v2 − u2, Z = v2 + u2;

see Figure 1. We conclude from (3.10) and Figure 1 that solitary waves may correspond to|ω| < m, ω 6= 0.

Remark3.3. If ω > 0, then there are solitary waves such thatv is nonzero whileu changes its sign (shifting the origin,
we may assume that this happens atx = 0). Forω < 0, there are solitary waves such thatu 6= 0, while v changes its
sign.
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ω

, ω<0

Z = G(X )
ω

, ω>0

Figure 1:Existence of solitary waves in the coordinatesX = v2 − u2, Z = v2 +u2. Solitons withω > 0 andω < 0 correspond to the bump
on thev2 axis and to the dotted bump on theu2 axis (respectively) in the first quadrant.

Remark3.4. In the case whenG(s) is odd, for each solitary wave corresponding toω ∈ R there is a solitary wave

corresponding to−ω. More precisely, in this case, if

[

v(x)
u(x)

]

e−iωt is a solitary wave, then so is

[

u(x)
v(x)

]

eiωt.

The functionsX (x) andY (x) introduced in (3.4) are to solve

{

X ′ = −4ωY ,
Y ′ = −(v2 + u2)g(X ) + ωX = − 1

ωG(X )g(X ) + ωX ,
(3.11)

and to have the asymptotic behaviorlim|x|→∞ X (x) = 0, lim|x|→∞ Y (x) = 0. In the second equation in (3.11), we
used the relation (3.10). The system (3.11) can be written asthe following equation onX :

X
′′ = −∂X (−2G(X )2 + 2ω2

X
2). (3.12)

This equation describes a particle in the potentialVω(s) = −2G(s)2 + 2ω2s2; see Figure 2. Due to the energy
conservation (withx playing the role of time), we get:

X ′2

2
− 2G(X )2 + 2ω2

X
2 =

X ′2

2
+ Vω(X ) = 0. (3.13)

Using the expression forX ′ from (3.11), relation (3.13) could be rewritten as

0 =
X ′2

2
+ Vω(X ) = 8ω2

Y
2 − 2G(X )2 + 2ω2

X
2 = 2ω2

(

4v2u2 + (v2 − u2)2
)

− 2G2, (3.14)

which follows from (3.10).
For a particular value ofω, there will be a positive solutionX (x) such thatlimx→±∞ X (x) = 0 if there exists

Xω > 0 so that (3.2) is satisfied (see Figure 2). We shiftx so thatX so thatX (0) = Xω; thenX (x) is an even
function.

OnceX (x) is known,Y (x) is obtained from (3.11), and then we can expressv(x), u(x).

Remark3.5. Note that for0 < |ω| < 1, the functionsv(x) andu(x) are exponentially decaying as|x| → ∞. Indeed,
the exponential decay ofX (x) could be deduced from (3.12). Then the exponential decay ofZ (x) = v(x)2 + u(x)2

follows from the relationZ = G(X )/ω (Cf. (3.10)).
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Vω(s) = −2G2(s) + 2ω2s2

s

0 Xω

Figure 2:Effective potentialVω(s). A solitary wave corresponds to a trajectory which satisfiesX (0) = Xω , lim|x|→∞ X (x) = 0.

3.1 Explicit solitary waves in a particular case

As shown in [LG75] for the massive Gross-Neveu model (the Soler model in 1D), in the special case of the potential

G(s) = s− s2

2
, (3.15)

the solitary waves can be found explicitly. SubstitutingG(s) from (3.15) into (3.13), we get the following relation:

dx = − dX

2
√

(X − X 2/2)2 − ω2X 2
= − dX

2X
√

(1− X /2)2 − ω2
. (3.16)

We use the substitution

1− X

2
=

ω

cos 2Θ
, X = 2

(

1− ω

cos 2Θ

)

. (3.17)

Then

dx = − dX

2X
√

(1− X /2)2 − ω2
=

2 2ω sin 2Θ
cos2 2Θ dΘ

4(1− ω
cos 2Θ )

√

ω2

cos2 2Θ − ω2
=

dΘ

cos 2Θ− ω
, (3.18)

x =
1

2κ
ln

∣

∣

∣

∣

√
µ+ tanΘ

√
µ− tanΘ

∣

∣

∣

∣

, (3.19)

where

κ =
√

1− ω2, µ =
1− ω

1 + ω
. (3.20)

Then
(
√
µ+ tanΘ)e2κx =

√
µ− tanΘ, tanΘ(x) = −√

µ tanhκx. (3.21)

Also note that

X (x) = 2
(

1− ω

cos 2Θ

)

= 2

(

1− ω

2 cos2 Θ − 1

)

= 2

(

1− ω
1 + tan2 Θ(x)

1− tan2 Θ(x)

)

, (3.22)

and then

Y (x) = − 1

4ω
X

′(x) = −1

4

2

cos2 2Θ
(−2 sin 2Θ)

dΘ

dx

= −1

4

2

cos2 2Θ
(−2 sin 2Θ)(cos 2Θ− ω) =

X

2
tan 2Θ

=
X

2

2 tanΘ

1− tan2 Θ
= −X (x)

√
µ tanhκx

1 − µ tanh2 κx
.

Denote
Z (x) = v2(x) + u2(x). (3.23)

Then

Z (x) =
2

cos 2Θ(x)

(

1− ω

cos 2Θ(x)

)

= 2
1 + tan2 Θ(x)

1− tan2 Θ(x)

(

1− ω
1 + tan2 Θ(x)

1− tan2 Θ(x)

)

.
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The other functions are expressed fromZ as follows:

v(x) =
√

Z (x) cosΘ(x), u(x) = −
√

Z (x) sinΘ(x), (3.24)

X (x) = Z (x) cos 2Θ(x), Y (x) = −1

2
Z (x) sin 2Θ(x). (3.25)

Combining equations (3.24) with (3.20), (3.21) and using basic trigonometric identities, we obtain the following
explicit formulae forv(x) andu(x):

v(x) =

√

2(1− ω)

(1− µ tanh2 κx) coshκx
, u(x) =

√

2µ(1− ω) tanhκx

(1− µ tanh2 κx) coshκx
. (3.26)

Remark3.6. By (3.21),tanΘ changes from
√
µ to −√

µ asx changes from−∞ to +∞. Thus, in the limitω → 1,
whenµ→ 0, one hasX ≈ Z , while |Y | . Z

√
µ.

4 Linearization at a solitary wave

To analyze the stability of solitary waves we consider the solution in the form of the Ansatz

ψ(x, t) = (φω(x) + ρ(x, t))e−iωt, φω(x) =

[

v(x)
u(x)

]

∈ R
2, ρ(x, t) ∈ C

2. (4.1)

Then, by (2.1),i∂tρ+ωρ = −i∑j α∂xjρ+β
[

g((φ̄ω + ρ̄)(φω + ρ))(φω + ρ)− g(φ̄ωφω)φω
]

. The linearized equa-
tion onρ is given by

i∂tρ = −i
∑

j

α∂xjρ− ωρ+ β
[

g(φ̄ωφω)ρ+ (φ̄ωρ+ ρ̄φω)g
′(φ̄ωφω)φω

]

.

The linearized equation onR(x, t) =

[

Re ρ(x, t)
Im ρ(x, t)

]

∈ R4 has the following form:

∂tR =

[

0 I2
−I2 0

] [

L1 0
0 L0

]

R = JLR, R(x, t) ∈ R
4, (4.2)

whereJ =

[

0 I2
−I2 0

]

, with I2 the2 × 2 unit matrix, andL =

[

L1 0
0 L0

]

, whereL0, L1 are self-adjoint operators

given by

L0 =

[

g(v2 − u2)− ω ∂x
−∂x −g(v2 − u2)− ω

]

, L1 = L0 + 2g′(v2 − u2)

[

v2 −vu
−vu u2

]

.

Remark4.1. The operatorsL, L0, andL1 depend on the parameterω.

5 Spectra ofL0 and L1

While we are ultimately interested in the spectrum of the operatorJL, we start by analyzing the spectra ofL0 andL1,
which are easier to compute and which will shed some light on the behaviour of the full operatorJL.

Lemma 5.1. The essential spectrum of the operatorsL1 and L0 is given byR\(−1 − ω, 1 − ω). There are no
eigenvalues embedded into the essential spectrum.

Proof. Due to the exponential decay of the solitary wave componentsu andv (see Remark 3.5), the operatorsL0, L1
are relatively compact perturbations of the operator

D− ω, where D = −iα∂x + β =

[

1 ∂x
−∂x −1

]

. (5.1)
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The free Dirac operatorD is a (matrix) differential operator with constant coefficients. Its essential spectrum is given
by the valuesλ for which ker(D − λ) contains bounded functions. In other words, we are looking for solutions of
(D − λ)ψ = 0 of the formψ = Zeiξx, with realξ and constantZ ∈ R2. Calculating the determinant of the symbol
of D− λ, we get

det

[

1− λ iξ
−iξx −1− λ

]

= λ2 − 1− ξ2 = 0.

Thus the essential spectrum is the range ofλ = ±
√

1 + ξ2 whenξ ∈ R, that is, two intervals(−∞,−1] and[1,∞).
Regarding the embedded eigenvalues, the space of solutionsof (L0−λ)Ψ = 0 (similarly,(L1−λ)Ψ = 0) is spanned

by the two Jost solutions, i.e. the solutions that have the same asymptotics as the solutions of(D−ω − λ)Ψ = 0. For
λ ∈ σess, there are two oscillating Jost solutions which cannot combine to produce a decaying solution. Thus there
are no eigenfunctions corresponding toλ ∈ σess.

The spectrum ofL0 has the following symmetry property.

Lemma 5.2. For eachω such that there is a solitary wave solutionφ(x)e−iωt to (2.2), the spectrum ofL0 is symmetric
with respect toλ = −ω. See Figure 3.

Proof. It suffices to check that ifΨ(x) =

[

R(x)
S(x)

]

∈ C
2 satisfies(L0 − λ)Ψ = 0, thenΘ(x) =

[

S(x)
R(x)

]

satisfies

(L0 + (2ω + λ))Θ = 0.

Remark5.3. The statement of Lemma 5.2 takes place for any nonlinearityg(s).

Next we explicitly find two eigenvalues together with their eigenvectors for each of the operatorsL0, L1.

Lemma 5.4. 1. σd(L0) ⊃ {0}, σd(L1) ⊃ {0}. The corresponding eigenspaces are given by

kerL0 = Span〈φ〉 = Span

〈[

v
u

]〉

, kerL1 = Span〈∂xφ〉 = Span

〈[

v′

u′

]〉

.

2. σp(L0) ⊃ {−2ω}, σp(L1) ⊃ {−2ω}. The eigenfunction of bothL0 andL1 corresponding to the eigenvalue

−2ω is given byΨ(x) =

[

u(x)
v(x)

]

.

Proof. By (3.6), L0

[

v
u

]

= 0, henceφ =

[

v
u

]

∈ kerL0. Since there are two Jost solutions ofL0 corresponding to

λ = 0 with prescribed asymptotic behavior asx → +∞, with one growing at+∞ and the other decaying, there are
no moreL2 eigenfunctions corresponding toλ = 0. For more on Jost solutions, see Section 7.

From Lemma 5.2 we immediately get thatλ = −2ω is an eigenvalue with the corresponding eigenfunction given

by

[

u
v

]

.

Turning our attention to the operatorL1, we take the derivative of the relationL0φ = 0 with respect tox to obtain

L1

[

v′

u′

]

=

[

2g′v2 + g − ω ∂x − 2g′vu
−∂x − 2g′vu 2g′u2 − g − ω

] [

v′

u′

]

= 0.

Using (3.6) again, we get

(L1 + 2ω)

[

u
v

]

=

[

2g′v2 + g + ω ∂x − 2g′vu
−∂x − 2g′vu 2g′u2 − g + ω

] [

u
v

]

=

[

g + ω ∂x
−∂x −g + ω

] [

u
v

]

= 0.

The last equality is due to (3.6). Again, there are no more eigenfunctions since there is one Jost solution growing as
x→ +∞ and the other decaying, and one can not use them to construct more than one eigenfunction.

At the thresholds (the endpoints of the essential spectrum)the solutions of(L0 − λ)Ψ = 0 and(L1 − λ)Ψ = 0
are, in general, linearly growing. However, the operatorL0 has “resonances”, that is, generalized eigenfunctions that
are uniformly bounded.

7



Lemma 5.5. For the nonlinearityg(s) = 1 − s (the Soler model), the valuesλ = 1 − ω andλ = −1 − ω are
resonances ofL0.

Proof. The generalized eigenfunction corresponding toλ = 1− ω is explicitly given by

Ψ(x) =

[

R(x)
S(x)

]

, with R(x) =
u(x)v(x)

v(x)2 − u(x)2
, S(x) =

v(x)2 − 1+ω
1−ω

u(x)2

v(x)2 − u(x)2
.

By Lemma 5.2, the generalized eigenfunction correspondingto λ = −1− ω isΨ =

[

S
R

]

.

The numerical computations show that for the nonlinearityg(s) = 1 − s (the Soler model), there are no other
eigenvalues inL0; see Figure 3, bold symbols. This agrees with [Chu07]. The transparent symbols on Figure 3 denote
antiboundstates which will be discussed in detail in Section 7.4. Notethat the antibound states numerically found at
the edges of the essential spectrum are nothing else but the resonances described in Lemma 5.5.

The spectrum ofL1, besides eigenvaluesλ = 0 andλ = −2ω discussed in Lemma 5.4, may contain more
eigenvalues. For the nonlinearityg(s) = 1 − s, the numerical computation of the spectrum ofL1 is on Figure 4. On
that picture, eigenvalues are represented by the bold symbols. There are 4 eigenvalues that belong to the spectrum for
all values ofω starting fromω = 1. Moreover, there are eigenvalues that “emerge” from the essential spectrum asω
decreases. In fact, they can be traced to being antibound states prior to becoming eigenstates. We will discuss this in
more detail in Section 7.4.
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Figure 3:σ(L0). Eigenvalues (�, •; “even” and “odd”, respectively) and the values ofλ corresponding to antibound states (♦, ◦; also “even”
and “odd”, respectively). We say that the eigenvalue is “even” (“odd”) if the first component of the corresponding eigenfunction is even (odd,
respectively).
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Figure 4:σ(L1). Eigenvalues (“even”� and “odd”•) and the values ofλ corresponding to antibound states (“even”♦ and “odd”◦).
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6 Spectrum ofJL

The analysis of the spectrum ofJL builds upon what has been discovered for the operatorsL0, L1 in Section 5. In
particular, starting from the explicit eigenvectors forL0, L1 we are able to construct explicit eigenvectors forJL.

Lemma 6.1. For any nonlinearityg(s) in (2.2) with g(0) = 1, for linearization at a solitary waveφ(x)e−iωt with
|ω| < 1, the following is true:

1. The spectrum ofJL is symmetric with respect to the real and imaginary axes.

2. The essential spectrum ofJL lies on the imaginary axis and is given by

σess(JL) = iR \ (−i(1− ω), i(1− ω)).

3. ker JL = Span

〈[

∂xφ
0

]

,

[

0
φ

]〉

, with φ =

[

v
u

]

∈ R2.

4. The valuesλ = ±2iω are eigenvalues ofJL. The corresponding eigenvectors are

[

ϕ
±iϕ

]

, whereϕ =

[

u
v

]

.

Remark6.2. More generally, it turns out thatλ = ±2ωi areL2-eigenvalues ofJL which corresponds to a linearization
at a solitary wave of nonlinear Dirac equation (2.1) with anynonlinearityg(s) and in any dimensionn ≥ 1. These are
embedded eigenvalues as long as|ω| > m/3, wherem := g(0). See [Com11].

Proof. Let us show thatσp(JL) is symmetric with respect toReλ = 0 andImλ = 0. SinceJL =

[

0 L0

−L1 0

]

, with

bothL± real-valued,λ ∈ σ(JL) implies that ifΨ ∈ L2(R,C4) satisfiesJLΨ = λΨ (in the sense of distributions), then

Ψ(x) satisfiesJLΨ̄ = λ̄Ψ̄ . At the same time, the functionΣΨ(x), with Σ =

[

I2 0
0 −I2

]

, satisfies

JLΣΨ = JΣLΨ = −ΣJLΨ = −λΣΨ.

It follows that bothλ̄ and−λ are also eigenvalues ofJL, henceσp(JL) is symmetric with respect to the lineImλ = 0
and with respect to the pointλ = 0.

To find the essential spectrum ofJL, by the Weyl criterion, we need to consider the limit ofJL asx → ±∞,

substitutingv, u by zeros andg by g(0) = m = 1; thenJL− λ turns intoJ(D − ω)− λ, whereD =

[

D 0
0 D

]

, with

D =

[

1 ∂x
−∂x −1

]

defined in (5.1). Substituting into(J(D − ω)− λ)Ψ = 0 the AnsatzΨ(x) = Ξeiξx, with Ξ ∈ C4,

Ξ 6= 0, we get:

(J(D − ω)− λ)Ξeiξx = eiξx(J(D(ξ) − ω)− λ)Ξ = eiξx
[

−λ D(ξ)− ω
−D(ξ) + ω −λ

]

Ξ = 0,

whereD(ξ) =

[

D(ξ) 0
0 D(ξ)

]

, with D(ξ) =

[

1 iξ
−iξ −1

]

being the symbol ofD. The essential spectrum ofJL is

the range of values ofλ which correspond toξ ∈ R. To find the relation betweenλ andξ, we need to compute the
determinantdet (J(D(ξ)− ω)− λ) and to equate it to zero. In order to compute the determinant,we notice that

(

J(D(ξ)− ω)− λ
)(

J(D(ξ)− ω) + λ
)

= −(D(ξ)− ω)2 − λ2 = −ξ2 − 1− ω2 − λ2 + 2ωD(ξ),

(

− ξ2 − 1− ω2 − λ2 + 2ωD(ξ)
)(

− ξ2 − 1− ω2 − λ2 − 2ωD(ξ)
)

=
(

(1− ω2 + ξ2 + λ2)2 + 4ω2λ2
)

I4,

whereI4 is the4× 4 identity matrix. Sincedet (J(D(ξ)− ω)− λ) should be even with respect toξ andω, two above
relations allow us to conclude thatdet (J(D(ξ)− ω)− λ) = (1− ω2 + ξ2 + λ2)2 + 4ω2λ2. The equation

det (J(D(ξ) − ω)− λ) = (1 − ω2 + ξ2 + λ2)2 + 4ω2λ2 = 0

10



allows one to expressλ in terms ofξ asλ = ±i(ω ±
√

1 + ξ2), or, vice versa,

ξ = ±
√

(ω ± iλ)2 − 1.

This shows that the essential spectrum isiR\(−i(1− ω), i(1− ω)).
The kernel ofJL is known by Lemma 5.4. Finally, again due to Lemma 5.4,

JL

[

ϕ
±iϕ

]

=

[

0 L0

−L1 0

] [

ϕ
±iϕ

]

= −2ω

[

±iϕ
−ϕ

]

= ∓2ωi

[

ϕ
±iϕ

]

.

Definition 6.3. Threshold points are the values ofλ ∈ C which correspond toξ = 0.

On Figure 5, one can see that the essential spectrum ofJL consists of two overlapping components, which we
distinguish by the symbols♭ and♯. The♭-component isiR\(λ♭d, λ♭u), with the threshold points

λ♭d = −i− iω, λ♭u = i− iω; (6.1)

the♯-component isiR\(λ♯d, λ♯u), with the threshold points

λ♯d = −i+ iω, λ♯u = i+ iω. (6.2)

We use the subscripts “d” and “u” for the lower (“down”) and the upper edges of each of the♭, ♯ components of the
essential spectrum.

The numerical computation of the point spectrum ofJL inside(0, i(1 + ω)), as a function ofω ∈ (0, 1), is plotted
on Figure 6. The eigenfunctions corresponding to three point eigenvalues atω = 0.1 are plotted on Figure 7.

7 Jost solutions and Evans functions

Looking for zeros of the Evans function is a way to test when anequation has solutions with the correct asymptotics
at infinity. The definition involves two main steps. The first step is to constructJost solutions, which are defined as
solutions with certain decaying asymptotics either at plusinfinity or at minus infinity. The second step is to match these
two types of solutions. In the presence of symmetry the construction can be made simpler, simplifying the numerical
computations. We describe this in detail below.

7.1 Jost solutions forJL

Jost solutionsY (x, λ) of JL are defined as solutions to(JL− λ)Ψ = 0 which have the same asymptotics at+∞ or at
−∞ as the solutions to(J(D − ω)− λ)Ψ = 0, where

D =

[

D 0
0 D

]

, D = −iα∂x + β =

[

1 ∂x
−∂x −1

]

.

For a givenλ ∈ C away from the threshold points±(1± ω)i, solutions to(J(D− ω)− λ)Ψ = 0 have the form

Ψ(x, λ) =

[

R
S

]

eiξx,

where

[

R
S

]

∈ C4 andξ ∈ C is a solution todet (J(L(ξ)− ω)− λ) = 0. Let λ = a + ib, with a ≥ 0 andb ≥ 0.

(Because of the symmetry ofσ(JL) with respect to the linesReλ = 0 andImλ = 0, we only need to consider the
spectrum in the closure of the first quadrant ofC.) Then define

ξ♭ =
√

((b − ia) + ω)2 − 1, ξ♯ =
√

((b− ia)− ω)2 − 1,

11
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Figure 5: Domains of analytic functionsξ♭(λ), ξ♯(λ), and the essential spectrum ofJL. The thresholds are located atλ♭
d = −i − iω,

λ♯
d = −i + iω, λ♭

u = i − iω, andλ♯
u = i + iω. The analytic functionξ♭(λ) is defined onC with the cuts fromλ♭

u to +i∞ and fromλ♭
d to

−i∞ (thick lines on the left side of the imaginary axis).Im ξ♭ < 0, Im ξ♯ < 0 for all λ ∈ C. The analytic functionξ♯(λ) is defined onC with
the cuts fromλ♯

u to +i∞ and fromλ♯
d to −i∞ (thick lines on the right side of the imaginary axis). The boundary traces of bothξ♯ andξ♭ at the

double-covered part of the essential spectrum (aboveλ♯
u and belowλ♭

d) are real-valued.

where for the square root we choose the branch that has negative imaginary part (so that bothe−iξ♭x ande−iξ♯x decay
asx → +∞). Thenξ♭ is defined forλ ∈ C with the cuts fromλ♭u = i(1 − ω) to +i∞ and fromλ♭d = −i(1 + ω) to
−i∞, while ξ♯ is defined forλ ∈ C with the cuts fromλ♯u = i(1 + ω) to +i∞ and fromλ♯d = −i(1 − ω) to −i∞.
See Figure 5. Altogether the four solutions to the equationdet (J(D(ξ)− ω)− λ) = 0 are±ξ♭(λ) and±ξ♯(λ).

The four solutions to(J(D− ω)− λ)Ψ = 0 corresponding toλ away from the thresholds (6.1), (6.2) are given by

Ξ♭
±(λ)e

±ξ♭(λ)x, Ξ♯
±(λ)e

±ξ♯(λ)x, (7.1)

where

Ξ♭
−(λ) =









−iξ♭(λ)
−iλ− 1 + ω

ξ♭(λ)
λ− i(1− ω)









, Ξ♯
−(λ) =









−iξ♯(λ)
iλ− 1 + ω
−ξ♯(λ)

λ+ i(1− ω)









, (7.2)

Ξ♭
+(λ) =









iξ♭(λ)
−iλ− 1 + ω

−ξ♭(λ)
λ− i(1− ω)









, Ξ♯
+(λ) =









iξ♯(λ)
iλ− 1 + ω
ξ♯(λ)

λ+ i(1− ω)









. (7.3)

We will only be considering the Jost solutions which have prescribed asymptotics atx→ +∞.

Lemma 7.1. For eachλ ∈ C, λ /∈ {λ♭d, λ
♯
d, λ

♭
u, λ

♯
u}, there are Jost solutions to(JL − λ)Ψ = 0 with the asymptotics

Y ♯
±(x, λ) ∼ Ξ♯

±(λ)e
±iξ♯(λ)x andY ♭

±(x, λ) ∼ Ξ♭
±(λ)e

±iξ♭(λ)x, x→ +∞. More precisely,

|Y ♯
±(x, λ)e

∓iξ♯(λ)x − Ξ♯
±(λ)| = o(1), x→ +∞;

|Y ♭
±(x, λ)e

∓iξ♭(λ)x − Ξ♭
±(λ)| = o(1), x→ +∞.
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Proof. The proof follows from the Duhamel representation for the solution to(JL−λ)Ψ = 0 and from the exponential
spatial decay of the solitary wavesφ(x) corresponding toω ∈ (0, 1); see Remark 3.5.

Remark7.2. At the threshold pointsλ♯d = −i + iω andλ♯u = i + iω (respectively,λ♭d = −i− iω andλ♭u = i− iω),
whereξ♯(λ) = 0 (respectively,ξ♭(λ) = 0), one hasΞ♯

+(λ) = Ξ♯
−(λ) (respectively,Ξ♭

+(λ) = Ξ♭
−(λ)). For suchλ,

there are only three Jost solutions as in Lemma 7.1, and one more Jost solution which is linearly growing asx→ +∞.

7.2 Evans functions forJL

Normally, Evans function describes a matching between Jostsolutions decaying to the left and Jost solutions decaying
to the right. However, presence of symmetries allows us to streamline calculation in the present case. Denote byX�

the “even” subspace of functions fromC1(R,C4) with even first and third components and with odd second and fourth
components. Similarly, denote byX• the “odd” subspace inC1(R,C4) with odd first and third components and with
even second and fourth components. ThenC1(R,C4) = X� ⊕ X•. Noticing thatJL acts invariantly inX� and in
X•, we conclude that all eigenvalues ofJL always have a corresponding eigenfunction either inX� or in X• (or in
both subspaces). To find eigenvalues ofJL corresponding to functions fromX�, we proceed as follows:

• For λ ∈ C, construct solutionsΨj , 1 ≤ j ≤ 4, to the equationJLΨ = λΨ with the following initial data at
x = 0:

Ψ1|x=0
=

[

1

0

0

0

]

, Ψ2|x=0
=

[

0

1

0

0

]

, Ψ3|x=0
=

[

0

0

1

0

]

, Ψ4|x=0
=

[

0

0

0

1

]

. (7.4)

ThenΨ1, Ψ3 ∈ X�, whileΨ2, Ψ4 ∈ X•.

• Take the Jost solutionsY ♭
−(x, λ) andY ♯

−(x, λ) as in Lemma 7.1, which decay forx→ +∞.

• Define the Evans function

E�

−−(λ) = det
[

Ψ1(x, λ), Ψ3(x, λ), Y
♭
−(x, λ), Y

♯
−(x, λ)

]

. (7.5)

This is a Wronskian-type function which does not depend onx and could be evaluated atx = R ≫ 1, where the
asymptotics ofY ♭

− andY ♯
− are known from Lemma 7.1. Vanishing ofE�

−−(λ) at particularλ ∈ C means that a
certain linear combination ofΨ1(x, λ) andΨ3(x, λ) has the asymptotics of the linear combination ofY ♭

−(x, λ)

andY ♯
−(x, λ) asx→ +∞, which decays at+∞ (according to our choice ofξ♭(λ) andξ♯(λ). By the symmetry

of Ψ (its first and third components are even while its second and fourth components are odd), this same linear
combination also decays asx → −∞. Therefore, vanishing ofE�

−−(λ) at someλ ∈ C implies that there is an
eigenfunction corresponding to this particular value ofλ.

• Similarly, define

E•
−−(λ) = det

[

Ψ2(x, λ), Ψ4(x, λ), Y
♭
−(x, λ), Y

♯
−(x, λ)

]

. (7.6)

The conditionE•(λ) = 0 means that a certain linear combination ofΨ2, Ψ4 ∈ X• has the same asymptotics
whenx→ +∞ as a solution of(J(D − ω)− λ)Ψ = 0 which decays forx→ +∞.

Let us summarize the above in a convenient form:

Lemma 7.3. λ ∈ σp(JL) if and only ifE�

−−(λ)E
•
−−(λ) = 0. Furthermore,E�

−−(λ) = 0 (respectively,E•
−−(λ) = 0)

if the corresponding wave function belongs toL2(R,C4) ∩X� (respectively,L2(R,C4) ∩X•).

When searching numerically for zeros of the Evans functionsin the spectral gap on the imaginary axis, we benefit
from the following observation.

Lemma 7.4. For λ ∈ i(−(1− ω), (1− ω)), the real part of the functionsE�

−−(λ), E
•
−−(λ) equals zero.
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Figure 6:σ(JL). The zeros of the Evans function located in the upper half of the spectral gap (vertical axis) as a function ofω (horizontal axis).
Eigenvalues (�, •) and the values ofλ corresponding to antibound states (♦, ◦). The eigenvalue2ωi (the straight line of•) is embedded into the
essential spectrum forω > 1/3.
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Proof. For λ with Reλ = 0, one immediately concludes from(JL − λ)Ψj = 0 that for allx ∈ R the components
(Ψ1(x))j and(Ψ2(x))j are real forj = 1, 2 and imaginary forj = 3, 4, and that(Ψ3(x))j and(Ψ4(x))j are imaginary
for j = 1, 2 and real forj = 3, 4. On the other hand, whenλ ∈ (−i(1 − ω), i(1 − ω)) and bothξ♭ andξ♯ are
imaginary, the first two components ofΞ♭

− andΞ♯
− from (7.2) are real and the second two are imaginary. It follows

that
det

[

Ψ1(x, λ), Ψ3(x, λ), Ξ
♭
−(λ), Ξ

♯
−(λ)

]

∈ iR, det
[

Ψ2(x, λ), Ψ4(x, λ), Ξ
♭
−(λ), Ξ

♯
−(λ)

]

∈ iR,

for anyx ∈ R. Sinceξ♭ andξ♯ are purely imaginary,e−iξ♭x ande−iξ♯x are real; we conclude from Lemma 7.1 that

E�

−−(λ) = det
[

Ψ1(x, λ), Ψ3(x, λ), Y
♭
−(λ), Y

♯
−(λ)

]

and
E•

−−(λ) = det
[

Ψ2(x, λ), Ψ4(x, λ), Y
♭
−(λ), Y

♯
−(λ)

]

are purely imaginary.

7.3 Jost solutions and Evans functions forL0 and L1

The construction of the Jost solutions and Evans function for the operatorL1 (and, respectively,L0) is similar to the
construction forJL. At x→ ±∞, L1 coincides withD− ω. The equation

(D− ω − λ)Ψ(x) = 0

has two linearly independent solutions
Ξ±(λ)e

±iξ(λ)x,

whereΞ±(λ) ∈ C2 are given by

Ξ±(λ) =

[

1 + ω + λ
∓iξ(λ)

]

, where ξ =
√

(ω + λ)2 − 1.

The functionξ(λ) is defined forλ ∈ C with branch cuts fromλ = 1 − ω to +∞ and fromλ = −1 − ω to
−∞. These branch cuts correspond to the essential spectrum of the operatorL1 (similarly, of L0). The square root
denotes the branch with the negative imaginary part when theargument is negative, so that forλ from the spectral
gap(−1 − ω, 1 − ω), the functionΞ−(λ)e

−iξ(λ)x is decaying asx → +∞. The Jost solutionsY±(x, λ) for L1 are
solutions to(L1 − λ)Y(x, λ) = 0 with the asymptotic behavior

Y±(x, λ) ∼ Ξ±(λ)e
±iξ(λ)x, x→ +∞. (7.7)

There are two subspaces ofC1(R,C2), X� (spinors with the even first component and odd second component) and
X• (spinors with the odd first component and even second component) such thatX� ⊕ X• = C1(R,C2), which are
invariant with respect toL1 (also with respect toL0). We define two solutions,Ψ1(x, λ) andΨ2(x, λ), to the equation
(L1 − λ)Ψ = 0, with the initial data

Ψ1|x=0
=

[

1
0

]

, Ψ2|x=0
=

[

0
1

]

.

Then we define the Evans functions ofL1 by

E�

±(λ) = det [Ψ1(x, λ), Y±(x, λ)] , E•
±(λ) = det [Ψ2(x, λ), Y±(x, λ)] , (7.8)

and look for their zeros.
If E�

−(λ) vanishes at someλ ∈ C, then it means thatΨ1(x, λ) asx → +∞ has the asymptotics of the decaying
Jost solution. (By the symmetry, asx → −∞, Ψ1(x, λ) also has the asymptotics of the Jost solution decaying to
−∞.) We can summarize this as follows.

Lemma 7.5. The inclusionλ ∈ σp(L1) takes place if and only ifE�

−(λ)E
•
−(λ) = 0.

In the same way one defines the Evans functionsE�

−(λ) andE•
−(λ) for L0. The zeros of the Evans functions

E�

±(λ) andE•
±(λ) are plotted on Figure 3 (forL0) and Figure 4 (forL1). The meaning of zeros ofE�

+ andE•
+ is

discussed in Section 7.4.
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7.4 Antibound states forL0 and L1

The Evans function is defined using two pieces of data: a solution with the given initial data and the Jost solution that
corresponds to one value ofξ, see equation (7.7). However, we can viewξ(λ) as defined on a Riemann surface with
two sheets (corresponding to+

√· and−√·) and two singularity points at±1 − ω. The two sheets are glued across
the cuts(−∞,−1 − ω] and[1 − ω,∞). The two eigenvectors ofD − ω (this operator coincides withL0 andL1 at
x→ ±∞) can be thought of as the same eigenvector that changes according to which sheetλ is on. Continuing in this
vein, we consider two previously defined Jost solutionsY±(x, λ), λ ∈ C\

(

(−∞,−1 − ω) ∪ (1 − ω,+∞)
)

, as one
Jost solution defined on the Riemann surface, which is glued of two copies ofC\

(

(−∞,−1 − ω) ∪ (1 − ω,+∞)
)

.
We use this Jost solution to define the Evans function on this Riemann surface. Thus, forλ on the first sheet of the
Riemann surface, the Evans functionsE�(λ), E•(λ) are represented byE�

−(λ), E
•
−(λ) from (7.8), while on the second

sheet they are represented byE�

+(λ), E
•
+(λ). When a zero of the Evans function disappears at the end of thespectral

gap, it does not “dissolve” in the essential spectrum, but, rather, it goes back into the gap, albeit on a different sheet
of the Riemann surface on which the Evans function is defined.Such an “unphysical” zero of the Evans function is
known in the literature as a “resonance” or an “antibound state”. Since the “resonance” is also a name used specifically
for a bounded solution at the threshold of the essential spectrum (at the threshold, the two notions coincide), we will
be using the “antibound state” as the name of choice. It is “antibound” since the solution is purely exponentially
increasing asx→ ±∞, consisting solely ofY+(x, λ) asx→ +∞.

On Figure 4 the antibound states ofL1 are indicated by transparent symbols (♦ is for the states with even eigen-
functions and◦ is for the states with odd eigenfunctions). Sometimes antibound states pass from the unphysical sheet
onto the physical one at the threshold pointλ = 1 − ω. Note that the curve of transparent circles on the right has a
maximum. This is the value ofω (on the vertical axis) at which two zeros of the Evans function living off the real axis
Imλ = 0 on the unphysical sheet collide and create two zeros on the real axis. The self-adjointness of the operatorL1

forbids such a behaviour on the physical sheet, but it is possible on the unphysical one.
Antibound states for the operatorL0 are plotted on Figure 3.

7.5 Antibound states forJL

The Riemann surface on which the Evans function of the operator JL is defined is similar but more complicated.
Indeed, the two limiting frequenciesξ♭ andξ♯ are defined on a two-sheeted surface each, but the surfaces are different.
The Evans function is then defined on four sheets. We will denote them by(+,+), (+,−), (−,+), (−,−), depending
on the sign in front of(ξ♭, ξ♯). The sheet(−,−) is the physical one, in the sense that the zeros of the Evans function
on this sheet are the eigenvalues of the operatorJL.

The sheets are glued in the following manner.

Across the cuts(λ♯u, i∞) and(λ♭d,−i∞), the sheet(+,+) is glued to(−,−), while the sheet(+,−) is
glued to(−,+) (that is, both signs change to their opposites).

Across the cut(λ♭u, λ
♯
u), the gluing is(+, ·) ↔ (−, ·) (only the sign ofξ♭ changes), while across the cut

(λ♭d, λ
♯
d) the sign ofξ♯ changes:(·,+) ↔ (·,−).

The four branches of the Evans functionE� on these sheets could be written as follows:

E�

−−(λ) = det
[

Ψ1(x, λ), Ψ3(x, λ), Y
♭
−(x, λ), Y

♯
−(x)

]

,

E�

+−(λ) = det
[

Ψ1(x, λ), Ψ3(x, λ), Y
♭
+(x), Y

♯
−(x)

]

,

E�

−+(λ) = det
[

Ψ1(x, λ), Ψ3(x, λ), Y
♭
−(x, λ), Y

♯
+(x)

]

,

E�

++(λ) = det
[

Ψ1(x, λ), Ψ3(x, λ), Y
♭
+(x), Y

♯
+(x)

]

.

Similarly one defines the four branches of the Evans functionE•.
In Figure 8 we trace the zeros of the Evans function on the(−,−) sheet (eigenvalues, solid symbols) as well as

the zeros on the(+,−) sheet (“antibound states”, transparent symbols). The zeros can change between the two sheets
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Figure 8: σ(JL). The zeros of the Evans function on the upper half of the imaginary axis (vertical) as a function ofω (horizontal axis).
Eigenvalues (� for even eigenfunctions,• for odd) and the values ofλ corresponding to antibound states (♦ for even,◦ for odd). The symbols ”+”
and “×” denote zeros of the Evans functions which correspond to to the Jost solutions on the other unphysical sheets (sheets(−,+) and(+,+))
of the Riemann surface; see Section 7.4. The star symbols found inside the essential spectrum are actually made up of coinciding symbols “+” and
“×”; see Lemma 7.6.
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by hitting the (square root type) singularity atλ♭u. Note that when a curve has infinite derivative (with respectto ω on
thex-axis) it signals that the zeros of Evans function are leaving the imaginary axis into the complex plane away from
Reλ = 0. This behaviour can be seen for zeros on the(+,−) sheet, but we have not observed it for the eigenvalues,
which are the zeros on the(−,−) sheet. This suggests that the eigenvalues stay on the imaginary axis for all values of
ω.

The zeros lying on the other two sheets are unlikely to sneak onto the “physical”(−,−) sheet to become eigen-
values for the following reason. To pass onto this sheet, they would either have to leave the imaginary axis and circle
around or to go inside the essential spectrum and hit the singularity at the embedded threshold atλ♯u. We have not
observed such a hypothetical behaviour.

For completeness, we also plot on Figure 8 the zeros of Evans functions on the(−,+) sheet and on the(+,+)
sheet. Note that between the thresholdsλ♭u andλ♯u, these zeros (marked on Figure 8 with “+” and “×”) meet. Indeed,
there is the following simple observation.

Lemma 7.6. For λ ∈ (λ♭d, λ
♯
d) ∪ (λ♭u, λ

♯
u),

E�

−+(λ) = E�

++(λ), E•
−+(λ) = E•

++(λ).

Proof. First, we notice that forλ ∈ iR, if Ψ is a solution to

JLΨ =

[

0 L0

−L1 0

]

Ψ = λΨ, (7.9)

then so isΣΨ , whereΣ =

[

I2 0
0 −I2

]

. From (7.4), we conclude that forλ ∈ iR,

Ψ1(x, λ) = ΣΨ1(x, λ), Ψ2(x, λ) = ΣΨ2(x, λ), (7.10)

Ψ3(x, λ) = −ΣΨ3(x, λ), Ψ4(x, λ) = −ΣΨ4(x, λ). (7.11)

Forλ ∈ (λ♭u, λ
♯
u), sinceξ♭(λ) is real andξ♯(λ) is imaginary, and taking into account (7.2) and (7.3), we seethat

there are the relations

Ξ♭
+(λ)e

iξ♭(λ)x = ΣΞ♭
−(λ)e

−iξ♭(λ)x, Ξ♯
+(λ)e

iξ♯(λ)x = ΣΞ♯
+(λ)e

iξ♯(λ)x. (7.12)

Given the Jost solutionsY ♭
±(x, λ) andY ♯

±(x, λ) which satisfy(JL− λ)Ψ = 0, with λ ∈ iR, we know thatΣY ♭
±(x, λ)

and ΣY ♯
±(x, λ) also satisfy(JL − λ)Ψ = 0. Matching the asymptotics of the Jost solutions with (7.12)(see

Lemma 7.1), we conclude that

Y ♭
+(x, λ) = ΣY ♭

−(x, λ), Y ♯
+(x, λ) = ΣY ♯

+(x, λ). (7.13)

Taking into account (7.10) and (7.13), we have:

E�

−+ = det
[

Ψ1, Ψ3, Y ♭
−, Y

♯
+

]

= det
[

ΣΨ1,−ΣΨ3,ΣY ♭
+,ΣY ♯

+

]

= det
[

Ψ1,−Ψ3, Y
♭
+, Y

♯
+

]

= E�

++.

In the same manner one proves thatE•
−+(λ) = E•

++(λ) for λ ∈ (λ♭u, λ
♯
u).

The proof forλ ∈ (λ♭d, λ
♯
d) is similar.

8 Conclusion

We considered the spectrum of the nonlinear Dirac equation in 1D, linearized at a solitary wave solution. The numeric
simulations have been performed for the nonlinearityg(s) = 1 − s (the Soler model), while some of our analytical
conclusions remain valid for any nonlinearity.

In particular, we found that for any nonlinearityg(s) there are the eigenvalues±2ωi of the linearizationJL. For a
certain range ofω, these eigenvalues are embedded in the essential spectrum of JL.

For the nonlinear Dirac equation with the nonlinearityg(s) = 1 − s we have not found any other embedded
eigenvalues ofJL. We have not found any complex eigenvalues off the imaginaryaxis, concluding that the linearization
at all solitary waves is spectrally stable.
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