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Abstract

We study the spectral stability of solitary wave solutionghe nonlinear Dirac equation in one dimension. We
focus on the Dirac equation with cubic nonlinearity, knowsthe Soler model in (1+1) dimensions and also as
the massive Gross-Neveu model. Presented numerical catigng of the spectrum of linearization at a solitary
wave show that the solitary waves are spectrally stable. dk@loorate our results by finding explicit expressions
for several of the eigenfunctions. Some of the analyticlteswld for the nonlinear Dirac equation with generic
nonlinearity.

1 Introduction

The study of stability of localized solutions to nonlinedspkrsive equations takes its origin in_[Der64], where the
instability of stationary localized solutions to nonlimédein-Gordon equation was proved. It was suggested there
that quasistationary finite energy solutions of the farfn)e~**, which we callsolitary wavescould be stable. The
first results on (spectral) stability of the linearizatidrsalitary wave solutions to a nonlinear Schrodinger eiguat
were obtained if[Zak67, VK73]. Orbital stability and instity of solitary waves in nonlinear Schrodinger and Kiei
Gordon equations have been extensively studied in [Sha83 S5hag5s, Wei86, GSS87]. The asymptotic stability of
solitary waves in nonlinear Schrodinger equation was @dam certain cases i [WeiB5, BR93, SW92, SW99, Clic01,
[BS03/CMO08].

Systems with Hamiltonians that are not sign-definite aremmtsly difficult, due to the absence of the a priori
bounds on the Sobolev norm. Important examples of suchmagséee the Dirac-Maxwell systern [Grd66] and the
nonlinear Dirac equation [Sol70], which have been recgidanlot of attention in theoretical physics in relation to
classical models of elementary particles. The stabilitgalitary wave solutions to the nonlinear Dirac equation is
far from being understood. Some patrtial results on the nigaleainalysis of spectral stability of solitary waves are
contained in[[ChuQ7]. Generalizing the results on orbitabgity of solitary waves[[GSS87] to the nonlinear Dirac
equation does not seem realistic, because of the corresgpadergy functional being sign-indefinite; instead, one
hopes to prove the asymptotic stability, using linear $itgliombined with the dispersive estimates. The first rissul
on asymptotic stability for the nonlinear Dirac equatior atready appearing [PS10, BC11], with the assumptions
on the spectrum of the linearized equation playing a cruoci@l. In view of these applications, the spectrum of the
linearization at a solitary wave is of great interest.

In the present paper, we give numerical and analyticaffications of spectral stability of small amplitude solitary
wave solutions to the nonlinear Dirac equation in one dirimens

arXiv:0910.0917v6 [math-ph] 9 Oct 2012

*Supported in part by the National Science Foundation undent®MS-0907968.


https://core.ac.uk/display/231875433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0910.0917v6

Let us remind the terminology. Given a solitary wayer)e~*, we consider a small perturbation of the form
P(,t) = (p(x) + p(x, t))e” ! We call a solitary wave(x)e =" linearly unstablef the equation o is given by
op = Ap + o(p), with A having eigenvalues with positive real part. If the entirecpum ofA is on the imaginary
axis, we call the solitary wavspectrally stable The solitary wave is calledrbitally stable[GSS87] if any solution
¥ (t) initially close to¢ (in a certain norm, usually the energy norm) will exist glipaemaining close to the orbit
spanned by for all times:

For anye > 0 there isé > 0 such that if]j)g — ¢|| < d, then there is a solutiog(¢)
which exists for alk > 0 and satisfies)|,_, = 1o, sup inﬂg ], — e < e.
t>0 S€

Otherwise, the solitary wave is calledbitally unstable A solitary wave is calleédsymptotically stablé any solution
initially close to it (in a certain norm) will converge (in &itain norm) to this or to a nearby solitary wave. Linear
instability of solitary waves generically leadsddbital instability [Gri88,[GO10]; at the same timspectral stability
does not imply neither orbital nor asymptotic stability.

ACKNOWLEDGMENTS The authors would like to thank Marina Chungva for providing us with her preliminary
numerical results on spectral properties of coupled modatsans (see alsd [Chul07]) which greatly stimulated our
research. The authors are grateful to Nabile Boussaid, @sdbhen, Linh Nguyen, Dmitry Pelinovsky, Bjorn Sand-
stede, Walter Strauss, Boris Vainberg, and Michael Weiim$te most helpful discussions.

2 Nonlinear Dirac equation

The nonlinear Dirac equation has the form
i0p = =iy ;050 + Bg(WBYYY,  Wlx,t) eCN,  zeRY, (2.1)
j=1
with ¢)* being the Hermitian conjugate gf. The Hermitian matrices; andg are chosen so that
O‘?:Iv 52217 {ajaak}:26jka {Oéj,ﬂ}:(), 1S.]7k§n

We assume that the nonlinearijyis smooth and real-valued. We denate= ¢(0). Equation[(2.11) withn = 3 and
g(s) = 1 — sis known as the Soler modél[Sal70] (when= 3, one can take Dirac spinors wifli = 4 components).
The case: = 1 (when one can take spinors wifti = 2 components) is known as the massive Gross-Neveu model

[GN74,LG75].
In the present paper, we consider the Dirac equatid'in
i(0r + a0y )Y = g(* ) B, P(z,t) € C?, z eR' (2.2)
As « and/3, we choose
Q@ = —02, ﬂ = 03, (23)
. . . 0 1 0 —i 1 0 . . ) )
with the Pauli matrices; = L o)=Ll o )m=1y _1) Noting thaty* o3¢ = |¢1]* — |1=|?, we
rewrite equation(2]2) as the following system:
{ Z.(‘?ifdjl = azd& + g(|’¢)1|2 - |’¢)2|2)7/)17 (24)
i0pha = =001 — g(|[Un]?® — |22

3 Solitary wave solutions

We start by demonstrating the existence of solitary wavetsols and exploring their properties.

Definition 3.1. The solitary waves are solutions fo (2.1) of the form

Y(x,t) = ¢ (w)e” ™", b, € H'(R",CN), w € R.



The following result follows from[[CV86].

Lemma 3.2. Assume that

Let G(s) be the antiderivative of(s) such thatG(0) = 0. Assume that for given € R, 0 < w < m, there exists
Z. > 0such that

wZ, =G(Z,), w# g(Zy), and ws < G(s) forse (0, 2Z,). (3.2)

Then there is a solitary wave solutiai{z, t) = ¢,,(z)e~*“*, where

with bothv andwu real-valuedp being even and odd.
More precisely, let us defing” () and % (z) by

b (1) = {”(x)] . v, ue H'(R), (3.3)

X =v® —u?, & = vu. (3.4)
Then.2 (z) is the solution to
X" = —0q (—2G(2)? 4 2w°27?), Z(0) = 24, 27(0) =0, (3.5)
and? (z) = —+= 2" (z).

Proof. From [2.4), we obtain:

(3.6)

wo = B+ g(lof? — [uf?),
wu = —0,v — g(|v]* — |ul?)u.

Assuming that botly andu are real-valued (this will be justified once we found redlied v andw), we can rewrite
(3.8) as the following Hamiltonian system, withplaying the role of time:

Opu = wv — g(v? — u?)v = Oyh(v,u), 3.7)
—0,v = wu + g(v? — u?)u = dyh(v,u), '
where the Hamiltonian (v, u) is given by
) 2y 1 2 2
h(v,u) = 2(U +u”) 2G(v u®). (3.8)
The solitary wave corresponds to a trajectory of this Hamilin system such that
hence mf Z = 0. SinceG(s) satisfies7(0) = 0, we conclude that
Tr—r 00
h(v(z), u(x)) =0, (3.9)
which leads to
w(v? +u?) = G?* —u?). (3.10)

Studying the level curves which solve this equation is mosvenient in the coordinates
2 =v? —u?, Z = 0?4 u?

see Figuréll. We conclude from{3.10) and Fidure 1 that sphtaves may correspond fo| < m, w # 0.

Remark3.3. If w > 0, then there are solitary waves such th& nonzero while, changes its sign (shifting the origin,
we may assume that this happens at 0). Forw < 0, there are solitary waves such tha 0, while v changes its
sign.
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Figure 1:Existence of solitary waves in the coordinatés = v? — u?, 2 = v2 4 u2. Solitons withw > 0 andw < 0 correspond to the bump
on thev? axis and to the dotted bump on thé axis (respectively) in the first quadrant.

Remark3.4. In the case whel(s) is odd, for each solitary wave correspondingitas R there is a solitary wave

corresponding te-w. More precisely, in this case, {ﬁgg] e—t is a solitary wave, then so i{su(:v)] piwot.

v(x)
The functions2’(z) and#/ (z) introduced in[(34) are to solve

{ 2 = —dw¥, (3.11)

V' =—?+ut)g(2)+wZ =-LG(2)g(X)+wZ,

and to have the asymptotic behavion |, 2 () = 0, lim ||, % (x) = 0. In the second equation i (3]11), we
used the relatio (3.10). The systdm (3.11) can be writteheafollowing equation or2":

X" = =09 (—2G(X)? + 2> 2?). (3.12)

This equation describes a particle in the poteniigls) = —2G(s)? + 2w?s?; see Figuré]2. Due to the energy
conservation (withr playing the role of time), we get:

12 12
‘%; —2G(2)? + 2w 27 = ‘%;

+VL(Z) =0. (3.13)

Using the expression fo?™ from (3:11), relation[(3-13) could be rewritten as

32///2
0 =
2

which follows from [3.10).

For a particular value af;, there will be a positive solutio?” () such thafim, 1., 2 (z) = 0 if there exists
2., > 0 so that[[3P) is satisfied (see Figlile 2). We shifto that.2™ so that2 (0) = Z2.,; then.2"(z) is an even
function.

OnceZ (z) is known,# (x) is obtained from[(3.:11), and then we can exprgss, u(x). O

+ Vo (2) = 8w’P? —2G(2)” + 2w° 272 = 2w* (4v°u® + (v* — u?)?) — 2G7, (3.14)

Remark3.5. Note that for0 < |w| < 1, the functionsy(x) andu(z) are exponentially decaying &s| — oco. Indeed,
the exponential decay o () could be deduced froi(3112). Then the exponential deca @f) = v(z)? + u(z)?
follows from the relation?” = G(2") /w (Cf. (310)).



Vo (s) = —2G*(s) + 2w?s?
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Figure 2:Effective potentiall, (s). A solitary wave corresponds to a trajectory which satisfiég)) = 2., lim| 3|00 2 (x) = 0.

3.1 Explicit solitary waves in a particular case

As shown in[[LG75] for the massive Gross-Neveu model (theSwlodel in 1D), in the special case of the potential

(3.15)

the solitary waves can be found explicitly. Substitutgs) from (3.15) into [3.1B), we get the following relation:

= 207 - 222 —222 220 Z 2P R (3.16)

We use the substitution

A w w
1_7_cos2®7 %_2(1_00529)' (3.17)
Then 2 sin 26
2205022 1O
de — _2% 1 dj — _ _ cos? 20 — 2d§ , (318)
— — w [ 2 c0s20 —w
\/( / ) v 4(1 - cosQG)) cos220 w?
1 I+ tan ©
T = o= ln‘ Ji—tan0| (3.19)
where .
k=11-w? ,uz;w. (3.20)
14w
Then
(VI + tan ©)e?™* = /i — tan ©, tan ©(x) = —/p tanh k. (3.21)
Also note that
w w 1 + tan® O(z)
=2(1- =2ll-— =21l w——= 3.22
Z (@) ( cos2@) < 2(3052@—1> ( “1 —tan?O(x) )’ (3.22)
and then
1,12 G
Y(z) = _E% (z) = 4 cos? 26( 251n20) dx
1 2 . A
_Zm(_2 sin20)(cos20 — w) = - tan 20
_Z 2tan(;) P \/ﬁtanh/;:r '
2 1—tan”© 1 — ptanh” Kz
Denote
Z(z) = v*(x) + u?(x). (3.23)
Then

Z (@) = er(x) (1 - cos2w@(x)) =2 —tanZ O(z) <1 T —tan2®(x)> '



The other functions are expressed frafhas follows:

v(x) =/ Z(x)cosO(x), u(z) = =/ Z(z) sin ©(x), (3.24)
2 (x) = Z(x) cos20(x), Y (x) = —%Qf(x) sin 20(z). (3.25)

Combining equationd (3.24) witli (3]20), (3.21) and usingibdrigonometric identities, we obtain the following
explicit formulae forv(z) andu(x):

2(1 —w) () = v2u(1 — w) tanh kx (3.26)

(1 — ptanh? kz) cosh ka’ (1 — ptanh? k) cosh k'~

v(x) =

Remark3.6. By (8.21),tan © changes from/x to —, /i asx changes from-oco to +-0c. Thus, in the limitw — 1,
wheny — 0, one has?” ~ 2, while || < 2 /j.

4 Linearization at a solitary wave
To analyze the stability of solitary waves we consider tHatgm in the form of the Ansatz
o) = (Gul@) + pla,8)e™™,  du(z) = [ugg] €R%,  plot) e C 4.1)

Then, by [Z1)idip+wp = —i 32, ada, p+ B [9((6e + 5) (6w + 9)) (0w + p) — 9($6u) ] - The linearized equa-
tion onp is given by

Z'atp =—1 Zaamjp —wp+ B [g(qgw¢w)p + (éwp + ﬁ¢w)g/(q§w¢w)¢w} .

J

o . _ [Rep(@, )] _ o . .
The linearized equation di(z, t) = |:Imp(a?, t)] € R* has the following form:
0 Lk 0], 4
R = [—12 0} [o Lo] R=JLR,  R(z1) € R (4.2)
0 I . . . Ly O -

whereJ = L ol with Iy the2 x 2 unit matrix, andL = 0 Lal’ wherelg, L, are self-adjoint operators

—42 0
given by

~[g(v? —u?) —w Ox _ o o [P —vu
LO‘[ 0, A

Remarkd.1l The operator&, Ly, andL; depend on the parameter

5 Spectra ofLy and L;

While we are ultimately interested in the spectrum of therafmeJL, we start by analyzing the spectralgfandL,,
which are easier to compute and which will shed some lighterbehaviour of the full operatgi..

Lemma 5.1. The essential spectrum of the operat@isand L, is given byR\(—1 — w,1 — w). There are no
eigenvalues embedded into the essential spectrum.

Proof. Due to the exponential decay of the solitary wave componeatsdv (see Remark3l5), the operatdgs L;
are relatively compact perturbations of the operator

D —w, where D = —iad, + 8 = {_g ?Il] : (5.1)

6



The free Dirac operatdD is a (matrix) differential operator with constant coeffiti® Its essential spectrum is given
by the values\ for which ker(D — \) contains bounded functions. In other words, we are lookangsblutions of
(D — Ao = 0 of the formy) = Ze®, with real¢ and constanZ € R2. Calculating the determinant of the symbol
of D — A, we get

11—\ i€

det {—iﬁx —1-)

} =XN-1-¢&=0.

Thus the essential spectrum is the rangg ef +,/1 + £2 when¢ € R, that is, two interval§—oo, —1] and[1, co).
Regarding the embedded eigenvalues, the space of solofidins—\) ¥ = 0 (similarly, (L; —A)¥ = 0) is spanned

by the two Jost solutions, i.e. the solutions that have theesasymptotics as the solutions(@ — w — \)¥ = 0. For

A € 0ess, there are two oscillating Jost solutions which cannot dombo produce a decaying solution. Thus there

are no eigenfunctions correspondinght@ o O

The spectrum ok has the following symmetry property.

Lemma 5.2. For eachw such that there is a solitary wave solutipf)e ~*“* to (2.2), the spectrum df is symmetric
with respect to\ = —w. See FiguréR.

Proof. It suffices to check that it (x)

I
| — |
=
—~
s
&

)} € C? satisfies(Ly — \)¥ = 0, then©(z) = [;gg] satisfies

(Lo + 2w+ A))© = 0. O
Remark5.3. The statement of Lemnia’.2 takes place for any nonlinegfity
Next we explicitly find two eigenvalues together with theégenvectors for each of the operatags L;.

Lemma5.4. 1. o4(Ly) D {0}, oa(L1) D {0}. The corresponding eigenspaces are given by
!/
ker Ly = Span{¢) = Span < {Z] > , ker L1 = Span(0,¢) = Span< {Zl > .

2. op(Lo) D {—2w}, op(Ly) D
—2w is given by¥ (z) = [ZE;C;]

{—2w}. The eigenfunction of bothy and L, corresponding to the eigenvalue

Proof. By 3.8), Ly [2] = 0, hencep = {Z] € kerLy. Since there are two Jost solutionslgf corresponding to

A = 0 with prescribed asymptotic behavioras— +oo, with one growing at-co and the other decaying, there are
no moreL? eigenfunctions corresponding o= 0. For more on Jost solutions, see Secfibn 7.
From Lemma’5]2 we immediately get that= —2w is an eigenvalue with the corresponding eigenfunctionrgive

by m .

Turning our attention to the operatby, we take the derivative of the relatidg¢ = 0 with respect tor to obtain

L vl (29 +g—w  Or —2¢'vu v —0
Y| T =0, —2¢vu 29w —g—w| (W

Using [3.6) again, we get

ul  [2¢v*P+g+w  Or—2¢vu | [u]  [g+w Ox u|
(L1+2M)[v]_{—61—29’vu 20'u? —g+w| |v| | =0, —g+w||v =0

The last equality is due t6 (3.6). Again, there are no morerdignctions since there is one Jost solution growing as
x — +oo and the other decaying, and one can not use them to constouetthan one eigenfunction. O

At the thresholds (the endpoints of the essential spectthenyolutions of Ly — \)¥ = 0 and(L; — \)¥ =0
are, in general, linearly growing. However, the operdfphas “resonances”, that is, generalized eigenfunctioris tha
are uniformly bounded.



Lemma 5.5. For the nonlinearityg(s) = 1 — s (the Soler model), the values= 1 —w and XA = —1 — w are
resonances of.

Proof. The generalized eigenfunction corresponding te 1 — w is explicitly given by

~ [R(z) . u(z)v(x) B v(x)? — 2u(x)?
W(z) = [S@J . with R(z)= S —u(@ S(z) = e iu(x)Q
By Lemmd5.D, the generalized eigenfunction corresponding= —1 — wis ¥ = {2] . O

The numerical computations show that for the nonlineasity) = 1 — s (the Soler model), there are no other
eigenvalues iriy; see Figur€l3, bold symbols. This agrees with [Chu07]. Taesparent symbols on Figlire 3 denote
antiboundstates which will be discussed in detail in Secfiod 7.4. Nlo# the antibound states numerically found at
the edges of the essential spectrum are nothing else buggbaances described in Lemima 5.5.

The spectrum of_;, besides eigenvalues = 0 and\ = —2w discussed in Lemmia_3.4, may contain more
eigenvalues. For the nonlinearigys) = 1 — s, the numerical computation of the spectrunigfis on Figurd#. On
that picture, eigenvalues are represented by the bold dgmbloere are 4 eigenvalues that belong to the spectrum for
all values ofw starting fromw = 1. Moreover, there are eigenvalues that “emerge” from thergid spectrum as
decreases. In fact, they can be traced to being antiboutes gisior to becoming eigenstates. We will discuss this in
more detail in Sectioh 71.4.
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6 Spectrum ofJL

The analysis of the spectrum $E builds upon what has been discovered for the operdtgrg; in Sectior[b. In
particular, starting from the explicit eigenvectors fgr, L; we are able to construct explicit eigenvectorsjbr

Lemma 6.1. For any nonlinearityg(s) in (Z2) with g(0) = 1, for linearization at a solitary wavey(z)e ! with
|w| < 1, the following is true:

1. The spectrum diL is symmetric with respect to the real and imaginary axes.

2. The essential spectrum HE lies on the imaginary axis and is given by

Gess(JL) = iR\ (—i(1 — w), (1 — w)).

3. kerJL = Span< {agﬂ , [g] > , With ¢ = Lﬂ € R2.

4. The values\ = +2iw are eigenvalues dfL. The corresponding eigenvectors {rﬁip} , Wherep = [z] .

Remark6.2 More generally, it turns out that = +2wi are L2-eigenvalues of L which corresponds to a linearization
at a solitary wave of nonlinear Dirac equatién {2.1) with aoylinearityg(s) and in any dimension > 1. These are
embedded eigenvalues as londals> m /3, wherem := ¢(0). See[[Com1/1].

0 Lo
-Li o)
bothL, real-valued) € o(JL) implies that if¢ € L2?(R, C*) satisfieJ L& = \V (in the sense of distributions), then

¥ (z) satisfie L& = . At the same time, the functiaB'¥ (z), with X' = [12 0

Proof. Let us show that,(JL) is symmetric with respect tBe A = 0 andlm A = 0. SinceJL = with

0 —IJ , satisfies

LYV = YLV = — XJLY = —\XW.

It follows that both\ and—\ are also eigenvalues §E, hencer, (JL) is symmetric with respect to the lifiew A = 0
and with respect to the point= 0.
To find the essential spectrum PE, by the Weyl criterion, we need to consider the limitJdf asz — +oo,

substitutingu, u by zeros and by g(0) = m = 1; thenJL — X turns into] (D — w) — A, whereD = [[0) [O)} , With
= [_19 ?”1] defined in[(511). Substituting intd (D — w) — \)¥ = 0 the Ansat/ (z) = Zei¢®, with = € C?,
= £ 0, we get:

g

(J(D = w) — \)Ze€ — € (J(D(€) — w) — \)Z = ¢ [_D(E)A+ y D(fj; “’} =0,

whereD(¢) = {D((f) D(()g)}’ with D(§) = [—12'5 i’ﬂ being the symbol oD. The essential spectrum §F is

the range of values of which correspond t§ € R. To find the relation betweek and¢, we need to compute the
determinantlet (J(D(§) — w) — A) and to equate it to zero. In order to compute the determimantotice that

(J(DE) —w) =X (J(D(E) —w) + A) = =(D(§) —w)* = A = =% =1 —w® = A + 20D(9),

(- -1-w =N +20D()) (- &€ —-1-w? =N =2wD()) = (1 —w” + & + N*)* + 4w’N?) I,

wherel, is the4 x 4 identity matrix. Sincelet (J(D(£) — w) — A) should be even with respect¢@ndw, two above
relations allow us to conclude thatt (J(D(£) — w) — A) = (1 — w? + €2 + A2)2 4 4w2\2. The equation

det (J(D(E) —w) = A) = (1 —w? + €+ A?)? + 4w’X\* =0

10



allows one to expressin terms of¢ as\ = +i(w + +/1 + £2), or, vice versa,

€=+ (wEir? —1.

This shows that the essential spectrunfi§(—i(1 — w),i(1 — w)).
The kernel offL is known by Lemm@&35]4. Finally, again due to Lenima 5.4,

e |_|0 L e | Tip| e
it LW} - [—Ll 00] [ﬂw} T [—w] B Lﬂ'w} |

Definition 6.3. Threshold points are the valuesf C which correspond tg = 0.

On Figure b, one can see that the essential spectrufh ebnsists of two overlapping components, which we
distinguish by the symbolsandt. Theb-component isR\ (A%, A% ), with the threshold points

No=—i—iw, N =i —iw; (6.1)
thef-component is’R\(/\g, M), with the threshold points
M= —itiw, M =itiw. (6.2)

We use the subscriptg™ and “u” for the lower (“down”) and the upper edges of each of the components of the
essential spectrum.

The numerical computation of the point spectrunjbfinside(0, i(1 + w)), as a function ofv € (0, 1), is plotted
on Figurd®. The eigenfunctions corresponding to threetmdgenvalues at = 0.1 are plotted on Figurg 7.

7 Jost solutions and Evans functions

Looking for zeros of the Evans function is a way to test whereagmation has solutions with the correct asymptotics
at infinity. The definition involves two main steps. The firgsis to construciost solutionswhich are defined as
solutions with certain decaying asymptotics either at pifisity or at minus infinity. The second step is to match these
two types of solutions. In the presence of symmetry the coabn can be made simpler, simplifying the numerical
computations. We describe this in detail below.

7.1 Jost solutions forJL

Jost solutiond”(z, \) of JL are defined as solutions (L. — \)¥ = 0 which have the same asymptoticstato or at
—oo as the solutions t¢J (D — w) — \)¥ = 0, where

D 0 . 10,
O B |

For a given\ € C away from the threshold points(1 + w)z, solutions to(J(D — w) — A\)¥ = 0 have the form

¥(z,\) = [g} el

where Eg% € C* and¢ € Cis a solution todet (J(L(£) —w) — A) = 0. Let X\ = a + ib, with @ > 0 andb > 0.

(Because of the symmetry efJL) with respect to the lineBe A = 0 andIm A = 0, we only need to consider the
spectrum in the closure of the first quadran€of Then define

& =V((b—ia) +w? -1, & = V(b —ia) —w)? -1,

11
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Figure 5: Domains of analytic functiong®(\), £4(\), and the essential spectrum F. The thresholds are located 2&3 = —i — iw,
N, = —i+iw, Ab = i —iw, and\}, = i + iw. The analytic functiore”()\) is defined onC with the cuts from\”, to +ico and from’ to

—ioo (thick lines on the left side of the imaginary axidn £” < 0, Im&f < 0 for all A € C. The analytic functiorg? () is defined orC with
the cuts fromAﬁ to +ioco and fromAfl to —ioco (thick lines on the right side of the imaginary axis). The haary traces of botg? and¢” at the

double-covered part of the essential spectrum (abc&vand belowAZ) are real-valued.

where for the square root we choose the branch that has vegatiginary part (so that botir €’ ande—i¢*® decay
asz — +00). Then¢” is defined for\ € C with the cuts from\?, = i(1 — w) to +icc and from)\’, = —i(1 + w) to
—ico, while ¢! is defined for\ € C with the cuts from\!, = i(1 + w) to +ico and from)\’, = —i(1 — w) to —ico.
See Figurgls. Altogether the four solutions to the equatiar(J(D(¢) — w) — \) = 0 are££”(\) and+£f(\).

The four solutions t@J (D — w) — \)¥ = 0 corresponding td. away from the thresholds (6.1}, (6.2) are given by

EL(NeF M 2 (Ve Ve, (7.1)
where
;ifb(k) [ A—@'&“(A)
—b —iA—1+w ] | iA-14w
__(/\) fb()\) ) H—(/\) - —fﬁ()\) ) (7-2)
A—i(l —w) A +i(l —w)
i€ (\) [ g
- | —iA-14w —t | iA-14w
ZN=1 Teny |0 SO=] Tany | (7.3)
A—i(l—w) A +i(1 —w)

We will only be considering the Jost solutions which havespribed asymptotics at — +oo.

Lemma 7.1. For each\ € C, A ¢ {\’, /\Z, A2 A}, there are Jost solutions tJL — \)& = 0 with the asymptotics
Yi(z,A) ~ ZL ()i N7 and V2 (2, \) ~ S5 (Ve N7 1 5 400, More precisely,

VE(w, \eF &N —ZL(0)] = 0(1), @ = +oo;

Y2 (2, \)eFiE N _ 28 (N =0(1), - +o0.
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Proof. The proof follows from the Duhamel representation for theion to (JL — A\)¥ = 0 and from the exponential
spatial decay of the solitary waveséz) corresponding tay € (0, 1); see Remark3]5. O

Remark7.2 At the threshold points’, = —i + iw and\% = i + iw (respectively\’, = —i — iw and X, = i — iw),
where¢f(\) = 0 (respectivelyg’(\) = 0), one has=" (\) = =% ()) (respectively,=% (\) = = ())). For such\,
there are only three Jost solutions as in Lerhmh 7.1, and one Jost solution which is linearly growing as— +oo.

7.2 Evans functions forJL

Normally, Evans function describes a matching betweensistions decaying to the left and Jost solutions decaying
to the right. However, presence of symmetries allows usraastline calculation in the present case. Denot&ldy
the “even” subspace of functions froft (R, C*) with even first and third components and with odd second amdtfo
components. Similarly, denote by* the “odd” subspace i’ (R, C*) with odd first and third components and with
even second and fourth components. ThER, C*) = X* ¢ X*. Noticing thatJL acts invariantly inX ¢ and in

X, we conclude that all eigenvaluesHf always have a corresponding eigenfunction eitheKior in X*° (or in
both subspaces). To find eigenvaluegbfcorresponding to functions froki ¢, we proceed as follows:

e For A € C, construct solutiong;, 1 < j < 4, to the equatiojL¥ = A\¥ with the following initial data at
z=0:

1 0 0 [9)
T | R L T ] (7.4
0 0 0 1
Theny, U5 € X ¢, whilev,, ¥, € X°.
e Take the Jost solutiors” (z, \) andY” (z, \) as in Lemm&7]1, which decay for— +oc.

e Define the Evans function
E*_(\) = det [u'/l (2, \), Ws(z, ), Y2 (2, ), Y_n(:c,)\)} . (7.5)

This is a Wronskian-type function which does not depend and could be evaluatedat= R > 1, where the
asymptotics ob” andY* are known from Lemma7.1. Vanishing & _(\) at particular\ € C means that a

certain linear combination aF, (z, \) and¥s(x, \) has the asymptotics of the linear combinatior¥sf(z, \)

andy’? (z,\) asz — +oo, which decays at-co (according to our choice @f (\) andéf()\). By the symmetry

of ¥ (its first and third components are even while its second aadti components are odd), this same linear
combination also decays as— —oco. Therefore, vanishing aE* _(\) at some\ € C implies that there is an
eigenfunction corresponding to this particular value\of

e Similarly, define
E*_(\) = det [%(:c, N, Ta(, \), Y2 (2, 0), Yz, 0] (7.6)

The conditionE'*(\) = 0 means that a certain linear combinationfef ¥, € X* has the same asymptotics
whenz — +oo as a solution of J(D — w) — \)¥ = 0 which decays for: — +oc.

Let us summarize the above in a convenient form:

Lemma7.3. A € o,(JL) ifand only if E* _(A\)E® _(\) = 0. Furthermore,E* _(\) = 0 (respectivelyE® _(\) = 0)
if the corresponding wave function belongs/t(R, C*) N X * (respectivelyZ?(R, C*) N X*).

When searching numerically for zeros of the Evans functinrise spectral gap on the imaginary axis, we benefit
from the following observation.

Lemma 7.4. For A € i(—(1 — w), (1 — w)), the real part of the functiong* _(\), E* _(\) equals zero.
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Proof. For A with Re A = 0, one immediately concludes fro@L — \)¥; = 0 that for allz € R the components
(¥1(x)),; and(Wz(x)), are real forj = 1, 2 and imaginary foy = 3, 4, and tha{¥s(x)), and(¥4(x)), are imaginary
for j = 1, 2 and real forj = 3, 4. On the other hand, whek € (—i(1 — w),i(1 — w)) and both¢® and¢? are
imaginary, the first two components af and=* from (Z2) are real and the second two are imaginary. It Vedlo
that

det [u'/l (2, \), T3(z, \), Z° (N), =* (/\)} €iR,  det |Wy(z, \), Wy(x, A), 22 (\), ZF (V)] € iR,
for anyz € R. Since¢” and¢? are purely imaginary:— * ande~%"* are real; we conclude from Lemial.1 that

E* (\) = det [u'/l (2, A), W3(x,\), Y2 (\), V? (A)}

and
B*_(\) = det [#a(z, \), Za(w, 1), Y2 (N), YE (V)|

are purely imaginary. O

7.3 Jost solutions and Evans functions fot,, and L,

The construction of the Jost solutions and Evans functiohfe operatof ; (and, respectively.,() is similar to the
construction fof L. At z — 400, L; coincides withD — w. The equation
(D—w=XN¥(z)=0
has two linearly independent solutions
Ep (V)N

whereZ4 (\) € C? are given by

Er(N) = [ 1;,20&—))‘ ] , where ¢ =+/(w+A)?—1.

The function¢(\) is defined forA € C with branch cuts fromA = 1 — w to +o00 and fromA = —1 —w to
—o0. These branch cuts correspond to the essential spectrume ofperatof ; (similarly, of Ly). The square root
denotes the branch with the negative imaginary part whemthement is negative, so that farfrom the spectral
gap(—1 — w, 1 — w), the function=_ (\)e N is decaying ag: — +oco. The Jost solution¥ 4 (x, \) for L, are
solutions to(L; — A\)Y(z, A) = 0 with the asymptotic behavior

Yai(z,\) ~EL(N)et N g 4o, (7.7)

There are two subspaces©f (R, C?), X* (spinors with the even first component and odd second conmppaed
X* (spinors with the odd first component and even second conmppsigch thatk* @ X* = C*(R, C?), which are
invariant with respect t; (also with respect th,). We define two solutionsl; (z, \) andW¥,(z, A), to the equation

(Ly — A\)¥ = 0, with the initial data
1 0
T AT

Then we define the Evans functionslgfby
EY(N) =det [U1(2,A), Yi(2,N)],  EL(N) =det [Pa(z, A), Yi(z, M), (7.8)

and look for their zeros.

If E* ()\) vanishes at somg € C, then it means tha¥,(z, \) asz — +oo has the asymptotics of the decaying
Jost solution. (By the symmetry, as— —oo, ¥4 (z, \) also has the asymptotics of the Jost solution decaying to
—00.) We can summarize this as follows.

Lemma 7.5. The inclusiom\ € o, (L,) takes place if and only i£* (A\)E® () = 0.

In the same way one defines the Evans functiBhg)\) andE® (\) for Ly. The zeros of the Evans functions
E% ()\) andE% (\) are plotted on Figurel 3 (fdky) and Figurd ¥ (forl;). The meaning of zeros di$ andE? is
discussed in Sectidn 7.4.
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7.4 Antibound states forL, and L;

The Evans function is defined using two pieces of data: aisolwith the given initial data and the Jost solution that
corresponds to one value §f see equatiori{7.7). However, we can vigix) as defined on a Riemann surface with
two sheets (corresponding #e,/- and—+/-) and two singularity points at1 — w. The two sheets are glued across
the cuts(—oo, —1 — w] and[1 — w, o). The two eigenvectors dD — w (this operator coincides withy andL; at

x — +00) can be thought of as the same eigenvector that changeslawgto which sheek is on. Continuing in this
vein, we consider two previously defined Jost soluti¥hgz, A), A € C\((—o0, =1 — w) U (1 — w,+00)), as one
Jost solution defined on the Riemann surface, which is glfiédtamcopies ofC\ ((—oo, =1 — w) U (1 — w, +00)).

We use this Jost solution to define the Evans function on tlemBRnn surface. Thus, foron the first sheet of the
Riemann surface, the Evans functidity \), E*(\) are represented By* (\), E* () from (Z.8), while on the second
sheet they are representedby (), E%(A). When a zero of the Evans function disappears at the end spieral
gap, it does not “dissolve” in the essential spectrum, lathaer, it goes back into the gap, albeit on a different sheet
of the Riemann surface on which the Evans function is defilgeath an “unphysical” zero of the Evans function is
known in the literature as a “resonance” or an “antibountst&ince the “resonance” is also a name used specifically
for a bounded solution at the threshold of the essentialtgpaqat the threshold, the two notions coincide), we will
be using the “antibound state” as the name of choice. It igilannd” since the solution is purely exponentially
increasing ag — +oo, consisting solely o (z, \) asz — +o0.

On Figurd 4 the antibound statesIgf are indicated by transparent symbaojsq for the states with even eigen-
functions and is for the states with odd eigenfunctions). Sometimes antid states pass from the unphysical sheet
onto the physical one at the threshold point= 1 — w. Note that the curve of transparent circles on the right has a
maximum. This is the value of (on the vertical axis) at which two zeros of the Evans funttiging off the real axis
Im A = 0 on the unphysical sheet collide and create two zeros on ti@xes. The self-adjointness of the operdtor
forbids such a behaviour on the physical sheet, but it isiplessn the unphysical one.

Antibound states for the operatbg are plotted on Figurel 3.

7.5 Antibound states forJL

The Riemann surface on which the Evans function of the opeJat is defined is similar but more complicated.
Indeed, the two limiting frequencigé and¢! are defined on a two-sheeted surface each, but the surfaodiéfarent.
The Evans function is then defined on four sheets. We will tethem by(+, +), (+, —), (—, +), (—, —), depending
on the sign in front of ¢”, ¢*). The sheet—, —) is the physical one, in the sense that the zeros of the Evatidn
on this sheet are the eigenvalues of the opeddtor

The sheets are glued in the following manner.

Across the cut$)\? , ico) and ()}, —icc), the sheet+, +) is glued to(—, —), while the sheet+, —) is
glued to(—, +) (that is, both signs change to their opposites).

Across the cut\?, \!), the gluing is(+, ) « (—,-) (only the sign ot* changes), while across the cut

u? u

(X%, %) the sign ok changes:(-, +) ¢ (-, —).
The four branches of the Evans functi&® on these sheets could be written as follows:

E*_(\) = det [wl(z, \), W (z, \), Y (2, \), Y (x)} ,

B (\) = det [wl(x,A),wg(x,x),yi(x),y_ﬁ (:c)} ,
B* (V) = det [ (2, \), B (@, \), Y2 (2,0), Y ()]

B (\) = det [u‘/l (2, \), Us(z, \), Y (2), Y} (x)} .

Similarly one defines the four branches of the Evans fundtidon
In Figure[8 we trace the zeros of the Evans function on(the-) sheet (eigenvalues, solid symbols) as well as
the zeros on thé+, —) sheet (“antibound states”, transparent symbols). Theszsn change between the two sheets
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by hitting the (square root type) singularity.df. Note that when a curve has infinite derivative (with respect on
thez-axis) it signals that the zeros of Evans function are legtte imaginary axis into the complex plane away from
Re A = 0. This behaviour can be seen for zeros on(the—) sheet, but we have not observed it for the eigenvalues,
which are the zeros on th{e-, —) sheet. This suggests that the eigenvalues stay on the iarggiris for all values of

w.

The zeros lying on the other two sheets are unlikely to sneék the “physical’(—, —) sheet to become eigen-
values for the following reason. To pass onto this sheey, Wwuild either have to leave the imaginary axis and circle
around or to go inside the essential spectrum and hit theukirity at the embedded threshold)gt. We have not
observed such a hypothetical behaviour.

For completeness, we also plot on Figlire 8 the zeros of Evardibns on th€—, +) sheet and on thé+, +)
sheet. Note that between the thresholfland )\, these zeros (marked on Figliie 8 with™and “x”) meet. Indeed,
there is the following simple observation.

Lemma 7.6. For A € (A%, \5) U (A, AL),

E*,(N)=E* (N, E°.(\N)=FEL (.

Proof. First, we notice that foh € R, if ¥ is a solution to

10 Lo _

JLw = [—Ll o] W=\, (7.9)

then so isX¥, whereX = [102 OI } . From [Z.4), we conclude that fore iR,

—42
Wl(I,A) = E%(:z:,/\), WQ(SE,)\) = ZJ/Q(ZC,)\), (710)
!p3(l',)\) = _ZW?)(:Ea/\)v W4($a/\) = —2@4(1’,)\). (711)
For\ € (X2, \), sinceg”(\) is real andt? () is imaginary, and taking into accoufit{l7.2) ahd(7.3), wetbae
there are the relations

2L (Ne€ e = B2 (N)e TN ZE (V)i Ve = 3FE (A)e Ve (7.12)

Given the Jost solutions? (z, A) andY (z, \) which satisfy(JL — \)& = 0, with A € iR, we know thatY? (z, \)

and Z‘Yi(:c,)\) also satisfy(JL — \)¥ = 0. Matching the asymptotics of the Jost solutions with {I7.(<Be
LemmdZ.1), we conclude that

Yo (2,\) = ZY2(x,)),  Yi(z,\) = ZVi(x,\). (7.13)
Taking into accounf(7.10) and(7]13), we have:

B, = det [07,75,Y7, Y_H — det {zwl, — X, BY?, EYH — det [wl, 5, Y YH B,
In the same manner one proves tiat, (\) = E%, () for A € (X, \).
The proof for\ € (A2, /\fi) is similar. O

8 Conclusion

We considered the spectrum of the nonlinear Dirac equatidbi linearized at a solitary wave solution. The numeric
simulations have been performed for the nonlineay{ty) = 1 — s (the Soler model), while some of our analytical
conclusions remain valid for any nonlinearity.

In particular, we found that for any nonlineariys) there are the eigenvalug2wi of the linearizatioJL. For a
certain range of, these eigenvalues are embedded in the essential spedtjiim o

For the nonlinear Dirac equation with the nonlinearjty) = 1 — s we have not found any other embedded
eigenvalues of L. We have not found any complex eigenvalues off the imagiagiy;, concluding that the linearization
at all solitary waves is spectrally stable.
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